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This paper presents a methodology for the solution of multistage stochastic optimization problems, based 
on the approximation of the expected-cost-to-go functions of stochastic dynamic programming by 
piecewise linear functions. No state discretization is necessary, and the combinatorial "explosion" with 
the number of states (the well known "curse of dimensionality" of dynamic programming) is avoided. 
The piecewise functions are obtained from the dual solutions of the optimization problem at each stage 
and correspond to Benders cuts in a stochastic, multistage decomposition framework. A case study of 
optimal stochastic scheduling for a 39-reservoir system is presented and discussed. 

1. Introduction 

This technical note describes an algorithm for the solution of multistage stochastic 

optimization problems. The solution approach, called stochastic dual dynamic pro- 

gramming  (SDDP), is based on the approximation of the expected-cost-to-go func- 

tions of stochastic dynamic programming by piecewise linear functions. These 

approximate functions are obtained from the dual solutions of the optimization 

problem at each stage and can be interpreted as Benders cuts in a stochastic, 

multistage decomposition algorithm. No state discretization is necessary, and the 

combinatorial "'explosion" with the number of states (the well known "curse of 

dimensionality" of  dynamic programming) is avoided. The algorithm is also suitable 

for implementation in parallel processors. The application of the algorithm is 

illustrated in a case study of optimal stochastic scheduling for a 39-reservoir system. 

2. Dual dynamic p r o g r a m m i n g -  deterministic case 

The concepts of  dual dynamic programming will be illustrated with the following 

linear programming problem: 

Min ClXl + c2x2 

subject to A l x l > t  bl ,  (1) 

ElXl + A2x2 ~ b2. 



360 M. V.F. Pereira, L.M. V.G. Pinto / Stochastic optimization and energy planning 

Problem (1) can be interpreted as a two-stage decision process. In the first stage, we 

decide on a trial feasible value for x~ (i.e. such that A~Xl >! bl). Given the trial value, 
~ ,  we find the optimal solution of the second stage function: 

Min e2x2 

subject to A2X2 >t b2 _ E1x1 .  (2) 

Note that 2~ is a known value in the second-stage problem (2), and goes to the 

right-hand side of  the constraints. The objective is to minimize the sum of the 

first-stage and second-stage cost functions. Figure 1 illustrates the decision process. 

first-stage problem ] qx, ~ min 
I 

I X 

second-stage problem [ 
C2X 2 

Fig. 1. Two-stage decision process. 

Dynamic programming (DP) algorithms can be used to solve sequential decision 

processes such as problem (1). In the DP approach,  a first-stage problem would be 

defined as 

Min Cl X 1 Jr- o/1 (x1) 
(3) 

subject to A~xl >1 bl. 

In DP terminology, ClXl represents the " immediate  cost" and aa(x~) represents the 
"future cost" of  decision xl,  i.e. the consequences of  this decision for the second- 

stage problem. The future cost function o~(x~) is defined as 

al(xl) = Min C2X 2 

subject to A2x2>! b2- E~x~. (4) 

The future cost function (4) "translates" the second-stage costs as a function of the 
first-stage decisions x~, also called state variables. I f  this function is available, the 

two-stage problem (1) can be solved as the one-stage problem (3). 
The DP algorithm constructs the future cost function a~(Xl) by discretizing xa into 

a set of  trial values {~i ,  i = 1 , . . . ,  n} and solving problem (4) for each of the trial 

values. Intermediate values of  a~(xx) are obtained by interpolation from the neigh- 
boring discretized states. Once this function is constructed, the first-stage problem 
(3) can be solved. Figure 2 illustrates the calculation of the future cost function 

a l (X0 for a set of  discretized values. 
The DP approach has many attractive features: it can be easily extended to 

multistage problems; can be extended to stochastic cases; can accommodate  discrete 
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Fig. 2. State discretization in DP. 

~-- s ta te  (x) 

values, nonlinearities etc. Its main drawback is the need to discretize the decisions 

(state variables) in order to construct the future cost functions. It is easy to see that 

this may lead to a very large number  of combinations even for a modest  number  

of  variables. For example,  if the vector xl has ten components,  and if each component  

is discretized into four values, there will be 4 l°, i.e. over one million possible discrete 
values of  Xl. This "curse of  dimensionality" limits the applicability of  DP algorithms 

to problems with a small number  of  variables (typically three or four, in the case 

of  stochastic DP problems).  

One possible way of  avoiding the dimensionality problem is to approximate the 

future cost function by analytical functions rather than a set of  discrete values. For 

example,  one c, ould calculate the future cost values ~1(Xl) for a sample of states, 

and then adjust a polynomial  (e.g. a quadratic or cubic function of xl) to these 
values. The polynomial  would then be used in the previous stage to supply future 

cost values for any trial decision xl (see, for example, Gal, 1989). The algorithm 

proposed in this note is based on a similar idea. We will show that the future cost 

function can be represented exactly as a pieeewise linear function, and use a relaxation 
of  this piecewise function as our approximation.  

The structure of  the future cost function can be characterized by taking the dual 
of  the second-stage problem (4): 

c~l(xl ) = Max 1r (b2-E l&)  

subject to ~'Az <~ c2 (5) 

where 7r is the (row) vector of  dual variables. It is known from LP theory that the 
optimal solutions of  the dual problem (5) and of  the original problem (4) coincide. 
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Therefore, both (4) and (5) represent the future cost function al(Xl). Note, however, 
that the decision variable Xl is in the objective function of (5), and not in the 
right-hand side of the constraint set as in the original problem (4). This means that 
the set of  possible solutions to problem (5), which correspond to the vertices of the 
constraint set erA2 ~ c2, can be characterized before knowing the decision xl. 

Let H = {¢r 1, ~ .2 , . . . ,  ~.~} represent the set of all vertices of the constraint set. 
Because the optimal solution belongs to this set, problem (5) can in principle be 
solved by enumeration: 

al(x~) --- Max{cri(b2-ElXl)  for all i =  1 , . . . ,  v}. (6) 

Problem (6) can also be rewritten as a linear programming problem: 

a l ( X 1 )  = Min a 

subject to a ~ 7 r 1 ( b 2 -  E i x l )  , 
(7) 

a >1 7rV(b2 -E ix1 ) ,  

where a is a scalar variable. The equivalence of (7) and (6) can be easily established 
by observing that a/> 7r i (b2 -E1x1)  for all i = 1 , . . . ,  v in problem (7) implies that 

~> Max{~-;(b2-ElXl)}. Because the objective is to minimize a, we can conclude 
that the constraint will be met in the equality as required in problem (6). 

Problem (7) has an interesting geometrical interpretation. It indicates that the 
future cost function al(Xl) is a piecewise linear function of the decision variable xl, 
as illustrated in Figure 3. The components of this piecewise function are the 

f u t u r e  c o s t  

Fig. 3. Piecewise linear approximation. 

~ s t a t e  (x )  
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hyperplanes defined by each ¢ri(b2- EIx1). This implies that the future cost function 

can be characterized without discretizing the values xl ; it is sufficient to know the 

coefficients {~-i} of  the supporting hyperplanes. 

Naturally, the calculation of all vertices {~-~} in set H may be a very difficult task. 
Our basic approach will be to calculate a subset of  these vertices and to construct 

an approximat ion to the future cost function. We will initially show that these 

vertices can be calculated as dual variables of  the second-stage problem (4), 

reproduced below: 

O / l ( X l  i ) = Min c2x 2 dual 
(8) 

subject to A2x2 >t b 2 -  ElSie var ~.i, 

where ~lJ is a trial value. Let ~-i be the simplex multiplier vector associated to the 

constraints of  problem (8). It is known from LP theory that this vector is one of 

the vertices of  the solution s e t / / i n  the dual problem. Therefore, it can be used to 
construct one of the supporting hyperplanes of  the future cost function a l (xO.  

In other words, given a set of  n trial decisions {Xl~, i = 1 , . . . ,  n}, we can calculate 

the set of  associated multipliers {~i, i =  1 , . . . ,  n} by solving problem (8) for each 

An approximation to the future cost function can then be of the trial va][ues. 

constructed as: 

~ ( x , )  = Min a 
(9) 

subject to a ~ ,l'ri(b2- EIX1) for i = 1 , . . . ,  n. 

It is easy to see that the approximate  function c~l(xl) is a lower bound to the future 

cost function a~(xl) ,  because problem (9) has only a subset of  the constraints of  

problem (7). The approximate  future cost function can then be used to solve the 

first-stage problem as in the DP formulation: 

z = Min c l x l + 3 q ( x l )  
(10) 

subject to A1x1>l bl . 

Note that problem (10) is actually a LP problem. Substituting (9) into (10), we get: 

z = Min ClX 1 -~- ol 

subject to A l x  1 >i bl ,  (11) 

a - ,rri(b2- E l x l )  >i 0 for i = 1 , . . . ,  n. 

Because ~ ( x l )  is an approximat ion to the future cost function, we cannot guarantee 

that the solution of problem (10) is the optimal solution of the two-stage problem 
(1). However,  because ~1(Xl) is a lower bound to the future cost function, we know 

that the optimal solution value of (10) is a lower bound z to the true optimal cost. 
In other words, 

_z = c ~ ,  + ~ (12) 
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where ~1 and ~ are the optimal solutions of the approximate problem (10). In turn, 
an upper bound z can be obtained by solving the second-stage problem (4) for ~l : 

= C l ;  1 + O/1(;1).  ( 13 )  

The difference between upper and lower bounds ~ - z  can be used to verify the 
accuracy of the approximate future cost function. Initially, we note that the term 
ca~l is cancelled, because it belongs to both upper and lower bound expressions. 
Thus, we can see that ~-_z measures the difference between the predicted future 
cost (given by k) and the actual future cost (given by a1(~1)) of the current optimal 
solution ~l. If this difference is greater than a given tolerance, the problem is solved. 

Otherwise, a new set of trial decisions must be used to determine additional vertices 
i zr. The process described so far can be summarized in the following algorithm: 

Step (a). Select a set of n trial decisions {)~li, i=  1 , . . . ,  n}. 
Step (b). For each trial decision, solve the second-stage problem, and calculate 

the associated multipliers ~.i as in (8). 
Step (c). Use the multipliers {~r ~} to construct the approximate future cost 

function as in (9); solve the approximate first-stage problem (10). 
Step (d). Calculate upper and lower bounds as in (12) and (13); if 2-_z are 

within a given tolerance e, stop; otherwise, go to Step (a). 

One important point remains to be discussed, which is the selection of trial 
decisions {Xli} in Step (a). At each iteration of the algorithm, we will use as an 
additional trial decision the optimal solution ~1 of Step (b) (the approximate first 
stage problem) at the previous iteration. This ensures that we will be building 
approximations to the future cost function in the neighborhood of "interesting" 
points, i.e. points which are good candidates to the optimal solution. 

The two-stage dual dynamic programming (DDP) algorithm is then composed of 
the following steps: 

Step (a). Initialize: approximate future cost function ~ ( x ~ ) = 0 ;  upper bound 
= az; number of vertices n = 0. 
Step (b). Solve the approximate first stage problem (10); let ~1 be the optimal 

solution. 
Step (c). Calculate the lower bound z as in (12); if ~-z<~ e, stop; otherwise, 

go to Step (d). 
Step (d). Solve the second stage problem (8), i.e. calculate a(xl ) ;  update ~ as 

in (13). 
Step (e). Increment the number of vertices n <-- n + 1; let the multiplier associated 

to the optimal solution of Step (d) be ~.n; construct the approximate cost function 
~1(Xl) as in (9), using the n vertices. 

Step (f). Go to Step (b). 
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The DDP algorithm described above has several attractive features: no state 
discretization is required; upper and lower bounds are provided at each iteration; 
the previous optimal solution of the approximate optimization problem (10) of step 
(b) can be used as an initial solution in the next iteration (note that the only 
difference between two successive problems is one additional linear constraint 
associated to the new vertex ~.n). 

It should be observed that the two-stage version of the DDP algorithm outlined 
above is equivalent to a Benders decomposition algorithm (Benders, 1962), in which 
both master and subproblem are LP problems. The extensions of the DDP algorithm 
to the multistage and stochastic cases can also be interpreted as extensions of the 
Benders decomposition scheme (see, for example, Birge, 1980; Wets, 1988). 

The multistage DDP algorithm is composed of the following steps: 

Let T be the planning horizon; initialize 3~t(x,)= 0 for t = 1 , . . . ,  T; 

Solve the approximate first stage problem (10); let ~1 be the optimal 

Step (a). 
~ = cx3. 

Step (b). 
solution. 

Step (c). Calculate the lower bound _z as in (12); if ff-_z~< e, stop; otherwise, 
go to Step (d). 

Step (d). Repeat for t = 2 , . . . ,  T (forward simulation). 
Solve the optimization problem for stage t, trial decision xt-1 : 

Min c,x, + k,(x,)  

subject to A,x, >i b, - E,-a~t-1. 
(15) 

Store the optimal solution as 9~,. 
Step (e). Calculate the upper bound 

T 

t = l  
(16) 

Step (f). Repeat for t = T, T -  1 , . . . ,  2 (backward recursion). 
Solve the optimization problem for stage t, trial decision )2t_a: 

Min c,x, + ~t(x~) 

subject to A,x, >1 b , -  Et-l~,-~. 
(17) 

Step (g). 

Let ~0-t_ 1 be the multiplier associated to the constraints of problem 
(17) at the optimal solution; use this multiplier to construct an 
additional supporting hyperplane for the approximate future cost 
function in the previous stage, ~,-1(x,-1). 

Go to Step (b). 
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3. Stochastic dual dynamic programming 

As mentioned previously, one attractive feature of  DP algorithms is their capability 
of handling stochastic problems• The DDP approach described in the previous 

section can also be extended to the stochastic case• This will be illustrated with the 
following two-stage problem: 

Min ClXl + Pl c2x21 + P2 c2x22 +" • • + p,.c2x2,. 

subject to A~x~>- ba, 

EIX  1 q- A2x21 i> b21 , (18) 

EIX  1 + A2X22 ~ b22 , 

E l X  1 q- Aex2m >1 b2m. 

Problem (18) can be interpreted as follows: in the first stage, a decision Xl is taken; 
given the trial decision xl,  there will be m second stage subproblems: 

alj(Xl) = Min c2x2j (19) 

subject to A2x2j <~ b2j - E,Xl 

for all j = 1 , . . . ,  rn. The objective is to minimize the sum of the first-stage costs ClX 1 
m 

plus the expected value of the second-stage costs (Y~j=I pjc2x2j), where pj represents 
m 

the probability of each subproblem (naturally, ~j=~ p: = 1). Figure 4 illustrates the 

decision process. 
As in the deterministic case of Section 2, the two-stage problem (18) can in 

principle be solved by a stochastic DP recursion. Given a trial decision Xl, one can 

build the expected future cost function 6~(Xl) as 

8 , ( x l )  = ~ pjaa:(xl)  (20) 
j = l  

where oqj(x0 is defined in (19). 

first-stage problem ~ min 

~ - ~  subproblem 1 ~ - -  

subproblem 2 

I J  u p,o ,oom I 

Fig. 4. Two-stage decision process (stochastic case). 
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The first-stage problem in the DP recursion becomes 
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M i n  Cl X 1 -1- ~ l ( X l )  

subject to AIX 1>I b~ 

(21) 

where ClX 1 represents the immediate cost, and all(X1) represents the future (expected) 
consequences of decision x~. The derivations leading to the dual DP algorithm are 
similar to the deterministic case (the future cost function is piecewise etc.). 

In order to present the multistage stochastic DDP algorithm we assume, without 
loss of generality, that the right-hand side vectors {b,, t = 1, . . . ,  T} are independ- 
ent random variables, and that each b, is discretized into m values, or scenarios 

{btj,j = 1 , . . . ,  m} with probabilities {Ptj,j = 1 , . . . ,  m}. The algorithm is implemented 

as follows: 

Step (a). 
Step @. 

Step (c). 

Define a set of  trial decisions {~, for i = 1 , . . . ,  n, t = 1 , . . . ,  T}.  

Repeat for t = T, T -  1 , . . . ,  2 (backward recursion). 
Repeat for each trial decision xt~, i = 1 , . . . ,  n. 

Repeat for each scenario btj, j = 1 , . . . ,  m. 
Solve the optimization problem for t, Xt-l~, and btj: 

Min ctx, + d,(x,) 

subject to A~xr >! b~j - E~- l~ , -m 

(22) 

Let 7rt-aij be the multiplier associated to the constraints of 

problem (22) at the optimal solution. 
m 

Calculate the expected vertex value "T'l't_li = ~j=l Ptj'JTt--lij' and con- 
struct one supporting hyperplane of the approximate expected 
future cost function for stage t - 1 ,  dt- l (xt-1) .  

Go to Step (a). 

As in the deterministic case, one important aspect in the algorithm is the determina- 
tion of the trial decisions {Sti}. Ideally, we should carry out a forward simulation 
(see Step (d) of the multistage deterministic DDP algorithm) for every combination 
of  scenarios {btfl. Note, however, that the combinations increase exponentially with 
the number of stages. Our proposal is to carry out a Monte  Carlo forward simulation 
for a sample of  the scenarios as follows: 

Step (a). Solve the first-stage problem (21); let xl be the optimal solution; 
initialize xli = ~1 for i = 1 , . . . ,  n. 
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Step (b). Repeat for t = 2 , . . . ,  T. 
Repeat for i = 1, . . . ,  n. 

Sample a vector b, from the set {btj, j = 1 , . . . ,  m}. 

Solve the optimization problem for stage t, sample i: 

Min etxt + ~(x t )  

subject to Atx, ~ b , -  Et_l)~t_li.  (23) 

Store the optimal solution as ~,. 

As in the deterministic case, the objective of the above simulation is to determine 
"good"  trial decisions at each stage, i.e. around which one should try to approximate 

the future cost function. 
One aspect remains to be discussed, which is the calculation of lower and upper 

bounds. It can be seen that the lower bound _z is obtained from the solution of the 
first stage problem (21), as in the deterministic case. The upper bound 5, in turn, 
is estimated from the Monte Carlo simulation results for all stages and scenarios, 

that is, 

1 n 
= ClXl +-- Y. zi (24) 

n i = l  

where z~ is the total cost for one Monte Carlo run: 

T 

z, = Z c,~,. (25) 
t=l 

The uncertainty around the estimate of ff in expression (24) can be measured by 

the standard deviation of  the estimator: 

~z = ~ ( e - z i )  2. (26) 
i=1  

For example, the 95% confidence interval for the "true" (population) value of 5 is 

given by 

[if-2O-z, :~ + 2~rz]. (27) 

It is interesting to observe that the uncertainty around the upper bound estimate 
can be used as a convergence criterion: for example, if the lower bound z is in the 
interval (27), the algorithm is stopped. This criterion introduces a relationship 
between the acceptable accuracy of the simulation (given by the sample size n) and 
the accuracy of the optimal policy calculated by the stochastic DDP algorithm. 

4. Computational aspects and other extensions of  the algorithm 

4.1. Solution strategies 

The solution strategy presented in the previous sections (forward simulation of the 
sequential decisions process; backward recursion to update the future cost functions) 
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allows many variations. For example, it is possible to iterate between the forward 

and backward steps in two or more stages without necessarily going back to the 

first stage. 

4.2. Parallel processing 

The forward simulation of the sequential decisions process (23) can be carried out 
independently for each sample. It is also possible to calculate the backward recur- 
sions (22) as a set of independent problems. This allows the implementation of the 
algorithm in computers with several processors operating concurrently. We conjec- 

ture that the convergence process itself can be asynchronous (some processors 
involved in the forward simulation; others calculating the backward recursion results 

in various stages etc.). 

4.3. Nonlinear functions 

The algorithm can be extended to the nonlinear case. Natually, convergence to the 
global optimum can only be ensured under the usual convexity conditions for 
nonlinear problems. 

5. Applications 

The application of the algorithm will be illustrated for the problem of optimal 
scheduling of a hydrothermal generating system. 

5.1. Introduction 

The objective of the optimal operation of a hydrothermal system is to determine 
an operation strategy which, for each stage of the planning period, given the system 
state, produces generation targets for each plant. This strategy should minimize the 
expected value of the operation cost along the period, composed of fuel costs plus 
penalties for failure in load supply. The availability of limited amounts of  hydroelec- 
tric energy, in the form of  stored water in the system reservoirs, makes the optimal 
operation problem very complex, because it creates a link between an operating 
decision in a given stage and the future consequences of this decision. In other 
words, if we deplete the stocks of hydroelectric energy, and low inflow volumes 
occur, it may be necessary to use very expensive thermal generation in the future 
or even fail to supply the load. On the other hand, if we keep the reservoir levels 
high through a more intensive use of thermal generation and high inflow volumes 
occur, there may be a spillage in the system, which means a waste of energy and, 
consequently, higher operating costs. 

Because it is impossible to have perfect forecasts of the future inflow sequences, 
the operation problem is essentially stochastic. The existence of multiple interconnec- 
ted reservoirs and the need for multiperiod optimization characterize the problem 
as large scale. The objective function is nonlinear, due not only to nonlinear thermal 
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costs, but also to the product of outflow and head in the expression of hydroelectric 
production. Finally, because the worth of energy generated in a hydro plant cannot 
be measured directly as a function of the plant state alone, but rather in terms of 
expected fuel savings from avoided thermal generation, the objective function is 
also nonseparable. 

5.2. Problem formulation (Pereira and Pinto, 1985) 

If  the inflow volumes are known at the beginning of each stage, the operation 
planning problem can be represented as a stochastic dynamic programming (SDP) 
recursion: 

at(xt) = E / M i n  c,(u,)+ /3at+l(Xt+l)} (28a) 
a,lx, t. u, 

subject to 

X,+l = f ( x , ,  a,, u,), (28b) 

gt+l (Xt+l )  >~ O, (28C) 

h,(u,)>~O, (28d) 

Vt = T, T -  1 , . . . ,  1, Vx,, where: 

t: indexes the stages (T  planning horizon), 
x,: state vector at the beginning of stage t, 
at(x,): expected value of operation cost from state xt, 
a, I xt : probability distribution of inflow vector at conditioned by state x,, 
E{. }: expected value, 

u, : decision vector for the stage, 
ct(" ): immediate cost associated to decision u,, 
]3: discount factor, 
(28b): state transition equation, 
(28c): constraints on the state vector, 
(28d): constraints on the decision vector. 

5.3. State variables 

The system state xt should represent all information which can affect future operation 
costs. In the case of hydroelectric systems, at least two classes of state variables 
should be included: the reservoir storage level v, and information about the hydro- 
logic trend in the system. This information can be given, for example, by the lateral 
inflow volumes during the previous stages. Therefore, 

xt = [vt, a,_,, at 2 ,- . - ] .  (29) 

5.4. Decision variables 

The decision vector u, comprises the turbined outflow volumes q, and the spilled 
volumes s .  In vector terms, 

u, = [qt, st]. (30) 
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5.5. Immedia te  costs 

The immediate operation cost associated to decision vector ut --- [qt, s,] in (28a) is 
given by the thermal generation cost required to complement the energy supply. 
Penalties for failure in load supply are represented as dummy thermal plants. 

cj(go) (31a) G(q,, s,) = Min • 
k~K d e T k 

subject to 

Y~ p,q. + 2 go + Y~ 
icHk j~Tk l~Ok 

g , ~ g ,  

If~l~f, 
where: 

(fak--f,k~) = dtk V k ~  K, (31b) 

(31c) 

(31d) 

k: indexes subsystems, or regions (K is the set of subsystems), 
j :  indexes thermal plants (Tk is the set of thermal plants in subsystem k), 
i: indexes hydro plants (Hk is the set of plants in subsystem k) ,  

g0: generation of thermal plant j in stage t, 
cj : generation cost function of plant j, 
p~: production coefficient of plant i, 
d,k: energy demand in subsystem k, 
~: vector of thermal generation capacities, 
f~k~: energy interchange from system k to system l, 
f :  vector of interchange capacities, 
g2k : set of subsystems directly connected to system k. 
It should be noted that the production coefficient of a hydro plant is in fact a 

function of the initial volume, end volume and outflow: 

p~ = pi (v , ,  V,+l~, q,i, s , ) .  (32) 

For ease of presentation, p will be assumed to be constant in the derivations that 
follow. 

5.6. Transition equation 

The transition equation (28b) corresponds to the reservoir water balance equations: 

v,+l = vt + at + M (  qt + s,) (33) 

where M is the incidence matrix of hydro plants. 

5. 7. Constraints on the state vector and decision variables 

The constraints on state vector (28c) correspond to bounds on storage: 

Dr+ 1 ~ /5 (34) 

where 15 is the vector of reservoir storage capacities. 
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correspond to limits on 
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The constraints on decision variables (28d) usually 

turbined outflow and lower bounds on total outflow: 

qt<-O, (35) 

qt + st/> _q, (36) 

where c~ and _q represent respectively the upper  and lower bounds on outflow. 

5.8. The curse o f  dimensionality 

As discussed previously, the solution of SDP recursions usually requires the discretiz- 

ation of  the state space, which leads to an exponential increase of  the computational  

effort with the number  of  state variables. As an illustration, let xt = [vt, at-l]  be the 
state vector for a system with n reservoirs, in which the hydrologic trend is represen- 

ted by the lateral inflow in the previous month. I f  each component  of  the state 
vector is discretized into m intervals, there will be m 2n discretized states in each 

stage. Supposing m = 20 intervals of  discretization: 

1 reservoir ~ 202=400 states, 

2 reservoirs ~ 204= 160 thousand states, 

3 reservoirs ~ 206= 64 million states, 

4 reservoirs ~ 20 s = 2 5  billion states, 

5 reservoirs ~ 20 l°= 10 trillion states. 

Therefore, it becomes necessary to develop methods able to approximate the optimal 
operating policy at reasonable computational cost. The application of stochastic 

dual dynamic programming (SDDP) to the scheduling problem will be discussed 

next. 

5.9. Application o f  the S D D P  algorithm 

The SDDP algorithm described in Section 3 was applied to a system composed of  
39 hydroelectric plants (22 with reservoirs and 17 run-of-the-river), derived from 

the southern-southeastern Brazilian power pool. The system characteristics can be 
found in Pereira and Pinto (1985). The initial stored volumes in the system reservoirs 

were set as 50% of the storage capacities. The other generation resource is an 
aggregate thermal unit, with maximum generation capacity of  10 000 MW. Thermal 

generation cost was set at a reference value of $1/MW.month (i.e. the energy 
corresponding to a continuous generation of 1 MW along one month).  The cost of  
load curtailment was set at $10/MW.month.  The energy demand for each stage was 

29 300 MW.month.  The number  of  stages is 10. 
Inflows were represented as independent random vectors, with two realizations 

per stage. The inflow vector in the first stage is assumed to be known. There are 
therefore 29-- 512 possible inflow sequences. 

Each one-stage subproblem has 102 variables and 40 constraints (excluding upper  
and lower bounds on variables, and the linear constraints representing the future 
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cost function). Because there are 512 inflow sequences and 10 stages, the total 

number of  one-stage subproblems would be 5120. The complete problem would 

then have 522 240 variables and 204 800 constraints. By avoiding duplications, we 
can reduce the total number of subproblems to 1023, corresponding to a complete 
problem with 104 346 variables / 40 920 constraints. 

The one-stage subproblem (22) corresponds to a linear programming problem. 
Instead of a standard LP solution package, we have used a customized algorithm 
that takes advantage of the network f low characteristics of the hydrothermal schedul- 
ing problem (Kennington and Helgason, 1984). Looking at equations (33)-(36) 
(flow conservation, bounds on storage and bounds on outflow) we see that can be 
modelled as flows in a network, which allows the use of efficient solution techniques. 
The non-network-flow equations (power balance and the linear constraints corre- 

sponding to the future cost functions) are modelled as additional constraints to the 
network problem. The problem is then solved by a basis partitioning algorithm 
(Kennington and Helgason, 1984). 

As shown in Section 3, we use a sample of the set of possible inflow sequences 
to calculate the new trial states {~,i} at each iteration (forward simulation step). The 
forward simulation is also used to obtain an upper bound to the optimal cost (see 
equation (20)). Finally, the uncertainty around the upper bound estimate, given by 
the standard deviation of the estimator (see equation (26)) is used as a convergence 
criterion. In this case study, a sample of 50 inflow sequences was used. 

The optimal solution in this case was obtained in five iterations (one iteration 
consists of a forward simulation and a backward recursion). Figure 5 illustrates the 
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evolution of lower and upper  bounds. Figure 6 shows the evolution of the gap 

(difference between upper  and lower bound) and the standard deviation of the 

upper  bound estimate, which served as a convergence criterion. Total CPU time 

was 37 minutes in a VAX 11/780 (a 1 MIP  computer,  comparable to a 20 MHz 
386-based personal computer  with floating point coprocessor). This is roughly 

equivalent to 1.5 CPU minutes on an IBM 3090 (25 MIPS). 
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