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Abstract. Decomposition has proved to be one of the more effective tools for the solution of large-scale prob-
lems, especially those arising in stochastic programming. A decomposition method with wide applicability is
Benders’ decomposition, which has been applied to both stochastic programming as well as integer program-
ming problems. However, this method of decomposition relies on convexity of the value function of linear
programming subproblems. This paper is devoted to a class of problems in which the second-stage subprob-
lem(s) may impose integer restrictions on some variables. The value function of such integer subproblem(s) is
not convex, and new approaches must be designed. In this paper, we discuss alternative decomposition meth-
ods in which the second-stage integer subproblems are solved using branch-and-cut methods. One of the main
advantages of our decomposition scheme is that Stochastic Mixed-Integer Programming (SMIP) problems
can be solved by dividing a large problem into smaller MIP subproblems that can be solved in parallel. This
paper lays the foundation for such decomposition methods for two-stage stochastic mixed-integer programs.
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1. Introduction

This paper continues the line of work initiated in two earlier papers dealing with convex-
ification of stochastic mixed-integer programming (SMIP) problems. One of the papers
(Sherali and Fraticelli [2002]) drew upon results from the theory of reformulation-
linearization techniques (Sherali and Adams [1990,1994,1999]) to develop a sequence
of relaxations for 0—1 mixed-integer second-stage problems, and these were incorpo-
rated within a Benders’ decomposition algorithm for a two-stage stochastic program
having binary first-stage variables. The other motivating paper is that of Sen and Hi-
gle [2004] in which a disjunctive decomposition method involving set convexification
(D?-SC) was proposed for SMIP problems. As one might expect, there are definite
connections between these approaches, although their development, as well as the algo-
rithmic schemes, are different. The current paper is intended to enhance these approaches
by adding a major piece of the “algorithmic puzzle”.

In essence, this paper revolves around the design of branch-and-cut (BAC) algorithms
for SMIP problems. BAC algorithms provide one of the more successful approaches for
deterministic mixed-integer programming (MIP). However, their extension to SMIP
problems is far from obvious. The main challenges arise from the need to combine
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decomposition-based methods that have worked well in the Stochastic Programming
arena (see Ruszczynski [1997]) with BAC methods that have worked well for MIP
problems. Preliminary success with decomposition of SMIP problems has already been
reported in Ntaimo and Sen [2003], where the authors report solving large SMIP prob-
lems, some of which have deterministic equivalents containing over a million binary
variables, and over a hundred thousand constraints. As reported in the above paper,
direct methods based on using branch-and-bound (BAB) and cutting planes for the
deterministic equivalent problem are woefully inadequate to the task of solving these
very large-scale MIP problems. In contrast, computational results using decomposition
methods, such as D2-SC, demonstrate that they are very effective for SMIP problems
(Ntaimo and Sen [2003]).

We begin this paper by exploring a method that combines decomposition with a
BAC method in a deterministic setting. This (deterministic) setting allows some simpli-
fications that permit a few algorithmic liberties. The development not only provides the
first taste of the algorithmic issues for decomposition-based BAC (D-BAC) algorithms,
but also sets the stage for a BAC algorithm in the stochastic programming setting. The
D-BAC algorithm will guide us towards Disjunctive Decomposition (D?) algorithms
to accommodate SMIP problems in which both first and second stages have integer
variables. These extensions provide powerful additions to the algorithmic toolkit for
SMIP.

2. Decomposing deterministic mixed-integer programs

This section is devoted mainly to a deterministic binary mixed-integer programming
problem. This problem also provides the vehicle that will be used to set the stage for
designing algorithms for the SMIP problem.

Consider the problem:

Minc x4+ gy (1.1)
Tx+Wy>r (1.2)
xeXNB,yerynp (1.3)

where B (B') denotes the set of binary (mixed 0-1) vectors, and where X € R"! and
Y are nonempty polyhedra. The set X is represented as {x | Ax > b, x > 0}, where
the constraints x; < 1,V are included in the linear inequalities Ax > b. Similarly, we
assume that Y is bounded and represent it as follows:

Y={y|Dy=>f,y>0,y; binary for j € J»}. (1.4)

According to our notation, inequalities of the form y; < 1,V € J, are also included
in the constraints Dy > f, and the index set J, provides the subset of the second-stage
variables that are restricted to be binary.
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2.1. A decomposition-based cutting plane approach

This subsection is based on ideas presented in Sherali and Fraticelli [2002]. One of
the key observations made by these authors is that (1) is equivalent to the following
problem:

Minec'x —i—gTy (2.1)
(x,y) econv{(x,y) | Tx +Wy>r,0<x <e,yeYNB) (2.2)
xeXNB, 2.3)

where e is a vector whose elements are all 1.

Note that (2) is clearly a relaxation of (1). Moreover, if (x, y) solves (2), where y
is an extreme point of the linear program resulting from (2) with x fixed at x, then in
particular, y € 3, since the restriction x = x is facial with respect to (2.2), and (2.2) has
y € B for all its extreme points. Consequently, (X, y) must be feasible, and therefore,
optimal for (1). Hence, we have that (1) and (2) are equivalent.

Based on this observation, Sherali and Fraticelli [2002] developed an approach akin
to Benders’ decomposition, wherein the subproblem solved at any iteration k, with x
fixed at x* € X N B, as given by:

Min{g'y | Wy >r—TxK, yeYnB}, (3)

was solved using a finitely convergent cutting plane algorithm. In particular, the cutting
planes used in solving (3) were assured to be actually valid for (2.2) in the (x, y) space.
Hence, while x was fixed at x* when solving the foregoing subproblem, these cuts could
be reused at any subsequent iteration k + 7, T > 1, simply by fixing x = x¥*7 in these
cuts.

Accordingly, suppose that this subproblem is solved by a cutting plane method in
which the accumulated additional constraints generated thus far, which are valid for
(2.2), are of the form

Gix + Hyy > hy. “4)

Appending these cuts to the linear relaxation of (3) with x fixed at x*, yields the following
LP relaxation, which, say, ultimately solves the subproblem (3).

Min gy (5.1
Wy > r—TxF (5.2)
Hyy > h — Gex* (5.3)
Dy > f (5.4)
y > 0. (5.5)

In order to represent (5) in a compact form, we append the sub-matrices associated
with the x variables in rows (5.2)—(5.4) to form the matrix T;. Similarly, the sub-matrices
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associated with the y variables in (5.2)-(5.4) are taken to form a matrix Wy, and the right-
hand-side vector of rows (5.2)—(5.4) is recorded as the vector rr. Hence, LP (5) can be
rewritten in a compact form as:

Ming 'y (6.1)
Wiy > ri — Tix* 6.2)
y > 0. (6.3)

Letting 6; denote a vector of optimal dual multipliers associated with (6.2), Sherali
and Fraticelli [2002] derive the following Benders’ cut that can be added to the master
program, where 7 represents the second-stage value function.

n =0 (r — Tix). (7)
Then the master program has the following familiar form:
Min {c"x4+n|n=6"(r—Tx), Yr=1,...,k.
xeXnB

It is important to reiterate that since the inequalities of (4) are valid in the space
of both x and y variables, they can be used in all subsequent iterations. Hence, the
subproblem solved during iteration k + 1 can begin by using the inequalities obtained
through the first & iterations, and additional globally valid inequalities may be generated
during iteration k 4+ 1 and beyond. Finally, if the cuts (4) used for solving (3) have the
property that they ultimately construct the necessary facets of the convex hull of the
set described by (2.2), then finite convergence of the resulting algorithm is immediate.
There are various families of valid inequalities that satisfy this property (see Sherali
and Adams [1990,1994,1999], Lovasz and Schrijver [Lovasz and Schrijver (1991)], and
Balas Ceria and Cornuéjols [1993]).

2.2. A decomposition-based BAC approach (D-BAC)

The results of this subsection extend the approach of the foregoing section to solving
(1) for the case in which the second-stage mixed-binary optimization problem is solved
using BAC. Here, the term decomposition is to be interpreted in the sense that the integer
restrictions on the x and y variables are treated separately. That is, the variables may
appear in both the master as well as subproblems simultaneously; however, the integer
restrictions on both these variables (x and y) are not imposed simultaneously in either
the master or subproblems.

Suppose that in a BAC approach for solving (3), where all cuts are valid for (2.2)
in the (x, y) space, we obtain an optimal solution at some node, denoted *, of the
branch-and-bound tree. Let us denote the index sets of fixed variables at node * by
Jy, =1{j € JJ2lyj =0}, and JZJ; ={j € Jo | yj = 1}. Then the LP problem for node *
in a notation analogous to (6) is:

Min g'y (8.1)
Wiy = ri — Trx (8.2)
y =0 (8.3)

—y;>0,jed,, yj=1,jeli. (8.4)
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Proposition 1. Let 0 denote a vector of optimal dual multipliers associated with (8.2).
Moreover, let 1//,:]- and 1/fk+j denote optimal dual multipliers for the bounding constraints

associated with J,, and Jz':, respectively, in (8.4). Then the following inequality

N =0 e —Tex)+ Y Uhvi— Y vy ©)

jels, jels,
provides a lower bounding function on the value of g " y over (x, y) feasible to (2.2).

Proof. Since 6y > 0, and Tyx + Wiy > ry is valid for (2.2), we have 0 > QJ[rk —
Tiyx — Wi y]. Hence,

n>g y+6] [k — Tix — Wiyl =6 [ — Tex] + (g — 6 Wely.  (10)

Furthermore, 6; is dual feasible for (8), and y > 0. Hence,

e =6/ Wy = > wiyi— Y vy
jelds jels,
Substituting this inequality in (10) yields the desired result. O

Although we have presented Proposition 1 in such a manner as to add only one cut,
it is possible to add more cuts to obtain a stronger approximation. Note that by incorpo-
rating an artificial variable column (with an arbitarily high cost) in the subproblem, we
can assume that every node g of the BAC tree is associated with a feasible LP, and that
nodes are fathomed when their LP lower bounds exceed the best upper bound obtained.
If Ory, w,j} 7 wk_j 4 denote the dual multipliers with each fathomed node g, then one can
add as many cuts as there are nodes in the BAC tree. That is, the following inequalities
may be added to the master program.

N =05 —Te) + Y Uk vi— Y v V. (1)
jely, Jj€ds,
The arguments supporting the validity of (9) also support the validity of (11).

Proposition 2. Consider the following partial relaxed master program in which the
binary restrictions on the y variables are enforced.

Min{c"x + 1| (1, x, y) satisfy (11), y; binary Vj € J>}. (12)

(Note that (11) requires the inequalities based on all nodes of the BAC tree to be included. )
Then, for x = x* (fixed), the optimal value of 1 in (12) is the same as the value of the
subproblem (3).

Proof. Note that all inequalities (11) indexed by g are valid lower bounding inequalities,
and so, (12) (with x fixed at xk ) is a relaxation of (3). Moreover, the inequality for the
node that yields the optimal value is included in the description of (12). Furthermore, for
any inequality ¢ in (11), when we fix x = x* along with yi=1Vje J;;, and y; =0
Vj € Ty the right-hand-side of (11) yields (by duality) the value of the corresponding
nodal subproblem analogous to (8) in the enumeration tree. Since any binary solution
(9;, j € J») relates to precisely one terminal node ¢ in this enumeration tree for which
yi=1Vje Jz‘z, and y; =0,V € J,» the result follows. |
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This result is a generalization of the corresponding result for the case in which the
second-stage problem is a linear program (with all second-stage variables being con-
tinuous). In that case, fixing x = x* in the standard Benders’ cut that was generated
corresponding to this first-stage solution yields the same value of 1 as the objective value
of the associated LP subproblem. Because this subproblem is an LP, one may interpret
this occurrence as an application of Proposition 2 in which the only node that is needed
is the “root node.” More generally, however, when the subproblem is an MIP, as in the
present case, all nodes of the BAC tree are necessary to recover the optimal value of the
underlying subproblem as portended by the proposition.

Notwithstanding this result, one may wish to relax the requirement that the second-
stage binary variables (in y) be restricted to be integer-valued within the master program,
and yet be able to recover the corresponding subproblem value when x is fixed at x*. This
would result in a more workable and tractable, albeit weaker, master program. Indeed,
this can be achieved by incorporating the following additional valid inequality within
the master program whenever one solves the subproblem to optimality (as we have in
this section). Let

Le={i|xf=1} Zi={l.....n}—I.
Next, define the linear function
) =l = [)_xi— Y xil, (13)
iel i€Z;

It is easily seen that when x = x* (assumed binary), 8 (x) = 0; whereas, for all other
binary x # x¥, at least one of the variables must switch “states.” Hence, for x # x*, we
have

D xi— Y xl<Ikl—1 ie, s(x) =1
i€l i€Zk

Now, suppose that a lower bound on the second-stage, denoted ¢, is available. Further-
more, let 1 (x¥) denote the optimal value of the subproblem, given x¥. Then the following
inequality is valid and may be included in the master program.

n > n(x*) — sk — . (14)

This is essentially the “optimality” cut of Laporte and Louveaux [1993]. To verify its
validity, first observe that when x = x* , the second term in (14) vanishes, and hence,
the master program recovers the value of the corresponding subproblem. On the other
hand, if x # x¥, then,

k)& — €1 = (") — e1.
Hence, for all x # x, the right-hand-side of (14) obeys
(") = @& — € < (&) =& +L=¢.

Hence, imposing (14) does not delete any viable first-stage solution. Moreover, since
(14) itself asserts the desired inequality for the purpose of finite convergence of Bend-
ers’ algorithm, namely, that for x = x* ,n > n(xk ) in the master program, we need not
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explicitly impose either the integrality restrictions on any of the binary components of
y (as in Proposition 2), or all the terminal node inequalities (11). Thus, while there is
a price to be paid in solving the second-stage problem to optimality, including (14) in
addition to (11) may provide stronger relaxations in the master program. Furthermore,
this construct obtains finite convergence of Benders’ decomposition as in Sherali and
Fraticelli [2002].

Remark 1. While implementing (11), if we wish to dispense with the inclusion of y in
the master program, then we can derive a projection that provides an inequality for which
the coefficients of y vanish. To do so, one would have to select nonnegative multipliers
ony; >0,—y; > —1, j € J, together with a multiplier on (11) in such a way that the
aggregated coefficient vector for y is zero.

Remark 2. In the foregoing analysis, we have assumed that by adding appropriate arti-
ficial variables, each nodal subproblem in the tree is feasible. It is instructive to note
that (13) provides the facility of generating feasibility cuts in the absence of the above
assumption. Specifically, if some node yields an infeasible restriction, then in lieu of
(11), one may add the constraint

DU=y)+ D vz 1=8. (15)
jertI jels,
To see that (15) is valid, note that whenever x = x¥, 8;(x¥) = 0, and then (15) asserts
that at least one of the binary variables for y;, j € J>, must assume a value different
from the restrictions imposed at node g of the branch-and-bound tree. On the other
hand, when x # x*, we have 8k (x) > 1, and then (15) is simply redundant. Moreover,

by incorporating (15) within (11) for all infeasible nodes g, the assertion of Proposition
2 continues to hold true.

2.3. An illustration of the D-BAC algorithm

Consider the following problem:

Min —x; — 2y; + 4y,
—4x1 —=3y1+y2> -6
(x1, y1) binary, y2 > 0.
We will refer to x| as the first-stage decision variable, and y will be designated a sec-
ond-stage decision vector. It is easily seen that for binary values of y;, and nonnegative

2, a lower bound on the expression —2y; + 4y, is —2; thatis n > —2. Hence, we may
initialize the process with the following master program.

Min —x1 + 17
n=-2

x1 binary.
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The optimal value of the above problem is —3, and this value also provides a lower bound
on the optimal value of the original problem. The optimal solution to this approximation
isx; = 1, n = —2. Using x; = 1, we formulate the second-stage problem as follows.
Min —2y; +4y»
=3y1+y=-2
y1 binary, y; > 0.
The LP relaxation at the root node provides a fractional solution (2/3, 0). Suppose that

we solve this problem using a branch-and-bound scheme. The nodes of the tree are
analyzed below.

Node 1 (y; = 1): We solve the following LP:

Min -2y + 4y>
—3y1+y2=-2
-y = -1
yi =1
yi, 2 > 0.
Relating this problem to (8), note that the first two rows form the matrix Wy of (8.2),
and the third constraint above is a lower bound of the form in (8.4). Solving this LP

yields (y1, y2) = (1, 1) and dual multipliers 8 = (4, 0), and 1p1+ = 10. Accordingly,
(11) yields the following approximation of the second-stage value function.

n > 4(—6+4x1) + 10y;.
Node 2 (y; = 0): The LP for this node is given by:

Min —2y; + 4y,
=3yi1+y»=-2
-y =-1
—y1 20
yi,y2 > 0.

Upon solving this LP, we have (y, y2) = (0, 0), and the dual multipliers are 6 = (0, 0),
and yr;” = 2. Applying (11), we obtain

n > —2y.

The upper bound for the original problem at this iteration is —1 (obtained at node
2). Moreover, an inequality of type (14) may be obtained by letting x* correspond to
x1 =1, r](xk) = 0, £ = —2, and using (13) to define §x(x) = 1 — x1. The resulting
inequality is

n=-2(1—-xp). (16)
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Using inequalities of type (11) and (14) (and omitting the dominated inequality n > —2),
the updated master program is as follows.

Min —x; + 1
—2x1+n > -2
—16x; +n —10y; > =24
n+2y1 =0
x1 binary, 0 < y; < 1.

Having updated the master program, we have now completed one iteration. At this point
in the algorithm, the upper bound is —1, and the lower bound is —3.

Starting the next iteration, we solve the updated master problem. The solution to
this problem yields (x1, 1, y1) = (0, —2, 1), and the updated lower bound is —2. Fix-
ing x; = 0, the LP relaxation of the second-stage problem yields (y1, y2) = (1,0).
The resulting upper bound is therefore —2, which equals the lower bound. Hence, the
method stops with an optimal first-stage solution, which is x; = 0.

Note that because of our use of a decomposition scheme, no individual problem
(master or subproblem) has more than one integer variable, although the original prob-
lem has two integer variables. Thus, similar to Benders’ decomposition for continuous
second-stage decisions, our D-BAC algorithm solves MIP problems of the above type
by solving a sequence of easier mixed-integer programs.

3. Decomposition for stochastic mixed-integer programming

We now turn our attention to a study of SMIPs in which, as before, both the first and a
subset of the second-stage variables are required to satisfy integer restrictions. We state
the problem as follows.

Min ¢'x + E[f(x, ®)],
xeXNB

where X, and B are sets defined in (1), @ is a random variable defined on a probability
space (€2, A, P), and for any realization w of @,

f(x,w)=Min gy
Wy > r(w) — T(w)x
y >0, y; binary, j € J5.

Within the stochastic programming literature, a realization of @ is known as a “scenario”.
As such, the second-stage problem is often referred to as a “scenario subproblem.” In
our development, we assume that the right-hand-side vector r (@), and the technology
matrix T (@) are governed by random variables, whereas, the other data elements are
deterministic.

Caroe [1998] provided the first systematic application of integer programming algo-
rithms to SMIP problems. The approach studied by Caroe views the SMIP problem as
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a large-scale deterministic equivalent MIP, for which disjunctive cuts are generated to
solve this problem. It is not difficult to see that the dual block-angular structure of the MIP
is retained by the addition of cuts, and hence, one may adopt a decomposition method to
solve the LP relaxation of the deterministic equivalent. Subsequently, Ahmed, Tawarma-
lani, and Sahinidis [2004], Sen and Higle [2004], and Sherali and Fraticelli [2002] have
used global optimization and integer programming methods for solving SMIP problems.
Characterizations of stability of these problems are given in Schultz [1995]. For multi-
stage SMIP problems, Caroe and Schultz [1999] discuss a decomposition method based
on Lagrangian relaxation, and Lulli and Sen [2004] present a branch-and-price method
for multi-stage SMIP problems. The latter paper also reports computational results for
multi-stage batch sizing problems, with and without backlogging. For an overview of
characterizations and algorithms for SMIP problems, we refer the reader to surveys by
Klein Haneveld and van der Vlerk [1999], Schultz [2003], and Sen, Higle, and Ntaimo
[2003].

In our approach, we will decompose the SMIP problem, and approximate the value
function of MIP subproblems. In addition, our method is applicable to a more general
class of problems than Caroe’s. In particular, our approach is applicable to cases where
the second-stage problem includes general integers (not simply 0—1), and the first-stage
decisions are required to be extreme points of X (see Proposition 3, and Section 3.2).
Of course, the class of problems stated above satisfy these requirements. The choice to
restrict our discussion to 0—1 problems is motivated by the need for clarity and consis-
tency with the previous section.

We begin this section by examining what it takes to make the transition from deter-
ministic MIPs to stochastic MIPs. Simply put, it is a matter of scalability. The manner in
which an algorithm accommodates the presence of a large number of alternative scenar-
ios determines its effectiveness for solving SMIP problems. While analytical approaches
simply rely on the fact that there are only finitely many scenarios in the SMIP prob-
lem, realistic models often result in a relatively large number of scenarios. Recognizing
this, let us first discuss the merits of obtaining an optimal solution for each scenario
subproblem for a given first-stage solution x. Since these subproblems are generally
NP-hard, the decomposition method may get bogged down in attempts to solve sub-
problems, even while the particular first-stage decision x may not be near a reasonably
small neighborhood of an optimal solution. In essence, our view is that the algorithm
should allow partial (i.e. suboptimal) solves of the MIP subproblems, but as iterations
proceed, the method should learn enough about the structure of the MIP subproblems, so
that ultimately, the “partial solves” begin to yield optimal solutions. This can be accom-
plished via a sequential convexification process in which only a small subset of facets
are generated during any iteration.

Scalability of an algorithm is not only determined by the computational effort per
iteration, but also by its memory requirements reflected through the size of each optimi-
zation problem solved during the algorithmic process. This is one of the main motivations
for the C3 theorem in Sen and Higle [2004]. Because of the common cut coefficients,
approximations of the second-stage can be generated without storing cuts separately for
each scenario. In contrast, the cuts presented in §2.1 are intended to be recorded explic-
itly for each scenario, and although they may be reused for different first-stage decisions,
there is the potential of dealing with a very memory-intensive algorithm. In making the
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transition from deterministic to stochastic mixed-integer programming problems, care
must be taken to design algorithms that acknowledge the potential for a large number of
scenarios.

We note that the BAC approach for subproblems (see §2.2) can help reduce the
number of valid inequalities recorded for each scenario. However, the augmented cuts
of §2.2 introduce other complications for SMIPs. For instance, a naive extension of the
method of §2.2 to SMIP problems would lead us to include as many copies of second-
stage variables as there are scenarios in the SMIP. Notwithstanding the fact that these
are treated as continuous variables in the master problem, the size of the resulting MIP
can quickly get out of hand for all but the most modest SMIP problems. We therefore
adopt the D? approach whereby common cut coefficients allow us to curtail the explo-
sive growth of cuts, without sacrificing asymptotic accuracy (Sen and Higle [2004]).
The remainder of this section is devoted to the incorporation of BAC methods for the
second-stage problem in a D? algorithm.

Consider a partial branch-and-bound tree generated during a “partial solve” of the
second-stage problem. Let O (w) denote the set of terminal nodes of the tree that have
been generated for the subproblem associated with scenario w. As in §2.2, we will assume
that all nodes of the branch-and-bound tree are associated with feasible LP relaxations,
and that nodes are fathomed when the LP lower bound exceeds the best available upper
bound. This may be accomplished by introducing artificial variables, if necessary. Our
strategy revolves around using the dual problem associated with the LP relaxation (one
for each node), and then stating a disjunction that will provide a valid inequality for
the first-stage problem. When compared with the inequalities obtained previously in (9),
these cuts involve only the first-stage variables (x). (The reader may also refer to Remark
1 for projecting (9) onto the space of first-stage variables x.)

In the following, we use k as the index of iterations, where at each iteration, the sec-
ond-stage subproblems are solved to some degree of accuracy. For any node g € Q(w),
let z4¢(w) and z4;, (w) denote vectors whose elements are used to define lower and upper
bounds, respectively, on the second-stage (integer) variables. In some cases, an element
(zgn) j may be +00, and in this case, the associated constraint may be ignored, implying
that the associated dual multiplier is fixed at 0. In any event, the LP relaxation for node
g may be written as:

Min g'y
Wiy > ri(o) — Ti(o)x*

y =20

y= qu((l)), —-y= _th(a))7
and, the corresponding dual LP is:

Max 0, (@) [ri(w) — Te(@)x* ]+ Yge(@) T 240 (@) — Ygn(@) " zgn(w)
0,(@) Wi + Yge(@) T — Ygn(@)’ < g
0, (®) = 0, Yge(w) > 0, Yy (w) > 0,

where the vectors v/,¢(w), and 4 (w) are appropriately dimensioned vectors.
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We now turn our attention to approximating the value function of the second-stage
MIP. As noted in Blair and Jeroslow [1982], and subsequently by Blair [1995], IP and MIP
value functions are complicated objects; however, the branch-and-bound tree, together
with the LP relaxations at these nodes, provide important information that can be used to
approximate MIP value functions. The main observation that we use in this development
is that the branch-and-bound tree embodies a disjunction, and when coupled with piece-
wise linear value functions of the LP relaxations for each node, we obtain a disjunctive
description of an approximation to the MIP value function. By using the disjunctive cut
principle, we will then obtain linear inequalities (cuts) that can be used to build value
function approximations. In order to do so, we assume that we have a lower bound ¢
such that f(x, ®) > £ (almost surely) for all x. Without loss of generality, this bound
may be assumed to be 0.

Consider a node g € Q(w) and let (6% (w), xpj;e (w), w{;h (w)) denote optimal dual
multipliers for node ¢g. Then a lower bounding function may be obtained by requiring
that x € X and that the following disjunction holds true.

N = 04 (@) k(@) — Te(@)x] + Yy (@) " zge()
—w;‘h (a))Tzqh (w) for at least one g € Q(w). (17

Note that each inequality in (17) corresponds to a second-stage value function approxi-
mation that is valid only when the restrictions (on the y-variables) associated with node
q € Q(w) hold true. Since any optimal solution of the second-stage must be associated
with at least one of the nodes g € Q(w), the disjunction (17) is valid.

It is instructive to examine the relationship between the disjunction in (17) directly
and the set of inequalities (11). In stating (17), we first undertake an aggregation process
using the dual multipliers to obtain a conditionally valid inequality for each node, given
the corresponding integer restrictions. This leads to disjunction (17) to which we can
now apply the disjunctive cut principle (Balas [1979]) to generate a valid inequality. In
contrast, (11) is formed by directly developing a valid inequality for (2.2) in the (x, y)
space based on each node subproblem, and as suggested in Remark 1, an aggregation
process could be used subsequently to project these inequalities onto the space of the
x variables. Thus the aggregation precedes the formation of valid inequalities in (17),
whereas, the reverse would be true if (11) were to be projected onto the space of the x
variables.

Returning to the structure of the inequalities in (17), note that for each ¢ € Q(w)
we can associate an epigraph

Ef(@) =1{(1,%) | n = V(@) — 7, (@) "x, Ax = b,x = 0,7 > 0},
where,
D (@) = 0;(0) i) + Yy (@) T 2g0(@) = Yl (@) Tzgn (),
and
7y (@) = Te (@) 0 (o).

In the above statement, we have restricted the epigraph associated with each inequality
in (17) to the domain x € X, and n > 0. The validity of (17) implies that the epigraph
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of the subproblem (MIP) value function for outcome w € 2 is a subset of the following
disjunctive set

Mi (@) = {(1, ) € Ugeow) Ej (@)},

We will use a convexification of this set to derive lower bounding functions for use in
the master program.

Starting with the work of Balas [1979], disjunctive programming has provided a
basis for convexifying disjunctive sets of the form given above. Facets of the convex
hull of T (w) may be represented in the form

o (@ + Y _of(@)x; = " (w),
J
k

where the vector (cré( (w), alk (), ..., 0 . (w), ¢ k (w)) is an extreme point of the follow-
ing polyhedral set

HZ(w) = {op(w) € R, 0(w) e R, ¢ (w) e N |V q € Q(w),
d1(w) 20, 1o4(w) € Ny 5.t
op(w) > Tq(w), Vg€ Q(w)

> @) =1

geQ(w)
0j(@) = (@) Aj + 104(@)7) (@), Vg€ Q),j=1,...,n

t(@) < (@) 'b + 4@V (), Yq € Q)
(@) > 0, 100(@) >0, Vg€ Q). (18)

A%

This polyhedron is derived by aggregating the first two (sets of) constraints defining each
E ’q‘ (w) by using nonnegative mutlipliers 7o, , and 7, respectively, and then applying the
disjunctive cut principle, together with the normalizing constraint }_ ¢ 5, Tog (@) = 1.
There is a one-one correspondence between facets of the convex hull of [T (w), and the
extreme points of H,t (w). We refer to the latter as the epi-reverse polar since it represents
the reverse polar (see Balas [1979]) of the union of epigraphs.

Let n* denote the lower bound on the expectation, and x* the first-stage solution
resulting from the master program at iteration k. Corresponding to the value ¥, assume
that we also have outcomes n*(w), w € €, such that n* = Y wea p(w)n*(w). Sub-
sequently, we will discuss how these quantities may be obtained (see (22)). Initially,
we use nl = nl (w) = 0, the assumed lower bound. Now, for each outcome w € €,
we propose to identify a facet of the convex hull of IT;(w) by solving the following
LP.

Max{—* (@)oo (@) — Y x50 (@) + L (@) | (00(®). 0 (@), £ (@) € TT} @)} (19)
J

Denoting an optimal solution to (19) by (aé‘ (w), o%(w), {¥(w)), a disjunctive cut that
provides a lower bound on the MIP subproblem value function can then be generated
as
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o5 (@n(@) + Y _ ot (@)x; = M) (20)
j

Note that the conditions in (18) imply that op(w) > Max, To, () > 0. Hence, the
epi-reverse polar only allows those facets (of the convex hull of ITi(w)) that have a
positive coefficient for the variable 7.

The “optimality cut" to be included in the first-stage master problem at iteration & is

therefore given by
k(s kien 1T
n>E 2@)—E 2@) x. Q21.4)
oy () oy ()

It is obvious that one can also devise a multi-cut method using (20) for each outcome w
(see Birge and Louveaux [1997]). Note that during the solution of the resulting master
program at iteration k 4 1, there must exist at least one inequality from the list of cuts
(21.1), ..., (21.k) that is tight at the optimal solution of this master program. If n**!
denotes the optimal value of 1 resulting from this master program, then there exists an
index ¢t < k such that

t t T
nkﬂ(w):[f(w)]_[o (w)} 1 Vo e Q. (22)

ol (w) of(w)

These quantities may be used in (19) for iteration k + 1.

Remark 3. It is important to draw the distinction between the disjunctive cuts that have
appeared in the MIP literature, and the cut proposed in (21.k). Disjunctive cuts in the MIP
literature are intended to provide tight relaxations of the set of feasible integer points.
The D? algorithm with set convexification (D2-SC, Sen and Higle [2004], and Sen,
Higle, and Ntaimo [2002]) provides a sequential approach for tightening second-stage
linear relaxations. Such a sequential convexification allows us to carry information from
one iteration to the next, thus avoiding the need to re-start the convexification process
from scratch. Nevertheless, the goal of D?-SC remains one in which linear relaxations of
the subproblems are tightened using valid inequalities. In contrast, the cuts here provide
a completely novel application of disjunctive programming. We have used disjunctive
programming to approximate the value function of MIP problems. This viewpoint facil-
itates the design of decomposition algorithms for specially structured MIP problems,
particularly SMIP problems. Because of its connections with the disjunctive decompo-
sition (D?) algorithm of Sen and Higle [2004], we refer to the current method as the
D?-BAC algorithm, and is summarized in Figure 1.

Proposition 3. Let the first-stage master program approximation solved at iteration k
be
Min{ch +n|n=>0xeXNB,(n, x) satisfies (21.1), ..., 21.k — 1)}.

Moreover, assume that the second-stage subproblem is a mixed-integer (binary) lin-
ear program whose partial solutions are obtained using a branch-and-bound method in
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— 0. Initialize. Let € > 0 be given; k = 1, and initialize an upper bound V| = oco.
Let F1(x) = 0, where F¥(x) denotes the approximation of the expected recourse
function at iteration k.

— 1. Solve the Master Problem and check the stopping criterion.

Let x¥ € argmin {cTx + F*(x) | x € X N B}, and let v denote the optimal value
of the master problem. If Vi, — v < €, stop. Otherwise, proceed to Step 2.

— 2. Update the approximation.

For each w € Q partially “solve” one MIP subproblem using BAB and derive
an inequality of the form (20), and after processing all w, derive (21.k). If yk (w)
satisfies the integrality restrictions for all @ € €, then set Viy1 = Min{c ' x* +
E[f x*, &)1, Vi}. Include the inequality (21.k) into the master program approxi-
mation, and denote the updated approximation of the expected recourse function by
F**1 Increment k by 1, and repeat from Step 1.

Fig. 1. A Basic D?-BAC Algorithm

which all LP relaxations are feasible, and nodes are fathomed only when the lower bound
(on the second-stage) exceeds the best available upper bound (for the second-stage).
Suppose that there exists an iteration K such that for k > K, the branch-and-bound
method (for each second-stage subproblem) provides an optimal second-stage solution
forall w € Q, thus yielding an upper bound on the two-stage problem. Then the result-
ing D*-BAC algorithm provides an optimal first-stage solution in a finite number of
iterations.

Proof. We consider iteration indices k > K, so that for such k, the second-stage objec-
tive values provide MIP values for each outcome, and an upper bound on the original
problem becomes available. Given the solution (%, x¥) of the master program at iter-
ation k, we choose some tight optimality cut to define 7¥(w) as in (22). Also note that
" = Elf (@) = X cq P(@)1* ().

For iteration k, and outcome w, let n’j_ (w) denote the MIP optimal value for the
subproblem associated with outcome w. Following the logic stated in (17), we have

k =k —ko Tk
= Min — .
@) = Min (7)) - 7} @)+
Since (19) generates a facet of the convex hull of I1;(w), and x* € B is an extreme

point of X, it follows that (r;'j_ (w), xk ) satisfies (20) as an equality. Moreover, oé‘ (w) >0
implies that

. @ [ot@]
7k (@) = <. (23)

aé‘ (w) B Gé‘ (w)

Since there are only finitely many settings of the second-stage binary variables, there
can only be finitely many disjunctions that can be stated as (17), and for each of these
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disjunctions, there can only be finitely many extreme points generated via (19). Hence,
in the worst case, it takes finitely many iterations, say S — 1, to generate all the extreme
points of the epi-reverse polar. In the worst case then, the master program in iteration S
provides a point (7%, x5) such that

7% (@)o0(@) + 0 (@) %% > (), V(op(), o), L)) € T} (w),Vt < S — 1(24)
for all w. Hence (23, 24) imply that

S]] s S S]] s S
—nS(a))—|: :| x5+ <0 =—ni(w)—|: :| x5+

od (@) oS (@) ~ o (@) a5 (@)

Consequently, at the end of iteration S, we have 75 (w) > nf_(a)) for all outcomes w.
Therefore,

vs=c x5+ 15> c"xS + Ei@) = v,

where V* is the optimal value of SMIP. Hence, the method terminates in finitely many
steps. a

Note that the main property of the binary first-stage solutions that we have used above
is that such points are extreme points of X, which helps us conclude that the closure of
the convex hull of the epigraph of the value function agrees with the collection of cuts
(21.k) at extreme points of X. Hence, the D?>-BAC method is applicable to a larger class
of problems called extreme point mathematical programs that require feasible solutions
to be extreme points of a polyhedral set (Sen and Sherali [1985]).

3.2. Illustrations of the D>-BAC algorithm

In this subsection, we illustrate the workings of the D?>-BAC through some examples.
The first example is the same as that in §2.3. While this instance happens to be deter-
ministic, it is interesting to compare the master program approximations resulting from
the D?-BAC method with those of the D-BAC method. The next example will illustrate
the application of D2-BAC to an SMIP instance.

3.2.1. A deterministic instance For the sake of convenience, the instance from §2.3 is
restated below.

Min —x; —2y; + 4y,
—4x1 —3y1 +y2 > -6
(x1, y1) binary, y; > 0.

The D?-BAC method requires a lower bound on the objective value of the second-stage.
By noting that the value of —2y; 4+ 4y, on the feasible set must be at least —2, we con-
clude that n > —2. In order to be consistent with our development that requires £ = 0,
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we make the translation that v = n + 2, so that v > 0. Hence, the first master program
(see also §2.3) is given by
-2+ Min—x1 +v
v=>0
X1 binary.
The above approximation yields the first iterate x; = 1, v = 0. Hence, the lower bound
is —3. Using the given value of x|, we proceed to the second-stage problem:
Min —2y; +4y;
=3yi+y2z -2
y1 binary, y» = 0.
As before, the solution to the LP relaxation is fractional, and we solve this problem using
a branch-and-bound method that results in the same two nodes as in §2.3. During the
branch-and-bound process, the value of the second-stage problem is = 0, and so, an
upper bound on the original problem is —1. From the dual solutions obtained for the LP
relaxations at each node, we arrive at the following disjunction.
{n=4(=6+4x)) +10, —x; = —1,x1 = 0,7 = -2},
oo  {n>0,-x;>-1,x>0,n>-2}.

Once again, translating v = n + 2, this disjunction can be stated as

{—=16x1+v>—-12, —x1 > —1,x1 > 0,v > 0},
or fv>2,—x;1>—-1,x1 >0,v >0}
Solving the separation problem (19) we obtain multipliers to; = 1/3, 79> = 2/3, 711 =

0, 7o = 16/3, and the cut coefficients are g = 2/3, 01 = —16/3, and ¢ = —4. The
resulting disjunctive cut yields the facet

—8x1 +v > —6.
Adding this inequality results in an updated master program

—2+ Min —x; + v
—8x1+v>-6
v>0

x1 binary.

This completes one iteration. Observe that the inequality —8x; + v > —6 is implied by
the constraints in the final master program listed in §2.3. To see this, note that by using
a multiplier 1 for the inequality —2x; + n > —2 and a multiplier 6 for the inequality
—x > —1, we obtain an aggregated inequality —8x; 4+ 1 > —8. Substituting n = v — 2
we obtain the same inequality as the facet obtained in the above master program.

‘We begin the next iteration by solving the master program obtained at the end of the
first iteration. The optimal solution to this problem is (x1, v) = (0, 0). Thus, the lower
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bound is —2. Solving the second-stage problem with x; = 0 provides a solution yielding
an upper bound of —2 with n = —2. Since the upper and lower bounds are both —2, we
declare x; = 0 as an optimal solution.

The reader may also find it interesting to use the D>-BAC method to solve the fol-
lowing modified instance involving general integer variables in the second-stage. (One
may also use the D-BAC method for this problem.)

Min —x1 — 2y; + 4y
—4x1 =3y1+y2 = -7
x1 binary, yp integer, yi, y2 > 0.
In the interest of brevity, we only provide the sequence of master programs that are
generated by the method. The initial master program is the same as the one given for
the previous instance, with the understanding that v = n + 6, where £ = —6 is a lower
bound on the second-stage value. The second master program is
—6+ Min —x; +v
—(8/3)x1 +v >4/3
v>0
x1 binary,
and the third one is
—6+ Min —x; +v
—8/3)x1 +v=>4/3
v=>2
v>0
x1 binary.
It so happens that the solution x| provided by the second master program is x; = 0, and
the branch-and-bound process for the subproblem yields an upper bound of —4 on the
original problem. The optimal solution for the third master program is (x, v) = (0, 2),
and since v = 1 + 6, we conclude that the lower bound on the original problem is —4.

Since the upper and lower bounds are equal at this point, we conclude that the first-stage
solution x; = 0 is optimal.

3.2.2. A stochastic programming instance This instance is a simple extension of the
instance discussed above. Consider the following SMIP:

Min —x; + E[f(x1, ®)]
X1 binary,

where @ is a discrete random variable assuming two equally likely values {w; =
—6, wy; = —2}, and where

f(x1, @) = Min =2y, + 4y,
=3y1+y2 > o+ 4x
y1 binary, y» > 0.
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Note that the first scenario results in the same subproblems as in the deterministic
instance. As before, the value of —2y; + 4y, on the feasible set for both scenarios must
be at least —2, and hence, we conclude that > —2. Therefore, as before, the first
master program is

—24+ Min —x| + v
v>0

X1 binary.

The above approximation yields the first iterate x; = 1, v = 0, resulting in a lower
bound of —3. We now proceed to solve the second-stage scenario subproblems. As
in the deterministic instance, the solution to the LP relaxation for w; = —6 yields a
fractional solution, and we solve this problem using a BAB method. Following the cal-
culations of the previous subsection, the same two nodes result in the BAB tree, and as
before, the inequality corresponding to (20) is —8x; + v; > —6. Next, we solve the
subproblem associated with w, = —2. It turns out that the solution to the LP relaxation
satisfies the integer restrictions, and we obtain the following Benders’ cut associated
with scenario wy: —16x] + vy > —6. Using the probabilities associated with w; and w>
as weights for each inequality, the resulting cut (21) appended to the master program is
—12x1 + v = —6. The updated master program is then given by

—2+ Min —x; +v
—12x1+v > —6
v>0

x1 binary.

This completes one iteration of the algorithm.

We begin the next iteration by solving the master program obtained at the end of the
first iteration. The optimal solution to this problem is (x1, v) = (0, 0). Thus the lower
bound is —2. We now go on to solve the second-stage scenario problems with x; = 0.
For scenario w; the LP relaxation yields an integral solution with an objective value of
f(0, w1) = —2. Using the standard Benders’ inequality for this scenario, we obtain a
cut v(wy) > 0.

For scenario w; the solution to the LP relaxation is fractional, and we solve this
problem using a BAB method, which results in two terminal nodes. During the BAB
process, the best value of the second-stage problem is 0. Thus an upper bound on the
original problem is equal to —1. From the dual solutions obtained for the LP relaxation
at each node, we arrive at the following disjunction:

{(n=>4(=24+4x1)+10, —x; = —1,x1 = 0,7 > =2}
or {n>0,—x;>~-1,x>0,n>-2}

Once again, translating v = n + 2, this disjunction can be stated as

{—16x;+v=>4,—x1>—-1,x>0,v>0}

or {v>2,—x;1>—1,x1>0,v>0}
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Solving (19), we obtain multipliers gy = 1/3, 702 = 2/3,71 = 0,72 = 0 and
coefficients ogp = 2/3,01 = 0, and ¢ = 4/3. Thus the resulting disjunctive cut for
scenario wj is v(wy) > 2. Combining the two cuts for the two scenarios as in (21) yields
the aggregated facet v > 1. Adding this inequality results in an updated master program
and completes the second iteration.

We begin the third iteration by solving the master program obtained at the end of
the second iteration. The optimal solution to this problem is (x1, v) = (0, 1). Thus the
lower bound is —1. Currently the upper bound is —1. Since the upper and lower bounds
are both —1, we declare x; = 0 as an optimal solution. It is interesting to observe that
while the deterministic and stochastic instances discussed above are very similar, the
latter required more iterations.

4. Conclusions

In this paper, we have developed extensions of decomposition-based cutting plane algo-
rithms to allow the use of branch-and-cut methods for stochastic mixed-integer pro-
gramming (SMIP) problems. These approaches allow us to solve the original MIP using
a sequence of smaller MIPs. Given the complexity of these problems, such reductions
are valuable.

We have investigated two alternative procedures: the D-BAC algorithm, and the
D?-BAC method. The former uses second-stage variables as continuous decisions in
the first-stage, while the latter creates master problems using only first-stage decisions.
As pointed out in Remark 1, the D-BAC approach may be modified to generate pro-
jected inequalities that use only the first-stage decisions. An alternative way to see the
connections between the developments in sections 2 and 3 is by noting that for binary
deterministic problems of the form considered in Section 2, (9) yields the following
conditionally valid inequality at node ¢ where y; = 1,V € ‘12';, andy; =0,Vj e Jog'

=050k —Tex) + Y Ui

jelg

Denoting Q as the index set for the fathomed end-nodes of the corresponding BAB tree,
and observing that any y satisfying the binary restrictions must correspond to exactly
one of these end-nodes, we can state a valid disjunction as follows:

Ugeoln = 0, (e = Tix) + Y Wi x € X, = £).
jej;;

Then, the disjunctive cut principle can be applied as in Section 3, and cuts can be derived
in the space of (n, x) variables.

The D-BAC method of Section 2 is convenient in the deterministic setting, or for
SMIP problems having only a few scenarios in the second-stage. However, if the number
of outcomes in the second-stage is very large (as in large-scale SMIPs), the D>-BAC
method of Section 3 (or equivalently, the above modification of D-BAC) allows a more
direct facility for creating a master program that uses only the first-stage variables.
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