Examen, MA-1A2 Cálculo Diferencial e Integral Escuela de Ingeniería, FCFM, U. de Chile Semestre 2007/2 (26 de Noviembre)

Instrucciones: Este examen consta de 6 preguntas de 3 puntos cada una. La nota del examen se calcula mediante la fórmula $N_{ex} = \frac{P}{3} + 1.0$, donde P es el puntaje obtenido.

- P1) Considere la integral $I_n = \int_{0}^{\pi/4} \operatorname{tg}^n x \, dx$. Demuestre que:
 - a) Para todo $n \in \mathbb{N}$ se cumple $I_{n+1} < I_n$.
 - b) Para todo $n \in \mathbb{N}$ se cumple $I_{n+2} + I_n = \frac{1}{n+1}$.
 - c) Para todo n > 1 se cumple $\frac{1}{2(n+1)} < I_n < \frac{1}{2(n-1)}$.

Solución

a) En el intervalo $[0, \frac{\pi}{4}]$ se sabe que $0 \le \operatorname{tg} x \le 1$ por lo tanto, para todo $n \in \mathbb{N}$ se cumple

$$\operatorname{tg}^{n+1} x \le \operatorname{tg}^n x, \qquad \forall x \in [0, \frac{\pi}{4}].$$

..... De aquí se deduce que $I_{n+1} \leq I_n$

Para probar que la desigualdad es estricta, basta notar que para $x=\frac{\pi}{8}$ se tiene que

0.3 ptos.

0.5 ptos.

b) Integrando directamente se tiene que para todo $n \in \mathbb{N}$ se cumple

$$I_{n+2} + I_n = \int_0^{\pi/4} \operatorname{tg}^n x (\operatorname{tg}^2 x + 1) \, dx = \int_0^{\pi/4} \operatorname{tg}^n x \sec^2 x \, dx = \frac{\operatorname{tg}^{n+1} x}{n+1} \bigg|_0^{\pi/4}$$
$$= \frac{1}{n+1}$$

1.0 ptos.

c) Usando (a) se tiene que para todo n > 1 se cumple $\frac{1}{2}(I_{n+2} + I_n) < I_n < \frac{1}{2}(I_n + I_{n-2})$.

0.5 ptos.

P2) Sea $f: [0, +\infty) \to \mathbb{R}$ una función creciente, continua en $[0, +\infty)$, derivable en $(0, +\infty)$ y tal que f(0) = 0.

Demuestre que la función $F(x) = x \int_0^x f^2(t) dt$ es creciente y convexa en $[0, +\infty]$.

Solución

Derivando se tiene que

$$F'(x) = \int_0^x f^2(t) \, dt + x f^2(x)$$

1.0 ptc

Derivando nuevamente se tiene que

$$F''(x) = 2f^{2}(x) + 2xf(x)f'(x)$$

0.5 ptos.

P3) Considere la curva Γ parametrizada por

$$\vec{r}(t) = e^{-t} \begin{pmatrix} \cos t \\ \sin t \\ 1 \end{pmatrix}, \text{ donde } t \in [0, +\infty).$$

Encuentre los vectores tangente $\hat{T}(t)$ y normal $\hat{N}(t)$ y el largo total de la curva $\Gamma.$

Solución	
Derivando se tiene que	
$\vec{r}'(t) = -e^{-t} \begin{pmatrix} \cos t \\ \sin t \\ 1 \end{pmatrix} + e^{-t} \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix} = -e^{-t} \begin{pmatrix} \sin t + \cos t \\ \sin t - \cos t \\ 1 \end{pmatrix}.$	
	0.5 ptos.
Con esto: $s'(t) = e^{-t}\sqrt{3}$	
	0.5 ptos.
$\vec{T}(t) = \frac{-1}{\sqrt{3}} \begin{pmatrix} \sin t + \cos t \\ \sin t - \cos t \\ 1 \end{pmatrix}.$	
	0.5 ptos.
Derivando se tiene $\vec{T}'(t) = \frac{-1}{\sqrt{3}} \begin{pmatrix} \cos t - \sin t \\ \cos t + \sin t \\ 0 \end{pmatrix},$	
y en consecuencia $ T' = \frac{\sqrt{2}}{\sqrt{3}}$	0.5 ptos.
Por lo tanto $\vec{N}(t) = \frac{-1}{\sqrt{2}} \begin{pmatrix} \cos t - \sin t \\ \cos t + \sin t \\ 0 \end{pmatrix}.$	
	0.5 ptos.
Al integrar s' se tiene que $L = \int_0^\infty s'(t) dt = \int_0^\infty e^{-t} \sqrt{3} dt = \sqrt{3}.$	
	0.5 ptos.

P4) Use el criterio integral para estudiar la convergencia de la integral impropia $\int_{1}^{+\infty} f(x) dx$, donde $f(x) = \frac{e^x}{x^x}$. Debe verificar las hipótesis del teorema.

Indicación: Pruebe que $f'(x) = -f(x) \ln x$.

Solución

Claramente $f(x) \ge 0$. Además

$$f'(x) = \frac{e^x x^x - e^x x^x (1 + \ln x)}{x^{2x}} = -f(x) \ln x$$

1.0 pto

0.5 ptos.

Estudiamos la serie $\sum \frac{e^n}{n^n}$ mediante el criterio de la raíz enésima.

$$\sqrt[n]{a_n} = \frac{e}{n} \to 0$$

0.5

0.5 ptos.

Con esto, la serie y la integral convergen.

1.0 ptos.

P5) Considere la conocida serie geométrica $f(x) = \sum_{n\geq 0} x^n$. Calcule $\int_0^{1/2} f(t^2) dt$ por dos caminos, para demostrar que

$$\ln 3 = \sum_{n \ge 0} \frac{1}{4^n (2n+1)}.$$

Solución

Sabemos que $f(x) = \frac{1}{1-x}$ por lo tanto

$$\int_0^{1/2} f(t^2) dt = \int_0^{1/2} \frac{1}{1 - t^2} dt = \frac{1}{2} \int_0^{1/2} \frac{1}{1 + t} + \frac{1}{1 - t} dt = \frac{1}{2} \ln \frac{1 + t}{1 - t} \Big|_0^{1/2} = \frac{1}{2} \ln 3.$$

1.5 ptos.

Además $f(x) = \sum_{n>0} x^n$ luego

$$\int_0^{1/2} f(t^2) dt = \sum_{n \ge 0} \int_0^{1/2} t^{2n} = \sum_{n \ge 0} \frac{t^{2n+1}}{2n+1} \bigg|_0^{1/2} = \frac{1}{2} \sum_{n \ge 0} \frac{1}{4^n (2n+1)}.$$

1.5 ptos.

De estos cálculos se concluye.

P6) Un cilindro de altura h y base circular de radio R se construye de modo que R = f(h).

Determine las dimensiones de cilindro que maximizan su volumen, para los casos $f(x) = e^{-x}$ y $f(x) = e^{-x^2}$.

Solución

El volumen del cilindro es:

$$V = \pi h f^2(h)$$

Derivando se tiene que:

$$V' = \pi f^{2}(h) + \pi 2hf(h)f'(h) = \pi f(h)(f(h) + 2hf'(h))$$

En el caso $f(x) = e^{-x}$ se tiene f'(h) = -f(h) y por lo tanto

$$V' = \pi f^2(h)(1 - 2h)$$

0.5 ptos.

En el caso $f(x) = e^{-x^2}$ se tiene f'(h) = -2hf(h) y por lo tanto

$$V' = \pi f^2(h)(1 - 4h^2)$$

0.5 ptos.

Formulario: $V = \int_a^b \pi f^2$, $V = \int_a^b 2\pi x f$, $L = \int_a^b \sqrt{1 + f'^2}$, $S = \int_a^b 2\pi x \, ds$, $S = \int_a^b 2\pi f(x) \, ds$.