Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA2002 – Cálculo Avanzado y Aplicaciones

Clase Auxiliar N°2

P1. Considere los campos vectoriales \vec{F} , \vec{G} : $\mathbb{R}^3 \to \mathbb{R}^3$ definidos para todo $(x, y, z) \in \mathbb{R}^3$ por:

$$\vec{F}(x,y,z) := (2x + 2,4y - 4,3z)$$

$$\vec{G}(x, y, z) := (e^{(z + \cosh(y))} \sin(y) + 4x, e^{\arctan(x^2)} \sinh(z) + y, x^2 + y^2 - 4z)$$

(a) Sean a, b, c > 0 constantes. Considere el casquete elipsoidal $E \subset \mathbb{R}^3$ definido por la ecuación:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Calcule el flujo del campo \vec{F} a través de la superficie E, cuando ésta se orienta según la normal *interior*.

- (b) Sean R, H > 0 constantes. Considere el paraboloide definido por la ecuación cartesiana $x^2 + y^2 Rz = 0$, y sea $\mathcal{M} \subset \mathbb{R}^3$ la parte del manto de dicho paraboloide que está comprendida entre los planos z = 0 y z = H, sin considerar la tapa superior. Calcule el flujo del campo \vec{G} a través de la superficie \mathcal{M} , cuando ésta se orienta según la normal *exterior* al paraboloide.
- **P2.** Sea $\mathcal{D} := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 > 0\}$ y $\vec{F} : \mathcal{D} \to \mathbb{R}^3$ el campo vectorial expresado, en coordenadas cilíndricas, de la siguiente forma:

$$\vec{F}(\rho,\theta,z) := \frac{1}{\rho}\hat{\rho} + e^{-\theta^2}\hat{k}$$
, $\forall (\rho,\theta,z) \in \mathcal{D}$

- (a) Verifique que el campo \vec{F} es de clase \mathcal{C}^1 en el dominio \mathcal{D} . Luego, usando la expresión del operador divergencia en coordenadas cilíndricas, demuestre que $div(\vec{F})(\vec{r}) = 0$, $\forall \vec{r} \in \mathcal{D}$.
- (b) Sea $\Sigma \subset \mathbb{R}^3$ la porción del casquete esférico $x^2 + y^2 + z^2 = 4$ que está contenida entre los planos z = -1 y z = 1, sin considerar las tapas superior e inferior. Haga un bosquejo de Σ y luego calcule el flujo del campo \vec{F} a través de la superficie Σ , cuando ésta se orienta según la normal exterior *al manto de la esfera*.

Explique por qué no es posible aplicar directamente el Teorema de la Divergencia de Gauss en la resolución de este problema.