
1 Statistical Properties of Sample Average Approximation
Estimators

We consider
(P) min

x∈X
{ f (x) = E[F(x,ξ )]} , (1)

a stochastic optimization problem.
• Assume /06= X ⊂ R

n, closed.
• ξ is a random vector with probability distributionP, supportΞ⊂ R

d.
• F : X×Ξ→R is the optimal value of a corresponding second-stage problem.
• Assumef (x) is well defined for allx∈ X and finite, this implies thatF(x,ξ )

is finite a.e. forξ ∈ Ξ.
• We callϑ the optimal value of (1), andS the set of optimal solutions of (2).

Consider{ξ i}Ni=1 and iid sample ofξ . We can re-write (1) using the empirical
distribution generated by our sample; i.e., by assuming thatPN(ξ = ξ i) = 1

N ; this
leads to

(P̂N) min
x∈X

{

f̂N(x) = EPN [F(x,ξ )] =
1
N

N

∑
i=1

F(x,ξ i)

}

, (2)

which is called the sample average approximation (SAA) of the “true” problem(1).
• If we denotezP̂N

= ϑ̂N the optimal value of (2), we see thatϑ̂N is a random
variable.
• If we call ŜN the set of optimal solutions of (2), we see thatŜN is a random

set.
The question is hoŵϑN andŜN relate toϑ andSrespectivelly.

Theorem 1 (Convergence). When we test for convergence we have the following
basic results:
• By the Law of Large Numbers (LLN),lim

N→∞
f̂N(x) = f (x).

• If X is compact; then the convergence isuniform.
• f̂N(x) is unbiased; i.e.E[ f̂N(x)] = f (x).
• A common assumption is that F(x,ξ ) is a Carath́eodory function, i.e. con-

tinuous in x andmeasurablein ξ ;
• If the previous holds; then̂fN(x) = f̂N(x,ω) is also aCarath́eodory function;

andϑ̂N = ϑ̂N(ω), ŜN = ŜN(ω) are measurable.

Theorem 2(Bounds on convergence). Note that, by definition,̂ϑN ≤ f̂N(x) for any
x∈ X. If the LLN hlds; then

lim sup
N→∞

ϑ̂N ≤ lim
N→∞

f̂N(x) = f (x),

the inequalitycan be strictwithout aditional hypothsis.

1



Theorem 3 (Consistency ofϑ̂N). If f̂N(x) converges to f(x) w.p. 1 as N→ ∞
uniformly on X. Then̂ϑN→ ϑ w.p. 1 as N→ ∞.

Theorem 4(Consistency of̂SN). If exists a compact set C⊂ R
n such that:

1. S6= /0 and S⊂C.
2. f(x) ∈ C o(C) and f(x) ∈ R, ∀x∈C.
3. f̂N(x) converges to f(x) w.p. 1 as N→ ∞, uniformly in C.
4. w.p. 1, for N large enough,̂SN 6= /0 andŜN ⊆C.

Then,ϑ̂N→ ϑ andD(ŜN,S)→ 0 w.p. 1 as N→ ∞.

Under convexity, we can relax some of the previous conditions.

Theorem 5(Consistency II). Suppose that:
1. F is random lower semi-continuous.
2. For a.e.ξ ∈ Ξ, the function F(·,ξ ) is convex.
3. The set X is closed and convex.
4. f is lower semi-continuous, and∃xo∈X, ε > 0such that∀x∈B(xo,ε), f (x)<

∞.
5. S6= /0 and bounded.
6. LLN holds pointwise.

Then,ϑ̂N→ ϑ andD(S, ŜN)→ 0 w.p. 1 as N→ ∞.

What happen if we have a problem whereX must be estimated? i.e. we are
working on a problem of the form

(P̂N) min
x∈XN

{

f̂N(x) = EPN [F(x,ξ )] =
1
N

N

∑
i=1

F(x,ξ i)

}

, (3)

whereXN = XN(ω) i.e. depends on the sample.

Theorem 6(Consistency III). If exists a compact set C⊂ R
n such that:

1. S6= /0 and S⊂C.
2. f(x) ∈ C o(C) and f(x) ∈ R, ∀x∈C.
3. f̂N(x) converges to f(x) w.p. 1 as N→ ∞, uniformly in C.
4. w.p. 1, for N large enough,̂SN 6= /0 andŜN ⊆C.

and also,
1. if xN ∈ XN and xN→ x w.p. 1, then x∈ X.
2. For somēx∈ S, there is a sequence of xN ∈ XN such that xN→ x w.p. 1

Then,ϑ̂N→ ϑ andD(ŜN,S)→ 0 w.p. 1 as N→ ∞.

Theorem 7(First Order Asymptotics). If we have that:
1. ∃x̄∈ X such thatE[F(x̄,ξ )]< ∞.
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2. ∃C : Ξ→R+ measurable such thatE[C(ξ )2]< ∞ and|F(x,ξ )−F(x′,ξ )| ≤
C(ξ )‖x−x′‖ ∀x,x′ ∈ X, ξ ∈ Ξ.

Note that the previous conditions imply that| f (x)− f (x′)| ≤ κ‖x−x′‖ and that
V[F(x,ξ )]< ∞.

Let Y(x)≈N (0,σ2(x)), then by CLT is easy to see that

f̂N(x)− f (x)√
N

D−−−→
N→∞

Y(x),

whereσ2(x) = V[F(x,ξ )].
Then,

ϑ̂N−ϑ√
N

D−−−→
N→∞

inf
x∈S

Y(x)

Note that the previous theorem shows that the larger the setS, the larger the
bias betweenϑ̂N and ϑ . It also sugest that when approximating problems with
domains that depend on the sample (for example constraints with probability or
in expected value), it is better to use independent iid samples for each stochastic
constraint and objective function.

1.1 Convergence toε-optimal solutions

We start by the finite-domain case, where we will assume that:
• |X| ∈ N. Note that this implies thatS 6= /0 andŜN 6= /0, and thatX,XN are

compact sets.
• We defineSε = {x∈ X : f (x)≤ θ +ε} andŜδ

N = {x∈ XN : f̂N(x)≤ ϑ̂N+δ}.
We want to estimate

P[Ŝδ
N ⊂ Sε ],

for that consider the following hypothesis:
M1: Assume thatf (x) = E[F(x,ξ )]≤ ∞∀x∈ X.
M2: Ξ is a bounded sub-set ofRd.

Theorem 8 (Exponential convergence toε-optimal solutions). If both M1,M2
holds, then

1−P[Ŝδ
N ⊆ Sε ]≤ |X|e−Nµ(δ ,ε).

There exists aε∗ > 0 such that ifδ < ε < ε∗, thenµ(δε)> 0. Also, under slightly
different hypothesis, for someδ > 0 and for all 1> α > 0 is possible to show that
if

N≥ 2σ
(ε−δ )2 log

( |X|
α

)

,
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then
P[Ŝδ

N ⊆ S]≥ 1−α

.

We look now into the more general continuous case, we will assume that:
• X ⊂ R

n is closed and bounded.
• f (x) = E[F(x,ξ )]< ∞∀x∈ X.

And we consider the following assumptions:
M4 For anyx,x′ ∈ X, ∃σx′,x > 0 such thatMx′,x(t) := E[etY(x′,x)], whereY(x′,x) :=

[F(x′,ξ )− f (x′)]− [F(x,ξ )− f (x)], satisfies

Mx′,x≤ eσ2
x′ ,xt

2/2
, ∀t ∈ R.

M5 There exists a measurable functionκ : Ξ→ R+ such thatMκ(t) := E[etκ(ξ )]
is finite for some neighborhood oft equal zero and

|F(x′,ξ )−F(x,ξ )| ≤ κ(ξ )‖x′−x‖,

for a.e.ξ ∈ Ξ andx′,x∈ X.

Theorem 9 (Exponential convergence toε-optimal solutions). Suppose that all
M1,M4,M5 holds withσ2 = sup

x′,x∈X
σ2

x′,x < ∞; that the diameter D of X is finite,

i.e. D := supx′,x∈X ‖x′− x‖ < ∞. Then, there exists constants,µo > 0,L > 0,β >
0,ε∗ > 0 such that wheneverδ < ε < ε∗ and that

N≥ 8σ2

(ε−δ )2 max

[

nlog

(

µoLD
ε−δ

)

+ log

(

2
α

)

,
1
β

log(2α)

]

,

it follows that
P[Ŝδ

N ⊆ Sε ]≥ 1−α .

2 Stochastic Approximation Method

We will make the following assumptions:
• f (x) := E[F(x,ξ )]< ∞ ,∀x∈ X, and f ∈ C o(X).
• /0 6= X ⊂ R

n is closed and bounded, this implies that∃x̄ ∈ S⊆ X and that
f (x̄) = ϑ < ∞.

• X is a convex set andf (x) is a convex function.
• We assume the existance of the followingstochastic oracle:
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Definition 1 (Stochastic OracleO(x,ξ )). Given x∈X andξ ∈Ξ the stochas-
tic oracle returns F(x,ξ ) and a stochastic sub-gradient vector G(x,ξ ) such
that g(x) := E[G(x,ξ )] is well defined and is a subgradient of f at x, i.e.
g(x) ∈ δ f (x).

Note that if F(x,ξ ) is convex for everyξ ∈ Ξ and x is an interior point of
X; thenδ f (x) = E[δxF(x,ξ )]. We will assume that we can generate iid samples
{ξ i}Ni=1 for arbitrarily largeN ∈ N.

We will denoteΠX(x) = argmin
z∈X
‖x− z‖2, i.e. ΠX(x) is thel2 (or metric) pro-

jection ofx into X. Note that sinceX is convex and closed‖ΠX(x)−ΠX(x′)‖2 ≤
‖x−x′‖2.

The basic idea is the following:

Require: xo ∈ R
n, k= 0, {γk}k∈N, {ξ k}k∈N.

1: repeat
2: xk+1←ΠX

(

xk+ γkG(xk,ξ k)
)

, k← k+1.
3: until some stopping rule
4: return xk

We will assume thatE[‖G(x,ξ )‖2] ≤ M2 for someM > 0, this implies that
E[‖G(x,ξ )‖2]≤M.

Theorem 10(Convergence of Stochastic Approximation Method). If f (x) is strongly
convex with parameter c, and lipschitz continuous with parameter L,(this implies
that S= {x̄}), andγ j =

1
c j , and thatx̄ is interior to X; then

E[ f (x j)− f (x̄)]≤ Lmax{M2/c2,‖xo− x̄‖2}
2 j

.

One disadvantage is that the previous result require a great deal of knowledge
of f , and moreover, the hypothesis are very restrictive; we consider the following
robust stochastic approximation method:

Require: xo ∈ R
n, k= 0, N ∈ N, γ ∈ R+, {ξ k}Nk=0.

1: repeat
2: xk+1←ΠX

(

xk+ γkG(xk,ξ k)
)

, k← k+1.
3: until k= N

4: return x1,N := 1
N

N
∑

k=1
xk

If we defineDX = max
x∈X
‖x−xo‖2, is possible to prove that:

E[ f (x̂1,N)− f (x̄)]≤ D2
X +M2Nγ2

2Nγ
.
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Optimizing overγ > 0 we obtain that by settingγ = DX

M
√

N
we obtain that

E[ f (x̂1,N)− f (x̄)]≤ DXM√
N

.

It is also possible to prove that

E[ f (x̂K,N)− f (x̄)]≤ CN,KDXM√
N

,

whereCN,K = 2N
N−K+1 +

1
2. If we use a different step-size, scaled by a factorθ > 0;

then we can prove that

E[ f (x̂K,N)− f (x̄)]≤max{θ , 1
θ
}CN,KDXM√

N
.

By choosingK ≈ 1
2N, then we have that

E[ f (x̂K,N)− f (x̄)]≤max{θ , 1
θ
}5DXM√

N

and then prove that the procedure isrobustindependent of the step-length chosen.
Also, it is possible to derive the following iterate estimate:

P[ f (x̂1,N− f (x̄)≥ ε ]≤ 1
ε
E[ f (x̂1,N− f (x̄)≥ ε ]≤ DXM

ε
√

N

.
From where we can derive that forα ∈ (0,1) andN≥ D2

XM2

ε2α2 we have that

P[x̂1,N ∈ Sε ]≥ 1−α

Note that this estimate is weaker than that from the SAA algorithm; however,
under some extra mild assumptions (for exampeΞ compact), we can prove that

there existsKo≥ 0 such that forN≥ KoM2D2
X

ε2 log2( 1
α ) we can guarantee that

P[x̂1,N ∈ Sε ]≥ 1−α

Which is a close form to the sample-size estimate for SAA.
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3 Asymptotic behavior of statistical estimators and of op-
timal solutions of stochastic optimization problems
Jitka Dupačov́a, Roger Wets, 1988

3.1 Definitions:

1. Let (Ω,A ,P) be a probability space, withΩ the support ofP, with A the
borelσ -field (σ -algebra) with respect toΩ.

2. We consider the problem
min
x∈Rn

E( f (x))

where
E( f (x)) =

∫

Ω
f (x,ξ )P(dξ ) = Eξ ( f (x,ξ )).

and where
f : Rn×Ω→ R∪{∞}

• This allow for constraints in the domain
3. We define domE( f ) = {x : E( f (x))< ∞}.

Note that domE( f )⊂ {x : f (x,ξ )< ∞a.s.}.
4. We say thatg : Rn→ R is lower semi-continuous (lsc) iff

xk −−−→
k→∞

x⇒ liminf
k→∞

g(xk)≥ g(x)

5. f : Rn×Ω→ R∪{∞} is random lower semicontinuous functioniff for all
ξ ∈Ω f (·,ξ ) is lsc. andf is mesurable.

3.2 Assumptions:

1. Continuity:
(a) domf := {(x,ξ ) : f (x,ξ )<∞}=S×Ω, S⊂R

n closed and non-empty.
(b) For allx∈ S,ξ → f (x,ξ ) is continuous onΩ.
(c) For allξ ∈Ω,x→ f (x,ξ ) is lsc onRn and locally lower lipschitz onS.

2. Convergence of probability measures:
(a) Uff....

3.3 Results

1. Under the previous assumptions, there existsZo ∈ A such thatP(Zo) = 1
and such that for allζ ∈ Zo, E( f ) and{Eν( f )}ν∈N areproper lsc and such
thatS:= domE( f ) = domEν( f ), ∀ν ∈ N.
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2. Under the previous assumptions,

∀x∈ S E( f (x)) = lim
ν→∞

E
ν( f (x))

3. Under the previous assumptions,E
n( f ) : Rn× Z→ R∪ {∞} is µ-surelly

random lower semicontinuous.
4. Under the previous assumptions

limsup
ν→∞

(infEν( f ))≤ infE( f ).

Moreovoer, there existZo with µ(Z\Zo) = 0 such that:
(a) ∀ζ ∈Zo any cluster point of the sequence{xν}with xν ∈ argminEν f ν(·,ζ )

belongs to argminE f .
(b) for ν ∈N the applicationζ → argminEν f (·,ζ ) : Zo ⇉R

n is closed and
F ν mesurable.

(c) If there existsD⊆ R
n compact such that

argminEν f ∩D 6= /0 µ−a.s.

and{x∗} = argminE f ∩D, then there existxν ∈ argminEν f such that
x∗ = lim

ν→∞
xν .

4 On the rate of convergence of optimal solutions of monte
carlo approximations of stochastic programs,Alexan-
der Shapiro, Tito Homem-de-Mello, 2000

4.1 Problem Description

1. We have the problem

(P) min
x∈Θ
{ f (x) := EPh(x,ω)},

whereP is a probability measure on a space(Ω,F ), Θ⊆ R
n.

This is called thetrueoptimization problem.
2. Assuming that we generate an identically distributed random sample{wi}Ni=1

in (Ω,F ) according toP, we can define the followingapproximatedproblem

(PN) : min
x∈Θ

{

f̂N(x) :=
1
N

n

∑
i=1

h(x,ω i)

}

.

We call this thesampledproblem.
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4.2 Known results

1. LetA be the set of optimal solutions for(P), and let ˆxN an optimal solution
of (PN).

2. Under similar assumptions as before:

dist(x̂N,A)−−−→
N→∞

0, a.s.

3. Under mild assumptions, the rate of convergence of dist(x̂N,A) to zero is

O

(

N
−1
2

)

.

4. Givenε > 0, we have that

P(dist(x̂N,A)> ε)−−−→
N→∞

0,

and its convergence is exponentially fast.

4.3 New results:

1. Suppose that:
(a) Ω is finite.
(b) ∀ω ∈Ω h(·,ω) is pice-wise linear and convex.
(c) Θ is closed, convex and polihedral.
(d) (P) has a non-empty, bounded optimal setA.

Then:
(a) A is compact, convex and polyhedral, and w.p.1 forN large enough, the

set of optimal solutionsAN for (PN) are non-empty and are a face ofA.
(b) There existβ > 0 such that

limsup
N→∞

1
N

log(P({AN 6= /0,AN∩A= AN}c)≤−β

5 The Empirical Behavior of Sampling Methods for Stochas-
tic Programming, Jeff Linderoth, Alexander Shapiro, Stephen
Wright, 2002

5.1 Definiciones

1. We consider
(P)min

x∈X
{ f (x) := EP(F(x,ξ (ω)))}

whereX ⊆ R
n, ξ ∈ R

d, F : Rn×R
d→ R.
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2. Two-stage stochastic linear program with recourse:

min
x

ctx+Q(x) : Ax= b,x≥ 0,

whereQ(x) := E(Q(x,ξ (ω))) and whereQ(x,ξ ) is the optimal value of the
second-stage problem

min
y

qty : Tx+Wy= h, y≥ 0.

Note that(q,h,T,W) may depend onω , (i.e. random).
3. If W is not random, the problem is said to havefixed recourse.
4. Note that ifF(x,ξ )= ctx+Q(x,ξ ) andX = {x : Ax= b,x≥ 0}, andP(Q(x,ξ )<

∞|x∈ X) = 1, then the two-stage stochastic problem is a particular case of
our general problem.

5.2 Supuestos

1. We will assume thatξ (ω) has finite support{ξi}Ki=1.

2. We can writeQ(x) =
K
∑

k=1
pkQ(x,ξk).

3. Under these assumptions, we can write

(P)

min ctx+
K
∑

k=1
pqqt

kyk

s.t. Ax = b
Tkx+Wyk = hk, k= 1, . . . ,K

x,y ≥ 0

4. If ξ ∈ {0,1}100, k= 2100≈ 1030.

5.3 Lower Bounds

1. E(v̂N)≤ v∗.
2. We could generate and estimator ofE(v̂N) throughM sampled problems,

with ξk, j iid, asLN,M := 1
M

M
∑
j=1

v̂ j
N.

3. By central limit theoremwe have that
√

M (LN,M−E(v̂N))−−−→
M→∞

N(0,σ2
L)

whereσ2
L = V(v̂N).
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4. We can uses2
L := 1

M−1

M
∑
j−1

(

v̂ j
N−LN,M

)2
as an unbiased variance estimator.

5. We could assume (for smallM) that we have a t-student.
6. We can use confidence intervals.

5.4 Upper Bounds

1. By definition, given ˆx∈ X, f (x̂)≥ v∗.
2. Assume we have{ξ i, j} j=1..T,i=1..N iid, then we have that

E

(

f̂ j
N :=

1
N

N

∑
i=1

F(x,ξ i j )

)

and also we can define

UN,T :=
1
T

T

∑
j=1

f̂ j
N

3. use same trick as before.
4. We can estimate the optimality GAP now....

5.5 Problems

1. 20term: vehicle assignment with 1.2× 1012 scenarios, 3× 64 first stage,
124×756 second stage.

2. gdb: Aircraft allocation with 6.5×105 scenarios, 4×17 first stage, 5×10
second stage.

3. LandS: Electricity Planning with 1.0×106 scenarios, 2×4 first stage, 7×12
second stage.

4. ssn: Telecom Network Design with 1.0×1070 scenarios, 1×89 first stage,
175×706 second stage.

5. storm: Cargo Flight Scheduling with 6.0× 1081 scenarios, 185× 121 first
stage, 528×1259 second stage.

5.6 Results

1. UseT = 50,N = 2000
2. UseM = 7...10,N = 50,100,500, ....
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Prob N E(v̂N) 95% best f̂ (x j
N) 95%

20term 50 253.361± .944 254.317± 0.019
20term 500 254.324± .194 254.320± 0.027
20term 5000 254.340± .085 254.341± 0.020

gdb 50 167.862± 6.673 165.585± 0.134
gdb 500 164.966± 1.360 165.490± 0.146
gdb 5000 165.313± 0.437 165.640± 0.131
ssn 50 4.11± 1.23 12.68± 0.05
ssn 500 8.54± 0.34 10.28± 0.04
ssn 5000 9.98± 0.21 9.86± 0.05

storm 50 155.062± 0.220 154.990± 0.008
storm 500 154.981± 0.041 154.984± 0.006
storm 5000 154.981± 0.018 154.986± 0.006

6 The Sample Average Approximation Method for Stochas-
tic Discrete Optimization, Anton Kleywegt, Alexander
Shapiro, SIAM Journal of Optimization, 2001

6.1 The problem

(P) min
x∈S

g(x) := EP(G(x,w))

Con w vector aleatoreo con distribución de probabilidadP, G(x,w) : S×Ω→ R

y |S| ∈ N. Asumimos queg(x) esta bien definido, i.e.G(x, ·) esP-medible, y que
E(|G(x,w)|)< ∞. En particular estaremos interesados en problemas dondeg(x) es
difı́cil de computar, peroG(x,w) es f́acil de evaluar.

6.2 Resultados

• Definiendo ˆgN(x) := 1
N ∑ i = 1NG(x,wi) y el problema

(P̂N) min
x∈S

hatgN(x)

como el problema aproximado, y llamandoS∗ el conjunto de soluciones
óptimas de(P) y Ŝ∗N el conjunto de solucioneśoptimas de(P̂N), Sε el con-
junto de solucionesε-óptimas de(P), respectivamentêSε

N y zP = v∗, v̂N =
zP̂N

, entonces:
– E(ĝN(x)) = g(x).
– v̂N −−−→

N→∞
v∗ w.p.1.
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– P(Ŝε
N ⊂ Sε)−−−→

N→∞
1.

– Dada una variable aleatoreaX, y un sample iid{xi}ni=1, y definiendo

ZN = 1
N

N
∑

i=1
, entonces

1
N

log(P(ZN ≥ a))≤−I(a)

dondeI(a) := supt≥0{tz− log(E(etX))}. Note que siE(X) = µ, en-
toncesI(µ)= 0. Adeḿas, si la funcíon de momentos esta bien definida,
I ′(0) = µ. De donde uno puede demostrar que paraa> µ se tiene que
I(a)> 0.

– Asumiendo que en torno det = 0 M(t) := E(etX) es diferenciable, en-
tonces existen constantesγx > 0 y γ ′x > 0 tal que

P(|ĝN(x)−g(x)| ≥ ε/2)≤ e−Nγx +e−Nγ ′x
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