MA2001-4 Cálculo en Varias Variables

Profesor: Juan Dávila Auxiliar: Roberto Villaflor

Auxiliar 6

30 de Abril del 2012

■ Teorema de la Función Inversa: Sea $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$, una función de clase $C^1(\Omega)$ con Ω abierto y $x_0 \in \Omega$. Si $f'(x_0)$ es invertible; entonces existe $U \subset \Omega$ abierto con $x_0 \in U$, tal que V = f(U) es abierto y $f: U \to V$ es biyectiva $C^1(U)$. Más aún, $f^{-1}: V \to U$ es de clase $C^1(V)$ y

$$(f^{-1})'(y) = [f'(f^{-1}(y))]^{-1}, \, \forall y \in V$$

- **Definición:** Una función $f: \Omega \to \Lambda$, con $\Omega, \Lambda \subset \mathbb{R}^n$ abiertos, se dice difeomorfismo si es diferenciable, biyectiva, con inversa diferenciable. Cuando la función además es $C^k(\Omega)$ y su inversa es $C^k(\Lambda)$, se dice un difeomorfismo C^k .
- **P1.** Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por:

$$f(x,y) = \left(x + \frac{y}{2} - y^3, y - \frac{y^2}{2} - x + \frac{x^3}{6}\right).$$

Pruebe que f admite inversa local de clase $C^1(\mathbb{R}^2)$ en torno al punto (0,0). Calcule además la derivada de f^{-1} en (0,0).

P2. Sea $g: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $g(u,v) = (u^2 + uv^2 + 10v, u + v^3)$. Pruebe que, restringida a una vecindad del punto (1,1), g posee inversa diferenciable. Calcule, la derivada de esta inversa en g(1,1) y úsela para calcular un valor aproximado de una solución al sistema:

$$u^{2} + uv^{2} + 10v = 11.8$$
$$u + v^{3} = 2.2$$

- **P3.** Sea $f: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$ definida por $f(X) = X^k$ con $k \in \mathbb{N}$ fijo. Calcule f'(I) y pruebe que es invertible. Concluya que toda matriz lo suficientemente próxima a la identidad posee raíz k-ésima.
- **P4.** Sean $f, g, h : \mathbb{R} \to \mathbb{R}$ funciones de clase $C^1(\mathbb{R})$. Defina $F : \mathbb{R}^2 \to \mathbb{R}^2$ por F(x, y) = (f(x)h(y), g(y)). Suponga que f y g son difeomorfismos de \mathbb{R} a \mathbb{R} . Pruebe que F es difeomorfismo si y sólo si $0 \notin h(\mathbb{R})$.
- **P5.** Sean $g:[0,\infty)\to\mathbb{R}$ continua, con $g(t)>0\ \forall t\geq 0\ y\ U=\{(x,y)\in\mathbb{R}^2:0< x< y\}$. Defina $f:U\to\mathbb{R}^2$ por

$$f(x,y) = \left(\int_0^{x+y} g(t)dt, \int_0^{y-x} g(t)dt\right).$$

Muestre que f es un difeomorfismo sobre un abierto de \mathbb{R}^2 .