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Abstract

In this paper we study the link between a semi-infinite chance-constrained optimization

problem and its randomized version, i.e. the problem obtained by sampling a finite

number of its constraints.

Extending previous results on the feasibility of randomized convex programs, we es-

tablish here the feasibility of the solution obtained after the elimination of a portion of

the sampled constraints. Constraints removal allows one to improve the cost function

at the price of a decreased feasibility. The cost improvement can be inspected directly

from the optimization result, while the theory here developed permits to keep control

on the other side of the coin, the feasibility of the obtained solution. In this way,

trading feasibility for performance through a sampling-and-discarding approach is put

on solid mathematical grounds by the results of this paper.

The feasibility result obtained in this paper applies to all chance-constrained optimiza-

tion problems with convex constraints, and has the distinctive feature that it holds

true irrespective of the algorithm used for constraints removal. One can thus e.g. use

a greedy algorithm – which is computationally low-demanding – and the correspond-

ing feasibility remains guaranteed. We further prove in this paper that if constraints

removal is optimally done – i.e. one deletes those constraints leading to the largest pos-

sible cost improvement – a precise optimality link to the original semi-infinite chance-

constrained problem in addition holds.
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1 Introduction

Letting X ⊆ R
d be a convex and closed domain of optimization, consider a family of con-

straints x ∈ Xδ parameterized in δ ∈ ∆, where the sets Xδ are convex and closed. Convexity

of the constraints is an assumption in effect throughout this paper. δ is the uncertain pa-

rameter and it describes different instances of an uncertain optimization scenario. Adopting

a probabilistic description of uncertainty, let us suppose that the support ∆ for δ is endowed

with a σ-algebra D and that a probability P is defined over D. P describes the probability

with which the scenario parameter δ takes value in ∆. Then, a chance-constrained program,

[8, 16, 20, 21, 23, 11], is written as:

CCPǫ : minx∈X cT x

subject to: x ∈ Xδ with probability P ≥ 1 − ǫ.
(1)

Here, the set of δ’s such that x ∈ Xδ is assumed to be an element of D, that is it is a mea-

surable set, so that its probability is well defined. Also, linearity of the objective function is

without loss of generality since any objective of the kind minx∈X c(x), where c(x) : X → R

is a convex function, can be re-written as minx∈X ,y≥c(x) y, where y is a scalar slack variable.

Problem 1 is general enough to encompass chance-constrained LP (linear programs), QP

(quadratic programs), SOCP (second-order cone programs), and SDP (semi-definite pro-

grams). In general, (1) involves an infinite set of constraints, i.e. ∆ has infinite cardinality.

In CCPǫ, constraint violation is tolerated, but the violated constraint set must be no larger

than ǫ. This parameter ǫ allows to trade robustness for performance: the optimal objec-

tive value J∗
ǫ of CCPǫ is a decreasing function of ǫ and provides a quantification of such a

trade-off. Depending on the application at hand, which can cover a wide range from control

to prediction and from engineering design to financial economics, ǫ can take different values

and has not necessarily to be thought of as a “small” parameter. The fact that J∗
ǫ is higher

for small violation probabilities ǫ is sometimes phrased as the “price of robustness”, [4].

An x point satisfying constraints x ∈ Xδ with probability P ≥ 1 − ǫ is a feasible point
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for the chance-constrained problem and the solution of CCPǫ is a feasible point also mini-

mizing the optimization objective. The feasible set of CCPǫ is in general non-convex in spite

of the convexity of the sets Xδ, see [21, 22], with a few exceptions, [21, 13, 11]. Consequently,

an exact numerical solution of CCPǫ is in general very hard to find.

1.1 Objectives of this paper

In this paper we consider randomized approximations of chance-constrained optimization

problems.

By suitably sampling of the constraints in ∆ (constraints randomization), a program with

a finite number of constraints is obtained (the “scenario” program), and we further allow

for removal of constraints from this finite set, so improving the objective according to a

chance-constrained philosophy. The removal of constraints can be performed by any rule,

possibly a greedy one that can be implemented at low computational effort. The feasibility

Theorem 1 establishes the following fact:

if N constraints are sampled and k of them are eliminated according to any arbitrary

rule, the solution that satisfies the remaining N−k constraints is, with high confidence,

feasible for the chance-constrained program CCPǫ in (1), provided that N and k satisfy

a certain condition (3).

This theorem justifies at a very deep theoretical level the use of randomization in chance-

constrained and opens up practical routes to address chance-constrained optimization: after

sampling, constraints are removed according to some, possibly greedy, procedure and, at

the end of the elimination process, the actually incurred optimization cost is inspected for

satisfaction, while the theory here developed allows one to keep control on the feasibility of

the obtained solution.

A strength of this theory is that it applies to all chance-constrained problems with convex

constraints, including as special cases linear and quadratic constraints, and constraints ex-

pressed in terms of LMI’s (Linear Matrix Inequalities) corresponding to the wide class of
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semi-definite programming problems. Moreover, condition (3) is very tight, in the sense that

it returns values for N and k close to the best possible values guaranteeing feasibility, a fact

also shown in this paper.

Depending on the elimination rule, the incurred objective value can be close or less close to

the optimal objective value J∗
ǫ of the CCPǫ program. Further working on this aspect, we

prove in Theorem 2 that an optimal elimination of k constraints leads to an objective value

that relates to J∗
ǫ in a precise way. Although this latter result is to date of limited practical

use owing to the computational complexity of the ensuing combinatorial problem, it sheds

light on certain interesting theoretical links.

1.2 Related literature

Randomized techniques are rapidly spreading in the context of stochastic optimization, as

witnessed by recent contributions such as [25, 19, 10, 12, 18, 24].

In this paper, we are specifically interested in chance-constrained optimization problems

as in equation (1). One approach to attack these problems is that of analytical methods,

[2, 3, 4, 17, 22], where chance-constrained programs are reformulated (possibly with a certain

degree of approximation) as convex problems whose solution can be found at low compu-

tational effort through standard algorithms. This approach offers an interesting and use-

ful solution route, provided that the optimization problem has a certain specific structure.

Along the randomized (also known as Sample Average Approximation – SAA) approach

where one concentrates on a finite number N of constraints chosen at random, Chapter 4 in

[24] provides a thorough presentation of the conditions for the randomized approximation

to asymptotically reconstruct the original chance-constrained problem. The present paper,

instead, deals with a finite-sample analysis, in that we want to determine the sample size N

guaranteeing a given level of approximation. Finite-sample properties are also the topic of

[14], which presents a very interesting analysis applicable in a set-up complementary to that

of the present paper. Specifically, feasibility results are established for possibly non-convex
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constraints, provided that the optimization domain has finite cardinality or in situations

that can be reduced to this finite set-up, an application domain that covers many situations

of interest.

The approach of the present paper builds on the so-called “scenario” approach of [5, 6, 7].

The crucial progress over [5, 6, 7] here made is that the results in [5, 6, 7] are extended to

the case when constraints are a-posteriori removed, a situation of great practical importance

any time one wants to trade feasibility for performance.

1.3 Structure of the paper

In the next Section 2, we first more formally introduce the scenario approach with constraints

elimination to prepare the terrain for the feasibility Theorem 1, given at the end of the same

section. To avoid breaking the flow of discourse, the proof of Theorem 1 is postponed to

Section 4 while Section 3 provides complimentary theoretical material. Finally, optimality

results are given in Section 5.

2 Randomized chance-constrained optimization: feasi-

bility results

Suppose that N independent and identically distributed scenarios δ(1), δ(2), . . . , δ(N) are ex-

tracted from ∆ according to probability P (sampling or randomization of ∆). The idea

behind the scenario approach of [5, 6, 7] is to substitute the vast multitude of constraints in

the infinite initial domain ∆ with these N extracted constraints only, and to find the optimal

solution that satisfies all of these N constraints. This idea has an intuitive appeal in that

the resulting optimization problem has a finite number of constraints only, so that it can be

solved with standard numerical methods.

Along the above line of proceeding, one embraces a seemingly naive attitude of disregarding

most of the constraints, those that have not been sampled, as though the corresponding

scenarios could not occur. The strength of this randomized scenario approach stems from
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observing that the vast majority of these neglected constraints take automatically care of

themselves, that is they are automatically satisfied even though they were not considered in

the optimization problem. This observation has been recently posed on solid mathematical

grounds in the papers [5, 6], and a tight quantification of the feasibility of randomized solu-

tions has been obtained in [7].

In this paper, we move from the observation that finding a solution satisfying all of the N ex-

tracted constraints can be conservative and that this approach does not allow for any trading

of constraint violation for performance; consequently, the achieved optimization value can

be too large for the intended purposes and, therefore, unsatisfactory1. On the other hand,

one can conceive proceeding differently and – following a chance-constrained philosophy –

allow for violating part of the sampled constraints to improve the optimization value. This

approach may have tremendous potentials in a number of application endeavors where one

wants to meet a suitable compromise between performance and constraint satisfaction, and

it is investigated in this paper.

A first viable option for constraints removal consists in deleting constraints one by one accord-

ing to a greedy algorithm. In this scheme, one selects in succession those constraints which

lead each time to the largest immediate improvement in the objective function until, say, k

constraints are violated. This approach has the great advantage of being implementable at

a low computational effort as one has to inspect at each removal a few constraint candidates

only, those active at the currently reached solution. At the end of the greedy procedure, one

can inspect the incurred objective value for satisfaction, while the theory developed in this

paper – and substantiated in Theorem 1 below – provides theoretical guarantees that the

solution violates less than a ǫ portion of the constraints in ∆, that is it is feasible for the

chance-constrained problem (1). This result extends previous achievements in [5, 6, 7] along

a direction of practical importance.

1The reader may be interested in going through Appendix A, part A.1, for a simple example illustrating

this behavior.

6



Moving now toward a precise statement of Theorem 1, we first introduce some preliminary

definitions and assumptions.

Assumption 1 Every optimization problem subject to only a finite subset F of constraints

from ∆, i.e.

min
x∈X

cT x subject to: x ∈ Xδ, δ ∈ F ⊆ ∆, (2)

is feasible, and its feasibility domain has a nonempty interior. Moreover, the solution of (2)

exists and is unique. ¤

Though this Assumption 1 can be released, it is here made to keep notations and derivations

easier to follow.

Theorem 1 holds true for any constraints removal procedure, and not only for the greedy

algorithm that we have described above. A general removal procedure is next formalized in

the following definition.

Definition 1 Let k < N . An algorithm A for constraints removal is any rule by which k

constraints out of a set of N constraints are selected and removed. The output of A is the

set A{δ(1), . . . , δ(N)} = {i1, . . . , ik} of the indexes of the k removed constraints. ¤

The fact that A can be any removal algorithm provides us with an opportunity to pick the

most suitable algorithm for the situation at hand, selecting from a range that goes from a

handy greedy algorithm to the optimal algorithm where k constraints are eliminated to best

improve the cost objective. To illustrate the type of possible algorithm selection, one choice

is a recursive optimal elimination of groups of p, with p ≪ k, constraints at a time (when

p = 1 the greedy algorithm is recovered). Yet another choice consists in progressively updat-

ing the solution by eliminating all the active constraints at the currently reached solution.

This option can be implemented at very low computational cost.
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The randomized program where k constraints are removed as indicated by A is expressed as

RPA
N,k : minx∈X cT x

subject to: x ∈ Xδ(i) , i ∈ {1, . . . , N} − A{δ(1), . . . , δ(N)},

and its solution will be hereafter indicated as x∗. We introduce the following assumption.

Assumption 2 x∗ almost surely violates all the k removed constraints. ¤

This is a natural assumption that reflects the fact that constraints removal is for the purpose

of improving the optimization cost. For this violation assumption to hold, it is e.g. enough

that, when at the end of the procedure some of the removed constraints remain satisfied,

these constraints are reinstated and new constraints are eliminated until k constraints are

violated.

Finally, introduce the following definition.

Definition 2 (violation probability) The violation probability of a given x ∈ X is de-

fined as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. ¤

The next Theorem 1 studies the feasibility of x∗. Note that x∗ is a random variable because

it depends on the random element (δ(1), . . . , δ(N)). Thus, its violation probability V (x∗)

is a random variable itself and it can be less than ǫ (i.e. x∗ is feasible for the chance-

constrained problem (1)) for some extractions of N constraints and not for others. The

theorem establishes the condition under which V (x∗) > ǫ has any arbitrarily small probability

β.

Theorem 1 Let β ∈ (0, 1) be any small confidence parameter value. If N and k are such

that
(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β (3)

(recall that d is the number of optimization variables), then V (x∗) ≤ ǫ holds with probability

at least 1 − β. ¤
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k 0 10 20 30 40 50 60 70 80 90

ǫ 0.017 0.031 0.041 0.051 0.059 0.068 0.075 0.083 0.090 0.097

Table 1: ǫ vs. k for N = 2000, β = 10−10 and d = 5

In this theorem, and elsewhere, the measurability of set {V (x∗) ≤ ǫ}, as well as that of

other sets in ∆N = ∆× · · · ×∆, is taken as an assumption. The theorem holds true for any

optimization problem with convex constraints, any constraints removal algorithm A, and

any probability measure P. To avoid breaking the flow of presentation, the proof is given in

the next Section 4.1.

Theorem 1 is a feasibility theorem and it says that the solution x∗ obtained by inspect-

ing N constraints only is a feasible solution for CCPǫ with high probability 1 − β, provided

that N and k fulfill condition (3). Here, β quantifies the probability P
N = P × · · · × P in

∆N of observing a “bad” multi-extraction (δ(1), . . . , δ(N)) such that V (x∗) > ǫ. N and k

bear a weak (logarithmic) dependence on 1/β so that parameter β can be pushed down to

values so small (e.g. 10−10 or even 10−20) that this confidence parameter looses any practical

importance without a significant increase of N and k.

Formula (3) establishes a relation among variables N , k, ǫ, and β. A typical use of this

formula consists in selecting an N within the computational limit of the used solver, ǫ ac-

cording to the acceptable level of risk, and β small enough to be negligible, e.g. β = 10−10,

and computing from (3) the largest number k of constraints that can be discarded.

For an easy visualization of Theorem 1, we have represented in Figure 1 the region of N and

k values such that condition (3) is satisfied when ǫ = 0.1, β = 10−10 and d = 5. The inter-

pretation is that, if any pair (N, k) is picked from the grey region, then, if N constraints are

sampled and k of them are removed, the obtained solution is, with high confidence 1−10−10,

feasible for the chance-constrained problem with parameter ǫ = 0.1. Further, Table 1 gives

ǫ as a function of k for N = 2000, β = 10−10 and d = 5. As we shall discuss in detail

in the next Section 3.2, formula (3) provides a tight evaluation of the N, k guaranteeing
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Figure 1: Grey region: values of N and k satisfying condition (3) for ǫ = 0.1, β = 10−10 and

d = 5.

(1 − ǫ)-feasibility with confidence 1 − β.

3 Remarks on Theorem 1

Theorem 1 is amenable to a number of complementary observations as discussed in this

section.

3.1 Trading feasibility for performance

In some applications, one may want to reach a suitable compromise between violation and

performance, in which case one discards a progressively increasing number of constraints k,

while inspecting the corresponding cost improvement. Theorem 1 holds for given N and k;

yet, by a repeated application of the theorem one concludes that the feasibility result holds

simultaneously for all k values in a certain range with confidence 1−
∑

k βk. Having a sum of

βk is not a hurdle since βk is very small in normal situations. By e.g. applying this reasoning
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to the example in Table 1, one can selects a k achieving his favorite violation/performance

trade-off and the corresponding ǫ holds with confidence 1 − 10 · 10−10 = 1 − 10−9.

Example 1 (Chebyshev regression) The N = 2000 points (ui, yi), i = 1, . . . , 2000,

displayed in Figure 2 are independently generated in R
2 according to an unknown prob-

ability density P. We want to construct an interpolating polynomial of degree 3, y =

−1 −0.5 0 0.5 1
−4

−2

0

2

4

6

8

10

u

y

Figure 2: (ui, yi) data points.

x0 + x1u + x2u
2 + x3u

3, where x0, . . . , x3 are parameters to be chosen, so that a strip of

minimal vertical width centered around the polynomial contains all the generated points. In

mathematical terms, this problem can be cast as the following optimization program

min
x0,...,x4

x4 subject to:
∣

∣yi − [x0 + x1ui + x2u
2
i + x3u

3
i ]

∣

∣ ≤ x4, i = 1, . . . , 2000, (4)

and the optimal polynomial is named “Chebyshev approximation” regressor, see e.g. [1]. The

solution we have obtained with the data at hand is shown in Figure 3.

The above problem can be interpreted as an identification problem where u is the input,

y is the output, P is the probability describing an underlying data generation mechanism,

the N = 2000 points are the data, and the strip is a data-based descriptor of the generator.
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Figure 3: Strip containing all points.

k 0 10 20 30 40 50 60 70 80 90

width 6.08 4.32 3.90 3.46 3.08 2.84 2.54 2.36 2.14 2.06

Table 2: Strip widths vs. k.

Given the next input u, the interval in the strip corresponding to that u provides a prediction

of the associated unseen y. Correspondingly, one would like to have a strip of small width

so as to make a tight prediction, while keeping low the probability of misclassifying the next

unseen y, that is the probability that (u, y) falls outside the strip.

As is clear from (4), each point corresponds to a constraint and one can easily recognize that

the probability that (u, y) falls outside the strip is the same as the probability that one next

unseen constraint is violated. Based on the result for k = 0 in Table 1, we can claim that

the probability that the strip in Figure 3 misclassifies y is, with high confidence 1− 10−10, at

most 0.017. On the other hand, the strip width is rather large and one may want to trade

some probability of misclassification for a smaller interval.

We further removed some of the extracted (ui, yi) points. Figure 4 depicts, stacked one on

top of the other, the intervals obtained by a greedy removal of k = 10, 20, . . . , 90 points.

The corresponding interval widths are displayed in Table 2. This table should be assessed
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Figure 4: Strips with increasing points violation.

against Table 1 giving the probability ǫ of misclassification, and one can choose his favorite

compromise. The confidence in the achieved result is 1 − 10−9, as explained before. ¤

3.2 A remark on the quality of bound (3)

We discuss the bound (3) and its margin of improvement.

From Theorem 1, we have that
(

k+d−1
k

)
∑k+d−1

i=0

(

N

i

)

ǫi(1 − ǫ)N−i is an upper bound to

P
N{V (x∗) > ǫ} valid for any removal algorithm A and for any optimization problem P

(that is for any set of constraints Xδ, δ ∈ ∆, probability P, and cost function cT x). I.e.

sup
P,A

P
N{V (x∗) > ǫ} ≤

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i.

It is a fact that a lower bound to the same probability is

sup
P,A

P
N{V (x∗) > ǫ} ≥

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i, (5)
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and this sets a limit to the margin of improvement of the bound in Theorem 1. For a visual





Figure 5: Grey region: values of N and k satisfying condition
∑k+d−1

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β;

Light grey region: values of N and k satisfying condition (3); ǫ = 0.1, β = 10−10 and d = 5.

understanding of this result, in Figure 5 we have represented the region in the N, k domain

where condition
∑k+d−1

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β using the lower bound is satisfied for ǫ = 0.1,

β = 10−10 and d = 5 superimposed to the region where (3) in Theorem 1 using the upper

bound holds.

The proof of (5) is provided in Section 4.2.

3.3 An explicit formula for k

Using the Chernoff bound for the Binomial tail ([9]; see also Section 2.3.1 in [27]) yields

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ e−
(ǫN−k−d+1)2

2ǫN , for ǫN ≥ k + d − 1.

Moreover,

(

k + d − 1

k

)

=
(k + d − 1)!

(d − 1)!k!
≤ (k + d− 1)(k + d− 2) · · · (k + 1) ≤ (k + d− 1)d−1 ≤ (ǫN)d−1,
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where the last inequality follows from condition ǫN ≥ k + d − 1.

Hence, the left-hand-side of (3) is bounded by (ǫN)d−1 · e−
(ǫN−k−d+1)2

2ǫN . Given N , ǫ, β, and d,

we compute a k such that

(ǫN)d−1 · e−
(ǫN−k−d+1)2

2ǫN ≤ β.

This latter equation can be rewritten as

(ǫN − k − d + 1)2 ≥ 2ǫN ln
(ǫN)d−1

β
,

which, solved for k with the condition ǫN ≥ k + d − 1, gives

k ≤ ǫN − d + 1 −

√

2ǫN ln
(ǫN)d−1

β
. (6)

Equation (6) is an explicit handy formula for k which can be used to compute the number of

constraints that can be discarded. More precise evaluation can be obtained by numerically

solving (3).

We further notice that (6) implies that limN→∞
k
N

= ǫ. The interpretation is that the

empirical violation k
N

tends to the true violation ǫ as N is let increase.

4 Proofs

4.1 Proof of Theorem 1

Introducing the notation δ := (δ(1), . . . , δ(N)), in this proof we shall write x∗(δ) instead of x∗

to emphasize the stochastic nature of the solution. The “bad” extractions from ∆N leading

to a solution x∗(δ) violating a portion of constraints larger than ǫ form an event

B = {δ ∈ ∆N : V (x∗(δ)) > ǫ},

and, in these notations, the theorem statement can be rephrased as P
N{B} ≤ β.
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Given a subset I = {i1, . . . , ik} of k indexes from {1, . . . , N}, let x∗
I(δ) be the optimal solu-

tion of the optimization problem where the constraints with index in I have been removed,

i.e.

x∗
I(δ) := arg min

x∈X
cT x subject to: x ∈ Xδ(i) , i ∈ {1, . . . , N} − I. (7)

Moreover, let

∆N
I = {δ ∈ ∆N : x∗

I(δ) violates the constraints δ(i1), . . . , δ(ik)}. (8)

Thus, ∆N
I contains the multi-extractions such that removing the constraints with indexes in

I leads to a solution x∗
I(δ) that violates all the removed constraints.

Since the solution of RPA
N,k almost surely violates k constraints (Assumption 2), it is clear

that x∗(δ) = x∗
I(δ) for some I such that δ ∈ ∆N

I . Thus,

B = {δ ∈ ∆N : V (x∗(δ)) > ǫ} ⊆
⋃

I∈I

{δ ∈ ∆N
I : V (x∗

I(δ)) > ǫ} (9)

up to a zero probability set, where I is the collection of all possible choices of k indexes from

{1, . . . , N}.

A bound for P
N{B} is now obtained by first bounding P

N{δ ∈ ∆N
I : V (x∗

I(δ)) > ǫ}, and

then summing over I ∈ I.

Fix an I = {i1, . . . , ik}, and write

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

=

∫

(ǫ,1]

P
N{∆N

I |V (x∗
I(δ)) = v} FV (dv)

=

∫

(ǫ,1]

P
N{x∗

I(δ) violates the constraints δ(i1), . . . , δ(ik)|V (x∗
I(δ)) = v} FV (dv), (10)

where FV is the probability distribution of the random variable V (x∗
I(δ)), and

P
N{∆N

I |V (x∗
I(δ)) = v} is the conditional probability of the event ∆N

I under the condi-

tion that V (x∗
I(δ)) = v (see eq.(17), § 7, Chapter II of [26]).

To evaluate the integrand in (10), remind that V (x∗
I(δ)) = v means that x∗

I(δ) violates con-

straints with probability v; then, owing to that extractions are independent, the integrand
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equals vk. Substituting in (10) yields

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} =

∫

(ǫ,1]

vk FV (dv). (11)

To proceed, we have now to appeal to a result on FV from [7]: FV (v) ≥ F̄V (v) := 1 −
∑d−1

i=0

(

N−k

i

)

vi(1 − v)N−k−i, see Theorem 1 in [7] and recall that FV (v) is the distribution of

the violation of a solution obtained with N − k constraints. This inequality is tight, i.e. it

holds with equality for a whole class of optimization problems, that called “fully-supported”

in [7], Definition 3.

Now, the integrand vk in (11) is an increasing function of v, so that FV (v) ≥ F̄V (v) implies

that
∫

(ǫ,1]
vk FV (dv) ≤

∫

(ǫ,1]
vk F̄V (dv). This can be verified by the calculation:

∫

(ǫ,1]

vk FV (dv) = [Theorem 11, §6, Chapter II of [26]]

= 1 − ǫkFV (ǫ) −

∫

(ǫ,1]

FV (v)kvk−1 dv

≤ 1 − ǫkF̄V (ǫ) −

∫

(ǫ,1]

F̄V (v)kvk−1 dv

=

∫

(ǫ,1]

vk F̄V (dv).

Hence, P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} can finally be bounded as follows:

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} ≤

∫

(ǫ,1]

vk F̄V (dv)

= [the density of F̄V is d

(

N − k

d

)

vd−1(1 − v)N−k−d]

=

∫

(ǫ,1]

vk · d

(

N − k

d

)

vd−1(1 − v)N−k−d dv

= [integration by parts]

=
d
(

N−k

d

)

(k + d)
(

N

k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. (12)
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To conclude the proof, go back to (9) and note that I contains
(

N

k

)

choices. Thus,

P
N{B} ≤

∑

I∈I

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

=

(

N

k

)

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

≤ [use (12)]

≤

(

N

k

)

d
(

N−k

d

)

(k + d)
(

N

k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

=

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

≤ β,

where the last inequality follows from (3). ¤

4.2 Proof of (5)

Consider a fully-supported problem P (see Definition 3 in [7]). Equation (12) in the proof

of Theorem 1 holds true in this case with equality, that is

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ} =

d
(

N−k

d

)

(k + d)
(

N

k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i, (13)

with x∗
I(δ) and ∆N

I defined as in (7) and (8).

For a multi-extraction δ, let # be the number of solutions of level k (that is solutions that

violate exactly k of the extracted constraints) whose violation is more than ǫ. From (7) and

(8), one easily sees that

# =
∑

I∈I

1{δ∈∆N

I
: V (x∗

I
(δ))>ǫ},
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where 1A denotes the indicator function of set A. We now have that

E∆N [#] =

∫

∆N

∑

I∈I

1{δ∈∆N

I
: V (x∗

I
(δ))>ǫ} P

N{dδ}

=
∑

I∈I

P
N{δ ∈ ∆N

I : V (x∗
I(δ)) > ǫ}

= [use (13) and recall that I contains

(

N

k

)

choices]

=

(

N

k

)

d
(

N−k

d

)

(k + d)
(

N

k+d

)

k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i

=

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. (14)

Now, letting S(#) be the set in ∆N where # 6= 0, that is the set of multi-extractions such

that at least one solution of level k violates more than ǫ, the algorithm A that always selects

the solution x∗(δ) of level k with the largest violation leads to the fact that V (x∗(δ)) > ǫ

holds on S(#), that is with a probability P
N{S(#)}. Nobody to date knows the exact value

of P
N{S(#)}, but it turns out that we can compute a lower bound to it. In fact, a fully

supported problem has
(

k+d−1
k

)

solutions of level k, see e.g. [15], so that # ≤
(

k+d−1
k

)

. Using

this fact in (14) yields:

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i = E∆N [#] ≤

(

k + d − 1

k

)

· P
N{S(#)},

from which P
N{S(#)} ≥

∑k+d−1
i=0

(

N

i

)

ǫi(1 − ǫ)N−i. Since P
N{S(#)} is the probability that

the solution of algorithm A violates more than ǫ, the found number
∑k+d−1

i=0

(

N

i

)

ǫi(1− ǫ)N−i

represents a lower bound to supP,A P
N{V (x∗(δ)) > ǫ}. ¤

5 Optimality results

In this section we establish the result that the objective value of CCPǫ can be approached at

will, provided that sampled constraints are optimally removed. Though at the present state

of knowledge optimal removal can be impractical due to the ensuing high computational
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burden, this study has a theoretical interest and sheds further light on the relation between

chance-constrained optimization and its randomized counterpart.

Let Aopt be the optimal constraints removal algorithm which leads – among all possible

eliminations of k constraints out of N – to the best possible improvement in the cost ob-

jective; further, let x∗
opt and J∗

opt be the corresponding optimal solution and cost value. We

have the following theorem.

Theorem 2 Let β ∈ (0, 1) be any small confidence parameter value, and let ν ∈ (0, ǫ) be a

performance degradation parameter value. If N and k are such that

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i +
N

∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i ≤ β, (15)

then

(i) V (x∗
opt) ≤ ǫ

(ii) J∗
opt ≤ J∗

ǫ−ν

simultaneously hold with probability at least 1 − β.

As in Theorem 1, point (i) is a feasibility result. Instead, point (ii) states that the perfor-

mance achieved by x∗
opt is no worse than the performance of CCPǫ−ν , where ν is a degradation

margin. A result similar to (ii) has also been independently established in [14]. A simple

example illustrating Theorem 2 is provided in Appendix A, part A.2.

Proof: Let

Bi = {δ ∈ ∆N : V (x∗
opt(δ)) > ǫ},

Bii = {δ ∈ ∆N : J∗
opt(δ) > J∗

ǫ−ν}.

We have to prove that P
N{Bi ∪ Bii} ≤ β.

Write P
N{Bi ∪ Bii} ≤ P

N{Bi} + P
N{Bii}. By Theorem 1, P

N{Bi} is bounded by
(

k+d−1
k

)
∑k+d−1

i=0

(

N

i

)

ǫi(1 − ǫ)N−i. We here bound P
N{Bii}.
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For the sake of simplicity, in what follows we assume that a solution x∗
ǫ−ν of CCPǫ−ν exists.

If not, the result is similarly established by a limit reasoning.

Let ∆ǫ−ν be the subset of ∆ formed by those constraints which are violated by x∗
ǫ−ν . Call

R(δ) the number of constraints among the N extracted ones that fall in ∆ǫ−ν . The ob-

jective value obtained by eliminating the R(δ) constraints in ∆ǫ−ν , say J(δ), cannot be

worse than J∗
ǫ−ν : J(δ) ≤ J∗

ǫ−ν . Thus, if J∗
opt(δ) > J∗

ǫ−ν , then R(δ) > k for, otherwise,

J∗
opt(δ) ≤ J(δ) ≤ J∗

ǫ−ν . Therefore,

P
N{Bii} = P

N{J∗
opt(δ) > J∗

ǫ−ν}

≤ P
N{R(δ) > k}

= [probability that more than k among N extractions fall in ∆ǫ−ν ]

=
N

∑

i=k+1

(

N

i

)

(P{∆ǫ−ν})
i(1 − P{∆ǫ−ν})

N−i

≤
N

∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i,

where the last inequality follows from observing that P{∆ǫ−ν} ≤ ǫ − ν.

Wrapping up the above results, we finally have

P
N{Bi ∪ Bii} ≤ P

N{Bi} + P
N{Bii}

≤

(

k + d − 1

k

) k+d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i +
N

∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i

≤ β,

where the last inequality is given by (15). ¤

Theorem 2 holds true provided that constraints are optimally removed, a nontrivial com-

binatorial problem in general. A brute-force approach (where one solves the optimization

problems for all possible combinations of N − k constraints taken from the initial set of N

constraints and then choose that combination resulting in the lowest value of the objective

function) requires to solve
(

N

k

)

optimization problems, a truly large number in general. Along

21



a different approach, constraints can be removed sequentially by choosing each time among

active constraints only. This reduces the actual number of possible combinations of con-

straints to be taken into account resulting in an algorithm that solves O(min{N ·dk, N ·kd})

optimization problems, see [15]. Even this way, however, the computational burden becomes

rapidly prohibitive for values of k and d that are not both very small.

5.1 Existence of N and k

In Theorem 2, ν measures the performance mismatch between x∗
opt and the solution of CCPǫ.

For any small ν, N and k satisfying condition (15) always exist, a result shown in this sec-

tion. As expected, N and k increase as ν approaches zero.

To start with, consider (15) and split β evenly between the two terms in the left-hand-

side of this equation, that is impose that both terms are less than β/2. A condition for the

first term to be less than β/2 has been already established in equation (6) (substitute β/2

for β in that equation). We here work on the second term.

Similarly to (15), we use a Chernoff bound for the Binomial tail, this time the right tail

Chernoff bound ([9]; see also Section 2.3.1 in [27]) stating that

N
∑

i=k+1

(

N

i

)

(ǫ − ν)i(1 − ǫ + ν)N−i ≤ e−
((ǫ−ν)N−k−1)2

3(ǫ−ν)N , for (k + 1)/2 ≤ (ǫ − ν)N ≤ k + 1.

Further, imposing that e−
((ǫ−ν)N−k−1)2

3(ǫ−ν)N is less than β/2 and solving for k yields

k ≥ (ǫ − ν)N − 1 +

√

3(ǫ − ν)N ln
2

β
. (16)

In (6), the term linear in N has slope ǫ, while the other terms are sub-linear. Instead, in

(16) the slope is (ǫ − ν). Since ǫ > (ǫ − ν), for N large enough there is a gap between

the bounds expressed by (6) and (16), and, consequently, an N and a k can be found that

simultaneously satisfy (6) and (16).
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Appendix

A An illustrative example

The extremely simple example of this appendix illustrates the nature of some results con-

tained in this paper. It goes without saying that applying a randomized procedure to such

a simple situation has no practical interest to attain solvability.

Let us consider the chance-constrained problem:

minx∈[0,1] x

subject to: x ≥ δ with probability P ≥ 1 − ǫ.

Here, X = [0, 1], Xδ = {x : x ≥ δ}, while δ ∈ ∆ = [0, 1]. Suppose also that P is uniform over

∆.

In this simple setting, the CCPǫ optimum is achieved by removing the set [1− ǫ, 1] from ∆,

leading to the optimal solution x∗
ǫ = 1 − ǫ = J∗

ǫ and to V (x∗
ǫ) = ǫ. Throughout we take

ǫ = 0.2.

Turn now to consider the randomized optimization program where k constraints are removed.

Given a multi-extraction (δ(1), . . . , δ(N)), x∗ is obtained by removing the k largest δ(i)’s and

by letting x∗ = the (k + 1)th largest δ(i) value. Also, V (x∗) = 1 − x∗ and J∗ = x∗, and all

these quantities are random variables as they depend on the multi-extraction (δ(1), . . . , δ(N)).

A.1 The need for constraints removal

Figure 6 depicts the probability density function of V (x∗) when N = 15 and k = 0, that

is, according to the philosophy of papers [5, 6, 7], no constraints are removed. One sees

that V (x∗) ≤ ǫ = 0.2 for most of the multi-extractions. On the other hand, the density

concentrates near the zero value. This means that the violation of x∗ will be much less than

that for x∗
ǫ with high enough probability, entailing that the objective value of x∗ will be poor

as compared to the chance-constrained solution.
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ǫ = 0.2

Figure 6: The probability density function of V (x∗) for N = 15 and k = 0; grey area

represents the probability that V (x∗) > ǫ.

Selecting N = 552 and k = 93 leads instead to the probability density function in Figure 7.

Constraints discarding generated solutions for which V (x∗) > ǫ has the same probability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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10

15

20

25

ǫ = 0.2

Figure 7: The probability density function of V (x∗) for N = 552 and k = 93; grey area

represents the probability that V (x∗) > ǫ.

as before, but the violation approaches the desired violation level ǫ = 0.2 of the chance-

constrained problem for most multi-extractions. This is the beneficial effect of constraints
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removal.

A.2 Optimality results

In this subsection we illustrates the results in the optimality Theorem 2.

Observe first that, in this 1-dimensional example, the considered removal algorithm coincides

with the optimal removal algorithm Aopt, i.e. x∗ = x∗
opt.

Again referring to N = 552 and k = 93, Figure 8 further displays the region Bi where

V (x∗) > ǫ along with region Bii where J∗
opt = 1 − V (x∗

opt) > 1 − (ǫ − ν) = J∗
ǫ−ν for ν = 0.05.

Here, P
N{Bi ∪ Bii} = 0.1352.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

ǫ = 0.2

ǫ − ν = 0.15

BiBii

Figure 8: The probability density function of V (x∗) for N = 552 and k = 93; Bi is the region

where V (x∗) > ǫ, while Bii where J∗
opt > J∗

ǫ−ν .

Thus, N = 552 and k = 93 suffice to simultaneously guarantee that V (x∗
opt) ≤ 0.2 and

J∗
opt ≤ J∗

0.15 with probability 0.8648. Interestingly enough, applying Theorem 2 provides in

general upper-bounds for N and k; however, in the present 1-dimensional case, substituting

ǫ = 0.2, ν = 0.05, and β = 1 − 0.8648 = 0.1352 in (15) just returns N = 552 and k = 93.
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