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Abstract. In this paper, we propose a decomposition-based branch-and-bound (DBAB) algorithm for solving
two-stage stochastic programs having mixed-integer first- and second-stage variables. A modified Benders’
decomposition method is developed, where the Benders’ subproblems define lower bounding second-stage
value functions of the first-stage variables that are derived by constructing a certain partial convex hull represen-
tation of the two-stage solution space. This partial convex hull is sequentially generated using a convexification
scheme such as the Reformulation-Linearization Technique (RLT) or lift-and-project process, which yields
valid inequalities that are reusable in the subsequent subproblems by updating the values of the first-stage vari-
ables. A branch-and-bound algorithm is designed based on a hyperrectangular partitioning process, using the
established property that any resulting lower bounding Benders’master problem defined over a hyperrectangle
yields the same objective value as the original stochastic program over that region if the first-stage variable
solution is an extreme point of the defining hyperrectangle or the second-stage solution satisfies the binary
restrictions. We prove that this algorithm converges to a global optimal solution. Some numerical examples
and computational results are presented to demonstrate the efficacy of this approach.

Key words. Two-stage stochastic mixed-integer programs – Benders’ decomposition – Convexification –
Reformulation-Linearization Technique (RLT)

1. Introduction

Stochastic programs with recourse are optimization problems in which a set of decisions
have to be made a priori in a context when the related environmental information is not
completely available (nonanticipative). Given these decisions, the values of subsequent
recourse variables need to be prescribed based on the realization of certain random
events. A two-stage stochastic program can be formulated as follows:

SP: Minimize cT x + E[f (x, ω̃)] (1a)

subject to x ∈ X ⊆ Rn (1b)

where ω̃ is a random variable defined on a probability space (�̃, Ã, P̃) (with �̃, Ã, and
P̃ respectively denoting the set of all outcomes, a collection of random variables, and
the assigned probabilities), and where for any given realization ω of ω̃, we have
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f (x, ω) = minimum g(ω)T y

subject to W(ω)y ≥ r(ω)− T (ω)x (1c)

y ∈ Y ⊆ Rm. (1d)

Here, x and y respectively denote the nonanticipative first-stage variables and the
second-stage recourse variables, and the associated sets X and Y are assumed to be
described by linear constraints along with some possible integrality restrictions. In this
paper, we permit the model to generally include 0-1 mixed-integer first-stage and second-
stage variables. (We assume that any general bounded integer variables are transformed
using a binary representation.) Such a problem is accordingly referred to as a two-stage
stochastic mixed-integer program (SMIP). The matrix W is called the recourse matrix
and is often assumed to be scenario-independent (i.e., W(ω) ≡ W, ∀ω), in which
case the model is referred to as having fixed recourse. The matrix T is the so-called
technology matrix and is typically considered to be scenario-dependent, although some
analyses do assume a fixed technology matrix, as, for example, in Ahmed et al. [2]. For
computational viability, a finite number of scenarios s = 1, . . . , S is often considered
based on some discretization of the realization of ω̃, each with an associated probability
of occurrence ps , s = 1, . . . , S (see Schultz [14] for a justification on approximating
continuously distributed scenario parameters by a discrete distribution having a finite
support). Accordingly, the realizations of W(ω), T (ω), and r(ω) are correspondingly
denoted as Ws , Ts , and rs , respectively, for s = 1, . . . , S. Note that we have assumed a
linear objective function as in most studies of stochastic models. However, models that
consider variability measures, as for example in the case of robust optimization (Mulvey
et al. [12], Takriti and Ahmed [23], and Ahmed [1]), do accommodate nonlinear terms
in the objective function. Naturally, the computational difficulty of solving such models
increases drastically.

Arguably, SMIPs are among the most challenging of optimization problems because
they combine two generally difficult classes of problems: stochastic programs and dis-
crete optimization problems. Researchers have actively studied the properties and solu-
tion approaches for such problems for the past decade (see [15, 10, 22] for surveys
on some major results in this area and an annotated bibliography). The simplest form
of stochastic integer programs contain pure binary first-stage variables and continuous
second-stage variables. Laporte and Louveaux [11] provide a branch-and-cut (B&C)
procedure for such problems in which feasibility and optimality cuts are applied, similar
to those for Benders’ partitioning method [4].

When the second stage contains only continuous variables, its objective function is
a well-behaved piecewise linear and convex function of the first-stage variables. How-
ever, if the second stage contains discrete decisions, not only does the number of integer
variables increase as the number of scenarios increases, but also, the second-stage value
functions are now only lower semicontinuous with respect to the first-stage variables [5],
which makes them generally non-convex [15]. Schultz et al. [15] present a finite-set
enumeration framework for solving stochastic models having complete and pure integer
recourse and continuous first-stage variables. van der Vlerk [24] provides a mechanism
to obtain a (continuous) convex approximation for the expected second-stage value
function through a modification of the random right-hand-side vector. Ahmed et al. [2]
develop a finite branch-and-bound (B&B) solution approach for stochastic programs
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having a fixed technology matrix and general first-stage and pure integer recourse vari-
ables by adopting an appropriate partitioning process in the transformed space of the
tender variables χ = T x. Carøe and Tind [8] generalize the L-shaped method to deal
with two-stage stochastic programs having fixed integer, though not complete, recourse.
Carøe and Tind [7] have also investigated applying cutting planes to solve stochastic
programs having 0-1 mixed-integer recourse variables and either pure continuous or
pure binary first-stage variables.

If the first stage contains pure binary variables, finite termination is readily justified
when adopting search procedures that branch over the first-stage variables. Sherali and
Fraticelli [21], Sen and Higle [17], and Ntaimo and Sen [13] investigate two-stage sto-
chastic programs having pure binary first-stage variables and 0-1 mixed-integer recourse
variables, and propose decomposition algorithms that rely on a sequential partial con-
vexification process that generates cuts as functions of the first-stage variables, where
these cuts are shown to be reusable for subsequent subproblems by updating the values
of the first-stage variables. Sen and Sherali [18] combine a similar decomposition-based
cutting plane approach along with the disjunctive decomposition cuts of Sen and Hi-
gle [17] in a branch-and-cut (B&C) framework to derive a class of finite disjunctive
decomposition-based B&C (D2-BAC) approaches.

Carøe and Schultz [6] design a B&B algorithm for problems having mixed-integer
variables in both stages. In their algorithm, the bounding process resorts to solving a
Lagrangian dual problem predicated on the nonanticipativity condition, and evaluated
via mixed-integer separable subproblems. The Lagrangian dual provides tighter bounds
than the LP relaxation at each B&B node, yet the price paid is having to solve the non-
smooth Lagrangian dual problem along with the mixed-integer subproblems. Schultz
and Tiedemann [16] extend this approach to solve stochastic programs that include an
additional objective term based on the probability of a risk function exceeding a pre-
specified threshold value.

In this paper, we study a wide class of mixed-integer two-stage stochastic programs
in the following form:

SMIP: Minimize cT x +
S∑

s=1

psfs(x) (2a)

subject to x ∈ X ∩� (2b)

where

X ≡ {x ∈ Rn : Ax ≥ b, xi ≥ 0, ∀i ∈ I1 ⊆ {1, . . . , n},
xi binary, ∀i ∈ I2 ≡ {1, ..., n} \ I1} (2c)

� ≡ {x ∈ Rn : l ≤ x ≤ u} (with li ≡ 0 and ui ≡ 1, ∀i ∈ I2) (2d)

and for any scenario s = 1, . . . , S, we have,

fs(x) = minimum gT y (2e)

subject to Wsy ≥ rs − Tsx (2f)

y ∈ Y ≡ {y ∈ Rm : yj ≥ 0, ∀j ∈ J1 ⊆ {1, . . . , m},
yj binary, ∀j ∈ J2 ≡ {1, ..., m} \ J1}. (2g)
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We make the following assumptions:

A1. The continuous variables in both stages are bounded. Moreover, the continuous
variables in the second stage are scaled onto [0,1], with the corresponding bounding
restrictions yj ≤ 1, ∀j ∈ J1, being absorbed within (or implied by) (2f).

A2. The inherent stochasticity in the problem is discretized into so-called scenarios,
s = 1, . . . , S, each with an associated probability of occurrence ps , ∀s = 1, . . . , S.

A3. For any x ∈ �, the region defined by (2f, 2g) is feasible (relative complete recourse
with respect to �).

The remainder of this paper is organized as follows. Section 2 introduces several
important concepts that lay the foundation for designing a decomposition-based branch-
and-bound approach for solving two-stage stochastic programs of the form given in (2).
The main algorithmic procedure is described in this section and its convergence to
a global optimum is established. Section 3 then presents the supporting algorithmic
routines for solving the related subproblems and the lower-bounding master programs.
An illustrative example is provided in Section 4, and Section 5 reports some encouraging
preliminary computational experience. Finally, Section 6 concludes this paper.

2. Decomposition-based branch-and-bound algorithm (DBAB)

In this section, we begin by presenting some fundamental concepts and results that lead
us to design our proposed overall algorithm for solving Problem SMIP. Observe that
when the first-stage variables x are purely binary, then for each fixed binary vector x̄, the
extreme points of conv{(x, y) : Tsx+Wsy ≥ rs, x ∈ �, y ∈ Y }∩{(x, y) : x = x̄} have
binary values for yj , ∀j ∈ J2, for each scenario s = 1, . . . , S. This follows because
the restriction x = x̄ is then facial with respect to �. However, this statement is no
longer true when the first stage contains continuous variables, whereby, x might be fixed
at some nonextremal point within �. As a result, the algorithms developed by Sen and
Higle [17], Sherali and Fraticelli [21], and Sen and Sherali [18], in particular, all of which
rely on this basic construct, are no longer applicable in this case. This necessitates the
development of an alternative solution approach.

Toward this end, for any fixed x ∈ �, consider the scenario-based value functions

fs(x) ≡ min{gT y : Wsy ≥ rs − Tsx, y ∈ Y }, ∀s. (3)

Now, given any � (which will be partitioned in a B&B context in the sequel), define

Zs(�) ≡ conv(�s(�)), where (4a)

�s(�) ≡ {(x, y) : Tsx +Wsy ≥ rs, x ∈ �, y ∈ Y }, ∀s. (4b)

By a convexification process (e.g., see Sherali and Adams [20]), suppose that we have
the representation of Zs(�) in a possibly higher dimensional space (x, y, z), including
certain new variables z in the added dimensions, given as follows:

Zs(�) = {(x, y) : H1sx +H2sy +H3sz ≥ hs, x ∈ �, (y, z) ≥ 0}, ∀s. (4c)
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Fig. 1. Illustration of the Concepts of Proposition 1

Based on this representation, define the following function for any fixed x ∈ �:

LBs(x)≡min{gT y :H2sy +H3sz ≥ hs −H1sx, (y, z) ≥ 0} = minimum
y:(x,y)∈Zs(�)

{gT y},∀s.
(5)

Proposition 1. For any s ∈ {1, . . . , S}, consider the functions fs(x) and LBs(x) as
defined by (3) and (5), respectively, over x ∈ �. Then, we have,

fs(x) ≥ LBs(x),∀x ∈ �. (6a)

Furthermore, if x ∈ vert (�), where vert (�) denote the vertices of �, or, more generally,
if there exists an optimal solution ȳ that evaluates LBs(x) such that ȳ ∈ Y , then we
have

fs(x) = LBs(x). (6b)

Proof. Consider any fixed x̄ ∈ �. Define

ZLBs (x̄) ≡ {y : (x̄, y) ∈ Zs(�)}, and Zfs (x̄) ≡ conv{y : (x̄, y) ∈ �s(�)}. (7a)

Hence, from (3), (4b), and (5), we have,

fs(x̄) = min{gT y : y ∈ Zfs (x̄)} and LBs(x̄) = min{gT y : y ∈ ZLBs (x̄)}. (7b)

Note that ZLBs (x̄) is given by conv(�s(�)) ∩ {(x, y) : x = x̄}, while Zfs (x̄) is given
by conv(�s(�) ∩ {(x, y) : x = x̄}). Hence,

Zfs (x̄) ⊆ ZLBs (x̄),∀x̄ ∈ �, with Zfs (x̄) = ZLBs (x̄),∀x̄ ∈ vert (�), (8)

where the latter statement holds true because x = x̄ is facial with respect to conv(�s(�))

for x̄ ∈ vert (�). The results (6a) and (6b) now follow from (7b) and (8) and the fact
that if an optimal solution ȳ that evaluates LBs(x̄) is also feasible to Zfs (x̄), then
fs(x̄) = LBs(x̄). �
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Figure 1 illustrates the concepts of Proposition 1 for a single binary variable y

and a continuous variable x, by displaying a situation where for x̄ /∈ vert (�), we have
Zfs (x̄) ⊂ ZLBs (x̄), whereas for either x̄ = l or x̄ = u, it is clear that Zfs (x̄) = ZLBs (x̄).

Consequently, based on Proposition 1 and (5), we get for any x ∈ �,

fs(x) ≥ LBs(x) = max{φ(hs −H1sx) : φH2s ≤ gT , φH3s ≤ 0, φ ≥ 0}, ∀s. (9)

Define

�s ≡ {φ : φH2s ≤ gT , φH3s ≤ 0, φ ≥ 0}, ∀s = 1, . . . , S. (10)

Then, from (9) and (10), we get for any x ∈ � (since LBs(x) is finite by assumptions
A1 and A3)

fs(x) ≥ max
φi∈vert (�s)

{φi(hs −H1sx)}, ∀s = 1, . . . , S. (11)

Accordingly, let us define the following lower bounding master program (LBMP(�)),
which is designated based on a specification of � for subsequent use.

LBMP(�) :Minimize cT x +
∑

s

psηs (12a)

subject to ηs ≥ φi(hs −H1sx), ∀φi ∈ vert (�s), ∀s = 1, . . . , S (12b)

x ∈ X ∩�. (12c)

Proposition 2. Problem LBMP(�) provides a lower bound for SMIP. Moreover, if
(x̄, η̄s , s = 1, . . . , S) solves LBMP(�), and either (a) x̄ ∈ vert (�), or more generally,
(b) the solution ȳs obtained when solving LBs(x̄) satisfies ȳs ∈ Y , ∀s = 1, . . . , S, then
x̄ solves SMIP with the same objective value given by cT x̄ +∑

s ps η̄s .

Proof. Note that from (2), (11), and (12), we have that LBMP(�) provides a lower
bound on SMIP. Moreover, by Proposition 1, we have that under either of the conditions
(a) or (b) of the proposition, equality holds true in (6b) or (11), and so, x̄ solves SMIP
with the same objective value as for LBMP(�). �

Proposition 2 leads to a decomposition-based B&B (DBAB) algorithm for solving
SMIP, which is predicated on the partitioning of the hyperrectangle �. In this procedure
(a more formal statement is given below), starting with iteration k = 1 and a list of
active nodes L1 ≡ {1}, where �1 ≡ �, at any general iteration k, we will have a current
index list Lk of active (non-fathomed) nodes, where each λ ∈ Lk corresponds to some
hyperrectangle �λ ≡ {x : lλ ≤ x ≤ uλ} ⊆ �. For each such node, we will have
computed a lower bound LBλ via the solution of LBMP(�λ). (The algorithm described
below, as well as its convergence arguments, remains the same if the lower bounds are
computed by instead solving LBMP(�λ), which is given by (12) but with the integral-
ity restrictions on xi , for i ∈ I2, relaxed. Naturally, such a lower bound is potentially
weaker, although relatively easier to compute.) Note that LBMP(�λ) (or LBMP(�λ))
will be solved via a standard row-generation or Benders’ scheme, by iterating between
the master program (12) and the subproblems (5) or (9), for each s = 1, . . . , S, with
� ≡ �λ (see Section 3.2 for details). Whenever the lower boundingsolution xλ, say,
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for any node subproblem λ turns out to satisfy either of the conditions of Proposition 2
with respect to �λ, then the corresponding value of LBMP(�λ) provides the actual
value of SMIP restricted to �λ, and we can fathom this node, updating the incumbent
solution and its value, x∗ and ν∗, respectively, as possible. Additionally, if LBλ ≥ ν∗,
or whenever the value of the current relaxed master program (12) exceeds ν∗ during the
solution process, we can fathom node λ. Therefore, at any iteration k, all active nodes
λ ∈ Lk will satisfy LBλ < ν∗, and we will select

λ(k) ∈ argmin{LBλ : λ ∈ Lk} (13)

and proceed by partitioning the corresponding hyperrectangle �λ(k) into two sub-hyper-
rectangles based on a branching variable xp selected according to the following rule,
where xλ(k) is the optimal solution obtained for LBMP(�λ(k)).
Branching Rule A:
Define

θi ≡ min{xλ(k)
i − l

λ(k)
i , u

λ(k)
i − x

λ(k)
i }, ∀i = 1, . . . , n, (14a)

and select

p ∈ argmax
i=1,...,n

{θi}. (14b)

Accordingly, partition �λ(k) into two sub-hyperrectangles by partitioning the interval
[lλ(k)

p , u
λ(k)
p ] into two sub-intervals as follows

[lλ(k)
p , x

λ(k)
p ] and [xλ(k)

p , u
λ(k)
p ], if p ∈ I1;

[0, 0] and [1, 1], if p ∈ I2.

}
(14c)

(Note that the case p ∈ I2 arises only when LBMP(�λ) is used to compute lower
bounds.) The resulting DBAB algorithm for solving SMIP is stated formally below. (As
mentioned above, LBMP(·) may be replaced by LBMP(·) throughout the following dis-
cussion in this section, with the added premise that the updating of incumbent solutions
via Proposition 2 should additionally verify that x̄ satisfies the integrality restrictions
defining X.)

Algorithm DBAB.
Step 0: Initialization Step. Initialize the incumbent solution x∗ to be null and set its
objective value as ν∗ = ∞. Let the iteration counter k = 1, the number of nodes enu-
merated N = 1, and commence with the list of active nodes Lk = {1}, and set λ(k) = 1,
and �1 = �, with [l1, u1] ≡ [l, u]. Use the prescribed decomposition algorithm (Sec-
tion 3.2) to solve LBMP(�1), and let x1 be the solution obtained of objective value
LB1 = ν[LBMP(�1)]. If either of the conditions of Proposition 2 holds true, then stop
with x∗ = x1 as an optimal solution to SMIP having an objective value ν∗ = LB1.
Otherwise, select a branching variable xp via (14a) and (14b), let ε ≥ 0 be a chosen
optimality tolerance, and proceed to Step 1.
Step 1: Partitioning Step. Partition �λ(k) for the selected active node λ(k) into two
sub-hyperrectangles according to (14c) based on the identified branching variable xp.
Replace λ(k) within Lk by these two new node indices, N + 1 and N + 2.
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Step 2: Bounding Step. Solve the problem LBMP(�N+t ) for t = 1, 2, corresponding
to each of the two new nodes generated. If xN+t satisfies either of the conditions of
Proposition 2 with respect to �N+t for any of t = 1, 2, then update the incumbent
solution x∗ and its objective value ν∗, if necessary.
Step 3: Fathoming Step. Fathom any non-improving nodes by setting Lk+1 = Lk \{λ ∈
Lk : LBλ + ε ≥ ν∗}. If Lk+1 = ∅, then stop with the incumbent solution as ε-optimal.
Otherwise, select and store branching variable indices using (14a) and (14b) for each of
the two new nodes generated if still active (i.e., belong to Lk+1), increment k by one, N
by two, and proceed to Step 4.
Step 4: Node Selection Step. Select an active node λ(k) as in (13), and return to
Step 1. �
Proposition 3. (Convergence result). Algorithm DBAB (run with ε ≡ 0) either termi-
nates finitely with the incumbent solution being optimal to Problem SMIP, or else, we
get k →∞ such that along any infinite branch of the B&B tree that is associated with
the nested sequence of partitions {�λ(k)}, k ∈ K1, say, any accumulation point of the
corresponding solution sequence {xλ(k)}K1 solves SMIP.

Proof. The case of finite termination is clear from the derivation of the algorithm. Hence,
suppose that k → ∞, and consider any infinite branch of the B&B tree generated as
identified by the proposition. Over some convergent subsequence indexed by K2 ⊆ K1,
if necessary (noting the boundedness of the sequence generated), let

{
xλ(k), lλ(k), uλ(k)

}

K2
→ (x∗, l∗, u∗). (15)

We need to show that x∗ solves Problem SMIP.
First of all, note that since LBλ(k) is the least lower bound among all active nodes at

each iteration k, we have that

ν[SMIP] ≥ LBλ(k), ∀k ∈ K2. (16)

Next, note that we can equivalently view LBMP(�λ(k)) as follows:

Minimize {cT x +
∑

s

psg
T ys : (x, ys) ∈ Zs(�

λ(k)), ∀s, x ∈ X ∩�λ(k)},

where (xλ(k), y
λ(k)
s ,∀s) solves LBMP(�λ(k)). By (15) and the boundedness of Zs(·),

∀s, and by replacing K2 by an appropriate subsequence, if necessary, suppose that
{(xλ(k), y

λ(k)
s ,∀s)}K2 → (x∗, y∗s ,∀s). Since (x∗, y∗s ,∀s) is feasible to LBMP(�∗),

where �∗ ≡ {x : l∗ ≤ x ≤ u∗}, we have that

cT x∗ +
∑

s

psg
T y∗s ≥ ν[LBMP(�∗)]. (17)

We now show that equality must hold true in (17). Suppose on the contrary that

cT x∗ +
∑

s

psg
T y∗s > cT x̂ +

∑

s

psg
T ŷs = ν[LBMP(�∗)] (18)
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where (x̂, ŷs ,∀s) solves LBMP(�∗). Because {�λ(k)}K2 is a nested sequence, we have
that �∗ ⊆ �λ(k), ∀k ∈ K2, and so Zs(�

∗) ⊆ Zs(�
λ(k)), ∀k ∈ K2. Consequently,

(x̂, ŷs ,∀s) is feasible to LBMP(�λ(k)), ∀k ∈ K2, and since {cT xλ(k)+∑
s psg

T y
λ(k)
s }K2

→ cT x∗ +∑
s psg

T y∗s , we have that for k ∈ K2 large enough,

cT xλ(k) +
∑

s

psg
T yλ(k)

s > cT x̂ +
∑

s

psg
T ŷs,

which contradicts the optimality of (xλ(k), y
λ(k)
s ,∀s) for LBMP(�λ(k)). Hence, equality

holds true in (17), and so, viewing LBMP(�∗) in the projected x-space, we have that

{�λ(k)}K2 → �∗ ≡ {x : l∗ ≤ x ≤ u∗}, where x∗ solves LBMP(�∗). (19)

Now, in the infinite sequence of iterations indexed by k ∈ K2, there exists some vari-
able xp, p ∈ I1, that is branched infinitely often according to (14a)–(14c). Let K3 ⊆ K2
correspond to iterations at which xp is selected as the branching variable. By (14c), we

have that x
λ(k)
p /∈ (l

λ(k′)
p , u

λ(k′)
p ), ∀k′ ∈ K3, k′ > k, while x∗p ∈ [l∗p, u∗p]. Hence, we must

have x∗p = l∗p or x∗p = u∗p. By (14a), this means that θp → 0, which in turn implies from
(14b) that

θi → 0, ∀i = 1, . . . , n, and so, x∗ ∈ vert (�∗). (20)

By (19) and Proposition 2, we therefore have that the limiting solution x∗ and its value
LBMP(�∗) provide an upper bounding solution and value, respectively, for Problem
SMIP. Hence,

cT x∗ +
∑

s

psfs(x
∗) = ν[LBMP(�∗)] = lim

k→∞
k∈K3

LBλ(k) ≥ ν[SMIP]. (21a)

But since {LBλ(k)}K2 is monotone increasing and bounded from above, and noting that
K3 ⊆ K2, we get from (16) that

ν[SMIP] ≥ lim
k→∞
k∈K3

LBλ(k). (21b)

Hence, from (21a) and (21b), x∗ solves SMIP. �

Proposition 4. (Alternative Branching Rules). The result of Proposition 3 continues
to hold true under the following two alternative branching rules:
Branching Rule B. Define θi , ∀i, as in (14a), select p as in (14b), but replace (14c) in
Branching Rule A by

[
l
λ(k)
p ,

l
λ(k)
p +u

λ(k)
p

2

]
,

[
l
λ(k)
p +u

λ(k)
p

2 , u
λ(k)
p

]
, if p ∈ I1;

[0, 0] and [1, 1], if p ∈ I2.




 (22)

Branching Rule C. Select p according to

p ∈ arglexmax
i=1,...,n

{(uλ(k)
i − l

λ(k)
i , θi)} (23)

where θi is defined by (14a), and then replace (14c) in Branching Rule A by (22).
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Proof. Following the proof of Proposition 3, Branching Rule B yields that x∗p = l∗p = u∗p
by virtue of the bisection process for indices in I1 as per (22). Hence, θp → 0 in the
proof of Proposition 3, which then implies that (20) holds true. The remainder of the
proof proceeds identically. Likewise, for Branching Rule C, since (23) selects an index
having the largest interval (with the first priority), and adopts the partitioning scheme of
(22), we get that l∗ = u∗ in this case, which again leads to (20) holding true, with the
remainder of the proof following that of Proposition 3. �

Remark 1. Note that when |J2| is relatively small, the entire set (4c) can be generated a
priori and then used to solve the subproblems (5) that evaluate LBs(x), ∀s, in a decom-
position approach for solving LBMP(�). Alternatively, when it is not computationally
viable to a priori generate the entire convex hull representation as in (4c), the subprob-
lems given by (5) can be solved via a sequential convexification procedure that generates
cutting planes as necessary, which are valid for Zs(�) of (4a). The corresponding mas-
ter program constraint (12b) can then be generated from the resulting linear program at
the termination of this scheme. The details for such a finite cutting plane procedure for
solving Problem (5) are given in Section 3.1 below. �

3. Algorithmic routines for solving subproblems and master programs

In this section, we present algorithmic procedures for solving the subproblem (5) for any
given x̄ ∈ X ∩� (Algorithm SP), and for solving the lower-bounding master program
LBMP(�) (or its relaxation LBMP(�)) as given by (12) for any � (Algorithm LBMP).
These routines are described in turn below.

3.1. Cutting plane procedure for solving subproblems of equation (5)

In essence, we can follow the cutting plane scheme described in Sherali and Fraticelli
[21] to sequentially construct valid inequalities for Zs(�) of (4a) in order to solve the
subproblem (5). However, the difficulty in directly implementing this scheme lies in the
fact that when x is fixed at x̄, we may not always have yj binary for all j ∈ J2 at the
extreme points of ZLBs (x̄) as defined in (7a). We thus need to be able to detect whether
Problem (5) is already solved by some solution ȳ obtained for a certain relaxation of
Problem (5), where ȳj might not be binary-valued for all j ∈ J2. This can be achieved
as follows. Let

Ẑs(�) ≡ {(x, y) : Tsx +Wsy ≥ rs, and

αk
s x + βk

s y ≥ γ k
s ,∀k = 1, . . . , K, x ∈ �, y ≥ 0}, (24)

where the constraints yj ≤ 1,∀j , are included in Tsx+Wsy ≥ rs and where αk
s x+βk

s y ≥
γ k
s ,∀k = 1, . . . , K , are a set of valid inequalities for Zs(�). Given any x̄ ∈ X ∩ �,

define the restricted set

ẐLBs (x̄) ≡ {y : (x̄, y) ∈ Ẑs(�)}, (25a)
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along with the associated lower bounding value

L̂Bs(x̄) ≡ min
{
gT y : y ∈ ẐLBs (x̄)

}
. (25b)

Proposition 5. Given any x̄ ∈ X∩�, let ȳ be an optimal solution that evaluates L̂Bs(x̄).
If ȳj ∈ {0, 1}, ∀j ∈ J2, or if (x̄, ȳ) can be represented as a convex combination of some
extreme points of Ẑs(�) such that these extreme points have binary yj -variables for all
j ∈ J2, then ȳ solves Problem (5) with x ≡ x̄ fixed, i.e., L̂Bs(x̄) = LBs(x̄).

Proof. Since Ẑs(�) ⊇ Zs(�), we have that

ZLBs (x̄) ⊆ ẐLBs (x̄), and hence, LBs(x̄) ≥ L̂Bs(x̄). (26)

Now, if ȳj ∈ {0, 1}, ∀j ∈ J2, then (x̄, ȳ) ∈ Zs(�). Alternatively, if (x̄, ȳ) can be
represented as a convex combination of some extreme points (xp, yp), p ∈ P , of Ẑs(�),
where y

p
j ∈ {0, 1}, ∀j ∈ J2, ∀p ∈ P , we have that (xp, yp) ∈ Zs(�), ∀p ∈ P , and so,

(x̄, ȳ) ∈ Zs(�). In either case, this yields that ȳ ∈ ZLBs (x̄), or that,

L̂Bs(x̄) = gT ȳ ≥ min
y∈ZLBs (x̄)

gT y = LBs(x̄). (27)

The proof now follows from (26) and (27). �
We now present an algorithm that embeds the cutting plane game of Jeroslow [9]

along with a purification strategy within its operation to solve Problem (5).

Algorithm SP (for solving Problem (5), given x̄ ∈ X ∩�).
Initialization: Let α0

s x + β0
s y ≥ γ 0

s be an initial set of valid inequalities for Zs(�),
which might be possibly empty or might be inherited from parent nodes (see Remark 2
below). Set

k = 0, T 0
s =

[
Ts

α0
s

]
, W 0

s =
[

Ws

β0
s

]
, and r0

s =
[

rs
γ 0
s

]
. (28)

Step 1: Solve the LP relaxation

L̂B
k
s (x̄) ≡ min{gT y : Wk

s y ≥ rk
s − T k

s x̄, y ≥ 0}, (29)

and let ȳ be an extreme point optimal solution. If ȳj ∈ {0, 1}, ∀j ∈ J2, then by Prop-
osition 5, ȳ solves Problem (5) and we can stop. Otherwise, denote Ẑs(�) ≡ {(x, y) :
T k

s x +Wk
s y ≥ rk

s , x ∈ �, y ≥ 0}, and proceed to Step 2.
Step 2: Use the polynomial-time (purification) algorithm described in Sherali [19] to
represent (x̄, ȳ) in terms of the extreme points of Ẑs(�). Let P be the index set of
these extreme points, so that (x̄, ȳ) =

∑

p∈P
λp(xp, yp), where (xp, yp) ∈ vert (Ẑs(�)),

∀p ∈ P , and where
∑

p∈P
λp = 1, λp > 0, ∀p ∈ P . If y

p
j ∈ {0, 1}, ∀j ∈ J2, p ∈ P ,

then again by Proposition 5, ȳ solves Problem (5), and we can stop. Otherwise, replace
P ← P \ {p ∈ P : y

p
j ∈ {0, 1}, ∀j ∈ J2} �= ∅, and go to Step 3.
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Step 3: Denote

q = max{j ∈ J2 : ∃p ∈ P, such that 0 < y
p
j < 1}. (30)

Extract a subsystem Z̃s(�) from Ẑs(�), by removing from Ẑs(�) those cuts that were
previously generated based on indices j ≥ q selected according to (30). Using this sub-
system, apply the RLT cutting plane procedure described in Sherali and Fraticelli [21]
(also, see Sherali and Adams [20]) to generate a cut

βk+1
s y ≥ γ k+1

s − αk+1
s x, (31)

which is a facet of conv(Z̃s(�)∩{(x, y) : yq is binary}), to delete the selected fractional
extreme point (xt , yt ), where t ∈ argmin

p∈P
{|0.5− y

p
q | : 0 < y

p
q < 1}. Let

T k+1
s =

[
T k

s

αk+1
s

]
, Wk+1

s =
[

Wk
s

βk+1
s

]
, and rk+1

s =
[

rk
s

γ k+1
s

]
, (32)

and increment k by one.
If (x̄, ȳ) violates (31), return to Step 1. Otherwise, let P ← P \ {p ∈ P : (xp, yp)

violates (31)}. If P �= ∅, then there exist other fractional vertices of Ẑs(�) that are
not cut off by (31); hence, repeat Step 3. Otherwise, P = ∅, and the fractional extreme
points of Ẑs(�) that were used to represent (x̄, ȳ) in Step 2 are all cut off. Update
Ẑs(�) = {(x, y) : T k

s x + Wk
s y ≥ rk

s , x ∈ �, y ≥ 0}. Since (x̄, ȳ) ∈ Ẑs(�), it is
still reproducible as a convex combination of the vertices of the updated Ẑs(�), and so,
return to Step 2. �

Let K be the index for the last iteration, and denote by φs ≥ 0 an optimal dual
solution to (29) where k ≡ K . We therefore obtain

ηs ≥ φs(r
K
s − T K

s x) (33)

as a Benders’ cut of the type (12b) for scenario s, s = 1, . . . , S.

Proposition 6. Algorithm SP finitely solves Problem (5) for any fixed x = x̄ ∈ X ∩�.

Proof. Algorithm SP terminates when the conditions stated in Proposition 5 are sat-
isfied, whence, Problem (5) is solved. By the adopted RLT cutting plane procedure of
Sherali and Fraticelli [21] and Theorem 3.1 of Balas et al. [3], it follows that there are
only a finite number of such cuts that can be generated before we ultimately construct
Zs(�) in the worst case. At this point, the conditions of Proposition 5 must necessarily
be satisfied, and so, the above procedure terminates finitely. �

Remark 2. For a given �, cuts that are generated as above can be reused in the next call
of the subproblem (5) while solving a given problem LBMP(�). Moreover, as shown
below, the information generated while solving LBMP(�) for one � can be advanta-
geously reused based on the structure of (4) and (5) for a subsequent �. To see this, notice
first of all that �N+t ⊂ �N , ∀t = 1, 2, ∀N . Hence, inductively, for each s = 1, . . . , S,
we have that the cuts (31) that are generated for Zs(�

N) are valid for all subsequent
sets Zs(�

M), where M > N and M is a node of the subtree that is rooted at node N
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(so that, �M ⊂ �N ). Consequently, these cuts can be included in (28) when apply-
ing Algorithm SP to solve Benders’ subproblems (5) under scenario s in the process
of solving LBMP(�M ). Similarly, for any �M ⊂ �N , any dual multiplier φ ∈ �

�N
s

(appropriately augmented) corresponds to a feasible, though not necessarily extremal,
solution to �

�M
s , where �

�N
s and �

�M
s denote the sets of dual multipliers feasible to

Problem (5) when solving a subproblem under the restrictions x ∈ �N and x ∈ �M ,
respectively. (Imagine as if the restrictions representing �M are written as those pres-
ent in �N plus any additional constraints, and let the dual multipliers associated with
the RLT convexification constraints generated off these additional constraints be zeros.)
Benders’ cuts (33) developed for �N are therefore also valid for �M . �

Remark 3. Under the additional assumption of fixed recourse, for any given �, it is
also advantageous if the multipliers for the dual projection cone used for generating the
cuts for one scenario can be shared with other scenarios to generate valid cuts. While
we could explicitly check appropriate conditions under which a cut generated for one
scenario could be used to obtain a valid inequality for another scenario, this idea would
require a careful implementation and experimental evaluation. We therefore recommend
this specialization for exploiting a fixed recourse structure for future research. �

3.2. Benders’ Scheme for Solving LBMP(�)

In this sub-section, we combine a decomposition/relaxation scheme with a B&B pro-
cedure to solve LBMP(�) for use in Algorithm DBAB (for any specified “�”). In this
process, the master program is solved using B&B, and whenever a feasible solution
that satisfies the integrality requirements of the first-stage variables is obtained, the cor-
responding subproblem is solved for each scenario to verify feasibility to the overall
master program, and to generate Benders’ cuts when needed. Note that in Algorithm
DBAB, when we use LBMP(·) instead of LBMP(·) to compute lower bounds, the same
algorithm described below can be used, except that the integrality restriction on the first
stage variables are relaxed, i.e., in essence, we assume that I2 ≡ ∅.

Algorithm LBMP (for solving LBMP(�) using a B&B and row-generation scheme).
Step 0: Initialization Step. Initialize the incumbent solution (x∗, η∗) as null and set its
objective value as ν∗ = ∞. Let the iteration counter r = 1, the number of nodes enu-
merated N = 1, the current node λ(r) = 1, the current node restrictions PSλ(r) = ∅, and
commence with the list of active nodes Lr = {1}. Let k = 1, . . . , Ks , ∀s = 1, . . . , S, be
the indices of the Benders’ cuts inherited from the enclosing partition �′ ⊃ � (Ks = 0
if no such cut exists).
Step 1: Branching Step. If an optimal solution has been derived for the current node
λ(r) at some previous iteration, then denote it as (x̂λ(r), η̂

λ(r)
s ,∀s). If no new Bend-

ers’ cuts have been added since that solution was obtained, then set the optimal solution
(xλ(r), η

λ(r)
s ,∀s) ≡ (x̂λ(r), η̂

λ(r)
s ,∀s) and let νλ(r) be its objective value; otherwise, solve
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Minimize cT x +
∑

s

psηs (34a)

subject to PSλ(r) (34b)

ηs ≥ ξk
s − ζ k

s x, ∀k = 1, . . . , Ks,∀s = 1, . . . , S (34c)

ηs ≥ −M, ∀s = 1, . . . , S : Ks = 0 (34d)

x ∈ X̄ ∩�, (34e)

where M is chosen as a large number to bound (34) in case Ks = 0 for any s, and X̄ is
the LP relaxation of X defined in (2c). Let (xλ(r), η

λ(r)
s ,∀s) be an optimal solution and

let νλ(r) be its objective value. (If (34) is infeasible, then set νλ(r) = ∞.)
If x

λ(r)
i ∈ {0, 1}, ∀i ∈ I2, then proceed to Step 2 if xλ(r) �= x̂λ(r), and go to Step

3 if xλ(r) = x̂λ(r). Otherwise, let q ∈ argmin{|0.5 − x
λ(r)
i | : i ∈ I2}, PSN+1 =

PSλ(r) ∩ {xq = 0} and PSN+2 = PSλ(r) ∩ {xq = 1}. Replace λ(r) within Lr by the
new node indices N + t , ∀t = 1, 2. Re-solve (34) with (34b) replaced by PSN+t , for
t = 1, 2, respectively, to obtain νN+t , ∀t = 1, 2. Increment N by two, and go to Step 3.
Step 2: Cut Generation Step. Apply Algorithm SP to evaluate LBs(x

λ(r)), ∀s =
1, . . . , S, using (any of) the previously generated cuts (31) with their right-hand-sides
modified according to the current solution xλ(r). For each scenario s, s = 1, . . . , S, if
η

λ(r)
s < LBs(x

λ(r)), then derive the Benders’ cut (33), denote this cut as ηs ≥ ξ
Ks+1
s −

ζ
Ks+1
s x, and increment Ks by 1. Furthermore, if cT xλ(r)+

∑
s
psLBs(x

λ(r)) < ν∗, then

update the incumbent solution (x∗, η∗s ,∀s) and objective valueν∗with (xλ(r), LBs(x
λ(r)),

∀s) and cT xλ(r) +
∑

s
psLBs(x

λ(r)), respectively.
Step 3: Fathoming and Node Selection Step. Fathom any non-improving nodes by
setting Lr+1 ← Lr \ {λ ∈ Lr : νλ + ε ≥ ν∗}, where ε ≥ 0 is a chosen optimality
tolerance. If Lr+1 = ∅, then stop with the incumbent solution as (ε-)optimal. Otherwise,
increment r by one, and select an active node λ(r) ∈ argmin{νλ : λ ∈ Lr}. Return to
Step 1. �

4. Illustrative Example

Consider the following example:

SMIP: Minimize −5x1 − x2 +
2∑

s=1

0.5fs(x) (35a)

subject to −x1 − x2 ≥ −1.5 (35b)

0 ≤ x1 ≤ 1, x2 binary, (35c)

where fs(x) = minimum − 16y1 − 19y2 − 23y3 − 28y4 (35d)

subject to

[−2y1 − 3y2 − 4y3 − 5y4
−6y1 − y2 − 3y3 − 2y4

]
≥ [rs − Tsx] (35e)

yj ≤ 1, ∀j ∈ J (35f)

y1, y2 ≥ 0, y3, y4 binary, (35g)
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and where [r1 − T1x] =
[−5+ 0.3x1

10+ 0.3x2

]
and [r2 − T2x] =

[−10+ 0.2x1
5+ 0.2x2

]
. Note that

we have � = {x ∈ R2 : 0 ≤ x ≤ e}.

4.1. Applying Algorithm DBAB while using LBMP(ω) for computing bounds

At the root of the DBAB tree, we solve LBMP(�) for the original set � using Algorithm
LBMP. The first iteration of LBMP yields x2 = 0.5. We branch on x2 to create two
new nodes, Node 2 and Node 3, having respective additional restrictions of x2 = 0 and
x2 = 1, where Node 2 is selected for the second iteration.

In the second iteration, the subproblem for Scenario 1 yields binary values of y3 and
y4 directly, while the subproblem for Scenario 2 yields a fractional solution, which is
cut off by the following generated RLT cuts:

−0.25y2 − 0.25y3 − 0.5y4 ≥ −0.75, (36a)

−0.366y2 − 0.488y3 − 0.268y4 ≥ −0.878+ 0.024x1, and (36b)

−0.167y2 − 0.1673 − 0.167y4 ≥ −0.333. (36c)

Two Benders’ cuts are derived for these two scenario subproblems, respectively:

η1 ≥ −35+ 1.9x1, and (37a)

η2 ≥ −52.333+ 0.533x2, (37b)

and the incumbent objective value is updated to ν∗ = −47.717. Node 2 is again selected
and its associated problem is re-solved after appending the Benders cuts (37a) and (37b).
This produces the same objective value as the incumbent value ν∗, and so, Node 2 is
fathomed.

Incorporating the Benders’ cuts (37a) and (37b) for the relaxed master program,
and inheriting the RLT cuts (36a)–(36c) for the Scenario 2 subproblem, Node 3 of the
LBMP tree yields y-solutions that satisfy the binary restrictions for both scenarios. Note
that had we not inherited the RLT cuts (36a)–(36c), Scenario 2 would have produced a
fractional y-solution, which turns out to require the generation of three other RLT cuts
that are different from (36a)–(36c) in order to yield a binary-feasible solution.

No additional Benders’ cuts are generated, and Node 3 is non-improving and is thus
fathomed. The resulting solution to LBMP(�) is given by x∗ = (1, 0), with y∗ =
(1, 0.9, 0, 0) for Scenario 1, y∗ = (0.333, 1, 0, 1) for Scenario 2, and ν∗ = −47.717.
Since x∗ ∈ vert (�), we have by Proposition 2 that this also solves the original SMIP;
hence, no branching on � in DBAB is needed.
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4.2. Applying Algorithm DBAB while using LBMP(ω) for computing bounds

In lieu of solving LBMP(�) for computing bounds, suppose that we solve its LP relax-
ation LBMP(�). The resulting computations proceed as follows.
DBAB - Iteration k = 1: We start implementing DBAB with the original hyperrectangle
�.

At the first iteration when solving LBMP(�) via Algorithm LBMP, the master pro-
gram yields x1 = 1, x2 = 0.5, η1 = η2 = −M , and then, Scenario 1 yields y =
(1, 0.9, 0, 0), and generates the Benders’ cut (37a). Scenario 2 yields a fractional solu-
tion y = (0.122, 1, 0.389, 1), which is represented by two extreme points of Ẑ2(�):
(0.144, 1, 0.378, 1) and (0.1, 1, 0.4, 1). The second extreme point is used to generate
an RLT cut. This process continues and sequentially generates five fractional solutions,
each of which is representable by two extreme points of Ẑ2(�), and is cut off by an
RLT cut derived based on one of these extreme points. The final solution obtained is
y = (0.317, 1, 0, 1), and the Benders’ cut generated using the original constraints (35e)
and (35f) for s = 1 and the aforementioned five RLT cuts is given by (37b).

At the second iteration of LBMP, upon re-solving the master program after append-
ing the two Benders’ cuts (37a) and (37b), we obtain an optimal solution to LBMP(�),
as the resulting η-values coincide with the subproblem objective values obtained in the
previous iteration.
DBAB - Iteration k = 2: We continue Algorithm DBAB by partitioning � into �1 =
{x ∈ R2 : 0 ≤ x1 ≤ 1, x2 = 0} and �2 = {x ∈ R2 : 0 ≤ x1 ≤ 1, x2 = 1}, based on the
fractional solution x2 = 0.5 obtained for LBMP(�).

The master programs for LBMP(�1) and LBMP(�2) are re-solved after inherit-
ing the Benders’ cuts (37a) and (37b) from Iteration 1 of Algorithm DBAB, and yield
solutions (1, 0,−33.1,−52.333) and (0.5, 1,−34.05,−51.8), respectively, with the
corresponding objective values −47.717 and −46.425. For each of LBMP(�1) and
LBMP(�2), the subproblem solutions obtained for both the scenarios satisfy the binary
restrictions with LBs(x

λ(1)) = η
λ(1)
s ,∀s, and hence, we have obtained optimal solutions

via the corresponding master problems. For LBMP(�1), since xλ(1) ∈ vert (�1), it also
provides an incumbent solution x∗ for the DBAB procedure, with an objective function
value ν∗ = −47.717.

The node corresponding to�2 in the DBAB tree is now fathomed sinceν(LBMP(�2))

= −46.425 > ν∗. No other active nodes exist; the incumbent solution x∗ and the y-
solutions found when solving LBMP(�1) yield an optimal solution, which is the same
as that obtained in Section 4.1.

5. Computational Results

The proposed decomposition-based B&B algorithm DBAB was implemented in C++
using the CPLEX Callable Library 8.1. The computations were carried out on a Sun-
Blade-1000 (UltraSPARC-III) Workstation having 512 MB RAM and a cpu speed of
750 MHz. In our implementation, the maximum number of RLT cuts inherited by each
node from its “ancestor" nodes was set to be 20–150 in order to limit the growth in the
size of the problem. Whenever this limit was reached, the newly generated cuts were
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used to replace the cuts that were derived earliest, because the RLT cuts obtained higher
in the tree are presumably weaker than the ones generated more recently. For bench-
marking purposes, we also directly solved the deterministic equivalent problem (DEP)
using CPLEX 8.1.

Our test problems comprise two groups of instances. The first group of instances
have four first-stage variables and six to eight second-stage variables. They are similar
to the example used in Section 4, with some additional variables and constraints. The
first-stage problem has the following form:

Minimize −2x1 − 2.5x2 − 2x3 − 1.5x4 + E[fs(x)] (38a)

subject to −x1 − x2 − x3 − 0.5x4 ≥ −1.5 (38b)

−x1 − 2x3 − x4 ≥ −3 (38c)

−x1 − 2x2 − x3 − 2x4 ≥ −5 (38d)

−2x1 − x3 − x4 ≥ −4 (38e)

0 ≤ x1, x2 ≤ 1, x3, x4 binary, (38f)

where constraints (38d) and (38e) were optionally excluded from some problems. The
second-stage problems were constructed as follows (having fixed recourse):

fs(x) = minimum− 16y1 − 19y2 − 23y3 − 28y4 − 15y5 − 12y6 − 10y7 − 20y8

(38g)

subject to

− 2y1 − 3y2 − 4y3 − 5y4 − y5 − 2y6 − y7 − 2y8 ≥ −rs1 −
∑

i∈I
Ts1ixi (38h)

− 6y1 − y2 − 3y3 − 2y4 − 2y5 − y6 − 2y7 ≥ −rs2 −
∑

i∈I
Ts2ixi (38i)

− 3y1 − 2y2 − 5y3 − y4 − 3y5 − y6 − 3y7 − 2y8 ≥ −rs3 −
∑

i∈I
Ts3ixi (38j)

− y1 − 2y2 − y3 − 2y4 − 3y5 − 2y6 − y7 ≥ −rs4 −
∑

i∈I
Ts4ixi (38k)

0 ≤ yj ≤ 1, ∀j ∈ J1, yj binary, ∀j ∈ J2. (38l)

Constraint (38k) and variables y7 and y8 were not included in all problems, and we
defined J1 ≡ {1, 2, 3} for the problems having six second-stage variables, and J1 ≡
{1, 2, 3, 4} for the problems having eight second-stage variables. The technology matri-
ces and right-hand-side values for the second-stage problems of this group were gener-
ated using uniform distributions over [−0.3, 0] and [−15,−5], respectively. For a given
number of scenarios and a chosen number of variables and constraints, we generated
twenty problem instances.

The second group of instances either have four first-stage variables and nine second-
stage variables, with two binary variables in the first stage and four binary variables in the
second stage, or have six first-stage variables and thirteen second-stage variables, with
three binary variables in the first stage and six binary variables in the second stage. The
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Table 1. Computational Results

Stage 1 Stage 2 S DEP cpu (s.) DBABb cpu (s.) DBABr cpu (s.)

|I1|, |I2|, |C1| |J1|, |J2|, |C2| max min avg.† max min avg.† max min avg.†

2, 2, 2 3, 3, 3 128 7288∗ 2 1461 491 13 123 1203 55 377
2, 2, 4 4, 4, 4 128 699 0 64 189 22 86 1422 59 543
2, 2, 2 3, 3, 3 196 7550∗ 40 4059 1563 28 413 3724 64 1312
2, 2, 2 3, 3, 3 256 7490∗ 7240∗ 7389∗ 1991 63 749 3571 115 998
2, 2, 4 5, 4, 4 128 7638∗ 6716 7351∗ 1013 64 439 2304 101 925
3, 3, 4 7, 6, 4 128 –‡ –‡ –‡ 1193‡ 366‡ 732‡ 624‡ 624‡ 624‡

3, 3, 4 7, 6, 4 256 7534∗ 7505∗ 7518∗ 1950 58 747 3223 462 1733

(1) |I1|, |I2|, |J1|, and |J2| denote the number of continuous and binary variables, respectively, in each of the
two stages; |C1| and |C2| denote the respective number of constraints in the two stages, and S denotes the
number of scenarios.
(2) ∗ A two-hour time limit was imposed on the computational time, which was checked at the end of each
iteration loop.
(3) † Average of all the computational times at termination, including those obtained at the specified two-hour
limit, but excluding those for the problems that terminated due to the memory limit.
(4) ‡ When the memory limit of the computer was reached, the best feasible solution, if available, was
obtained. In this case, the computational times do not represent the optimal solution times. When solved
using DEP, all instances in this group reached the memory limit. Only one instance was solved within the
memory limit using DBABr; hence, the numbers shown represent the result for the same instance.

coefficients and right-hand-side values are defined so that the solutions are non-trivial.
For a given number of scenarios and a chosen number of variables and constraints, we
generated eight problem instances.

Table 1 summarizes the number and the sizes of the test problems, along with the max-
imum, minimum, and average cpu times (in seconds) consumed when using CPLEX to
directly solve the deterministic equivalent problem and when applyingAlgorithm DBAB.
In DBABb, the binary restrictions on the first-stage variables are enforced when solving
LBMP(·), and in DBABr, these restrictions are relaxed, i.e., LBMP(·) is solved instead.

When solving DEP directly via CPLEX, for these 104 test problems using a rel-
ative tolerance level ε = 0.1%, 43 instances were not solved to ε-optimality within
the specified two-hour computational time limit and 12 instances were not solved due
to insufficient computer memory. Using DBAB, however, only five instances were not
solved by DBABb and seven instances were not solved by DBABr, due to memory lim-
itations. None of the solution times reached the two-hour time limit in either version of
DBAB. As evident from Table 1, Algorithm DBAB exhibits a more robust and efficient
performance than solving DEP directly via CPLEX, with DBABb being relatively faster
as compared with DBABr. We add the caveat here that while CPLEX is a commercial
package, our implementation of DBAB was rather crude in terms of data structure and
memory usage. Hence, the performance of DBAB can be further enhanced by a more
sophisticated implementation.

6. Summary and conclusion

This paper focuses on solving two-stage stochastic programs having mixed-integer
first- and second-stage variables. The proposed decomposition-based branch-and-bound
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algorithm (DBAB) adopts a hyperrectangular partitioning process in the projected space
of the first-stage variables. Lower bounds for the nodal problems in the branch-and-
bound tree are computed by applying a modified Benders’ approach that coordinates a
master program with lower-bounding scenario-based second-stage subproblems. Each
of these subproblems is derived by sequentially constructing a certain partial convex
hull representation of the two-stage solution space. We show that the convexification
(RLT) cuts derived for a given hyperrectangle � at any node are reusable in subsequent
solutions of the subproblems for each scenario at this node by updating the first-stage
variable values. Furthermore, these cuts can be inherited by the subproblems of the
children nodes of �. Likewise, the Benders’ cuts derived for a given � can also be
inherited by the lower bounding master programs solved for the children nodes of � in
the enumeration tree for Algorithm DBAB. The overall process is proven to converge to
a global optimum for the underlying stochastic mixed-integer problem.

We have illustrated the proposed algorithm using a numerical example, and have
reported encouraging preliminary computational results using some randomly generated
instances. The results clearly exhibit the relative robustness and effectiveness of apply-
ing the proposed algorithm in contrast with using a commercial package (CPLEX 8.1)
on a deterministic equivalent formulation of the stochastic program. This is a ground-
breaking effort, and further investigation is needed to both improve the implementation
efficiency, as well as to explore alternative algorithmic strategies such as using Sen and
Sherali’s [18] branch-and-cut approach for solving subproblems, and devising mecha-
nisms to share cuts among scenario subproblems in the special case of fixed recourse in
order to be able to handle relatively larger sized problem instances.
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