1 Statistical Properties of Sample Average Approximation
Estimators

We consider
(P) min{f(x)=E[F(x )]}, (1)

a stochastic optimization problem.

e Assume 0% X C R", closed.

e £ is a random vector with probability distributid® support= c RY.

e F: X x=—Risthe optimal value of a corresponding second-stage problem.

e Assumef (x) is well defined for alk € X and finite, this implies thef (x, &)

is finite a.e. foré € =.

e We calld the optimal value of (1), an8the set of optimal solutions of (2).
Consider{f‘}i’\‘:1 and iid sample of. We can re-write (1) using the empirical
distribution generated by our sample; i.e., by assumingRgef = &') = ﬁ; this
leads to

A~

N
(A) rxneig{fN(x) = Eq,[F(x,€)] = ,ﬁ;ax,si)}, 7

which is called the sample average approximation (SAA) of the “true” proflgm
e If we denotezg = Iy the optimal value of (2), we see thay, is a random
variable. A A
o If we call Sy the set of optimal solutions of (2), we see tlSqtis a random
set.
The question is h0\A§N andS, relate to9 andS respectivelly.

Theorem 1 (Convergence)When we test for convergence we have the following
basic results:

e By the Law of Large Numbers (LLNAML fn (x) = f(x).
If X is compact; then the convergencaursform.
fn(x) is unbiased; i.eE[fy(X)] = f(x).
A common assumption is tha{X &) is a Caratteodory functioni.e. con-
tinuous in x andneasurablén &;
If the previous holds; thefi\ (x) = fn(x, w) is also aCaratleodory function
andJy = In(w), S = Su(w) are measurable.

Theorem 2(Bounds on convergenceNote that, by definitiondy < fi (x) for any
x € X. If the LLN hlds; then

lim sup Iy < lim fy(x) = f(x),
N—s00 N—e0

the inequalitycan be strictvithout aditional hypothsis.



Theorem 3 (Consistency ofdy). If fN(x) converges to fx) w.p. 1 as N— o
uniformly on X. Thedy — 3 w.p. 1 as N— .

Theorem 4(Consistency ofy). If exists a compact set € R" such that:
1. S#£0and Sc C.
2. f(x) € €°(C) and f(x) € R, ¥x € C.
3. fn(x) converges to ) w.p. 1 as N— oo, uniformly in C.
4. w.p. 1, for N large enougl§y # 0 andSy C C.
Then,dy — 9 andD(&,S) — Ow.p. 1 as N— c.

Under convexity, we can relax some of the previous conditions.

Theorem 5(Consistency Il) Suppose that:
1. F is random lower semi-continuous.
2. Fora.e.£ € =, the function K-, ) is convex.
3. The set X is closed and convex.
4. fislower semi-continuous, aa® € X, € > 0such that’x e B(x°, ¢), f(x) <
0,
5. S# 0 and bounded.
6. LLN holds pointwise.
Thendy — 9 andD(S &) — Ow.p. 1 as N— oo,

What happen if we have a problem whétemust be estimated? i.e. we are
working on a problem of the form

N .
(Av) min{fN(x):EpN[F(x,f)]:;_;F(Xg')}, ®3)

XEXN

whereXy = Xy(w) i.e. depends on the sample.

Theorem 6(Consistency lll) If exists a compact set € R" such that:
1. S#0and Sc C.
2. f(x) € €°(C) and f(x) e R, ¥x e C.
3. fn(x) converges to ) w.p. 1 as N— oo, uniformly in C.
4. w.p. 1, for N large enougl§y # 0 andSy C C.
and also,
1. if xy € Xy and %y — xw.p. 1, then x X.
2. Forsomex e S, there is a sequence gf ¥ Xy such that x — xw.p. 1

Then,dy — 9 andD(&,S) — Ow.p. 1 as N— c.

Theorem 7 (First Order Asymptotics)If we have that:
1. 3x e X such thafE[F (X, §)] < .



2. 3C: = — R, measurable such th&[C(&)?] < w and|F(x,&) —F(X,&)| <
C(&)|Ix—=X| vx,X e X, & € =.
Note that the previous conditions imply that|f(x) — f(X)| < k||x—X|| and that
VIF(x, )] < .
Let Y(x) ~ .47(0,0%(x)), then by CLT is easy to see that

~

NG —f0) 2

Y,
wherea?(x) = V[F(x,&)].
Then, R
IN—T 9 .
N e

Note that the previous theorem shows that the larger th&, g6k larger the
bias betweerfy and 9. It also sugest that when approximating problems with
domains that depend on the sample (for example constraints with probability or
in expected value), it is better to use independent iid samples for eaclastioch
constraint and objective function.

1.1 Convergence te-optimal solutions

We start by the finite-domain case, where we will assume that:
e |X| € N. Note that this implies tha®# 0 andSy # 0, and thatX, Xy are
compact sets.
e We defineS’ = {xe X: f(x) < 0+¢} andS) = {xe Xy : fn(x) < In+5}.
We want to estimate
PR C S,

for that consider the following hypothesis:
M1: Assume thaf (x) = E[F (X, )] < VX € X.
M2: = is a bounded sub-set &F.

Theorem 8 (Exponential convergence tg-optimal solutions) If both M1,M2
holds, then A
1-P[S C ] < [X|e NH(E2),

There exists @* > O such that ifd < € < €*, thenu(d¢) > 0. Also, under slightly
different hypothesis, for son@&> 0 and for all1 > a > 0 is possible to show that

if
20 IX|
> '
N—(sé>2'°g<a>’




then

PRCY>1-a

We look now into the more general continuous case, we will assume that:
e X C R"is closed and bounded.
o f(X)=E[F(X,&)] <o¥xe X.
And we consider the following assumptions:
M4 For anyx,X € X, 30y x > 0 such thaty x(t) := E[eY¥X], whereY (X, x) :=
[F(X,&)— f(X)]—[F(x,&)— f(x)], satisfies

2 2
My x < €%/ vt e R,

M5 There exists a measurable function = — R, such thaiM (t) := E[e*(¢)]
is finite for some neighborhood bkequal zero and

[F(X,&) —F(x&)] < k(&)X —x],
fora.e.& € = andx,x € X.

Theorem 9 (Exponential convergence t#-optimal solutions) Suppose that all

M1,M4,M5 holds witha? = sup 07, < «; that the diameter D of X is finite,
Xxex

i.e. D:=sup ycx [[X —X|| < . Then, there exists constants, > 0,L > 0,3 >

0,&* > O such that wheneve¥ < € < €* and that

)

80? UoLD 2\ 1
N > (‘s_é)zmax[nlog <£_5> +log (a) ,Elog(ZG)

it follows that A
PR CS]>1—a.

2 Stochastic Approximation Method

We will make the following assumptions:
o f(X):=E[F(x,¢&)] <o, ,¥xe X, andf € €°(X).
e 0+ X C R"is closed and bounded, this implies thatc SC X and that
f(X) =3 < .
e X is a convex set anfl(x) is a convex function.
¢ We assume the existance of the followstgchastic oracle



Definition 1 (Stochastic Oraclé'(x, & )). Given xe X andé € = the stochas-
tic oracle returns Kx, &) and a stochastic sub-gradient vecto(XG) such
that gx) := E[G(x, )] is well defined and is a subgradient of f at x, i.e.
g(x) € 6f(x).
Note that if F(x,&) is convex for every € = andx is an interior point of
X; thendf(x) = E[&F (x,&)]. We will assume that we can generate iid samples
{&TN, for arbitrarily largeN € N.
We will denotellx (x) = argggi(n”x— Z||, i.e. Mx(x) is thel? (or metric) pro-

jection ofx into X. Note that sinceX is convex and closefilx (x) — Mx (X2 <
Ix—X]|2.
The basic idea is the following:
Require: X° € R", k=0, { W }ken, {&  ken.
1: repeat
20 XL My (X4 UG (XK, &%), ke k+1.
3: until some stopping rule
4: return X<
We will assume thaE([||G(x, &)]2] < M? for someM > 0, this implies that
E[||G(x, £)]l2] <M.

Theorem 10(Convergence of Stochastic Approximation Methadd¥ (x) is strongly
convex with parameter c, and lipschitz continuous with parameter L,(this isnplie
that S= {x}), andy; = C—lj and thatx is interior to X; then

_ Lmax{M%/c2, |x° — Xz}

E[f(x}) - f(X)] -

One disadvantage is that the previous result require a great deabwiddge
of f, and moreover, the hypothesis are very restrictive; we consider Hbeviiog
robust stochastic approximation method:

Require: X e R" k=0,Ne N, ye Ry, {E}N .

1: repeat
20 XL My (X4 G(XK, EK)), K+ K+ 1.
3: until k=N

N
4: return xMN =1 5 xK
N\ &1

If we defineDy = mr;t(x||x—x°||2, is possible to prove that:
Xe

1 DZ + M2Ny?
E[f(R*N) — f(x)] < XZT



Dx_ \ve obtain that

Optimizing overy > 0 we obtain that by setting=

MvN

. DxM

E[f(&"N) — f(X)] < :

(&) = 1(0) < 5

It is also possible to prove that

. Cn.xDxM
E[f (N) — f(x)] < =22,

[FREM) = £60] < =205

whereCn k = -1 + 3- If we use a different step-size, scaled by a faéor 0;
then we can prove that

B[ (KY) - 17] < max(6, ) P,

By choosingK ~ 3N, then we have that

E[f (%) — f(X)] < max{e,;}5?/xﬁl\/'

and then prove that the proceduredbustindependent of the step-length chosen.
Also, it is possible to derive the following iterate estimate:

o 1 . DxM
Pl (&N — £(X) > e] < ZE[f(fan— F(X) > €] <
[f( (X) = ] < _E[f (%N (7_]_8\m
From where we can derive that fare (0,1) andN > 2%2"22 we have that

PineS|>1—a

Note that this estimate is weaker than that from the SAA algorithm; however,
under some extra mild assumptions (for exargpeompact), we can prove that

212
there exist¥, > 0 such that foN > K"':"Zisz log?(1) we can guarantee that
PneS]>1-a

Which is a close form to the sample-size estimate for SAA.



3 Asymptotic behavior of statistical estimators and of op-
timal solutions of stochastic optimization problems
Jitka Dupacova, Roger Wets1988

3.1 Definitions:

1. Let(Q,<7,P) be a probability space, wit the support oP, with </ the
borel o-field (og-algebra) with respect t0Q.
2. We consider the problem

minE(f(x))
where
E(1(0) = [ T )P(0E) = Eg((x.8))
and where

fiR"xQ— RU{eo}

e This allow for constraints in the domain
3. We define dorfi(f) = {x: E(f(x)) < oo}.
Note that dor(f) C {x: f(x,) < was.}.
4. We say thag : R" — R is lower semi-continuous (Isc) iff

X — X = liminf g(x¥) > g(x)
K—00 k— 0o

5 f:R"xQ — RU{w} is random lower semicontinuous functidghfor all
§eQf(-,&)islsc. andf is mesurable.

3.2 Assumptions:

1. Continuity:
(@) dont:={(x,&): f(x,&) <o} =SxQ,Sc R"closed and non-empty.
(b) Forallxe S & — f(x,&) is continuous o).
(c) ForallE € Q,x— f(x,&) isIsc onR" and locally lower lipschitz 0%.
2. Convergence of probability measures:
(a) Uff....

3.3 Results

1. Under the previous assumptions, there extsts .7 such thatP(Z,) = 1
and such that for af € Z,, E(f) and{E"(f)} ey areproperlsc and such
thatS:= domE(f) =domEY(f), VveN.



2. Under the previous assumptions,

vxeS E(f(x) = lim EY(f(x))

V—oo

3. Under the previous assumptiors)(f) : R" x Z — RU{e} is u-surelly
random lower semicontinuous.
4. Under the previous assumptions

limsup(infEY(f)) <infE(f).

V—o0

Moreovoer, there exist, with u(Z\ Z,) = 0 such that:
(a) V¢ € Z, any cluster point of the sequenfe’ } with xV € argmiriEV fV(-, {)
belongs to argmiRi f.
(b) forv e Nthe applicatior{ — argmirE¥ f(-,{) : Zo, = R"is closed and
Z" mesurable.
(c) If there existdD C R" compact such that

argmiE’fND#0 u-—as
and{x"} = argmir£f N D, then there existV € argmirE¥ f such that

x* = lim xV.
V—00

4  Onthe rate of convergence of optimal solutions of monte
carlo approximations of stochastic programs,Alexan-
der Shapiro, Tito Homem-de-Mella2000

4.1 Problem Description
1. We have the problem
(P) min{ f (x) := Eph(X,w)},

X

whereP is a probability measure on a spa¢g, %), © C R".
This is called thdrue optimization problem.

2. Assuming that we generate an identically distributed random sa{mﬂlﬁzl
in (Q,.%) according td, we can define the followingpproximategroblem

(Pn) : [(Qig{ﬁ\l(x) :Zili_ih(x,wi)}.

We call this thesampledoroblem.



4.2 Known results

1. LetA be the set of optimal solutions fgP), and letxy an optimal solution

of (Ry).
2. Under similar assumptions as before:

dist(xy,A) —— 0, as.
N—00

3. Under mild assumptions, the rate of convergence ofljsf) to zero is
o (N%>.
4. Givene > 0, we have that
P(dist(Xn,A) > &) —— 0,

N—o0

and its convergence is exponentially fast.

4.3 New results:

1. Suppose that:
(a) Qs finite.
(b) Yw € Q h(-,w) is pice-wise linear and convex.
(c) ©is closed, convex and polihedral.
(d) (P) has a non-empty, bounded optimal 8et
Then:
(a) Ais compact, convex and polyhedral, and w.p.1Ndarge enough, the
set of optimal solutiongy, for (Py) are non-empty and are a face/of
(b) There exisp3 > 0 such that

Iimsup% log(P({An # 0,ANNA=A\}%) < -B
N—oc0
5 The Empirical Behavior of Sampling Methods for Stochas-
tic Programming, Jeff Linderoth, Alexander Shapiro, Stephen
Wright, 2002

5.1 Definiciones

1. We consider

(PYymin{f(x) := Ep(F(x & (w)))}

XeX

whereX CR", £ e RY, F: R"x R4 > R.



2.

w

Two-stage stochastic linear program with recourse:
minc'x4 2(x) : Ax=b,x > 0,
X

where2(x) := E(Q(x, & (w))) and where&)(x, §) is the optimal value of the
second-stage problem

myinqty: Tx+Wy=h, y>0.

Note that(qg, h, T,W) may depend ow, (i.e. random).

. If Wis not random, the problem is said to hdwed recourse
. Note thatifF (x, &) = c!x+2(x, &) andX = {x: Ax= b, x> 0}, andP(Q(x, &) <

o|x € X) = 1, then the two-stage stochastic problem is a particular case of
our general problem.

Supuestos

. We will assume thaf (w) has finite supporf& }K ;.

2. We can write2(x) = kgl PkQ(X, &k).

3. Under these assumpﬁons, we can write

K
min  cix+ kzl Pqol Yk

(P) st. Ax = b
TX+Wy = hk, k:]., K
Xy > 0

. If & €{0,1}100 k= 2190~ 10%,

Lower Bounds

. E(UN) <V
. We could generate and estimatori&(fy) throughM sampled problems,

M .
with & j iid, asLym := & 3 O\
=

. By central limit theorenwe have that

VM (Lym —E(Wn)) — N(0,07)

M—00

whereg? = V().

10
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5.5

Mo 2
. Wecanus€ =15 5 (\7,{, - LNyM) as an unbiased variance estimator.
<1

. We could assume (for smél) that we have a t-student.
. We can use confidence intervals.

Upper Bounds

. By definition, giverx_‘e X, f(X) > v".
. Assume we have&" }i_1 1-1 n iid, then we have that

5 1 N -
. |
E| fy:= Ni: F(x,&")
and also we can define ;
1 .
UnTt == )
T J; N

. use same trick as before.
. We can estimate the optimality GAP now....

Problems

. 20term: vehicle assignment with2lx 102 scenarios, X 64 first stage,

124 x 756 second stage.

. gdb: Aircraft allocation with & x 1P scenarios, 4 17 first stage, % 10

second stage.

. LandS: Electricity Planning with.@ x 10° scenarios, 2 4 first stage, & 12

second stage.

. ssn: Telecom Network Design withQlx 1079 scenarios, k 89 first stage,

175x 706 second stage.

. storm: Cargo Flight Scheduling with@®x 10°! scenarios, 18% 121 first

stage, 52& 1259 second stage.

Results
UseT = 50,N = 2000

. UseM = 7...10,N = 50,100,500,.....

11



Prob | N E(Un) 95% bestf (x{,) 95%
20term| 50 | 253.361+ .944 | 254.317+ 0.019
20term| 500 | 254.324+ .194 | 254.320+ 0.027
20term| 5000 | 254.3404 .085 | 254.341+ 0.020

gdb | 50 | 167.862+ 6.673| 165.585+ 0.134

gdb | 500 | 164.966+ 1.360 | 165.490+ 0.146

gdb | 5000 | 165.313+ 0.437 | 165.640+ 0.131

ssn | 50 4.11+1.23 12.68+ 0.05

ssn | 500 | 8.54+0.34 10.28+ 0.04

ssn | 5000 9.98+0.21 9.864 0.05
storm | 50 | 155.062+ 0.220| 154.990+ 0.008
storm | 500 | 154.981+ 0.041 | 154.984+ 0.006
storm | 5000 | 154.981+ 0.018 | 154.986+ 0.006

6 The Sample Average Approximation Method for Stochas-
tic Discrete Optimization, Anton Kleywegt, Alexander
Shapiro, SIAM Journal of Optimization, 2001

6.1 The problem
(P)

Conw vector aleatoreo con distribuei de probabilidad®, G(x,w) : Sx Q — R

y |S € N. Asumimos quey(x) esta bien definido, i.e5(x,-) esP-medible, y que
E(|G(x,w)|) < e. En particular estaremos interesados en problemas dgriles
dificil de computar, per&(x,w) es fcil de evaluar.

rpeigg(x) = Ep(G(x,w))

6.2 Resultados
e Definiendogh(x) := & ¥i = ING(x,w') y el problema

(Rv)  minhatgy(x)

como el problema aproximado, y llaman&b el conjunto de soluciones
optimas de(P) y S*\, el conjunto de solucione@ptimas de(f’N), S el con-
junto de soluciones-optimas de(P), respectivamentéﬁl Yy zp =V Uy =
z,, entonces:
— E(Gn(X)) = 9(%).
- Uy —— Vv w.p.l.
N— oo

12



— Dada una variable aleatoréa y un sample iid{x " ., y definiendo

N
ZN = %_zl, entonces
i=

%IOQ(P(ZN >a)) < -lI(a)
dondel (a) := sup-o{tz— log(E(e*))}. Note que siE(X) = y, en-
tonced (i) = 0. Adens, si la funddn de momentos esta bien definida,
I’(0) = u. De donde uno puede demostrar que @arau se tiene que
I(a) > 0.
— Asumiendo que en torno de= 0 M(t) := E(éX) es diferenciable, en-
tonces existen constantgs> 0y ¥, > 0 tal que

P(|Gn(X) —g(x)| > £/2) < & Nk - eN%

13



