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Abstract. We consider the optimal management of a hydro-thermal power system in the mid

and long terms. From the optimization point of view, this amounts to a large-scale multistage

stochastic linear program, often solved by combining sampling with decomposition algorithms,

like stochastic dual dynamic programming. Such methodologies, however, may entail prohibi-

tive computational time, especially when applied to a risk-averse formulation of the problem.

We propose instead a risk-averse rolling-horizon policy that is nonanticipative, feasible, and

time consistent. The policy is obtained by solving a sequence of multi-stage problems with

deterministic constraints for the current time step and future chance and CVaR constraints.

The considered hydro-thermal model takes into account losses resulting from run-of-river

plants efficiencies as well as uncertain demand and streamflows. Constraints aim at satisfying

demand while keeping reservoir levels above minzones almost surely. We show that if the problem

uncertainty is represented by a periodic autoregressive stochastic process with lag one, then the

probabilistic constraints can be computed explicitly. As a result, each one of the aforementioned

multi-stage problems is an easy to solve medium-size linear program.

For a real-life power system we compare our approach with three alternative policies. Namely,

a robust nonrolling-horizon policy and two risk-neutral policies obtained by stochastic dual dy-

namic programming, implemented in nonrolling- and rolling-horizon modes, respectively. Our

numerical assessment confirms the superiority of the risk-averse rolling-horizon policy that yields

comparable average indicators, but with reduced volatility and with substantially less compu-

tational effort.
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1. Introduction

The optimal operation of a hydrothermal system in the mid and long terms usually minimizes

the expected value of the operating cost, essentially composed of fuel costs plus penalties for load

shedding. This type of problem is of interest not only in centralized systems, but also for ISO and

private and institutional agents acting on vertically integrated systems.

When the planning horizon covers several years, the optimal operation problem (OOP) is for-

mulated as a stochastic program with recourse; see Birge and Louveaux (1997). The problem is

often large scale because there are many power plants and many time periods need to be con-

sidered. For a study over 5 years, a typical time step of one month -needed to describe suitably

the hydrological uncertainty- makes up a total of 60 months. To eliminate “boundary” effects,

see Section 5.1.1 below, in practice the time horizon is in fact doubled, yielding T = 120 stages.

For systems subject to cold winters, uncertainty in the seasonal demand needs to be represented

too, increasing even more the problem complexity. For these reasons, a linear modeling is often

adopted for the optimization problem.

A prototypical example is Brazil’s power system, predominantly hydroelectric, for which the

availability of limited amounts of hydro-power in the form of water stored in reservoirs makes the

OOP very complex. There are many reservoirs in cascade, some of them with a capacity of reg-

ularization that covers several years, and spread over geographical regions with different seasonal

rainfall. Water is a commodity of unknown value and uncertain availability and present operating

decisions have future consequences that are difficult to quantify. In this setting, important indica-

tors obtained when solving the OOP, like mean marginal prices or the average future unsupplied

energy, need to reflect well the impact of extreme events such as extended droughts. This is why it

is interesting to develop OOP variants that not only consider average phenomena, well represented

by the cost in expected value, but also take into account the underlying risk factors. Since the

hydrological risk is mostly associated to low volumes of stored water, operators struggle to keep

the reservoirs over some critical minimum values or minzones that trigger an alert for the system

as a whole, and require special actions to avoid future blackouts.

The question of how to measure risk in financial applications has been intensively developed

over the past years, Artzner et al. (1999), Rockafellar and Uryasev (2000). In the energy sector,

similar ideas have been applied for hedging financial risk of price-taker companies operating in

deregulated markets (we refer to Mo et al. (2001), Wallace and Fleten (2003), Conejo et al.

(2004), Cabero et al. (2005), Eichhorn et al. (2004), Eichhorn and Römisch (2008), and references

therein). The problem of measuring hydraulic risk for the OOP was first explored in Brignol and

Rippault (1999), and more recently in Guigues et al. (2009), Guigues and Sagastizábal (2009),

Andrieu et al. (2010), Guigues (2011), Philpott and de Matos (2010), Shapiro (2011).



THE VALUE OF ROLLING-HORIZON POLICIES FOR RISK-AVERSE HYDRO-THERMAL PLANNING 3

For problems with uncertain data, two classes of models can be proposed: Robust Optimiza-

tion or Stochastic Programming. In a multistage setting, Stochastic Programming may lead to

intractable problems. Already in a risk-neutral formulation, the huge number of time stages of

the OOP can only be dealt with by sampling, as in Pereira and Pinto (1991), Chen and Powell

(1999), Philpott and Guan (2008). Risk aversion makes the situation only worse, due to the need

of more variables and/or constraints to model the problem; see Guigues and Römisch (2010),

Philpott and de Matos (2010), Shapiro (2011). By contrast, the Robust Optimization techniques

from Ben-Tal and Nemirovski (1998) yield tractable problems; for instance, the adjustable robust

counterparts Ben-Tal et al. (2003) give a tractable OOP model in Guigues (2009). But in gen-

eral the quality of a robust policy is only good for a problem with a moderate number of stages,

like in Guigues (2009). As confirmed by our numerical results in Section 5.2, since uncertainty

sets become progressively larger as the time stages increase, a robust policy may end up being

exceedingly conservative.

To circumvent the curse of intractability and/or conservatism, inherent to multistage uncer-

tain programs, we employ a risk-averse approach in a rolling-horizon setting, as in Guigues and

Sagastizábal (2009), described in Section 2. Essentially, we consider solving successively T − 1

multi-stage problems with shorter and shorter horizons, for t = 1, . . . , T . For the tth multi-stage

problem, constraints are considered deterministic at time step t, and in a probabilistic sense for

[t + 1, T ]. The approach builds feasible policies: all the constraints over the optimization period

hold almost surely. This is a very important property for the OOP, for which the minzones con-

straints need to be satisfied with probability one. Moreover, the policy is time consistent in the

sense of Shapiro (2009).

The considered hydro-thermal model considers uncertain streamflows and includes run-of-river

plants, that can either spill or generate; see Section 3. Since turbines have a maximum capacity,

some of the uncertain streamflow, meant to be immediately transformed into energy by the run-of-

river plants, may be lost. As explained in Section 3.1, the corresponding plant efficiency induces

a loss of energy that depends on the whole system configuration and that is represented by a

nondecreasing function of the streamflow. Constraints aim at satisfying demand while keeping

reservoir levels above minzones almost surely. In Section 4 we show that if the streamflow is

represented by a periodic autoregressive stochastic process with lag one, then the probabilistic

constraints can be computed explicitly. As a result, each one of the aforementioned multi-stage

problems is an easy to solve medium-size linear program. The model also takes into account

uncertain demand. In Section 4.4 we address the general case, when demand is also a stochastic

autoregressive process with lag one, for which calculations are no longer explicit, but involve

estimations.
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With respect to Guigues and Sagastizábal (2009), this work includes the modeling of both run-

of-river plant efficiencies and uncertain demand. Although realistic, this more general framework

complicates the recursive computation of the chance constraint coefficients derived in Guigues

and Sagastizábal (2009). In this paper we show how to make those computations explicit, in a

direct manner, for autoregressive processes with lag equal to one. In addition, the theoretical

development is supported by the final Section 5, with numerical results organized in three parts.

First, to emphasize the fact that rolling horizons are indeed beneficial in a risk-averse setting, we

(favorably) compare our policy with a robust one, similar to the one by Bertsimas and Thiele

(2006). The second set of tests evaluates the impact of modeling the run-of-river efficiencies, and

compares our policy with two stochastic dynamic dual programming (SDDP) policies, implemented

in nonrolling- and rolling-horizons, but risk neutral. The third and final test-case refers to a real-

size OOP, and confirms the superiority of the risk-averse rolling-horizon policy which yields average

indicators that are comparable to the ones obtained by a risk-neutral SDDP, but with reduced

volatility and with substantially less computational effort.

We now set down some notation. For a random variable ξ, ξ̃ denotes a particular realization,

whereas E(ξ) and σ(ξ) are the expected value and the standard deviation, respectively. For the

process ξ, ξ[t] = (ξj , j ≤ t) denotes its history up to time t. Conditional expectations and

probabilities are denoted by E(ξ1|ξ̃2) := E(ξ1|ξ2 = ξ̃2) and P(ξ1 ∈ A|ξ̃2) := P(ξ1 ∈ A|ξ2 = ξ̃2).

The cumulative distribution function is denoted by Fξ(·), knowing that for ξ ∼ N (0, 1), we

just write F (·) := Fξ(·). The generalized inverse of a nondecreasing function F is given by

F←(εp) = inf{x : F (x) ≥ εp}. For a continuous random variable X for which higher values are

preferred, the Conditional Value-at-Risk of level εp ∈ (0, 1) of X is defined by CV aRεp(X) =

−E[X |X ≤ F−1X (εp)] while the Value-at-Risk of level εp of X is V aRεp(X) = −F−1X (εp).

2. Main features of a rolling-horizon approach

As explained in Wets (2000), in a here-and-now approach, a decision must be selected before

a realization of the random data becomes available. In a problem of the wait-and-see type, one

is allowed to wait before making the decision until realizations of the random variables can be

observed; see also Ch. I, Birge and Louveaux (1997). The risk-averse rolling-horizon methodology

lies in-between and could be labeled “here-and-now looking-forward”.

In order to explain the rolling-horizon (RH) approach, we first consider how a sampling method,

like SDDP, attempts to solve a stochastic program over a multi-stage scenario tree. Since solving

the nested optimization problem for all possible scenarios is not possible, SDDP samples a small

subset of scenarios to build a policy. The policy is defined by a piecewise linear lower approximation

of the future cost for each stage, which is improved along iterations. Each SDDP iteration consists

of a forward and a backward step, illustrated by Figure 1 below.
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Figure 1. Forward and Backward steps in SDDP.

The forward step gives new states and costs at each node of the sampled scenarios, drawn in

red and denoted by (ξ̃1, ξ̃2, ξ̃3, . . . , ξ̃T ) in the graph on the left of the figure. The backward step

adds cuts to each future stage cost function approximation. The graph on the right in Figure 1

shows these cuts in green, built using all the uncertainty information (marked with blue lines)

that is available along the red path (cuts are shared between nodes of the same stage).

To avoid the dimensionality explosion typical of multi-stage problems, SDDP randomly traverses

the tree in the forward step (that is, taking different red lines) along iterations. However, when

uncertainty is interstage dependent, the curse of dimensionality remains an issue because state

variables need to be augmented with the uncertainty history. The inclusion of risk measures

can only increase the number of state variables, so the situation is even worse for risk averse

variants of SDDP, like Guigues and Römisch (2010), Philpott and de Matos (2010), or Shapiro

(2011). Because of its computational complexity, even when set in a risk-neutral formulation, in

practice SDDP is often stopped after a few iterations, by using a loose criterion. For example,

terminating when certain lower bound for the cost, computed at the forward pass, appears as

if having stabilized around some level. Rather than seeking for optimality, SDDP emphasizes a

rich representation for uncertainty: under the assumption of relatively complete recourse, SDDP

policies are always feasible, but also sub-optimal.

The very rich information on uncertainty is not fully exploited by SDDP from the optimization

point of view. For this reason, we consider an alternative approach that makes use of chance-

and CVaR-constrained problems, defined in a rolling-horizon setting. This is done by defining a

sequence of multi-stage programs with shorter and shorter horizons, illustrated by Figure 2.

An RH model considers T − 1 successive risk-averse problems, each one defined for a time

t = 1, 2, . . . , T − 1. In the figure, the top left and right graphs correspond to the first and second

problems, respectively, while the bottom graphs represent the (T − 1)th and T th ones (noting that

the last problem is just a one stage deterministic problem). For t < T , the tth problem is a multi-

stage program defined over the horizon [t, T ], with the first stage given by present time t (with
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t = 2t = 1

ξ̃1

Future stages: [2, T ].
First risk-averse problem: first stage t = 1

t = T t = 2t = 1

ξ̃1

Future stages: [3, T ].

ξ̃2

Second risk-averse problem: first stage t = 2

t = 3 t = T

t = 2t = 1 t = T − 1

ξ̃1

ξ̃2

t = T

ξ̃T−1

(T − 1)th risk-averse problem: first stage t = T − 1

Future stage: T .

t = T

ξ̃2

ξ̃T−1

Last problem solved at stage T

ξ̃T

t = 1 t = 2

ξ̃1

Figure 2. Rolling Horizon approach

deterministic constraints), and subsequent stages covering the future [t + 1, T ] (with uncertain

constraints). In the figure, time steps corresponding to future stages are shown with a blue box.

Similarly, the considered subtrees are surrounded by a red polyhedron. Each subtree is defined by

the portion of the full scenario tree, “descending” from the first stage node until final stage T .

Here arises an important difference: an RH implementation of SDDP would sample only some

forward paths over such a subtree. By contrast, our model considers the full subtree uncertainty,

by setting chance and CVaR constraints for future stage constraints. When uncertainty depends

on the past in an affine manner, like in autoregressive models, Section 4 shows how to reformulate

future constraints explicitly so that each risk-averse problem is just a deterministic linear program.

Since this sequence of T − 1 multi-stage problems makes a poorer representation of uncertainty

than a T -stage program, our risk-averse RH policy is still sub-optimal. Nevertheless, thanks to the

explicit formulation of chance constraints that represent uncertainty of each full subtree (instead

of just parsing a few forward paths, as in SDDP), our risk-averse policy is “closer” to the wait-and-

see one. This is confirmed by our numerical results in Section 5, which also show the substantial

difference in computational effort: for a typical real-life case, over a set of 500 scenarios, our
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approach takes 6h while a nonrolling-horizon SDDP takes 3 weeks. As a result, even though if in

principle embedding SDDP in a rolling-horizon setting might produce a good policy, when T is

large the computational complexity of SDDP makes such an approach impossible, at least with

the computational capacity available nowadays.

3. A simplified optimal operation problem with energy loss representation

Our approach is general and applies to real-life hydro-thermal systems, like the Brazilian one.

However, for the sake of clarity, the mathematical formulation leading to the chance-constrained

problem is first given for a simplified hydro-thermal system. We consider only one reservoir,

one run-of-river plant, and no thermal plants. In addition, the problem is formulated in energy

variables, without entering into the issue of how to relate water to energy by explicit production

functions. However, the run-of-river plant has turbines whose capacity may not suffice to convert

all the streamflow into power.

3.1. Energy losses and hydro-thermal complement. In our simplified formulation, at time

step t (1 ≤ t ≤ T ) we have a state variable xt, the volume of the reservoir at the beginning of the

time step; a nonnegative control variable ut, the turbine outflow; and ξt, the natural streamflow

of water arriving into the reservoir. Only a fraction γt ∈ [0, 1] of this water can be stored, the

remaining portion, (1 − γt)ξt, is in principle immediately transformed into power by the run-of-

river plant. However, due to capacity limits, it may not be possible to turbine all of (1 − γt)ξt,

resulting in some loss of energy. We represent such losses by a convex function, Lt(·). Several

representations are possible; here we consider a piecewise-defined function, depending on certain

parameters a, b, and L > 0, satisfying 0 < a < 1
L and b = 1+aL

2L . The special choice of b makes

the loss function differentiable at this point.

These parameters define three regions, R1, R2, R3 such that

Lt(x) =





0 if x ∈ R1 := (−∞, a],

Lx(x− a) if x ∈ R2 := [a, b],

Lb(b− a) + x− b if x ∈ R3 := [b,+∞) .

Figure 3 represents a typical loss function for (a, b, L) := (5, 7.5, 0.1).

The loss function determines the difference (1 − γt)ξt − Lt((1 − γt)ξt) that will effectively be

converted into power by the run-of-river plant. When the run-of-river energy is greater than or

equal to the demand, no additional generation is necessary. In this sense, denoting by demt the
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Figure 3. A typical loss function for a run-of-river power plant

demand arriving at the system at time step t, the function

(1) L̃t(x) := demt − (x− Lt(x)) =





demt − x if x ≤ a,

demt + Lx2 − (aL+ 1)x if a ≤ x ≤ b,

demt + Lb(b− a)− b if x ≥ b ,

gives the hydro-thermal complement :

(2) HTcomp(demt, ξt) := max(0, demt − (1− γt)ξt + Lt((1 − γt)ξt)) = max(0, L̃t((1− γt)ξt)) ,

to be produced by the remaining power plants.

3.2. Problem formulation. For t = 1, . . . , T the main constraints for the optimal operation

problem (OOP) are given below.

Water balance equation:

(3) xt+1 = xt − ut + γtξt.

Demand satisfaction: At time step t, let dft denote the nonnegative energy deficit, modeled as a

(fictitious) thermal plant with large enough capacity and generation cost equal to the cost of deficit,

a known data denoted by cdt. Then the identity ut+dft = max
(
demt−(1−γt)ξt+Lt((1−γt)ξt), 0

)

implies satisfaction of the relations




ut + dft ≥ demt − (1 − γt)ξt + Lt((1− γt)ξt)

ut + dft ≥ 0 .

Since, by definition, generation variables are nonnegative, writing demand constraints as

(4) ut + dft + (1 − γt)ξt − Lt((1− γt)ξt) ≥ demt
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will not change the optimal value of the OOP. Moreover, the particular structure of the optimal

operation planning problem (6) below is such that, for a given time step, if the run-of-river

production is less than the demand, the corresponding demand constraint is active.

Critical minimal volume: Operators managing the system in real time are mostly concerned with

keeping reservoirs at reasonable storage levels. In particular, they sometimes wish to keep the

reservoirs above critical values, or reference trajectories, estimated empirically, and denoted by

xcrit
t+1 ≥ 0. These trajectories, also called minzones, are sometimes imposed by some regulatory

rules fixed by the ISO, and define the constraint:

(5) xt+1 ≥ xcrit
t+1 .

For this simplified system, and over a time horizon of T steps, the deterministic OOP problem

has the form

(6)





min

T∑

t=1

[cu⊤

t ut + cd⊤

t dft]

(3), (4), (5) t = 1, . . . , T

(ut, dft) ∈ St, a polyhedral bounded set, independent of ξt, demt for t = 1, . . . , T.

In the objective function above, cut is the hydro generation cost, assumed to satisfy 0 < cut < cdt.

For the general case of a power mix with many plants, the vector cut (resp. ut) stores both the unit

costs for thermal plants and for energy transfers between subsystems (resp. thermal generation

and import/export exchanges).

3.3. Simplified statistical setting. Uncertainty in (6) appears through ξt and demt, the natural

streamflow and demand. In order to appropriately reflect seasonal variations, both processes are

represented by periodic autoregressive models.

For the sake of simplicity again, we consider here that the twelve orders of the PAR model for

the streamflow are equal to one: each month’s streamflow depends only on the previous month’s

rains.

More precisely, letting µt and σt denote the mean and the (finite and positive) standard devi-

ation of ξt, consider the standardized random variable

(7) Zt =
ξt − µt

σt
.

Then there exists a coefficient Φt+1 such that

(8) Zt+1 = Φt+1Zt + ηt+1 ,



10 VINCENT GUIGUESA AND CLAUDIA SAGASTIZÁBALB

where η1, . . . , ηT are independent Gaussian random variables with standard deviations σ(ηt) =

σ
η
t > 0. For t = 1, ξ1 is a known data, often referred to as hydrological tendency and, because the

model is periodic, the functions µt, σt, Φt and σ
η
t are 12-periodic (one year period).

The recursive application of (8) gives for any time step t and j ≥ 1:

Zt+j =

(
t+j∏

ℓ=t+1

Φℓ

)
Zt +

t+j∑

ℓ=t+1

(
t+j∏

k=ℓ+1

Φk

)
ηℓ ,

with the convention that
∏k2

k=k1
Φk = 1 whenever k1 > k2. This relation, together with (7), gives

the following expression for the streamflows

(9) ξt+j = αt,jξt +

t+j∑

ℓ=t+1

βℓ
t+jηℓ + θt,j

for t = 1, . . . , T − 1, j = 1, . . . , T − t, and with

(10) αt,j :=
σt+j

σt

t+j∏

ℓ=t+1

Φℓ, βℓ
t+j := σt+j

t+j∏

k=ℓ+1

Φk, θt,j := µt+j − αt,jµt.

The fact of considering lags greater than one complicates the coefficient expressions, but the

corresponding relation (9) remains affine, on both the past values (ξj , j ≤ t) and the noises

(ηt+1:t+j). Recursive relations for computing recursively coefficients α, β, and θ in the general

case can be found in Guigues and Sagastizábal (2010). In this work we give instead explicit (not

too involved) relations that can be derived directly for processes with lag equal to one.

The demand process being also periodic autoregressive, demt+j has an expression similar to

the one in (9), mutatis mutandis. To ease the presentation, first we consider the demand to be

deterministic, leaving to Section 4.4 the explanation of how to handle uncertainty in the demand.

4. Risk-averse rolling-horizon feasible policy

As illustrated by Figure 2, at a given stage t, the risk-averse RH policy is based on a here-and-

now looking-forward approach, in which the data for the current time stage is deterministic while

the future is considered uncertain, but depending on the history of realizations until time step t.

4.1. Policy definition. Each multi-stage problem in Figure 2 has uncertain future constraints

dealt with by using probabilistic and CVaR constraints. For this reason, we express future states

xt+j+1 in terms of the current state and past uncertainty, by applying recursively (3):

(11) xt+j+1 = xt −
j∑

i=0

ut+i +

j∑

i=0

γt+iξt+i, j = 1, . . . , T − t.
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With the above expression, knowing the first state variable xt, at time stage t the feasible set of

our tth-stage risk-averse problem is given by

(12)





(ut, dft, . . . , uT , dfT ) ∈
∏T−t

j=0 St+j :

ut + dft + (1− γt)ξ̃t − Lt((1 − γt)ξ̃t) ≥ demt

xt+1 ≥ xcrit
t+1

xt+1 = xt − ut + γtξ̃t and, for j = 1, . . . , T − t :

P
(
ut+j + dft+j + (1− γt+j)ξt+j − Lt+j((1 − γt+j)ξt+j) ≥ demt+j

∣∣∣ξ̃[t]
)
≥ 1− εp

P
(
xt+j+1 ≥ xcrit

t+j+1

∣∣∣ξ̃[t]
)
≥ 1− εp ,

for a given confidence level εp ∈ (0, 1), possibly varying with t and j ∈ {1, . . . T − t}. The

probabilistic constraints in (12) are conditioned only to the realization history of streamflows ξ̃[t]

because the demand is assumed to be deterministic for now. Otherwise, the demand history also

conditions the calculation of moments, cf. (24) in Section 4.4.

The optimal state xt+1 and control ut are obtained by solving the following chance-constrained

linear program:

(13) min

T∑

τ=t

[cu⊤

τ uτ + cd⊤

τ dfτ ] subject to (12).

As explained below, see (22) in Section 4.3, the risk-averse problem is deterministic, hence the use

of a deterministic objective function in (13).

If (x∗t+1, u
∗
t , df

∗
t , . . . , u

∗
T , df

∗
T ) is an optimal solution to (13), then decisions (x∗t+1, u

∗
t , df

∗
t ) are

taken at time step t and satisfy the constraints (3), (4), (5). As a result, the policy formed by

all these sub-vectors, obtained after solving (13) for t = 1, . . . , T , is feasible. Moreover, for each

time step, controls (u∗t , df
∗
t ) depend on the reservoir levels at the beginning of this time step and

on the history of streamflows ξ̃1, . . . , ξ̃t, but not on future scenarios of streamflows. Consequently,

our policy is time consistent in the sense of Shapiro (2009). Notwithstanding, the family of

optimization problems (13) for t = 1, . . . , T is not time consistent in the sense of Carpentier et al.

(2010).

4.2. On the satisfaction of relatively complete recourse. Under Assumptions (A1) and

(A2) below, relatively complete recourse holds for the OOP:

(A1) along time steps the critical levels are non increasing: x1 ≥ xcrit
2 ≥ xcrit

3 ≥ . . . ≥ xcrit
T+1.

(A2) P(ξt ≥ 0) = 1 for every t .

In this context, it is possible to choose a confidence level εp such that the feasible set (12) of

problem (13) is nonempty. In order to keep the streamflows modeled by (8) nonnegative, i.e.,

for Assumption (A2) to hold, sometimes log normal noises are preferred, see Wu et al. (2005),

Beaulieu et al. (1995) (log normal noises make chance constraints approximate, instead of explicit
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and exact). For Gaussian noises, relatively complete recourse is ensured by adding slack variables

zt (penalized in the objective function) for the minzone constraints (5).

In our numerical experience in Section 5 noises are Gaussian and we consider a real-life power

mix with 4 reservoirs to be managed over 10 years, corresponding to 120 stages. For this case,

we obtained empirically that maxt,m P(ξt(m) < 0) = 2.7 × 10−75 for t = 1, . . . , T = 120 and

m = 1, . . . , 4.

4.3. Making chance constraints explicit. Since the PAR model has lag one, the history con-

ditioning the chance constraints in (12) is the last realization, ξ̃t. Indeed, plugging (9) into the

rightmost term of (11) results in

(14) xt+j+1 = xt −
j∑

i=0

ut+i +At,jξt +

j∑

ℓ=1

Bℓ
t,jηt+ℓ +Θt,j , j = 1, . . . , T − t,

an expression affine on the noises (ηt+1, . . . , ηt+j). Once more, lag one assumption makes simple

the explicit calculation of scalar coefficients At,j ,Θt,j and vector Bt,j , which involves some simple

algebraic manipulations:

At,j = γt +

j∑

i=1

γt+iαt,i , B
ℓ
t,j =

j∑

i=ℓ

γt+iβ
t+ℓ
t+i , and Θt,j =

j∑

i=1

γt+iθt,i .

By contrast, for general lags, calculations are not so straightforward, see Lemmas 2.1 and 2.2 in

Guigues and Sagastizábal (2010).

In future demand constraints, we can likewise replace ξt+j by its expression (9), and write all

probabilistic constraints from (12) in the abstract form

P(g(y) ≥ X) ≥ 1− εp where y :=

T−t∏

j=0

(
ut+j, dft+j

)
,

for different affine scalar functions g(·) and for different continuous random variablesX , depending

on the noises ηt+j .

To show that the feasible set (12) is a polyhedron, and (13) a linear program, we will use the

equivalence

(15)
P(g(y) ≥ X) ≥ 1− εp, ⇐⇒ g(y) ≥ F←X (1− εp) = E(X) + F−1(1− εp)σ(X)

↑ only for Gaussian X .

In this relation, εp ∈ (0, 1), g is a deterministic function, and X is a random variable, keeping in

mind that the rightmost identity holds only for Gaussian variables: X ∼ N (E(X), σ2(X)).

We now discuss the computation of the generalized inverse F←X (1− εp) for the different random

variables X involved in the chance constraints of (12).
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4.3.1. Critical minimal volume constraint. Using the expression (14) for the last set of constraints

in (12) (chance constraints on the reservoir levels), we obtain (15) for g(y) := −∑j
i=0 ut+i and X

the random variable

(16) Xt,j = xcrit
t+j+1 − xt −At,j ξ̃t −

j∑

ℓ=1

Bℓ
t,jηt+ℓ −Θt,j, j = 1, . . . , T − t.

This is a Gaussian random variable, with mean and variance given by

E(Xt,j) = xcrit
t+j+1 − xt −At,j ξ̃t −Θt,j ,(17)

σ2(Xt,j) =

j∑

ℓ=1

(
Bℓ

t,jσ
η
t+ℓ

)2
.(18)

As a result, the chance constraints on the reservoir levels have the form

(19) xt +At,j ξ̃t +Θt,j −
j∑

i=0

ut+i ≥ xcrit
t+j+1 + F−1(1− εp)

√√√√
j∑

ℓ=1

(
Bℓ

t,jσ
η
t+ℓ

)2

for j = 1, . . . , T − t. These constraints are affine in the generation variables (ut, . . . , uT ).

An interesting feature of our approach is that chance-constraint (19) can be cast back into a

mold akin to the original constraint, that is, akin to (5). The rewriting introduces new variables

xR
t+j , defined iteratively by transition equations, similar to (3):


 xR

t = xt

xR
t+j+1 = xR

t+j − ut+j + γt+jE(ξt+j |ξ̃[t]) , j = 0, . . . , T − t .

Then, it can be easily checked that

xR
t+j+1 = E

(
xt+j+1

∣∣∣ξ̃[t]
)
= xcrit

t+j+1 −
j∑

i=0

ut+i − E(Xt,j) ,

so chance-constraint (19) becomes

(20) xR
t+j+1 ≥ xR crit

t+j+1 := xcrit
t+j+1 + F−1(1 − εp)σ(Xt,j),

an inequality similar to (5), with an augmented righthand side term that can be explicitly com-

puted using (18).

4.3.2. Demand constraint. Using relation (9), chance-constraints for the demand in (12) can be

written as (15) with g(y) := ut+j + dft+j and X = L̃t+j(Yt,j) where, for j = 1, . . . , T − t, the

random variable Yt,j is defined by

(21) Yt,j = (1− γt+j)

(
αt,j ξ̃t +

t+j∑

ℓ=t+1

βℓ
t+jηℓ + θt,j

)
.
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The random variable Yt,j is Gaussian with respective mean and variance

E(Yt,j) = (1− γt+j)
(
αt,j ξ̃t + θt,j

)
and σ2(Yt,j) = (1− γt+j)

2

t+j∑

ℓ=t+1

(βℓ
t+jσ

η
ℓ )

2.

In view of (15), we compute F←L̃t+j(Yt,j)
(1− εp) directly from its definition. For this, we first note

that L̃t+j(·) is a non increasing function. Indeed, for x ∈ [a, b[, we have L̃′t+j(x) = 2Lx−(aL+1) <

L̃′t+j(b) = 0. It follows that L̃t+j(·) is strictly decreasing on ]−∞, b] and is constant for x ≥ b. In

this context, the generalized inverse is defined for any p ≥ L̃t+j(b) by L̃←t+j(p) = inf {x : L̃t+j(x) ≤
p}. As a result, L̃←t+j(p) = demt+j−p for p ≥ demt+j−a. For demt+j−b+Lb(b−a) ≤ p ≤ demt+j−
a, the generalized inverse is constant and equal to 1

2L

(
aL+ 1−

√
(aL+ 1)2 − 4L(demt+j − p)

)
,

noting that on the leftmost point, because p = demt+j − b + Lb(b − a) = L̃t+j(b), the identities

L̃←t+j(p) = b = aL+1
2L hold.

Letting xεp denote F←L̃t+j(Yt,j)
(1 − εp) for short, either εp > P(Yt,j ≤ b), and xεp = L̃t+j(b); or

0 < εp ≤ P(Yt,j ≤ b) = F
(

b−E(Yt,j)
σ(Yt,j)

)
. In the latter case,

1− εp = P
(
L̃t+j(Yt,j) ≤ xεp

)
= P

(
Yt,j ≥ L̃←t+j(xεp )

)
= 1− F

(
L̃←t+j(xεp)− E(Yt,j)

σ(Yt,j)

)
,

and, hence,

xεp = F←L̃t+j(Yt,j)
(1− εp) = L̃t+j

(
E(Yt,j) + F−1(εp)σ(Yt,j)

)
for 0 < εp ≤ F (

b− E(Yt,j)

σ(Yt,j)
) .

When the tailwater level becomes too high, the run-of-river energy is null and the loss function is

no longer strictly monotone for x ≥ a, as in (1). Nevertheless, it is still possible to derive explicit

chance constraints proceeding as explained above, as long as functions L̃t remain monotone.

4.3.3. Explicit representation of (12). Putting together the previous results, and letting

demR
t+j := demt+j + F−1(1− εp)σ(Yt,j) ,

by (1) and the fact −F−1(εp) = F−1(1− εp), we see that for 0 < εp ≤ P(Yt,j ≤ b) = F
(

b−E(Yt,j)
σ(Yt,j)

)
,

the feasible set (12) has the representation

(22)





(ut, dft, . . . , uT , dfT ) ∈
∏T−t

j=0 St+j :

ut + dft + (1− γt)ξ̃t − Lt((1 − γt)ξ̃t) ≥ demt

xR
t+1 + zt ≥ xcrit

t+1

zt ≥ 0

xR
t+1 = xR

t − ut + γtξ̃t and, for j = 1, . . . , T − t :

xR
t+j+1 = xR

t+j − ut+j + γt+jE(ξt+j

∣∣ξ̃[t]) ,
ut+j + dft+j + E(Yt,j)− Lt+j

(
E(Yt,j) + F−1(εp)σ(Yt,j)

)
≥ demR

t+j , and

xR
t+j+1 ≥ xR crit

t+j+1 ,




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where xR
t = xt, the known initial state. As mentioned, the slack variable zt ensures satisfaction

of (5) for any given realization of the streamflows, and it is penalized in the objective function.

4.4. CVaR constraints and uncertain demand. It is also possible to use Conditional Value-

at-Risk constraints; for example, requiring that

(23) −CV aRεp

(
xt+j+1

∣∣∣ξ̃[t]
)
≥ xcrit

t+j+1 − εc(x
crit
t+j+1 + 1) ,

for some confidence level εc > 0. Since the CVaR is translation invariant, using once more the

expression (14), inequality (23) can be rewritten as

xcrit
t+j+1 −

j∑

i=0

ut+i − CV aRεp(−Xt,j) = −CV aRεp(x
crit
t+j+1 −

j∑

i=0

ut+i −Xt,j) ≥ x̃crit
t+j+1

with x̃crit
t+j+1 = xcrit

t+j+1 − εc(x
crit
t+j+1 + 1) and where Xt,j is defined in (16).

For a Gaussian random variable X for which higher values are preferred, and for the (bijective)

function ϕ : [0, 1] → [0, 1
2 ] defined by ϕ(0) = 0 and ϕ(x) = 1− F

(
exp(−(F−1(1−x))2/2)√

2πx

)
for x 6= 0,

the equivalences

X ≤ −CV aRϕ−1(εp)(X) ⇐⇒ X ≤ −V aRεp(X) = −F−1X (εp) ⇐⇒ P(X ≥ X) ≥ 1− εp

hold. Together with the rightmost relation in (15), and the expressions (17) and (18) for the mean

and standard deviation, an equivalent formulation of (23) is obtained by

replacing in (19)


 xcrit

t+j+1 by x̃crit
t+j+1 = xcrit

t+j+1 − εc(x
crit
t+j+1 + 1)

F−1(1− εp) by F−1(1− ϕ(εp)) .

If the demand is not deterministic but uncertain, in (12) the future demand constraints need

to be conditioned to past realizations of both the streamflows and the demand: (ξ̃[t], d̃em[t]).

Suppose, for simplicity, that the demand process is periodic autoregressive with lag one. Then,

for t = 1, . . . , T , the normalized variable Z̄t = demt−µ̄t

σ̄t
has mean µ̄t = E(demt) and standard

deviation σ̄t = σ(demt), and there exist non-null coefficients Φ̄t+1 such that Z̄t+1 = Φ̄t+1Z̄t + η̄t

for t = 1, . . . , T − 1. The Gaussian random variables η̄1, . . . , η̄T are independent, have standard

deviations σ(η̄t) = σ
η̄
t > 0 and define a process η̄ independent of η. Similarly to (9), demt+j =

ᾱt,j demt +
∑t+j

ℓ=t+1 β̄
ℓ
t+j η̄ℓ + θ̄t,j for t = 1, . . . , T − 1, j = 1, . . . , T − t, where the coefficients are

computed as in (10).

In the format (15), demand chance-constraints are written with g(y) := ut+j + dft+j and with

the random variable X defined by

(24) X := demt+j |d̃emt +XL where XL = Lt+j(Yt,j)− Yt,j for Yt,j from (21).
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Note that XL is independent of the Gaussian variable demt+j |d̃emt, whose mean and variance are

given by

E(demt+j |d̃emt) = ᾱt,j d̃emt + θ̄t,j , σ2(demt+j |d̃emt) =

t+j∑

ℓ=t+1

(β̄ℓ
t+jσ

η̄
ℓ )

2.

By the rightmost relation in (15), the inverse of the distribution function of X needs to be com-

puted. This computation is not explicit, but estimated by dichotomy, because the distribution

function is nondecreasing. More precisely, for any x ∈ R we have

(25) FX(x) =
1√

2πσ(demt+j |d̃emt)

∫ y=+∞

y=−∞
FXL

(x− y) exp

(
− (y − E(demt+j |d̃emt))

2

2σ2(demt+j |d̃emt)

)
dy

where the distribution function of XL is given by

FXL
(x) =





0 if x < Lt+j(b)− b,

1− F

(
aL+1−

√
(aL+1)2+4Lx−2LE(Yt,j)

2Lσ(Yt,j)

)
if Lt+j(b)− b ≤ x ≤ −a,

1− F
(
−x−E(Yt,j)

σ(Yt,j)

)
if x ≥ −a .

The integral in (25) can be approximated by a numerical integration method, or by finding F−1X (1−
εp) as a root of the function GX(x) = FX(x)−(1−εp), for example by a Newton-Raphson method.

5. Numerical assessment

Our numerical results are organized in three parts, succinctly described below.

(1) To emphasize the interest of a rolling horizon in a risk-averse setting, we show the supe-

riority of our risk-averse rolling-horizon (ra-RH) policy over a robust nonrolling-horizon

(rob-NRH) policy derived from the first risk-averse problem, that is from (13)-(22), written

with t = 1. The progressive lack of precision of policy rob-NRH as T increases is made

more clear by making the comparisons for two different time horizons, namely T = 4 and

T = 12.

(2) For a short time horizon, we compare our ra-RH approach with two policies, obtained

with a risk-neutral variant of SDDP, implemented both in nonrolling-horizon and rolling-

horizon settings.

(3) For an OOP of real size and large T , we compare ra-RH with a risk-neutral nonrolling-

horizon SDDP policy. The reason for this choice is that a rolling-horizon SDDP is com-

putationally out of reach for large problems.

The implementation for all the testing was done in Matlab, using Mosek’s optimization library to

solve linear programming problems (http://www.mathworks.com/products/matlab/ and http:

//www.mosek.com). The runs were done on a Dell PowerEdge 2900 server with 2 CPUs Intel Xeon
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E5345 (2.33 GHz, 8M of cache memory, 1333 MHz FSB), running under CentOS release 5, with

48 GB of RAM.

5.1. Problem data. All problem instances correspond to an OOP akin (but not identical) to

Brazil’s power system, from Guigues and Sagastizábal (2009), and considered in different variants

for this numerical study.

5.1.1. Power system. For the large-scale case, the hydro-thermal power system operates over a

horizon of 10 years, discretized in T = 120 time steps, from January 2005 to December 2014. For

real-life decisions, the choice of such an extended time horizon is explained by the final condition

QT+1 ≡ 0, which “pollutes” the output. The desired time horizon is in fact 5 years: doubling

these 60 time stages amounts to eliminating the impact of the boundary condition on the output

of interest.

Most of the data was made available by CEPEL1 and corresponds to part of Brazil’s power

system. With respect to the simplified OOP described in Section 3, hydro and thermal power

plants are now spread over 4 different geographical subsystems, which can import/export energy.

Each subsystem, South-East (SE), South (S), North-East (NE), and North (N), corresponds to

a geographical region; some energy exchanges make use of a fifth, fictitious, node. In a specific

subsystem, a single reservoir aggregates all the hydro-power, while thermal generation is considered

individually: there are 24, 14, 6, and 0 thermal plants in the SE (the largest one), S, NE, and N

subsystems, respectively.

The objective function is given by the total thermal operating cost (ranging between R$ 6.27

per MWh and R$ 1047.4 per MWh) plus load shedding, set at R$ 4170.44 per MWh (hydro

generation cost is positive but negligible). Unnecessary spillage and exchanges are avoided by

introducing penalties and trading costs between subsystems. In order to prioritize the use of run-

of-river energy over hydro or thermal power, the unit cost of any energy transfer should be strictly

smaller than all unit hydro costs, which are in turn strictly smaller than all thermal unit costs.

5.1.2. Loss function, streamflows, and demand representation. Losses resulting from run-of-river

plants efficiencies are modeled per reservoir, using functions (1) constant on t, and defined by the

parameters a := (1010, 366, 137, 0) and b := (5760, 6190, 1560, 109) for m = 1, . . . , 4 .

Following the lines of Maceira and Damázio (2004), the monthly streamflows in each reservoir

are modeled by a periodic autoregressive process with lags between 1 and 5. The calibration

uses historical data from 1931 to 2005, with one important modification, relative to reducing

the estimated standard deviations to have nonnegative streamflows almost surely. Due to this

modification, our results should be interpreted as an illustration of our methodology, rather than

reflecting the real behavior of the Brazilian power system.

1The authors specially acknowledge the good will and availability of Débora Dias Jardim Penna.
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The demand in each subsystem is a Gaussian random variable with mean given by (31055,

8297, 7103, 3367) MWMonth (with the convention 1 MWMonth= 365.25×24
12 MWh= 730.5 MWh).

The respective standard deviation is (3105.5, 829.7, 710.3, 336.7) MWMonth.

For the real-life instance considered in Section 5.4, the demand is considered deterministic, and

equal to its average value.

5.2. Risk-averse policies in nonrolling- and rolling-horizon modes. After solving (13)

written at t = 1, the first time step, the corresponding optimal generations

(26) u∗ := (u∗1, . . . , u
∗
T ),

can be viewed as robust generations for the OOP over the entire horizon [1, T ]. Indeed, our con-

straints can be seen as robust constraints, using uncertainty sets given in Guigues and Sagastizábal

(2009) that are confidence areas for the uncertain parameters.

This robust policy is considered in Bertsimas and Thiele (2006) for inventory problems. For our

application we also project the policy, to make it feasible. This is necessary because uncertainty

sets are merely confidence areas and policy (u∗, df∗) may not satisfy constraints almost surely

for time stages greater than one. Therefore, given the hydro-thermal complement (2), the state

xrob−NRHt and the trajectory of realizations (ξ̃t, d̃emt), we compute H̃Tcompt := HTcomp(ξ̃t, d̃emt)

and define the projections

urob−NRHt := max(0,min(u∗t , x
rob−NRH
t +γtξ̃t−xcrit

t+1, H̃Tcompt)) and df rob−NRH
t := H̃Tcompt−urob−NRHt .

The corresponding states follow the reservoir dynamics: xrob−NRHt+1 = xrob−NRHt − urob−NRHt + γtξ̃t,

conditioned to the trajectory of realizations.

For the comparison, we consider a reduced instance of the OOP problem, over two different

time horizons, as described in Table 1 below. The column “|ξ̃sim|” therein refers to the number

of different trajectories considered as scenario realizations in the simulation phase.

T |ξ̃sim| x1 xcrit
t xcrit

T+1 Demand Loss function
4 40 0.5xmax 0.2xmax x1 uncertain with
12 40 0.5xmax 0.2xmax x1 uncertain with

Table 1. Data for reduced OOP.

Table 2 reports a comparison of the two policies, denoted by ra-RH and rob-NRH, respectively,

implemented with εp = 0.19. In the tables, “s.d.” stands for standard deviation. For both

horizons, the more conservative policy rob-NRH has a higher mean cost. For the shorter time

horizon rob-NRH has a cost similar to the RH policy, with reduced volatility. The assertion that

as T increases, policy rob-NRH deteriorates is confirmed by the results obtained with T = 12: the
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robust policy becomes more than 3 times more expensive than ra-RH in average, with an even

higher increase in volatility (the robust standard deviation is almost 20 times higher than ra-RH’s).

Output Mean s.d. VaR 90% VaR 5% VaR 1%
ra-RH, T = 4 2.378×108 3.396×107 2.035×108 2.848×108 2.848×108
rob-NRH, T = 4 2.516×108 7.357×106 2.431×108 2.617×108 2.650×108
ra-RH, T = 12 5.842×108 3.476×107 5.506×108 6.323×108 6.572×108
rob-NRH, T = 12 1.885×109 6.697×108 9.390×108 2.466×109 3.105×109

Table 2. Results for reduced OOP.

Although not frequently employed for power planning, robust non-rolling horizon policies have

sometimes been used in multistage stochastic inventory problems; for instance in Bertsimas and

Thiele (2006) with T = 20. For large T , the future “seen” by rob-NRH becomes less and less

accurate, and the policy becomes too conservative (cf. our final comments in Section 6).

5.3. Risk-averse rolling-horizon policy versus risk-neutral SDDP policy in nonrolling-

and rolling-horizon modes. In order to determine the potential benefits in implementing our

ra-RH policy, we compare it with two SDDP variants, over the small OOP instance in Table 3.

The column “|ξ̃sim|” refers both to the number of trajectories considered by ra-RH and to the

number of scenarios employed by SDDP in the simulation phase. The columns “|ξ̃fwd|” and

“|ξ̃back|” stand, respectively, for the number of SDDP forward scenarios and the number of noise

realizations at each stage in SDDP backward pass.

T |ξ̃sim| |ξ̃fwd| |ξ̃back| x1 xcrit
t xcrit

T+1 Demand Loss function
12 20 10 9 0.5xmax 0.2xmax x1 uncertain with

Table 3. Data for small OOP.

Table 4 reports the cost statistics obtained with the different policies. In the table, “sddp-NRH”

and “sddp-RH” stand for the nonrolling- and rolling-horizon variants of SDDP. We observe that

using a rolling-horizon approach allows SDDP to reduce its mean cost (in 7%), at the expense

of a higher volatility (the s.d. increase is more than 40%). All policies have similar mean costs,

with reduced indicators for volatility with ra-RH policy: both the cost standard deviation and

the number of extreme cost scenarios (VaRs for low values of the confidence level) are reduced.

In relative terms, ra-RH s.d. is 6% of the average cost, while sddp-NRH and sddp-RH standard

deviations represent 51% and 76% of the respective average costs. As for the cost of the extreme

scenarios, the VaR 5% represents 108%, 165% and 191% of the corresponding ra-RH, sddp-NRH,

and sddp-RH average cost.

5.4. Determining the impact of modeling losses for a large-scale problem. In view of

the numerical experience reported so far, for the large-scale OOP in Table 5 that follows, it is
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Output Mean s.d. VaR 90% VaR 5% VaR 1%
ra-RH, εp = 0.19 5.842×108 3.476×107 5.506×108 6.323×108 6.572×108
sddp-NRH 5.620×108 2.841×108 1.342×107 9.315×108 1.011×109
sddp-RH 5.260×108 3.981×108 8.740×107 1.006×109 1.231×109

Table 4. Measures of central tendency and of dispersion of the generation cost
(R$) with T = 12.

not worthy to implement the rob-NRH policy. Likewise, since when the demand is uncertain the

cumulative distribution inverse function estimation increases the computational work per iteration,

we only consider deterministic demand in this test-case. Finally, it is not possible to implement

SDDP in a rolling-horizon mode: to obtain the reported results with sddp-NRH, it has already

taken about 3 weeks in our computers.

T |ξ̃sim| |ξ̃fwd| |ξ̃back| x1 xcrit
t xcrit

T+1 Demand Loss function
120 500 200 20 xmax 0.2xmax 0.2xmax deterministic with and without

Table 5. Data for large OOP.
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Figure 4. ra-RH policies with and without losses representation.

In order to evaluate the effect of modeling losses, we compared two different ra-RH policies,

with and without modeling the run-of-river efficiencies. The first policy models the corresponding

losses and takes εp = 0.19. The second policy is obtained from a model without losses using

εp = 0.15 and εc = 0.01 in (23).

For the two ra-RH policies, Figure 4 shows on the left the equivalent reservoir evolution, includ-

ing the run-of-river generation, and on the right the average thermal generation. The model with

losses keeps water and uses more thermal power. Incidentally, these graphs also put in evidence

the “boundary effect” induced by the fact that the last recourse function is null: at the end of
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the optimization period, since water costs nothing, the optimal decision is to generate only hydro

power. Note in addition that the boundary effect decreases as time stages get closer in the future.

In fact, the perturbation becomes practically imperceptible for time steps smaller than t = 70,

thus justifying the heuristic practice of doubling the time steps.

For the problem in Table 5, energy losses can be quite important: taken over all time steps, sce-

narios, and subsystems, the mean ratio 100
Lt((1− γt(m))ξ̃t(m))

(1− γt(m))ξ̃t(m)
equals 4.8% while the maximal

loss goes up to 36% of the streamflow. This shows the importance of modeling the run-of-river

efficiencies. Notwithstanding, the loss modeling may significantly increase the generation cost.

For all the policies considered, that is for WS, ra-RH, and sddp-NRH, modeling losses doubled the

average cost. Also, as observed for the reduced OOP, ra-RH reduces volatility with respect to

sddp-NRH.

A comparison of the different cost distributions can be found in Figure 5. Letting CWS and

Cra−RH, denote, respectively, the generation cost with policies WS and ra-RH, the figure reports the

ratios Cra−RH−CWS

CWS
with losses on the left and without losses on the right.
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Figure 5. Ratio of empirical cost distributions with and without losses (left and right).

In relative terms, ra-RH mean cost is 8.6% or 43% higher than WS mean cost, depending on

whether or not losses are incorporated in the model. As mentioned, taking into account losses

results in a significant increase in the cost for all policies; but, as shown by the rightmost graph

in Figure 5, empirical distributions of the cost of ra-RH and WS become “closer”, a phenomenon

that can be explained by the fact that the run-of-river mean generation is less in this case.

Finally, Figure 6 shows the hydro and thermal generation for the three considered policies,

taking into account the run-of-river efficiencies and, hence, modeling losses. We see that, for all

policies, thermal generation is comparatively much smaller than hydro-generation, as expected in

a hydro-dominated system (in our configuration, at each time step, thermal power can cover at

most 12.8% of the average demand). When needed, thermal plants are committed in ascending

order of their operational cost, to prevent load shedding. Globally, on all scenarios, sddp− NRH
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uses slightly less water. On the first half of the optimization period, sddp− NRH tends to use more

water than the other two policies. Once more, the alluded “boundary effect” makes all policies

use only hydro-power at the end of the optimization period.
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Figure 6. WS, ra-RH, and sddp-NRH policies with modeling of losses.

6. Concluding remarks

For large-scale problems, rolling-horizon models are often impractical, because, as shown by

Figure 4, they need to generate scenario trees over each future step (t + 1, . . . , T ), at each time

stage t. The corresponding calculations are prohibitive, making non-rolling horizon approaches

more popular for stochastic programming problems with many time stages. The situation is

only worse when building risk-averse policies, since there are more variables and constraints. We

propose an alternative risk-averse policy, implemented in a rolling horizon that solves a sequence of

chance-constrained problems. The explicit formulation of chance constraints for each full subtree

makes our ra-RH policy not only feasible, but also “close” to the optimal one.

In particular, the results presented for the optimal operation problem of a large hydro-thermal

power system show that our risk-averse rolling-horizon model is both realistic and tractable. In-

deed, the model can efficiently handle energy losses arising when the turbines of run-of-river plants

attain their maximum capacity and some streamflow is spilled. It is possible for operators to de-

clare minzones, keeping reservoirs above pre-defined limits, with high probability. Similarly, the

model can easily incorporate additional probabilistic constraints for flood control purposes, main-

taining the reservoirs below a given threshold, if desired. On the basis of our numerical experience

and for the case-study analyzed, the consideration of energy losses appears as an important differ-

ential factor. We believe such is the case in general for hydro-dominated power systems, especially

if operators aim at keeping reservoir levels above critical trajectories.
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We also analyzed the numerical behaviour of two commonly used alternative policies, obtained

by applying either robust optimization in a nonrolling-horizon mode or stochastic dual dynamic

programming, both in nonrolling- and rolling-horizons settings. With respect to robust optimiza-

tion, for some problems, the objective function value at a robust solution remains close to the

optimal value for small data perturbations. Such is the case of a collection of “bad” NETLIB prob-

lems considered in Ben-Tal and Nemirovski (2000), for which a maximum 0.1% data perturbation

yields a robust objective function value distant in at most 1% from the optimal value. However, for

a stochastic linear program like ours, with many time stages, streamflow realizations can exhibit

a large variation between scenarios. As a result, uncertainty sets, calibrated for t = 1 and used to

define robust counterparts, become just too large for far ahead time stages, degrading substantially

the quality of the robust solution for some scenarios. This unfortunate feature is related to the

Robust Optimization premise establishing that all realizations of the uncertain parameters should

belong to the uncertainty sets considered in the robust counterpart. But in practice this is not the

case, because calibrated uncertainty sets are mere confidence regions. When some scenario not

covered by calibration appears in the simulation, the system gets to an unfeasible state, highly

penalized. In our application, such is the case when there is load shedding: the large deficit cost

gives an extremely high cost, and, in particular, produces unacceptable marginal prices.

With respect to the risk-neutral sddp-NRH and sddp-RH policies, our ra-RH approach gives close

results in much less computational time. Moreover, our policy can be defined without resorting to

scenario trees, nor having to use loose termination criteria to stop the iterations.

We finish with an important remark. From the above, one could conclude that a rolling horizon

approach should systematically be preferred to other solution methods. In this respect, it is

important to keep in mind that our comparisons are both problem and parameter dependent. The

rolling-horizon approach has the potential weakness of producing unfeasible risk-averse problems,

if confidence levels are too small. Such is not the case in our application; however, for a different

type of problem, finding an a priori sound choice of confidence levels may be a challenging question,

and other methodologies may be more suitable.
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