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Abstract. We introduce strong formulations for robust mixed 0–1 programming with uncertain objective
coefficients. We focus on a polytopic uncertainty set described by a “budget constraint” for allowed uncertainty
in the objective coefficients. We show that for a robust 0–1 problem, there is an α–tight linear programming
formulation with size polynomial in the size of an α–tight linear programming formulation for the nominal
0–1 problem. We give extensions to robust mixed 0–1 programming and present computational experiments
with the proposed formulations.
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1. Introduction

Robust optimization is emerging as a practical way of handling uncertainty in model
parameters. Recently there has been a considerable interest in addressing issues such as
controlling conservatism of the robust solutions and computational complexity of the
robust models. We refer the readers to [4–7, 9, 13–15] for some of the recent develop-
ments. The efficient approaches proposed in these works spurred interesting applications
in finance [12, 16] and inventory management [11]. Most of the work on robust optimiza-
tion is concentrated on convex optimization. Literature on robust discrete optimization,
which is the topic of this paper, is so far limited; see [1, 2, 8, 10, 18] for a few available
examples. For earlier robust optimization approaches on discrete optimization see [19].

1.1. Problem description

Consider a 0–1 programming problem

min
x

{
c′x : x ∈ F }

, (1)

where c ∈ R
n is the objective vector and F ⊆ {0, 1}n is the set of feasible solutions.

Now suppose that coefficients of the objective are not fixed, but are uncertain values
that lie in the interval a ≤ c ≤ a + d , where d ≥ 0. Under such objective uncertainty,
Bertsimas and Sim [8] define an interesting robust counterpart for (1) as

min
x

{

a′x + max
S⊆[1,n],|S|≤r

∑

i∈S

dixi : x ∈ F
}

, (2)
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where r is the maximum number of variables for which the objective coefficient is
allowed to differ from ai . In other words, r is a parameter used for controlling the degree
of conservatism of the solution for (2). The bigger the r is, the more conservative is the
solution. One obtains a nominal problem of the form (1) if r = 0 or r = n, by setting
c = a or c = a + d, respectively. Bertsimas and Sim show that (2) can be formulated
as a linear mixed 0–1 program and if the nominal problem (1) is polynomially solvable,
then so is its robust counterpart (2) for any value of r .

We state the robust counterpart of (1) in a more general form than (2) by using a
budget uncertainty set. Let the robust counterpart of (1) be defined as

min
ξ,x

{
ξ : ξ ≥ c′x, x ∈ F for all c ∈ B }

, (3)

where

B = {
c ∈ R

n : π ′c ≤ πo, a ≤ c ≤ a + g
}
.

Here B is a rational polytope defined by bounds a, a + g, and a “budget constraint”
π ′c ≤ πo representing the allowed uncertainty in the objective coefficients. Letting
u = c − a, we rewrite (3) as

min
x

{
a′x + max

u
u′x : x ∈ F, π ′u ≤ h, u ≤ g, u ∈ R

n
+

}
, (4)

where h = πo − π ′a. Without loss of generality, we may assume that g, π, h > 0, since
gi = 0 implies ui = 0 and if πi ≤ 0, then ui can be eliminated from the problem by
setting ui = gi . By defining wi = πiui , bi = πigi , and di = 1/πi for i ∈ [1, n] and
rewriting (4) as

min
x

{

a′x + max
w

n∑

i=1

diwixi : x ∈ F, 1′w ≤ h, w ≤ b, w ∈ R
n
+

}

, (5)

we see that (5) reduces to (2) by taking h = r ∈ Z+ and b = 1 as w ∈ {0, 1}n for
the extreme points of the uncertainty set in this case. After linearizing the objective of
(5) using the dual of the inner maximization problem, (5) is rewritten as the following
mixed 0–1 program

(RP) min
{

a′x + b′y + hz : (x, y, z) ∈ S }
,

where

S = { (x, y, z) : x ∈ F, (x, y, z) ∈ R }
and

R =
{

(x, y, z) ∈ {0, 1}n × R
n+1
+ : yi + z ≥ dixi, i ∈ [1, n]

}
.

Let d0 = 0. As z equals di , i ∈ [0, n] in extreme points of the convex hull of R, RP
can be solved by at most n + 1 calls to the nominal problem (1) by setting z = di and
yj = (dj − di)

+xj for all j ∈ [1, n], i ∈ [0, n] since b > 0. Consequently, as in the
case of (2), if the nominal problem (1) is polynomially solvable, then so is the robust
counterpart (3) for any budget uncertainty set B for the objective.
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1.2. Motivation and outline

The mixed–integer programming (MIP) formulation RP is in general difficult to solve
with a linear programming (LP) based MIP solver. In their computational experiments,
Bertsimas and Sim observe that even if the nominal problem is a trivial one over a
cardinality set F = {

x ∈ {0, 1}n : 1′x = k
}
, RP takes an unusually long time to solve.

The difficulty is due to the fact that even if the LP relaxation of F is integral, the LP
relaxation of RP is typically highly fractional and provides a weak bound for the optimal
value.

The purpose of this paper is to introduce alternative formulations for robust (mixed)
0–1 programming with strong LP relaxation bounds. For a minimization problem we
say that formulation A is stronger than formulation B, if the optimal value of the LP
relaxation of formulation A is bigger than the optimal value of the LP relaxation of
formulation B for any objective. Thus, with the strength of a formulation we refer to
the strength of its LP relaxation bound. As most problems with binary variables are
NP–hard, strong formulations of their robust counterpart are essential for solving them
by enumerative methods such as branch–and–bound or branch–and–cut, as well as by
LP–based approximation methods. To this end, we investigate the set R, which is the
part of the formulation RP used for modeling robustness, independent from the nominal
problem.

In Section 3 we introduce reformulations of RP based on three different linear
descriptions of the convex hull of R. We also show that for a robust 0–1 problem,
there is an α–tight linear programming relaxation with size polynomial in the size of
an α–tight linear programming relaxation for the nominal 0–1 problem. In Section 4
we extend some of the results to mixed 0–1 programming. Strong formulations are of
significant interest for robust mixed 0–1 programming since practical problems typically
include 0–1 as well as continuous variables. Furthermore, unlike the 0–1 case, polyno-
mial algorithms are unknown for the robust counterpart of a mixed 0–1 problem, even if
the nominal problem is polynomially solvable. We present a summary of computational
experiments with the proposed formulations in Section 5 and conclude with Section 6.

1.3. Notation

For a set S ⊆ R
n, we use conv(S) to denote its convex hull. For a set S ⊆ {(x, y) : x ∈

R
n, y ∈ R

m}, we use projx(S) to denote its projection onto the n–dimensional subspace
H = {(x, y) : y = 0}. We use ei to denote the n–dimensional ith unit vector.

2. Optimization over conv(R)

First we observe that optimization of a linear function over conv(R) is easy. Let the
problem be defined as

ϕ = max
{

a′x + b′y + hz : (x, y, z) ∈ conv(R)
}
. (6)
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Without loss of generality b, h ≤ 0; otherwise, problem (6) is unbounded. Then there is
an optimal solution (x, y, z) such that xi = 1 and yi = (di −z)+ if ai +bi(di −z)+ ≥ 0,
and xi = yi = 0 otherwise. Therefore,

ϕ(z) = hz +
n∑

i=1

(
ai + bi(di − z)+

)+
. (7)

Since z takes at most n+1 discrete values d0, d1, . . . , dn in extreme points of conv(R),
it follows that ϕ = maxk∈[0,n] ϕ(dk). Observe that ϕ(dk) for all k ∈ [0, n] can be com-
puted in linear time after sorting dk . Hence optimization problem (6) can be solved in
O(n log n). Polynomial equivalence of optimization and separation for polyhedra [17]
suggests efficient separation of conv(R).

3. Strong formulations

3.1. A disjunctive formulation

The first strong formulation is based on the observation that variable z takes at most n+1
distinct values in extreme points of conv(R). We form the convex hull of the restrictions
of R for these values and then write the convex hull of their disjunction. To this end, let
R(δ) = {(x, y, z) ∈ R : z = δ} for a fixed δ ≥ 0, that is,

R(δ) = {
(x, y, z) ∈ {0, 1}n × R

n
+ × δ : dixi ≤ yi + δ, i ∈ [1, n]

}
.

Since the constraints of R(δ) are decoupled, strengthening each constraint indepen-
dently, one sees that the convex hull of R(δ) can be written as

conv(R(δ)) =
{

(x, y, z) ∈ R
2n × δ : (di − δ)+xi ≤ yi, i ∈ [1, n], 0 ≤ x ≤ 1

}
.

On the other hand, since z ∈ {d0, d1, . . . , dn} in extreme points of conv(R),

conv(R) = conv
(∪n

k=0 conv(R(dk)
) + K,

where

K = { (x, y, z) ∈ R
2n+1 : x = 0, y ≥ 0, z ≥ 0 }

is the recession cone of the LP relaxation of R. Then, from disjunctive programming
[3], it follows that

D =






(x, y, z, ω, λ) ∈ R
n2+4n+2 :

1′λ = 1
0 ≤ ωk

i ≤ λk, i ∈ [1, n], k ∈ [0, n]
z ≥ ∑n

k=0 dkλk

yi ≥ ∑n
k=0(di − dk)

+ωk
i , i ∈ [1, n]

x = ∑n
k=0 ωk
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has integral λ for all extreme points of D and we have conv(R) = projx,y,z(D).A similar
disjunctive formulation is given in [20] for a set with general integer variables. Due to
the implicit convexification of R given by D, the formulation

(RP1) min
{

a′x + b′y + hz : x ∈ F, (x, y, z, ω, λ) ∈ D }

is stronger than RP.

3.2. Formulation in the original space

Even though polynomial in size, RP1 has a quadratic number of additional variables and
constraints for modeling robustness. Therefore, it may be preferable to give an explicit
description of conv(R) using only the original variables x, y, and z. The next theorem
describes valid inequalities for conv(R) in the original space of variables.

Theorem 1. For any T = {i1, i2, . . . , it } ⊆ [1, n] with 0 = di0 ≤ · · · ≤ dit ,

∑

ij ∈T

(dij − dij−1)xij ≤ z +
∑

i∈T

yi (8)

is a valid inequality for R. Furthermore, (8) defines a facet of conv(R) if and only if
0 < di1 < · · · < dit .

Proof. Let (x, y, z) ∈ R and k = max{j ∈ [0, t] : dij ≤ z}. Then

∑

j∈[1,t]

(dij − dij−1)xij ≤ dik +
∑

j∈[k+1,t]

(dij − dij−1)xij

≤ z +
∑

j∈[k+1,t]

(dij − z)xij ≤ z +
∑

i∈T

yi,

where the last inequality follows from y ≥ 0 and yij ≥ (dij − z)xij for j ∈ [k + 1, t]
since xij ∈ {0, 1}.

For the second part of the theorem, observe that conv(R) is full–dimensional. Since,
if di > 0 and distinct for i ∈ T , the points (0, 0, 0); (ei, diei, 0), (ei, (di + ε)ei, 0) for
i ∈ [1, n] \ T ; and (

∑k
j=1 eij , 0, dik ), (

∑k
j=1 eij , εeik , dik − ε) for k ∈ [1, t], where

ε > 0 small, are affinely independent points of conv(R) on the face defined by (8),
inequality is facet–defining. Conversely, if dij = dij−1 for some j ∈ [1, t], then the
inequality defined by T is implied by the one defined by T \ {ij } and yij ≥ 0. ��

The next theorems shows that the bounds on the variables and inequalities (8) are
sufficient to describe conv(R) explicitly.

Theorem 2. The convex hull of R can be stated as

conv(R) = { (x, y, z) ∈ R
2n+1 : 0 ≤ x ≤ 1, y ≥ 0, and inequalities (8) }.
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Proof. We will show that any proper face of conv(R) is defined by an inequality among
x ≥ 0, x ≤ 1, y ≥ 0, and (8). This implies that all facet–defining inequalities are
included among this list of inequalities. Consider an arbitrary objective (a, b, h) for the
optimization problem max{a′x + b′y + hz : (x, y, z) ∈ conv(R)} such that the set of
optimal solutions is a proper face of conv(R), i.e., b, h ≤ 0 and (a, b, h) 	= (0, 0, 0).

If ai < 0, for some i ∈ [1, n], then xi = 0 in all optimal solutions, i.e., inequality
xi ≥ 0 defines the optimal face; and we are done. So for the rest of the proof we may
assume that a ≥ 0. Suppose that h = 0; if ai > 0 for some i ∈ [1, n], then xi = 1 in
all optimal solutions; otherwise, ai = 0 for all i ∈ [1, n] and there exists some bk < 0,
which implies that yk = 0 in all optimal solutions. So for the rest of the proof we may
assume that h < 0 and a ≥ 0.

If z = 0 for all optimal solutions, then the optimal face is defined by inequality
(8) with T = ∅. Otherwise, since h < 0 and z ∈ {d0, d1, . . . , dn} for extreme points
of conv(R), the maximum value of z among all optimum solutions equals dk > 0 for
some k ∈ [1, n]. Then ak > 0 and bk < 0, since otherwise, as h < 0, the objec-
tive is improved by reducing z. Define N1 = {i ∈ [0, k] : ai > 0 and bi < 0},
p(i) = min{j ∈ N1 : ai + bi(di − dj ) ≥ 0}, and r(i) = max{j ∈ N1 : j < i} for
i ∈ N1 \ {0}, and consider the set T defined recursively as

T := ∅; while (k > 0) { T := T ∪ {k}; if k = p(k), k := r(k); else k := p(k); }.
Let the elements of T = {i1, i2, . . . , it } be indexed such that ij−1 = p(ij ) if p(ij ) < ij
and ij−1 = r(ij ) if p(ij ) = ij for j ∈ [2, t].

Claim.
∑t

j=1(dij − dij−1)xij = z + ∑
i∈T yi holds for all optimal solutions.

Consider an optimal solution (x, y, z). Suppose that dij−1 ≤ z < dij for j ∈ [1, t].
Then xi	 = 1 for 	 ∈ [1, j − 1] since ai	 > 0 and xi	 = 0 for 	 ∈ [j + 1, t] since
p(i	) ≥ ij and ai	 + bi	(di	 − z) < 0.

lhs =
t∑

j=1

(dij − dij−1)xij = dij−1 + (dij − dij−1)xij

rhs = z +
∑

i∈T

yi = z + (dij xij − z)+.

If z = dij−1 , lhs = rhs for xij ∈ {0, 1}. Else (dij−1 < z < dij ), we need to consider two
cases. If p(ij ) = ij−1, then since bij < 0, we have aij + bij (dij − z) > 0 and conse-
quently, xij = 1 must hold, which implies lhs = rhs. On the other hand, if p(ij ) = ij ,
then since ij−1 = r(ij ), there exists no i ∈ N1 such that dij−1 < di < dij , hence there
is no optimal solution with dij−1 < z < dij .

Finally if z = dit , equality holds as lhs = dit and
∑

i∈T yi = 0 since ai > 0 and
bi < 0 for all i ∈ T . ��

Then by Theorem 2, using inequalities (8) for describing conv(R) explicitly, we can
write an alternative strong formulation for RP as

(RP2) min
{

a′x + b′y + hz : x ∈ F, (x, y, z) ∈ conv(R)
}
.
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Separation

Even though conv(R) has up to 2n facets defined by inequalities (8), they can be checked
for violation with a polynomial algorithm: Let G be a directed graph with n+ 2 vertices
labelled from 0 to n + 1; and let (i, j) be an arc in G if and only if 0 ≤ i < j ≤ n + 1.
There is a one–to–one correspondence between inequalities (8) and the paths from vertex
0 to vertex n + 1 in G; that is, j ∈ T if and only if j is contained in a 0–(n + 1) path
(Figure 1). Given a point (x, y, z) ∈ R

2n+1
+ , let the length of arc (i, j) be yj −(dj −di)xj

if j ∈ [1, n] and z if j = n + 1, and ζ be the length of a shortest 0–(n + 1) path. Then
there exists an inequality (8) violated by (x, y, z) if and only if ζ < 0, which can be
checked in O(n2) by finding a shortest path on this acyclic network.

Theorem 3. The separation problem for inequalities (8) is solved in O(n2).

3.3. An extended formulation

Given a point (x, y, z) ∈ R
2n+1
+ , the separation problem for inequalities (8) can be

formulated as the linear program

ζ = min
∑

1≤i<j≤n

(yj − (dj − di)xj )fij +
n∑

i=1

zfin+1

s.t.
∑

0≤i<j

fij −
∑

n+1≥i>j

fji =





0 if j ∈ [1, n]
−1 if j = 0
+1 if j = n + 1

(9)

f ≥ 0

using flow variables f . Introducing dual variables νj , j ∈ [0, n+1] for the flow balance
constraints (9), we can write the constraints of the dual problem as

(dj − di)xj + νj − νi ≤ yj , 0 ≤ i < j ≤ n

νn+1 − νi ≤ z, 0 ≤ i ≤ n.

By strong duality, the objective of the dual problem νn+1 − ν0 ≥ 0 if and only if
ζ ≥ 0, i.e., (x, y, z) ∈ R

2n+1
+ is satisfied by all inequalities (8). Hence, by construction,

– –

Fig. 1. Separation for inequalities (8)
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conv(R) = projx,y,z(Q), where

Q =






(x, y, z, ν) ∈ R
3n+3 :

(dj − di)xj + νj − νi ≤ yj , 0 ≤ i < j ≤ n

νn+1 − νi ≤ z, 0 ≤ i ≤ n

νn+1 − ν0 ≥ 0
y ≥ 0

0 ≤ x ≤ 1






.

Consequently we have the third alternative formulation for RP:

(RP3) min
{

a′x + b′y + hz : x ∈ F, (x, y, z, ν) ∈ Q }
.

The advantage of RP3 is that it has the smallest size among the strong formulations
RP1–RP3.

3.4. Incorporating the nominal problem

The three formulations RP1–RP3 are the strongest formulations for (3) that are indepen-
dent from the nominal problem (1). Now we show how to incorporate the constraints of
the nominal problem to obtain an even stronger formulation for (3). Let

FLP = { x ∈ R
n : Ax ≤ t, 0 ≤ x ≤ 1 }

denote an LP relaxation of F , where A is a rational matrix and t is a rational column
vector, possibly with number of rows exponential in n.

For a fixed δ ≥ 0, let P(δ) = FLP ∩ conv(R(δ)); that is,

P(δ) =
{
(x, y, z) ∈ R

2n× δ : Ax ≤ t, 0 ≤ x ≤ 1, (di − δ)+xi ≤ yi, i ∈ [1, n]
}

.

Observe that if FLP is integral, then so is P(δ). Therefore, since the convex hull of
union of integral polyhedra is integral, if FLP is integral, then so is the polyhedron

P = conv(∪n
k=0P(dk)) + K.

Since x ∈ {0, 1}n, we have z ∈ {d0, . . . , dn} for an extreme point of conv(S). Then,
if FLP is integral, we have P = conv(S). Writing the robust optimization problem using
P , we obtain the fourth alternative formulation

min
n∑

k=0

a′ωk + b′y + hz (10)

1′λ = 1 (11)

Aωk ≤ λkt, k ∈ [0, n] (12)

(RP4) 0 ≤ ωk ≤ λk1, k ∈ [0, n] (13)

z ≥ d ′λ (14)

yi ≥
n∑

k=0

(di − dk)
+ωk

i , i ∈ [1, n] (15)

λ ∈ R
n+1, ωk ∈ {0, 1}n, k ∈ [0, n]. (16)

The preceding discussion leads to the following theorem.
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Theorem 4. If the LP relaxation FLP of the nominal problem (1) is integral, then the
linear program (10)–(15) solves the robust 0–1 problem (3).

Theorem 4 establishes that there is a tight LP formulation for a robust 0–1 problem,
with size polynomial in the size of a tight LP formulation of the nominal 0–1 problem.
In particular, it describes tight LP formulations for robust counterparts of combinatorial
optimization problems such as the shortest path problem, the spanning tree problem, the
matching problem, for which explicit tight LP formulations are known. The following
theorem implies polynomial solvability of RP4 for these problems.

Theorem 5. If there is a polynomial separation oracle for FLP , then there is a polyno-
mial algorithm for solving the linear program (10)–(15).

Proof. Consider the separation problem for (10)–(15). Given a point (x, y, z, ω, λ) with
0 ≤ λ ≤ 1, if λk = 0, then constraints (12) and (13) are trivially satisfied; otherwise,
the separation oracle for FLP can be used for constraints (12) and (13) with input
ω̃k = ωk/λk since Aωk ≤ λkt and 0 ≤ ωk ≤ λk1 if and only if ω̃k ∈ FLP . The remain-
ing n+ 2 constraints (11), (14), and (15) can be checked by substitution. Then the result
follows from polynomial equivalence of separation and optimization for polyhedra [17].

��
If FLP is an integral polytope, the formulation RP4 may be viewed as combining

the n + 1 subproblems that need to be solved in the Bertsimas and Sim approach into a
single optimization problem.

The proof of Theorem 4 is polyhedral and is based on the fact that convex hull of
integral polyhedra is integral. We can generalize Theorem 4 to consider nonintegral FLP

(or P(δ)). The next theorem establishes that there is an α–tight linear programming for-
mulation with size polynomial in the size of an α–tight linear programming formulation
for the nominal 0–1 problem.

Theorem 6. Let ξIP and ξLP be the optimal objective values for the nominal problem
(1) and its LP relaxation. Similarly, let ξIP (RP 4) and ξLP (RP 4) denote the optimal
objective values for formulation RP4 and its LP relaxation. If 1 ≤ ξIP /ξLP ≤ α hold
for any objective, then ξIP (RP 4)/ξLP (RP 4) ≤ α.

Proof. Suppose ξLP (RP 4) is attained over P(dk). Define ξk = hdk + min
{∑n

i=1
(ai + bi(di − dk)

+)xi : x ∈ FLP

}
and ξ ′

k = hdk + min
{∑n

i=1(ai + bi(di − dk)
+)xi :

x ∈ F}
. Then we have

ξLP (RP 4) = ξk ≤ ξIP (RP 4) ≤ ξ ′
k ≤ αξk,

where the last inequality follows from ξ ′
k − hdk ≤ α(ξk − hdk) (the assumption on the

integrality gap of the LP relaxation of the nominal problem) and α ≥ 1. ��
We conclude this section by summarizing the results on the strength of the LP relax-

ation of the formulations in the next theorem.

Theorem 7. Let ξLP (A) denote the optimal objective value of the LP relaxation of
formulation A. Then ξLP (RP) ≤ ξLP (RP1) = ξLP (RP2) = ξLP (RP3) ≤ ξLP (RP4).
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4. Robust mixed 0–1 programming

In this section we will give strong formulations for robust mixed 0–1 programming. Let
the nominal problem be a mixed 0–1 programming problem with xi ∈ {0, 1} for i ∈ B

and xi ∈ R+ for i ∈ C, where (B, C) is a partitioning of [1, n]. Let C1 ⊆ C be the
index set of continuous variables with finite upper bound, which can be assumed to be
one by scaling such variables if necessary. So the mixed 0–1 feasible set is

FM = { x ∈ R
n
+ : Ax ≤ t, xi ∈ {0, 1}, i ∈ B, xi ≤ 1, i ∈ C1 }.

Consequently, the robust counterpart is written as

(RPM) min
{

a′x + b′y + hz : (x, y, z) ∈ SM

}
,

where

SM = { (x, y, z) : x ∈ FM, (x, y, z) ∈ RM }
and

RM =





yi + z ≥ dixi, i ∈ [1, n]
(x, y, z) ∈ R

2n+1
+ : xi ∈ {0, 1}, i ∈ B

xi ≤ 1, i ∈ C1





.

First, observe that z equals d0 or di , i ∈ B ∪ C1 in extreme points of conv(RM).
Then, since for RM(δ) = {(x, y, z) ∈ RM : z = δ} and δ ≥ 0 we have

conv(RM(δ)) =




(x, y, z) ∈ R

2n
+ × δ :

(di − δ)+xi ≤ yi, i ∈ B,

dixi − δ ≤ yi, i ∈ C,

xi ≤ 1, i ∈ B ∪ C1





,

generalizing RP1, we give a disjunctive formulation for robust mixed 0–1 programming
as follows:

(RPM1) min
{

a′x + b′y + hz : x ∈ FM, (x, y, z, w, λ) ∈ DM

}
,

where

DM =






(x, y, z, ω, λ) :
∑

k∈{0}∪B∪C1
λk = 1

0 ≤ ωk
i ≤ λk, i ∈ B ∪ C1

z ≥ ∑
k∈{0}∪B∪C1

dkλk

yi ≥ ∑
k∈{0}∪B∪C1

(di − dk)
+ωk

i , i ∈ B

yi ≥ ∑
k∈{0}∪B∪C1

(diω
k
i − dkλk)

+, i ∈ C

x = ∑
k∈{0}∪B∪C1

ωk






.

The nonlinear terms (diω
k
i − dkλk)

+ are due to the fact that yi ≥ 0, i ∈ C are neces-
sary to describe conv(RM(dk)). These terms can be linearized by introducing auxiliary
variables γ k

i such that γ k
i ≥ diω

k
i − dkλk and γ k

i ≥ 0.
RM is a relaxation of R, in which binary and upper bound constraints on some of

the variables are dropped. Consequently, not all valid inequalities for R are valid for
its relaxation RM . The following theorem characterizes the subset of the facet–defining
inequalities (8) that are valid for RM .
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Theorem 8. An inequality (8) with T = {i1, i2, . . . , it } ⊆ [1, n] and 0 < di1 < di2 <

· · · < dit is valid for RM if and only if the following conditions hold:

1. if i ∈ C1 ∩ T , then i = i1;
2. if i ∈ (C \ C1) ∩ T , then T = {i}.

Proof. If C ∩ T = ∅, validity holds without any conditions by Theorem 1.
Necessity. 1. Suppose ik ∈ C1 and k 	= 1. Then, inequality (8) is violated by the solution
with xi1 = 1, xik = di1/dik , z = di1 and all other variables zero. 2. Suppose ik ∈ C \C1.
If k 	= 1, previous solution violates (8). If k = 1 and {i1} � T . Then inequality (8) is
violated by the solution with xi1 = di2/di1 , xi2 = 1, z = di2 and all other variables zero.
Sufficiency. 1. Suppose i1 ∈ C1. Since di1xi1 ≤ di1 , validity argument of Theorem 1
remains correct if k = max{j ∈ [0, t] : dij ≤ z} > 0. Otherwise, we need a slight
change in the argument:

∑

j∈[1,t]

(dij − dij−1)xij ≤ di1xi1 +
∑

j∈[2,t]

(dij − dij−1)xij

≤ z + (di1xi1 − z) +
∑

j∈[2,t]

(dij − z)xij ≤ z +
∑

i∈T

yi,

where the last inequality follows from yi1 ≥ di1xi1 − z and yi ≥ (di − z)xi for all
i ∈ T \ {i1} as by the necessity of condition 2, T \ {i1} ⊆ B. 2. Validity with T = {i}
simply follows from yi + z ≥ dixi . ��

Sufficiency of the inequalities in Theorem 8 and the bounds on the variables for
describing conv(RM) is shown using the same steps as in the proof of Theorem 2. This
leads to a formulation by an explicit listing of the constraints of conv(RM):

(RPM2) min
{

a′x + b′y + hz : x ∈ FM, (x, y, z) ∈ conv(RM)
}
.

Separation for the inequalities satisfying the conditions in Theorem 8 can be done
by solving the shortest path problem defined in Section 3.2 after dropping from G the
arcs

E1 = { (h, i) for h ∈ [1, i − 1] and i ∈ C} and

E2 = { (i, j) for j ∈ [i + 1, n] and i ∈ C \ C1}
in order to avoid inequalities (8) that are invalid for the description of conv(RM). Letting
E = {(i, j) : 0 ≤ i < j ≤ n} \ (E1 ∪ E2), we can then write an extended formulation
for the robust mixed 0–1 programming as

(RPM3) min
{

a′x + b′y + hz : x ∈ FM, (x, y, z, ν) ∈ QM

}
,

where

QM =






(x, y, z, ν) ∈ R
3n+3 :

(dj − di)xj + νj − νi ≤ yj , (i, j) ∈ E

νn+1 − νi ≤ z, 0 ≤ i ≤ n

νn+1 − ν0 ≥ 0
xi ≤ 1, i ∈ B ∪ C1

x, y ≥ 0






.
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Finally, we remark that z may take values different from 0 and di , i ∈ B ∪ C1 in
extreme points of conv(SM) if the objective coefficients of the continuous variables are
uncertain, i.e., di > 0 for i ∈ C. We do not know extensions of Theorems 4–6 to mixed
0–1 programming in this case. Furthermore, if di > 0 for i ∈ C, it is also an open
question whether the robust counterpart RPM is polynomially solvable if the nominal
mixed 0–1 problem is polynomially solvable. On the other hand, for the case di = 0 for
all i ∈ C, since continuous variables do not appear in the inner maximization problem
(see (5)), Theorems 4–6 extend to the mixed 0–1 case trivially.

5. Computational experience

In this section we compare the computational difficulty of solving the formulations intro-
duced in the paper. The experiments are performed using the MIP solver of CPLEX1

Version 9.0 on a 3 MHz Intel Pentium4/RedHat Linux workstation.
The experiments are restricted to the case (2) introduced in [8] by letting b = 1 and

h = r . The first experiment is on solving the optimization problem (6) over R using
formulations RP, RP1, RP2, and RP3. The purpose of this experiment is to observe the
behavior of the formulations without any side constraints. To this end, random instances
with 200 variables with ai drawn from integer uniform[1,1000] and di from integer
uniform[1,2000] are generated. In order to see the effect of the parameter r controlling
the conservatism of the solution, the instances are solved for varying values of r as shown
in Table 1. Each entry in this table is an average for four instances. The columns under
heading RP show the integrality gap of the LP relaxation of the original formulation RP,
and the number of nodes and CPU time (seconds) taken by default CPLEX for solving
the instances. Interestingly, the instances have small integrality gap ((ξLP − ξIP )/ξLP ,
where ξLP is the optimal value of the LP relaxation and ξIP is the optimal objective
value) for small and large values of r , and are solved easily. This observation is intuitive
since for extremely small or extremely large values for r , z takes value either d0 or dn in
optimal solutions, which prevents x from being fractional in the extreme points of the
LP relaxation. However, for values of r between 40 and 60, the LP relaxation is highly
fractional and integrality gap is large. Consequently, considerable branching is needed
for these instances. Since in this experiment F = {0, 1}n, the LP relaxations of RP1–
RP3 are integral and no branching is required for these formulations. The solution time
for the disjunctive formulation RP1 is unaffected by the choice of r . On the other hand,
there is a high correlation between the integrality gap of RP and the solution time of the
cut formulation RP2. The higher the gap, the larger is the number of cuts added to close
it. In Table 1 we present results for two implementations of the separation algorithm in
Section 3.2, denoted as RP2 and RP2′. In RP2, in each cut generation phase, a shortest
path from vertex 0 to every other vertex i is computed and the corresponding inequality
is added if violated by the LP solution. This allows us to add multiple cuts in each cut
generation phase, and performs much better than adding a single most violated cut given
by a shortest 0–(n + 1) path in every phase. On the other hand, in RP2′, we look for a
violated cut that corresponds to a 0–i path with the smallest number of arcs using the
Bellman-Ford algorithm. Since the arcs correspond to variables in inequality (8), this

1 CPLEX is a trademark of ILOG, Inc.
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choice keeps the cuts sparse. As seen in Table 1, RP2′ outperforms RP2 by a significant
margin. Even though separation in RP2′ takes longer (still polynomial), LPs with sparse
cuts are solved much faster, which leads to significant saving in the overall computation
time. Finally, the extended formulation RP3 is solved much more easily—only in a few
seconds—for all instances. Recall that RP3 has the smallest size among RP1–RP3. Since
RP3 has many more constraints than variables, a faster implementation is obtained by
solving its dual, shown under column RP3′.

In the second experiment, we solve instances of the robust counterpart of the NP–
hard 0–1 knapsack problem. Thus in this case F ={x ∈{0, 1}n : µ′x ≤ µo}. To this end,
we add to the instances used in the first experiment knapsack constraints µ′x ≤ µo, with
µi drawn from integer uniform[1,100] and µo = 1

2

∑n
i=1 µi . In Table 2 we summarize

the results for RP, RP1, RP2′, RP3′, as well as RP4. The gap columns show the integrality
gap of the LP relaxation of the respective formulations. RP1, RP2′, RP3′ have almost
the same integrality gap. Slight differences (not shown in table) are due to different cuts
added by CPLEX. With the original formulation RP, the instances with high integrality
gap require an excessive number of branching and could not be solved within the mem-
ory limit of 100 MB. Under the column egap[uslv] we show the average optimality gap,
percentage gap between the best known upper bound and lower bound at termination

Table 1. Optimization over R.

r RP RP1 RP2 RP2′ RP3 RP3′
gap node time time cuts time cuts time time time

10 2.9 2 0 27 1178 4 945 0 1 1
20 6.8 778 1 24 3472 26 2439 1 2 0
30 16.0 19244 26 28 7075 105 5192 4 2 0
40 30.9 244594 420 33 11806 346 9348 36 3 1
50 50.1 386932 576 37 18623 1462 19038 545 7 1
60 48.5 82082 70 35 14284 624 14864 50 4 1
70 36.8 764 1 36 9642 202 8548 3 3 1
80 24.6 0 0 36 6545 64 5657 2 2 1
90 13.1 0 0 36 4059 19 3560 0 2 1
100 4.3 0 0 36 1730 4 1252 0 2 1
vars 401 40802 401 603 20703
cons 400 40802 400+cuts 20703 603

Table 2. Experiments with robust 0–1 knapsack.

r RP RP1 RP2′ RP3′ RP4
gap node egap[uslv] gap node time cuts node time node time gap node time

10 4.4 152 0.0[0] 0.0 33 52 1228 28 1 15 8 0.0 62 696
20 15.5 211172 1.0[2] 0.1 144 237 5733 93 63 67 54 0.1 150 2906
30 28.7 313276 9.7[4] 0.4 52 204 12469 235 623 73 102 0.1 147 1867
40 43.8 311286 27.0[4] 4.4 398 1189 179588 1396 6686 733 617 0.1 318 2327
50 53.0 312750 33.1[4] 3.2 161 690 21482 528 4982 206 278 0.1 36 201
60 48.5 336007 27.8[4] 0.0 0 33 8198 0 17 0 1 0.0 0 27
70 36.6 179474 8.1[2] 0.0 0 33 6558 0 3 0 1 0.0 0 27
80 24.6 707 0[0] 0.0 0 33 5047 0 1 0 1 0.0 0 27
90 13.1 0 0[0] 0.0 0 33 3560 0 0 0 1 0.0 0 27
100 4.3 0 0[0] 0.0 0 33 1215 0 0 0 1 0.0 0 27
vars 401 40802 401 20703 40602
cons 401 40803 401+cuts 603 40603
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Table 3. Experiments with robust mixed 0–1 knapsack.

r RPM RPM1 RPM2′ RPM3′
gap node ogap[uslv] gap node time cuts node time node time

10 12.5 13138 0.0[0] 0.0 0 63 2972 1 1 0 2
20 4.0 500 0.0[0] 0.0 4 186 1157 2 2 3 5
30 10.3 147936 0.4[2] 0.0 4 145 3502 0 9 2 8
40 18.0 279087 4.1[4] 0.0 5 256 6762 0 44 0 10
50 26.0 291496 10.0[4] 0.3 2 758 10979 9 199 10 78
60 33.3 280605 16.4[4] 1.6 62 4689 11741 221 901 78 158
70 40.2 294063 22.7[4] 3.4 188* 13891* 12238 1917 9121 791 1141
80 41.5 277968 20.1[4] 1.0 3 1102 10554 22 215 13 66
90 33.9 320824 8.0[2] 0.0 0 51 6966 0 7 0 1
100 24.7 26273 0.0[0] 0.0 0 50 5820 0 1 0 1
vars 401 503352 401 20703
cons 401 503353 401+cuts 603

when the memory limit is reached, and the number of unsolved instances (out of four)
in brackets. For r between 30 and 60, none of the instances is solved to optimality and
a large optimality gap is left at termination. In contrast, all of the instances are solved to
optimality with much less or no branching with the new formulations. This is predomi-
nantly due to the significantly smaller integrality gap obtained with their LP relaxations.
In particular, for RP4 the integrality gap is almost zero in all instances. However, the
additional reduction in the integrality gap achieved by RP4 over RP1–RP3′, does not
appear to translate to faster solution times. As in the case without side constraints, solv-
ing the dual of RP3 at the nodes of the branch–and–bound tree outperforms the other
choices.

The final experiment is on solving the robust mixed 0–1 knapsack problem. The
instances for the experiment are generated by adding 50 bounded continuous variables
to the 0–1 knapsack instances. The effect of including continuous variables is reduced
integrality gap for the LP relaxations. The relative difficulty of solving the formulations
is similar to the 0–1 knapsack case observed in the previous experiment. Most of the
instances could not be solved with formulation RPM due to the large integrality gap and
excessive branching. On the other hand, all but one of the unsolved instances could be
solved to optimality using formulation RPM1 with much less branching. Computation
for one instance with formulation RPM1 is terminated after 10 hours with %0.05 opti-
mality gap (only 382 nodes are evaluated before termination). The averages 188 nodes
and 13891 seconds reported for r = 70 includes this instance. All instances are solved
to optimality much faster with the equally strong, but smaller formulations RPM2′ and
RPM3′.

As in the previous experiments, solving the dual of the LP relaxation of RPM3 at
the nodes of the search tree leads to the smallest overall solution time. In the current
implementation, the dual of the LP relaxation of RPM3 is constructed and solved from
scratch at each node. A close integration of branching on primal variables and succes-
sively solving the dual of the LP relaxation at the nodes of the search tree should speed
up the computations significantly.As the need for solving MIPs with a very large number
of constraints increases, we expect that such an integrated implementation that is avail-
able for branching and solving primal LPs in commercial MIP solvers, will extend to
branching on primal variables and solving dual LPs. In addition, for solving large–scale
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robust mixed 0–1 programs with RPM3′ a column generation approach may be more
practical than keeping all of the O(n2) variables in the dual formulation explicitly.

6. Conclusion

We introduce formulations for robust 0–1 programming and for robust mixed 0–1 pro-
gramming with strong LP relaxations. We show that for a robust 0–1 problem, there is an
α–tight linear programming formulation with size polynomial in the size of an α–tight
linear programming formulation for the nominal 0–1 problem. Strong formulations are of
significant interest for robust mixed 0–1 programming, for which polynomial algorithms
are unknown even if the nominal mixed 0–1 problem is polynomially solvable.

Our computational experiments show that the difficulty of solving the alternative
formulations differ by a large margin. Furthermore, algorithmic choices in generating
cutting planes as well as in solving the linear programs affect the computational results
significantly. Overall, the proposed strong formulations improve the solvability of the
robust (mixed) 0–1 programs substantially.

Acknowledgements. I am grateful to Ed Rothberg of ILOG, Inc. for making the necessary changes in the
CPLEX code that allowed solving the dual formulations at the nodes of the branch–and–cut tree.
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