Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática 09 de Abril de 2012

Auxiliar #3 MA1001 - Geometría Analítica

Auxiliar: Nikolas Tapia, Profesor: Sebastián Donoso.

P1. Sean los puntos A = (a, 0) y B = (-a, 0), con a > 0. Encuentre el Lugar Geométrico de los puntos $P = (x_0, y_0)$ tales que las pendientes de las rectas L_{PA} y L_{PB} satisfacen la relación

$$m_{PA} = \frac{2m_{PB}}{1 - m_{PB}^2}.$$

- **P2.** Considere la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Se sabe que en un punto cualquiera (x_0, y_0) de ella, la recta tangente tiene ecuación $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.
 - (a) Escriba la ecuación de la recta normal a la elipse por el punto (x_0, y_0) .
 - (b) Pruebe que la recta y=mx+n intersecta a la circunferencia $x^2+y^2=r^2$ si y sólo si $(1+m^2)r^2 \ge n^2$.
 - (c) Use las partes anteriores para encontrar el menor radio del círculo centrado en el origen, que intersecta a la recta normal a la elipse por (x_0, y_0) .
- **P3.** Considere la parábola de ecuación $y=x^2$ y el punto A de coordenadas (1,0). Si por el punto A se traza una recta L de pendiente $m \in \mathbb{R}$, se pide lo siguiente
 - (a) Determine el conjunto C de todas las pendientes m tales que la recta L y la parábola se intersecten en al menos un punto.
 - (b) Si $m \in C$, sean $P \setminus Q$ los puntos donde la recta y la parábola se intersectan y M el punto medio del trazo \overline{PQ} . Determine las coordenadas (x_M, y_M) de M en términos de m.
 - (c) De las ecuaciones anteriores encuentre en qué curva se mueve el punto M. Además, considerando que $C \neq \mathbb{R}$, determine cuál zona de esta curva es realmente recorrida por M.
- **P4.** Considere la elipse de ecuación $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, donde 0 < b < a y su punto superior A = (0, b). Por un punto $P = (x_0, y_0)$, con $x_0 \neq 0$, que se mueve sobre la elipse se traza la recta L_{AP} la que corta el eje OX en un punto Q. Determine el Lugar Geométrico de la intersección de la recta OP con la recta vertical por Q.