
Submitted to Operations Research

manuscript (Please, provide the mansucript number!)

Fast sample average approximation for minimizing
Conditional-Value-at-Risk

Daniel Espinoza
Department of Industrial Engineering, Universidad de Chile, daespino@dii.uchile.cl

Eduardo Moreno
Faculty of Engineering and Science, Universidad Adolfo Ibañez, eduardo.moreno@uai.cl

Recent years have seen growing interest in coherent risk measures, such as Conditional Value-at-Risk (CVaR).
One reason is that they fulfill many desirable properties for risk measures. A second reason is the recent
algorithmic results for solving stochastic optimization problems, mainly through the sample average approx-
imation (SAA) approach, that allows to solve stochastic optimization problems where the underlying dis-
tribution is more general than the classic closed-formula solutions known today for special cases. There is
however one disadvantage of the SAA technique, even when used with convex risk measures such as CVaR:
there are some cases where the number of samples required to get good approximated solutions tends to
be very large. In this paper we propose an automatic aggregation scheme to exactly solve linear programs
with CVaR objective function using sample average approximations with a very large number of scenarios.
Extensive computational experiments are performed on Netlib LP instances. Our results show that this
aggregation scheme is in average between 3 (1,000 scenarios) and 152 (1,000,000 scenarios) times faster than
the standard LP-equivalent formulation. Moreover, the proposed aggregation scheme reduce the memory
requirements to solve the problem, allowing to exactly solve minimization CVaR problems with tens of
millions of scenarios.

Key words : Conditional Value at Risk, Aggregation techniques, Approximation methods, Sample Average
Approximation

1. Introduction

Conditional Value-at-Risk (also known as CVaR, or Expected Shortfall) is a risk measure that
has gained major relevance in recent years. This relevance is explained by different reasons. CVaR
is a “coherent” risk measure (Acerbi and Tasche 2002), which is a desired property that other
risk measures (such as Value-at-Risk) do not have. Moreover, CVaR can be formulated as a con-
vex function, so it is (in principle) more suitable to be used in optimization problems either as
an objective function or as a constraint. On the other hand, the Sample Average Approximation
method (Kleywegt et al. 2002, Linderoth et al. 2006) allows to pose any linear programing problem
with CVaR objective and/or constraints, under any distribution, as a linear programming prob-
lem. This explain why computational portfolio optimization problems minimizing CVaR has been
extensively studied in recent years (Lim et al. 2011, Ogryczak and Śliwiński 2011).

From the computational point of view, approximations of CVaR may require many scenarios
to obtain good estimations of the real optimum, requiring to solve a large scale LP optimization
problem. In Beliakov and Bagirov (2006), authors affirm that LP formulation of CVaR “does not
scale well” for a portfolio optimization problem, and they propose a non-smooth optimization
method of the discrete gradient. Also, in Künzi-Bay and Mayer (2006), different linear and non-
linear programming formulations of CVaR are studied, and authors also propose a new method
based on the L-shaped method.

In this paper, we propose an algorithm to compute the “traditional” sample average approxima-
tion of CVaR, using an automatically generated aggregation of scenarios. Instead of solving the full
problem, we solve a smaller problem using aggregated scenarios, and iteratively we disaggregate
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them to obtain a better approximation. This algorithm is based on an algorithm for scheduling of
open pit mines, that appears in Bienstock and Zuckerberg (2010).

In Section 2 we formally define CVaR and the LP formulation based on SAA. In Section 3 we
present our algorithm, and we prove its correctness in Section 4. Finally, in Section 5 we show
computational results comparing our algorithm with the full formulation.

2. Problem description

Given x ∈Rn, a linear loss-function z(x) = ĉx, where ĉ is a random parameter, and a probability
distribution function Fx(λ) = P(ĉx≤ λ), we define the Value-at-Risk (VaR) at level ε as

VaRε(x) = min{λ|Fx(λ)≥ ε}

Analogously, the conditional Value-at-Risk (CVaR) at level ε is defined as

CVaRε(x) = E(ĉx|ĉx≥VaRε(x)) = min
t

[

t+
1

ε
E((ĉx− t)+)

]

Note that exact computation of CVaR is not possible except for some particulars distribution
functions Fx. In this paper, we are interested in a general linear programming problem minimizing
CVaR. Let us consider the following problem:

(P ) minCVaRε(ĉx) (1a)

s.t.Ax = b (1b)

x≥ 0, (1c)

where ĉ is a random variable and ε∈]0,1].
In Rockafellar and Uryasev (2000), a linear programming approach is proposed, based on sample

average approximation (SAA) of the expectation function. Given a large enough sample {ci}Ni=1 of
ĉ, each of them with probability pi, (1) can be well approximated by the following problem:

(PN) min t+
1

ε

N
∑

i=1

piηi (2a)

s.t.Ax = b (2b)

cix+ t+ ηi ≥ 0 ∀i∈ {1, . . . ,N} (2c)

x, η≥ 0 (2d)

However, although optimal objective values zPN
→N→∞ zP , for problems with many random param-

eters, the number of scenarios required to obtain good approximations tends to be too large.

3. Our algorithm

Consider N = {P j}kj=1 a partition of {1, . . . ,N}, and the problem

(PN ) min t+
1

ε

k
∑

j=1

p̂j η̂j (3a)

s.t.Ax = b (3b)

c̄jx+ t+ η̂j ≥ 0 ∀j ∈ {1, . . . , k} (3c)

x, η̂≥ 0 (3d)
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where p̂j =
∑

i∈P j pi and c̄j = 1
p̂j

∑

i∈P j pic
i. Note that (3) is a relaxation of (2), from where zPN

≤

zPN
. On the other hand, given x̃≥ 0 satisfying (3b), we can formulate the problem

(P x̃) min t+
1

ε

N
∑

i=1

piηi (4a)

s.t. cix̃+ t+ ηi ≥ 0 ∀i∈ {1, . . . ,N} (4b)

η≥ 0 (4c)

Let wi = cix ∀i= 1 . . .N and reorder these values such that w(1) ≤w(2) ≤ . . .w(n). Let i∗ = max{l :
∑

i=1...l p(i) ≤ ε}. Then, it is easy to see that the optimal solution of this problem is t=−w(i∗+1) and
η(i) =w(i∗+1)−w(i) for i≤ i∗ and η(i) = 0 for i > i∗. Hence, (4) can be solved in time O(N log(N)).
Moreover, for any x̃≥ 0 satisfying (3b), we have that

zPN
≤ zPN

≤ zP x̃
(5)

This suggest the following scheme to solve (2). Start with N = {{1, . . . ,N}}, solve (3), get x̃,
solve (4). If zPN

= zP x̃
then stop. Otherwise, refine partition N . A detailed description of this

procedure is presented in Algorithm 1.

Algorithm 1 Iterative procedure to solve PN

1: Start with N = {{1, . . . ,N}}
2: loop
3: Solve (PN ). Let (x̃, η̃) be its solution, and zPN

be its objective value.
4: Solve (P x̃). Let (η∗) be its solution and let zP x̃

be the optimal objective value.
5: if zPN

= zP x̃
then

6: return Solution (x̃, η∗)
7: else
8: Let N+ = {i : η∗

i > 0}
Refine partition N ←

⋃

j=1..k{(P
j \ {i∗ + 1})∩N+, (P j \ {i∗ + 1}) \N+}∪ {i∗ + 1}

Lemma 1. Algorithm 1 stops and returns the optimal solution of PN .

4. Proof of Lemma 1

Since the number of scenarios is finite, we only need to prove that the size of N increase in each
step. Let us rewrite the dual of (2) as following

(DPN) maxytb (6a)

s.t. ytA+
1

ε

N
∑

i=1

piλic
i ≤ 0 (6b)

N
∑

i=1

piλi = ε (6c)

0≤ λi ≤ 1 ∀i∈ {1 . . .N} (6d)
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In the same way, the dual of (3) can be rewritten as following:

(DPN ) maxytb (7a)

s.t. ytA+
1

ε

k
∑

j=1

p̂jλ̂j c̄
j ≤ 0 (7b)

k
∑

j=1

p̂jλ̂j = ε (7c)

0≤ λ̂j ≤ 1 ∀j ∈ {1 . . .K} (7d)

Note that this problem, is equivalent to (DPN) plus constraints λi = λj for all i, j in a same element
of partition N . Denote L(DPN , µ) the Lagrangian relaxation of DPN obtained by penalizing
constraints (7b) by µ. That is,

L(DPN , µ) : max

{

ytb+ (−ytA−
1

ε

k
∑

j=1

p̂jλ̂j c̄
j)µ :

k
∑

j=1

p̂jλ̂j = ε,0≤ λ̂j ≤ 1∀j = 1 . . . k

}

Finally, the dual of (4) is

(DP x̃) : max

{

−
1

ε

N
∑

i=1

piλic
ix̃ :

N
∑

i=1

piλi = ε,0≤ λi ≤ 1∀i

}

Note that this problem can be solved by sorting the values of cix̃. Specifically, an optimal solution
of this problem is given by λ(i) = 1 for all i≤ i∗, λ(i∗+1) = ε−

∑i∗

i=1 p(i) and λ(i) = 0 for all i > i∗ + 1.
From Equation (5), we know that

zDPN
≤ zDPN

≤ zDP x̃

Suppose that the size of N doesn’t increase after refining partition N , and let λ∗ be the optimal
solution of (DP x̃). Hence, λ∗

i = λ∗
i′ for all i, i′ ∈ P j ∀j = 1 . . . k. Therefore, we can construct λ̂∗

j = λ∗
i

for some i ∈ P j, and λ̂∗ is feasible for L(DPN , µ) for any µ≥ 0. However, since x̃ is the optimal
dual of constraints (7b), we know that the optimal of value of L(DPN , x̃) is equal to zDPN

, proving
the result.

5. Implementation and computational results

All runs where made using a single thread with an address space limit and data limit of 4Gb and
20 hours running time limit. The machines were running Linux 2.6.18 under x86 64 architecture,
with two quad-core Intel R© Xeon R© E5620 processors and with 48Gb of RAM. To obtain better
timing measures, the machines where configured (in BIOS) with the following technologies disabled:
Intel R© Turbo Boost Technology, Intel R© Hyper-Threading Technology, and Intel R© Virtualization
Technology (VT-x). These settings, allowed us to run up to eight instances in a machine without
(much) interference between processes.

All our code is implemented in the C programming language. We implement Algorithm 1 by
solving (DPN ) and (DP x̃) respectively, the main advantage of this is that the problem has, in
general, no more than m+ 2n+ 1 constraints (other than bounds), and m+ 2n+ |N | variables for
the reduced problem and m + 2n + 1 constraints and m + 2n + N variables for the full problem.
All linear programming problems where solved using CPLEX 12.2 dual simplex algorithm.

For generating random numbers, we use the implementation by Pierre L’Ecuyer of the algorithm
published in L’Ecuyer (1999). One of the advantages of this random number generator, besides
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architecture Independence and a period length of ρ≈ 2191, is that we can jump in the sequence of
randomly generated numbers easily; this allows to generate, on the fly, any sub-sequence of random
numbers, and thus permitting to work without storing all random numbers in memory, but to
re-generate them as needed.

To test the performance of this algorithm, we use the Netlib (Gay 1985) LP problem collection.
To generate random objective functions, we introduce uncertainty to the original objective function
by multiplying independently each coefficient of the objective function with a random variable χ.
We test two random variables:
• χ∼U [0,1], i.e. χ is a uniform distribution in [0,1].

• χ∼

{

N (1,0.4) with probability 0.95
exp(10) otherwise

, i.e. 95% of the time, χ follows a normal distribution,

and in 5% of the time, it follows an exponential distribution. This is one of the distributions
used in Lim et al. (2011).

Furthermore, we test different risk levels for CVaR, namely ε∈ {0.01, 0.10, 0.50, 0.75}.
We test the algorithm in two forms:

In memory: We generate all random coefficients once at the beginning of the algorithm, storing
them in an array whose length is Nn′, where n′ is the number of non-zero coefficients in the
objective function.

Out of memory: Each time we need a random coefficient, we re-generate the proper random num-
ber, in this way we avoid storing in memory all the data, but it increases the computation
time.

In the first form, we test problems with 102, 103, 104, 105 and 106 samples and both random
distribution, and report on the instances where both, our algorithm and the full formulation, solve
the same instance within the running-time limit and the memory limit described before.

In the second form, we only show the running times for our algorithm for problems with 105,
106 and 107 samples and the uniform random distribution.

A final detail is in the termination condition of the algorithm. In theory, both upper and lower
bounds should be the same; however, due to the floating-point representation, we stop our algorithm
whenever

zDPN
− zDP x̃

max{1, |zDPN
|}
≤ 10−6.

The value 10−6 was chosen because is the default reduced cost tolerance for CPLEX simplex
algorithm, which should make both approaches comparable.

In Figure 1 we show performance profiles (Dolan and Mor 2002) of both methods for the different
values of N . Figure 1 shows the empirical accumulated probability of the required time to solve
these instances, using the full formulation (label m0) and our algorithm (label m1). These graphs
include all NetLib instance that could be solved “In memory” by both methods, with the different
levels of ε and probability distributions. As we can see, both methods requires a similar time to
solve instance with N = 100 samples. However, for larger sample sizes Algorithm 1 outperforms
the full formulation. In fact, our algorithm has a geometric mean time 3 times faster for N = 103,
15 times faster for N = 104, 42 times faster for N = 105 and 152 times faster for N = 106.

For the “Out of memory” form, we show the results of Algorithm 1 in Table 1. For each instance,
we show the time (in seconds) required to solve the problem, the number of iterations required
(column Iter) and the size of the final partition (column |N |). We note that we are unable to
compare these results with the full formulation because CPLEX can not solve many of them due
to the large memory requirement. As we can see, using Algorithm 1 we are able to solve problems
with a large number of scenarios not only faster than the original full formulation, but also with a
smaller memory requirement. In fact, we can see that the size of the optimal partition N is, in the
worst case, two orders of magnitude smaller than the number of scenarios N . Moreover, several
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(b) N = 1,000
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(c) N = 10,000
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(d) N = 100,000

Figure 1 Performance Profiles of both methods on Netlib instances.

problems can be solved in a few seconds, because the size of the optimal partition contains less
than 10 subsets.

6. Conclusions

We show a simple aggregation technique to exactly solve minimization of CVaR problems using
sample average approximations of arbitrary probabilistic distributions, with a very large number of
scenarios. Computational experiments show that this method is much more efficient in running time
and, together with the use of modern random number generators, allow us to solve problems with
several millions of scenarios. This is possible because the optimal solution of these problems usually
requires a far smaller number of representative scenarios. An interesting open question is if there is a
better selection of these representative scenarios allows to obtain even smaller aggregations, further
improving the performance of this algorithm. Finally, we note that this aggregation technique could
be also applied to solve more general two-stage stochastic programming problems, opening a new
direction for future research.
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Table 1 Results for Netlib instances for 105, 106 and 107 scenarios (average
values for ε= 1%, 10%, 50% and 75%.

N = 100,000 N = 1,000,000 N = 10,000,000

Name time Iter. |N | time Iter. |N | time Iter. |N |
adlittle 85 17.3 5232.8 2080 19.8 32763.5 56684 22.3 218034.0

afiro 2 2.0 2.0 22 2.0 2.0 210 2.0 2.0

agg 45 13.8 924.8 568 15.8 4272.3 6270 17.5 19766.3

bandm 57 14.8 1353.8 720 17.0 7072.8 7854 18.8 29525.3

beaconfd 21 7.8 44.5 260 8.8 79.3 2462 8.5 91.0

boeing2 54 15.0 1579.5 653 16.8 8781.8 7318 18.3 37770.0

bore3d 5 2.0 2.0 54 2.3 2.5 488 2.3 2.5

brandy 2 2.5 3.0 23 2.5 3.0 225 2.5 3.0

capri 31 14.8 2517.0 399 16.3 6927.0 4674 17.8 15675.3

e226 76 16.5 3576.3 1013 18.8 23025.3 13197 21.5 149284.5

etamacro 10 4.8 12.0 135 5.5 20.5 1040 4.8 15.5

fffff800 14 10.5 118.5 158 10.8 252.8 1499 10.3 354.0

ganges 37 12.8 815.0 471 14.8 4581.5 5380 17.3 30458.5

grow15 8 4.8 87.3 99 5.3 412.0 831 5.5 1740.5

grow22 21 9.5 135.8 218 9.5 493.8 1999 9.5 2329.3

grow7 16 9.5 146.5 164 9.3 199.5 1283 8.3 284.8

israel 38 13.8 544.5 440 14.5 2331.0 4745 16.3 9594.3

kb2 3 3.3 5.0 47 4.3 9.0 435 4.5 12.5

lotfi 0 0.0 0.0 50 5.0 14.8 535 5.5 17.8

perold 3 2.5 3.0 30 2.8 3.5 268 2.8 4.0

pilot.ja 4 2.8 3.5 32 2.8 3.5 300 2.8 3.5

pilot 45 14.3 1488.5 467 16.5 8316.5 5257 18.5 47483.0

pilot4 3 3.8 6.0 37 3.5 5.5 342 3.5 5.8

pilotnov 47 13.3 2589.8 539 14.8 12104.3 5199 16.3 19192.8

recipe 5 2.0 2.0 50 2.0 2.0 454 2.0 2.0

sc105 1 2.0 2.0 13 2.0 2.0 130 2.0 2.0

sc205 1 2.0 2.0 13 2.0 2.0 130 2.0 2.0

sc50a 1 2.0 2.0 14 2.0 2.0 130 2.0 2.0

sc50b 1 2.0 2.0 13 2.0 2.0 129 2.0 2.0

scagr7 20 6.8 29.8 231 7.5 78.8 2225 7.8 276.0

scfxm1 5 3.0 4.0 52 3.0 4.0 466 3.0 4.0

scfxm2 6 3.0 4.0 63 3.0 4.0 557 3.0 4.0

scfxm3 8 3.5 6.3 81 3.5 7.0 700 3.3 5.0

share1b 16 8.3 21.8 189 8.5 27.3 1167 5.8 22.0

share2b 16 9.0 36.3 194 9.8 67.8 1073 5.8 28.8

stair 1 2.0 2.0 14 2.0 2.0 129 2.0 2.0

standata 3 3.0 4.0 38 3.0 4.0 255 2.5 3.0

standgub 3 3.0 4.0 38 3.0 4.0 257 2.5 3.0

standmps 2 2.0 2.0 23 2.0 2.0 209 2.0 2.0

stocfor1 19 10.5 78.3 206 10.8 178.0 1305 7.5 139.5

tuff 2 2.0 2.0 19 2.0 2.0 172 2.0 2.0

vtp.base 3 3.0 4.0 36 3.0 4.3 213 2.3 2.5

woodw 5 4.5 12.0 49 4.3 12.3 287 3.0 4.5


