Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA1101 Introducción al Álgebra 17 de Julio de 2012

Clase Auxiliar Extra/Maratón: Preparación Examen

Profesores: María Leonor Varas, José Soto. Auxiliares: Sebastián Espinosa, Gianfranco Liberona.

- **P1.** (P2(b) Examen, Año 2011) Sea p(x) un polinomio de grado mayor o igual a 1 y $a \in \mathbb{R}$. Demuestre que r es una raíz de p(x) si y sólo si (r-a) es raíz de q(x) = p(x+a).
- P2. Sabiendo que el polinomio

$$p(z) = z^4 - 4z^3 + 10z^2 - 12z + 8$$

posee sólo raíces complejas y que una de ellas tiene módulo 2, encuentre todas las raíces del polinomio.

P3. (P6 Examen 2^a Instancia, Año 2008) Sabiendo que el polinomio $p \in \mathbb{C}[x]$ dado por

$$p(z) = 2z^3 - (5+6i)z^2 + 9iz + 1 - 3i$$

admite una raíz $a \in \mathbb{R}$, determine **todas** las raíces de p.

Hint: Estudie la parte real e imaginaria de p(a).

- P4. (P3(a) Control Recuperativo, Año 1997)
 - (a) Sea $n \in \mathbb{N} \setminus \{0\}$, y $\forall k \in \{0, \dots, n-1\}$ considere la raíz n-ésima de la unidad $\omega_k = e^{\frac{2k\pi i}{n}}$. Sea el polinomio

$$p(x) = \omega_0 + \omega_1 x + \ldots + \omega_{n-1} x^{n-1}.$$

Pruebe que las raíces de p(x) son $\omega_0, \ldots, \omega_{n-2}$.

(b) Factorice en producto de polinomios de grado 1 en $\mathbb{C}[x]$ el polinomio

$$p(x) = 1 + ix - x^2 - ix^3.$$

P5. (P2(ii) Control 3, Año 1996) Considere $\mathbb{Z}_2 \times \mathbb{Z}_3$ con la operación definida por

$$(a,b) \oplus (c,d) = (a +_2 c, b +_3 d).$$

- (a) Pruebe que $(\mathbb{Z}_2 \times \mathbb{Z}_3, \oplus)$ es un grupo.
- (b) Construya un isomorfismo

$$f: (\mathbb{Z}_6, +_6) \to (\mathbb{Z}_2 \times \mathbb{Z}_3, \oplus),$$

tal que $f([1]_6) = ([1]_2, [1]_3)$, y concluya que es único.

P6. (P2(b) Examen, Año 2010) Sea (G,*) un grupo, y sea (H,*) un subgrupo de (G,*). La traslación izquierda de H en G con respecto a un $x \in G$ dado se define como

$$x * H = \{x * h : h \in H\}.$$

Pruebe que:

- (a) Para cada $x \in G$ se tiene que: $x \in H \iff x * H = H$.
- (b) Para cada $y \in G \setminus H$ se tiene que: $(y * H) \cap H = \emptyset$.

P7. (P3(b) Examen, Año 2011) Sea $n \in \mathbb{N} \setminus \{0\}$. Calcule la sumatoria:

$$\sum_{k=1}^{2n} \frac{1}{(3+(-1)^k)^k}.$$

P8. Considere la suma

$$S = \left(\frac{1}{1} - \frac{2}{1}\right) + \left(\frac{2}{1+2} - \frac{2}{2}\right) + \left(\frac{3}{1+2+3} - \frac{2}{3}\right) + \ldots + \left(\frac{n}{1+2+3+\ldots+n} - \frac{2}{n}\right).$$

Escriba S en función de dos sumatorias, y calcule su valor.

P9. (P3(ii) Examen 2^a Instancia, Año 2008) Dado $x \in \mathbb{R} \setminus \{0\}$, calcula la sumatoria

$$\sum_{k=0}^{n} \binom{n}{k} \frac{x^k}{k+1}.$$

P10. (P2 Examen, Año 2008) Sea $E \neq \emptyset$ un conjunto y ρ una relación sobre E refleja y transitiva. Se define una nueva relación \mathcal{R} sobre E como:

$$a\mathcal{R}b \iff (a\rho b \wedge b\rho a).$$

- (a) Pruebe que \mathcal{R} es una relación de equivalencia.
- (b) Se define la relación Ω sobre E/\mathcal{R} (conjunto cuociente de E inducido por \mathcal{R}) por

$$[a]_{\mathcal{R}}\Omega[b]_{\mathcal{R}} \iff a\rho b.$$

Pruebe que Ω es una relación de orden en E/\mathcal{R} .

P11. (P2(b) Control Recuperativo, Año 1996) Sea $f: \mathbb{R} \to \mathbb{R}$ una función que verifica para cada $x \in \mathbb{R}$ que $f \circ f(x) = x + 1$.

- (a) Pruebe que f es una función biyectiva.
- (b) Muestre que f no es un morfismo de $(\mathbb{R}, +)$ sobre sí mismo.

P12. Demuestre usando inducción que, $\forall n \geq 1, 3^{2n+1} + 2^{n+2}$ es divisible por 7.