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Alexander Melnikov 1 and Ivan Smirnov 2
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Abstract

In this paper the problem of partial hedging is studied by constructing hedging
strategies that minimize conditional value-at-risk (CVaR) of the portfolio. Two
dual versions of the problem are considered: minimization of CVaR with the initial
wealth bounded from above, and minimization of hedging costs subject to a CVaR
constraint. The Neyman-Pearson lemma approach is used to deduce semi-explicit
solutions. Our results are illustrated by constructing CVaR-efficient hedging strate-
gies for a call option in the Black-Scholes model and also for an embedded call
option in an equity-linked life insurance contract.

JEL classification: C61, G13, G22.

Subject category: IM01, IM10, IM53.

Insurance branch category: IB10.

Keywords: conditional value-at-risk, dynamic hedging, stochastic modelling, quan-
tile hedging, unit-linked contracts.

1 Introduction

In a complete financial market every contingent claim with payoff H delivered
at time t = T can be hedged perfectly: given the sufficient amount of the
initial wealth, an agent who holds a short position in claim H can construct
a portfolio (Vt, ξt) that will replicate the liability without risk, that is, VT =
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H, a.s. On the other hand, an agent who is unwilling to invest in perfect
replication but still aims to reduce the risk exposure, may address to partial
hedging methods.

The problem of partial hedging is to construct a portfolio that minimizes the
risk of the difference L = H − VT . Efficiency and consistency of this approach
depend to a great extent on selecting a specific way of quantifying the risk.
For instance, one of the most studied methods known as quadratic hedging
suggests minimizing quadratic error E[L2]. Despite its simplicity, this method
has obvious disadvantages since the quadratic risk measure does not distin-
guish between loss and profit and equally penalizes both. Another method,
known as quantile hedging, involves maximizing the probability of successful
hedge P[L 6 0] (see e.g. Föllmer & Leukert, 1999 or Cvitanić & Spivak, 1999).
The Neyman-Pearson lemma (see Cvitanić & Karatzas, 2001) is exploited to
derive quantile hedging strategies explicitly. This approach is generalized in
Föllmer and Leukert (2000) to analyze the problem of minimizing expected
loss E[L+] and more generally, E[l(L+)] for some loss function l(·).

We address the problem of partial hedging by minimizing conditional value-
at-risk (CVaR), a quantile downside risk measure which is rapidly gaining
popularity among risk professionals. Unlike risk measures mentioned above,
CVaR (also known as expected shortfall or expected tail loss) is a coherent
(Artzner, Delbaen, Eber, & Heath, 1999) and spectral (Acerbi, 2002) measure
of risk. Aside from being a mathematically attractive tool, CVaR is also an
economically consistent measure for hedging activity from the capital alloca-
tion point of view (see Goovaerts & Laeven, 2004 and Goovaerts, Kaas, &
Laeven, 2010). Indeed, suppose that an investment company follows a risk
management policy under which (i) CVaR is used as a measure of economic
capital, (ii) all trading desks are using a unified approach to hedge against con-
tingent claims they sell, (iii) risk monitoring is performed in a decentralized
manner. In this case, adopting CVaR-minimizing hedging strategies implies
achieving minimum economic capital requirements on a per claim basis.

Our main objective in this paper is to derive a hedging strategy which min-
imizes conditional value-at-risk of L subject to a constraint on the initial
wealth; we also consider the dual problem: minimization of hedging costs
subject to a constraint on CVaR. We suggest a method which can be used
to construct CVaR-optimal hedging strategies explicitly in complete market
models, which we illustrate by providing closed-form solutions for a call option
in the Black-Scholes model and for an embedded option in a unit-linked life
insurance contract. Note that a somewhat related problem was discussed in
Li and Xu (2008) from portfolio optimization point of view: minimization of
CVaR when the returns are bounded; in the present paper, however, we focus
on derivatives hedging and insurance applications under capital constraints.



The paper is organized as follows. We start with defining conditional value-at-
risk and describing the general probabilistic setup in Sections 2.1 and 2.2. In
Section 2.3 we consider the problem of CVaR-efficient hedging under a capital
constraint from contingent claim seller’s point of view. With the help of CVaR
optimization techniques mentioned in Rockafellar and Uryasev (2002) together
with the Neyman-Pearson lemma approach suggested in Föllmer and Leukert
(2000), we reduce our problem to a problem of one-dimensional optimization,
which allows us to construct optimal hedges semi-explicitly. The dual problem
is discussed in Section 2.4.

In Section 3 we illustrate our results by constructing CVaR-efficient hedging
strategies for a call option in the classical Black-Scholes model first, and then
minimizing costs of a hedging strategy subject to a CVaR constraint; numerical
examples are presented for both problems.

In Section 4 we demonstrate how the quantile hedging methodology presented
in Melnikov and Skornyakova (2005) and Melnikov and Romaniuk (2006) can
be employed for CVaR hedging of an embedded call option in an equity-linked
life insurance contract; the section is also concluded with numerical illustra-
tions. We need to mention that CVaR is becoming a popular and efficient
tool in modern actuarial science: refer, for instance, to Tan, Weng, and Zhang
(2009) and Tian, Cox, Lin, and Zuluaga (2010).

To conclude the introductory section, the authors would like to thank an
anonymous referee for valuable comments and suggestions which helped shape
the final version of this paper.



2 CVaR Hedging

2.1 Conditional Value-at-Risk

Consider probability space (Ω,F ,P) and a choice-dependent F -measurable
random variable L = L(x) characterizing the loss, with strategy vector x ∈ X
and strategy constraints X. We assume that EP [|L(x)|] <∞ for all x ∈ X.

Let L(α)(x) and L(α)(x) be lower and upper α-quantiles of L(x) respectively:

L(α) =L(α)(x) = inf{t ∈ R : P[L 6 t] > α},
L(α) =L(α)(x) = inf{t ∈ R : P[L 6 t] > α}.

For a given strategy x and a fixed confidence level α ∈ (0, 1) which in appli-
cations would be a value fairly close to 1, value-at-risk (VaR) is defined as an
upper α-quantile of the corresponding loss function,

VaRα(L) = L(α).

Conditional value-at-risk (CVaR), also known as expected shortfall, is defined
as

CVaRα(L) =
1

1− α
(

EP

[
L · 1{L>L(α)}

]
+ L(α)

(
1− α− P

[
L > L(α)

]))
.

As shown in Acerbi and Tasche (2002), CVaR is closely related to the notion
of tail conditional expectation (TCE). Indeed, in a smooth case, when

P
[
L > L(α)

]
= 1− α, P

[
L > L(α)

]
> 0,

or
P
[
L > L(α), L 6= L(α)

]
= 0,

CVaR coincides with both upper and lower TCE:

TCEα(L) = EP

[
L | L > L(α)

]
, TCEα(L) = EP

[
L | L > L(α)

]
.

It is well-known that it is possible to compute both VaR and CVaR simul-
taneously by solving a certain one-dimensional convex optimization problem.
This fact is presented in the theorem below; full text of the theorem may be
found in Rockafellar and Uryasev (2002).

Let us define an auxiliary function

Fα(x, z) = z +
1

1− α · EP

[
(L(x)− z)+

]
(2.1)



and note that for simplicity of notation we shall use VaRα(x), CVaRα(x) and
VaRα(L(x)), CVaRα(L(x)) interchangeably.

Theorem 2.1 As a function of z, function Fα(x, z) defined by (2.1) is finite
and convex (hence continuous), and

CVaRα(x) = minz∈R Fα(x, z),

VaRα(x) = min {y | y ∈ argminz∈RFα(x, z)} .

In particular, one always has

VaRα(x) ∈ argminz∈RFα(x, z),

CVaRα(x) = Fα(x,VaRα(x)).

This theorem sheds some light on the question of why CVaR is a more stable
performance criterion than VaR: it is well known in the optimization theory
that the optimal value generally admits a more robust behavior than the
argminimum.

An important corollary is that the problem of CVaR minimization may be
expressed as a problem of Fα(x, z) minimization.

Corollary 2.2 Minimization of CVaRα(x) over the strategy set X is equiva-
lent to minimization of Fα(x, z) over X × R:

min
x∈X

CVaRα(x) = min
x∈X

min
z∈R

Fα(x, z).

2.2 General Setup

Let the discounted stock price be described by a stochastic process Xt on a
standard stochastic basis (Ω,F , (Ft)t∈[0,T ],P) with F0 = {∅,Ω}.

A self-financing strategy is defined by initial wealth V0 > 0 and a predictable
process ξt determining portfolio dynamics. For each strategy (V0, ξ) the cor-
responding value process Vt is

Vt = V0 +
∫ t

0
ξsdXs, ∀t ∈ [0, T ].

We shall call a strategy (V0, ξ) admissible if it satisfies

Vt > 0, ∀t ∈ [0, T ], P−a.s.,



and we shall denote the set of all admissible self-financing strategies by A.

Consider a discounted contingent claim whose payoff is an FT–measurable
non-negative random variable H ∈ L1(P). In a complete market there exists
a unique equivalent martingale measure P∗ ≈ P, and construction of a perfect
hedge is always possible. The perfect hedging strategy requires allocating the
initial wealth in the amount of

H0 = EP∗ [H].

The first question is: if, for some reason, it is impossible to allocate the required
amount of initial wealth H0 for hedging, what is the best hedge that can
be constructed using a smaller amount Ṽ0 < H0? Evidently, perfect hedging
cannot be used in this case; instead, we have access to an infinite set of partial
hedges, and to come to determination we need to fix an optimality criterion.
As such, conditional value-at-risk (CVaR) risk measure shall be used.

We define the loss function from the viewpoint of a claim seller who hedges a
short position in H with portfolio (V0, ξ), thus the loss at time T equals the
claim value less the terminal value of the hedging portfolio:

L(V0, ξ) = H − VT = H − V0 −
∫ T

0
ξsdXs. (2.2)

For a fixed confidence level α ∈ (0, 1), our first problem is to find an admissible
strategy (V0, ξ) which minimizes CVaRα(V0, ξ) while using no more initial
wealth than Ṽ0.

Another question relates to the dual problem — what is the least amount
of the initial wealth we have to allocate in order to keep CVaR of a given
confidence level below a certain threshold? Again, it may be formulated as an
optimization problem.

Both problems will be discussed in full in Sections 2.3 and 2.4.

2.3 Minimizing Conditional Value-at-Risk

In this section we suggest a method of solving the problem of CVaR mini-
mization subject to a constraint on the initial wealth:





CVaRα(V0, ξ) −→ min
(V0,ξ)∈A

,

V0 6 Ṽ0.

(2.3)



For simplicity of notation, denote by AṼ0
the set of all admissible strategies

satisfying the wealth constraint:

AṼ0
= {(V0, ξ) | (V0, ξ) ∈ A, V0 6 Ṽ0}.

According to Corollary 2.1, problem (2.3) is equivalent to the following one:

Fα((V0, ξ), z) −→ min
(V0,ξ)∈AṼ0

min
z∈R

.

Recall that Fα is given by (2.1) and that the loss function for this problem is
given by (2.2), so the original problem becomes

z + 1
1−α · EP

[
(H − VT − z)+

]
−→ min

(V0,ξ)∈AṼ0

min
z∈R

.

Let us introduce a function

c(z) = z + 1
1−α · min

(V0,ξ)∈AṼ0

EP

[
(H − VT − z)+

]
, (2.4)

such that
min

(V0,ξ)∈AṼ0

CVaRα(V0, ξ) = min
z∈R

c(z).

Assume that for each z ∈ R the minimum in (2.4) is attained at (V̂0(z), ξ̂(z))
and that c(z) reaches its global minimum at point ẑ:

min
(V0,ξ)∈AṼ0

EP

[
(H − VT − z)+

]
= EP

[
(H − V̂T (z)− z)+

]
,

min
z∈R

c(z) = c(ẑ).

Then strategy (V̂0, ξ̂) = (V̂0(ẑ), ξ̂(ẑ)) is a solution for (2.3):

min
(V0,ξ)∈AṼ0

CVaRα(V0, ξ) = CVaRα(V̂0(ẑ), ξ̂(ẑ)).

Definition (2.4) of function c(z) contains expected value minimization. De-
riving explicit expression for this function would provide the possibility to
reduce the initial problem (2.3) to a problem of one-dimensional optimization;
to do that we shall use some known results in the area of expected shortfall
minimization.

For each z strategy (V̂0(z), ξ̂(z)) is a solution for the following problem:

EP

[
(H − VT − z)+

]
−→ min

(V0,ξ)∈AṼ0

. (2.5)

Note that
(H − VT − z)+ ≡ ((H − z)+ − VT )+.



It is easy to see that (H − z)+ is an FT–measurable, non-negative random
variable — therefore we can consider it a contingent claim. Problem (2.5)
then may be restated as

EP

[
((H − z)+ − VT )+

]
−→ min

(V0,ξ)∈AṼ0

. (2.6)

Problem (2.6) can be treated as a problem of expected shortfall minimization
with respect to a contingent claim with payoff (H − z)+ that depends on a
real-valued parameter z. This kind of problem has been well studied; we shall
employ the results of Föllmer and Leukert (2000) to derive the solution.

Theorem 2.3 The optimal strategy (V̂0(z), ξ̂(z)) for problem (2.6) is a perfect
hedge for the contingent claim H̃(z) = (H − z)+ϕ̃(z):

EP∗ [H̃(z) | Ft] = V̂0(z) +
∫ t

0
ξ̂s(z)dXs, P-a.s., ∀t ∈ [0, T ], (2.7)

where

ϕ̃(z) = 1{ dP
dP∗>ã(z)} + γ(z) · 1{ dP

dP∗=ã(z)}, (2.8)

ã(z) = inf
{
a > 0 : EP∗

[
(H − z)+ · 1{ dP

dP∗>a}
]
6 Ṽ0

}
, (2.9)

γ(z) =
Ṽ0 − EP∗

[
(H − z)+ · 1{ dP

dP∗>ã(z)}
]

EP∗

[
(H − z)+ · 1{ dP

dP∗=ã(z)}
] . (2.10)

Theorem 2.3 provides an explicit solution for (2.6) in terms of the Neyman-
Pearson framework – that is, ϕ̃(z) may be interpreted as an optimal random-
ized test. Note that γ(z) equals zero if the distribution of the Radon-Nikodym
derivative dP

dP∗ is atomless.

Let us summarize the results of this section in the following theorem.

Theorem 2.4 The optimal strategy (V̂0, ξ̂) for the problem of CVaR mini-
mization (2.3) is a perfect hedge for the contingent claim H̃(ẑ) = (H−ẑ)+ϕ̃(ẑ),
where ϕ̃(z) is defined by (2.8)-(2.10), ẑ is a point of global minimum of func-
tion

c(z) =





z + 1
1−αEP [(H − z)+(1− ϕ̃(z))] , for z < z∗,

z, for z > z∗,

(2.11)

on interval z < z∗, and z∗ is a real root of equation

Ṽ0 = EP∗ [(H − z∗)+].



Besides, one always has

CVaRα(V̂0, ξ̂) = c(ẑ), (2.12)

VaRα(V̂0, ξ̂) = ẑ. (2.13)

We used the results of Theorem 2.3 to get rid of the minimum in the defini-
tion of c(z). Note that problem (2.6) only makes sense when Ṽ0 < EP∗ [H(z)],
otherwise a perfect hedge for H(z) may be used as an optimal strategy, pro-
viding zero expected shortfall. As a function of z, EP∗ [H(z)] is monotonous
and non-increasing, and

EP∗ [H(0)] = H0 > Ṽ0,

limz→∞ EP∗ [H(z)] = 0,

so there exists z∗ > 0 such that

Ṽ0 > EP∗ [H(z)], ∀z > z∗. (2.14)

Hence, when z is greater than z∗, the perfect hedge for (H − z)+ can be used
in problem (2.6) — this explains why c(z) = z for z > z∗.

According to Theorem 2.1, argminimum of c(z) coincides with the value-at-risk
of the CVaR-optimal hedge. Note that the loss function is always non-negative,

L(z) = H − H̃(z) = H − ϕ̃(z)(H − z)+ > 0,

therefore the corresponding value-at-risk would be also non-negative, so ẑ > 0;
besides, c(z) = z for z > z∗ and c(z) is increasing at z = z∗, so the global
minimum of c(z) coincides with its minimum on (0, z∗).

2.4 Minimizing Hedging Costs

In this section we minimize the initial wealth over all admissible strategies
(V0, ξ) with conditional value-at-risk of a given confidence level not exceeding
predefined threshold C̃:





V0 −→ min
(V0,ξ)∈A

,

CVaRα(V0, ξ) 6 C̃.

(2.15)

Let us rephrase the problem in terms of terminal capital VT = V0 +
∫ T
0 ξsdXs

(we can always go back and derive the trading strategy explicitly by construct-



ing a perfect hedge): 



EP∗ [VT ] −→ min
VT∈FT

,

CVaRα(VT ) 6 C̃.

(2.16)

Recall that

CVaRα(V0, ξ) = min
z∈R

(
z +

1

1− αEP

[
(H − VT − z)+

])
,

and consider a family of problems





EP∗ [VT ] −→ min
VT∈FT

,

EP [(H − VT − z)+] 6 (C̃ − z)(1− α).

(2.17)

For consistency of notation, we provide the following lemma, which will be
applied to problem (2.17).

Lemma 2.5 Let x̃ be a solution for





f(x) −→ min ,
x∈X

min
z∈R

g(x, z) 6 c.

Then the following family of problems also admits solutions, denoted x̃(z):





f(x) −→ min ,
x∈X

g(x, z) 6 c.

Besides, one always has
x̃ = x̃(z̃),

where z is a point of global minimum of f(x̃(z)):

min
z∈R

f(x̃(z)) = f(x̃(z̃)).

Indeed, for each z ∈ R:

⋃

z∈R
{x | g(x, z) 6 c} =

{
x | min

z∈R
g(x, z) 6 c

}
,

and ⋃

z∈R
[X ∩ {x | g(x, z) 6 c}] = X ∩

{
x | min

z∈R
g(x, z) 6 c

}
.



Therefore,

min
x∈X∩{x|min

z∈R
g(x,z)6c}

f(x) = min
z∈R

[
min

x∈X∩{x|g(x,z)6c}
f(x)

]
,

which proves the lemma. �

Denote the solution for (2.17) for each real z by ṼT (z), then, according to the
lemma stated above, the solution for (2.16) may be expressed as

ṼT = ṼT (z̃), (2.18)

where

EP∗ [ṼT (z̃)] = min
z∈R

EP∗ [ṼT (z)]. (2.19)

We shall derive ṼT (z) by solving (2.17). To start with, note that in case z > c
the problem admits no solution since the left side is always non-negative.

In case z 6 c note that

(H − VT − z)+ = ((H − z)+ − VT )+,

and, since 0 6 VT 6 (H − z)+, let

VT = (H − z)+(1− ϕ), ϕ ∈ P[0,1],

where P[0,1] is the class of FT -measurable random variables taking on values
in [0, 1]. The initial problem can be then rewritten in terms of ϕ (its solution
we will denote by ϕ̃(z)):





EP[(H − z)+ϕ] 6 (C̃ − z)(1− α),

EP∗ [(H − z)+ϕ] −→ max
ϕ∈P[0,1]

.

This problem can be solved by applying the Neyman-Pearson lemma, and it
only makes sense as long as EP[(H − z)+] > (C̃ − z)(1− α), otherwise we can
set ϕ̃(z) ≡ 1 and ṼT (z) ≡ 0.

Lemma 2.6 Condition

EP[(H − z)+] > (C̃ − z)(1− α) (2.20)

is satisfied for all z 6 C̃ if and only if both of the following inequalities hold
true:

EP[H] > C̃(1− α), EP[(H − C̃)+] > 0. (2.21)



Note that both right- and left-hand sides of (2.20) are monotonous non-
increasing functions of z. In addition,

d

dz
EP[(H − z)+] =−1, for z < 0,

d

dz
(C̃ − z)(1− α) =−1 + α,

so it is necessary and sufficient that (2.20) holds true at points z = 0 and
z = C̃ only, which implies (2.21) and thus proves the lemma. �

Lemma 2.6 provides an easy way to check whether (2.20) is satisfied for all
z 6 C̃ or not: if there exists such z = z∗ that it doesn’t hold true, then
ṼT (z∗) ≡ 0 and, according to (2.18) and (2.19), the solution for (2.16) would
be also equal to zero, which can be interpreted as selecting a passive trading
strategy. Indeed, if the first inequality in (2.21) is not satisfied, the target
CVaR is too high compared to the expected payoff on the contingent claim,
so there is no need to hedge at all; if the second inequality is not satisfied, the
payoff is bounded from above by a constant less than C̃, so CVaR can never
reach its target value no matter what strategy is used.

Theorem 2.7 The optimal strategy (V̂0, ξ̂) for the problem of hedging costs
minimization (2.15) is

a) a perfect hedge for the contingent claim (H − ẑ)+(1 − ϕ̃(ẑ)) if condition
(2.21) holds true, where ϕ̃(z) is defined by

ϕ̃(z) = 1{ dP∗
dP >ã(z)} + γ(z) · 1{ dP∗

dP =ã(z)},

ã(z) = inf
{
a > 0 : EP

[
(H − z)+ · 1{ dP∗

dP >a}
]
6 (C̃ − z)(1− α)

}
,

γ(z) =
(C̃ − z)(1− α)− EP

[
(H − z)+ · 1{ dP∗

dP >ã(z)}
]

EP

[
(H − z)+ · 1{ dP∗

dP =ã(z)}
] ,

and ẑ is a point of minimum of function

d(z) = EP∗
[
(H − z)+(1− ϕ̃(z))

]

on interval −∞ < z 6 C̃;
b) a passive trading strategy if condition (2.21) is not satisfied.



3 CVaR Hedging in the Black-Scholes Model

3.1 General Setup

In the framework of the standard Black-Scholes model, price of the underlying
St and bond price Bt follow





Bt = ert,

St = S0 exp(σWt + µt),

where r is riskless interest rate, σ > 0 is constant volatility, µ is constant drift
and W is a Wiener process under P. We assume there are no transaction costs
and both instruments are freely tradable.

The SDE for the discounted price process Xt = B−1
t St is then given by





dXt = Xt(σdWt +mdt),

X0 = x0,

where m = µ− r + 1
2
σ2.

The unique equivalent martingale measure P∗ may be derived with the help
of the Girsanov theorem:

dP∗

dP
= exp

(
−m
σ
WT −

1

2

(
m

σ

)2

T

)
, (3.1)

Note that
XT = x0 exp

(
σWT + (m− 1

2
σ2)T

)
,

so (3.1) may be rewritten as

dP∗

dP
= const ·X−m/σ2

T . (3.2)

The contingent claim of interest in this section is a plain vanilla call option
with payoff (ST −K)+. The discounted claim is also a call option with respect
to Xt, with strike price of Ke−rT :

H = (XT −Ke−rT )+,

Amount of the initial wealth H0 required for a perfect hedge is

H0 = EP∗ [H] = x0Φ+(Ke−rT )−Ke−rTΦ−(Ke−rT ),



where

Φ±(K) = Φ

(
lnx0 − lnK

σ
√
T

± 1

2
σ
√
T

)
,

and Φ(·) is a cumulative distribution function for standard normal distribu-
tion.

3.2 Minimizing Conditional Value-at-Risk

In case the initial wealth is bounded above by Ṽ0 < H0, we cannot construct
a perfect hedge for the call option; instead, we shall minimize CVaR over all
admissible strategies with the initial wealth not exceeding Ṽ0. The results of
Section 2.3 shall be used to derive the explicit solution.

As stated in Theorem 2.4, the original problem may be reduced to a problem
of minimizing an auxiliary function c(z) on interval (0, z∗), where

c(z) =





z + 1
1−αEP [(H − z)+ϕ̃(z)] , for z < z∗,

z, for z > z∗,

ϕ̃(z) is defined by (2.8)-(2.10) and z∗ is a real root of

Ṽ0 = EP∗ [(H − z∗)+]. (3.3)

Since we consider z > 0 only,

(H − z)+ = ((XT −Ke−rT )+ − z)+ = (XT − (Ke−rT + z))+.

For simplicity of notation, denote

H(z) = (XT −K(z))+,

K(z) =Ke−rT + z,

Φ̃±(x) = Φ±
(
xe−mT

)
,

Λ±(x, y) = Φ± (x)− Φ±(y),

Λ̃±(x, y) = Φ̃± (x)− Φ̃±(y).

It is clear that H(z) is also a call option, with the strike price of K(z), so we
can apply the Black-Scholes formula to (3.3):

Ṽ0 = x0Φ+(K(z∗))−K(z∗)Φ−(K(z∗)). (3.4)

Further on, we shall refer to z∗ as to the solution for (3.4).



We shall consider two cases.

(a) µ+1
2
σ2> r (m > 0)

The set
{
dP
dP∗ > a

}
takes form

{
dP
dP∗

> a

}
=
{
X
m/σ2

T > b̂
}

= {XT > b} ,

and, moreover,

P
(
dP
dP∗

= a

)
= P∗

(
dP
dP∗

= a

)
= 0.

Applying this to (2.8)–(2.10), we get

ϕ̃(z) = 1{XT>b̃(z)},

b̃(z) = inf
{
b > 0 : EP∗

[
H(z) · 1{XT>b)}

]
6 Ṽ0

}
,

γ(z) = 0.

Note that in our case the infimum is always attained since we deal with atom-
less measures. The expectation in the expression for b̃(z) may be rewritten
as

EP∗
[
H(z) · 1{XT>b}

]
=





EP∗ [H(z)], for b < K(z),

x0Φ+(b)−K(z)Φ−(b), for b > K(z).

Since we consider z < z∗, (2.14) applies:

EP∗ [H(z)] > Ṽ0,

therefore the minimum is not attained on the set b < K(z), and hence b̃(z) is
a solution for the following system:





x0Φ+(b)−K(z)Φ−(b) = Ṽ0,

b > K(z).

(3.5)

Note that the constraint in (3.5) is essential since the equation may have more
than one real root; it is straightforward to show that for all 0 6 z < z∗ this
system yields a single root b̃(z).

Now we are able to write down the function c(z):

c(z) = z + 1
1−α · EP

[
1{XT6b̃(z)} ·H(z)

]
,



or, evaluating the expectation,

c(z) = z + 1
1−α ·

(
x0e

mT Λ̃+(K(z), b̃(z))−K(z)Λ̃ (K(z), b̃(z))
)
,

where b̃(z) is a solution for (3.5).

According to Theorem 2.4, the optimal strategy (V̂0, ξ̂) is then a perfect hedge
for the contingent claim

H̃(ẑ) = (H − ẑ)+1{XT>b̃(ẑ)},

where ẑ is a point of minimum of c(z) on interval (0, z∗).

(b) µ+1
2
σ2< r (m < 0)

In this case the set
{
dP
dP∗ > a

}
is

{
dP
dP∗

> a

}
=
{
X
m/σ2

T > b̂
}

= {XT < b} ,

and therefore

ϕ̃(z) = 1{XT<b̃(z)},

b̃(z) = sup
{
b > 0 : EP∗

[
H(z) · 1{XT<b)}

]
6 Ṽ0

}
,

γ(z) = 0.

Denote
β(b, z) = x0Λ+(K(z), b)−K(z)Λ−(K(z), b),

then

EP∗
[
H(z) · 1{XT<b}

]
=





0, for b < K(z),

β(b, z), for b > K(z).

Same as above, recall that EP∗ [H(z)] > Ṽ0 for z < z∗, and consider properties
of β(b, z):

β(K(z), z) = 0, β(+∞, z) = EP∗ [H(z)] ,
∂

∂b
β(b, z) > 0.

It is clear that the supremum is attained on the set b > K(z), hence b̃(z) is a
solution (which exists and is unique) for the following system:





x0Λ+(K(z), b)−K(z)Λ−(K(z), b) = Ṽ0,

b > K(z).

(3.6)



Function c(z) then takes form

c(z) = z + 1
1−α · EP

[
1{XT>b̃(z)} ·H(z)

]
,

or

c(z) = z + 1
1−α ·

(
x0e

mT Φ̃+(b̃(z))−K(z)Φ̃−(b̃(z))
)
,

where b̃(z) is a solution for (3.6) and the optimal strategy (V̂0, ξ̂) is a perfect
hedge for the contingent claim

H̃(ẑ) = (H − ẑ)+1{XT<b̃(ẑ)},

where ẑ is a point of minimum of c(z) on interval (0, z∗).

To illustrate the method numerically, consider a financial market that evolves
in accordance with the Black-Scholes model with parameters σ = 0.3, µ =
0.09, r = 0.05 and a plain vanilla call option with strike price of K = 110
and time to maturity T = 0.25. Let the initial price of the underlying be
equal to S0 = 100. In this setting, we are interested in hedging strategies
that minimize CVaR0.975 (conditional value-at-risk with confidence level of
97.5%) for various amounts of the initial wealth. You can observe the results
of numeric computations in Figure 1.
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Figure 1. Minimizing CVaR for varying levels of the initial wealth.



3.3 Minimizing Hedging Costs

In this section we shall apply results of Section 2.4 to explicitly construct
strategies minimizing the initial wealth with CVaR not exceeding target value
C̃.

According to Theorem 2.7, a passive trading strategy is optimal in hedging
costs minimization problem if at least one of inequalities (2.21) is not satisfied.
In the Black-Scholes setting, these inequalities take form

x0e
mT Φ̃+(K)−KΦ̃−(K)− C̃(1− α) > 0,

x0e
mT Φ̃+(K + C̃)− (K + C̃)Φ̃−(K + C̃) > 0.

(3.7)

Further on in this section we assume a non-trivial case, i.e. both inequalities
in (3.7) are satisfied. Again, we consider two cases.

(a) µ+1
2
σ2> r (m > 0)

In this case
{
dP∗

dP
> a

}
= {XT < b} , P

(
dP
dP∗

= a

)
= P∗

(
dP
dP∗

= a

)
= 0,

so we have

ϕ̃(z) = 1{XT<b̃(z)},

b̃(z) = sup
{
b > 0 : EP

[
H(z) · 1{XT<b)}

]
6 (C̃ − z)(1− α)

}
,

γ(z) = 0.

Denote
δ(b, z) = x0e

mT Λ̃+(K(z), b)−K(z)Λ̃−(K(z), b),

then

EP

[
H(z) · 1{XT<b}

]
=





0, for b < K(z),

δ(b, z), for b > K(z),

δ(K(z), z) = 0, δ(+∞, z) = EP [H(z)] ,
∂

∂b
δ(b, z) > 0.

Assuming that inequalities (3.7) hold true, the supremum is attained on the
set b > K(z), hence b̃(z) is a unique solution for the system





x0e
mT Λ̃+(K(z), b)−K(z)Λ̃−(K(z), b) = (C̃ − z)(1− α),

b > K(z).

(3.8)



The optimal strategy (V̂0, ξ̂) would be a perfect hedge for the contingent claim
H(ẑ)+1{XT>b̃(ẑ)}, where b̃(z) is a solution for (3.8) and ẑ is a point of minimum

of function
d(z) = x0Φ+(b̃(z))−K(z)Φ−(b̃(z))

on interval z ∈ (−∞, C̃).

(b) µ+1
2
σ2< r (m < 0)

We have
{
dP∗

dP
> a

}
= {XT > b} , P

(
dP
dP∗

= a

)
= P∗

(
dP
dP∗

= a

)
= 0,

hence

ϕ̃(z) = 1{XT>b̃(z)},

b̃(z) = sup
{
b > 0 : EP

[
H(z) · 1{XT>b)}

]
6 (C̃ − z)(1− α)

}
,

γ(z) = 0.

Denote
ζ(b, z) = x0Φ̃+(b)−K(z)Φ̃−(b),

then

EP

[
H(z) · 1{XT>b}

]
=





EP[H(z)], for b < K(z),

ζ(b, z), for b > K(z),

and

ζ(K(z), z) = EP[H(z)], ζ(+∞, z) = 0,
∂

∂b
ζ(b, z) 6 0.

The supremum is attained on the set b > K(z), and b̃(z) is a unique solution
for the system





x0Φ̃+(b)−K(z)Φ̃−(b) = (C̃ − z)(1− α),

b > K(z).

(3.9)

The optimal strategy (V̂0, ξ̂) would be a perfect hedge for the contingent claim
H(ẑ)+1{XT<b̃(ẑ)}, where b̃(z) is a solution for (3.9) and ẑ is a point of minimum

of function

d(z) = x0Λ+(K(z), b̃(z))−K(z)Λ−(K(z), b̃(z))

on interval z ∈ (−∞, C̃).



Now we apply the above results to the Black-Scholes model with the same
parameters as in Section 3.2 (σ = 0.3, µ = 0.09, r = 0.05, call option with
strike price of K = 110, time to maturity T = 0.25, initial price S0 = 100).
Figure 2 shows the minimum amount of the initial wealth to be invested in the
hedging strategy so that the resulting CVaR0.975 does not exceed a specified
threshold.
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Figure 2. Minimizing the amount of the initial wealth for varying levels of CVaR threshold.



4 CVaR-Hedging of Equity-Linked Insurance Contracts

In this section we will use the quantile methodology proposed in papers by
Melnikov and Skornyakova (2005) and Melnikov and Romaniuk (2006) to con-
struct CVaR-optimal hedges of an embedded call option in an equity-linked
life insurance contract.

In addition to the “financial” probability space (Ω,F ,P) introduced earlier, let
us consider the “actuarial” probability space (Ω̃, F̃ , P̃). Let a random variable
T (x) denote the remaining lifetime of a person aged x, and let Tpx = P̃[T (x) >
T ] be a survival probability for the next T years of the insured. We assume
that T (x) does not depend on the evolution of financial market, so we can
treat (Ω,F ,P) and (Ω̃, F̃ , P̃) as independent.

Under an equity-linked pure endowment contract, the insurance company is
obliged to pay the benefit in the amount of H̄ (an FT -measurable random
variable) to the insured provided the insured is alive at time T . Essentially,
the benefit is linked to the evolution of financial market, hence an insurance
contract of this kind poses two independent kinds of risk to the insurance
company: mortality risk and market risk.

According to the option pricing theory, the optimal price is traditionally cal-
culated as an expected present value of cash flows under the risk-neutral
probability. However, the insurance part of the contract doesn’t need to be
risk-adjusted since the mortality risk is essentially unsystematic. Denote the
discounted benefit by H = H̄e−rT , then the price of the contract (known as
“the Brennan-Schwartz price”, see Brennan & Schwartz, 1976) shall be equal
to

TUx = EP̃

[
EP∗

[
H · 1{T (x)>T}

]]
= Tpx · EP∗ [H] .

The problem of the insurance company is to mitigate the financial part of risk
and hedge H̄ in the financial market. However,

TUx < EP∗ [H] ,

in other words, the insurance company is not able to hedge the benefit per-
fectly; instead, the benefit may be hedged partially.

For a fixed client age x, denote the maximum amount of capital that is going
into partial hedging of H̄ by Ṽ0 = Tpx ·EP∗ [H]; we can now use the results of
Theorem 2.4 to derive CVaR-optimal hedging strategy. Along with providing
a way of hedging, this may be viewed as a possible way of estimating financial
exposure of contracts for given values of age. Note that by applying Theorem



2.7 we can also address the dual problem: given the financial claim and a fixed
CVaR threshold, we can find the target survival probability (and hence the
target age) for the contract.

In the following example we investigate a pure endowment contract with a
fixed guarantee which makes payment H̄ at maturity provided the insured is
alive:

H̄ = max{ST , kS0},
where St is the stock price process and k is a fixed percentage value. Since

max{ST , kS0} = kS0 + (ST − kS0)+,

it is sufficient for our purposes to only consider the embedded call (ST −K)+,
where K = kS0.

Let the financial part of our model follow the Black-Scholes with parameters
σ = 0.3, µ = 0.09, r = 0.05 and let the embedded call option have the
strike price of K = 110; time horizon T will vary in this example. Let the
initial price of the stock be equal to S0 = 100. As for the insurance part,
we shall use survival probabilities listed in mortality table UP94 @2015 from
McGill, Brown, Haley, and Schieber (2004) (Uninsured Pensioner Mortality
1994 Table Projected to the Year 2015). Our objective here is to construct
hedging strategies that minimize CVaR0.975 for varying values of client age and
time horizon. Please note that since we are dealing with the Black-Scholes,
we can refer to Section 3.2 for the calculation of optimal CVaR for a given
amount of initial wealth. The numeric results are presented in Figure 3.
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Figure 3. CVaR vs. age for unit-linked contracts of different maturity.

Now consider the dual problem: for a fixed CVaR threshold C̃, specify the
optimal client age for the equity-linked life insurance contract. Assuming the
Black-Scholes setting, we can employ the results of Section 3.3 to derive the
optimal survival probability. Then it’s just the matter of using the correspond-
ing life table to find the optimal client age. (Note: depending on the life table,
the client age may not be uniquely defined by the survival probability; in our
example, we pick the highest possible value). To illustrate the above, we use
model parameters from the previous example and survival probabilities from
mortality table UP94 @2015, McGill et al. (2004); the results are presented in
Figure 4.
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Figure 4. Age vs. CVaR for unit-linked contracts of different maturity.
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Föllmer, H., & Leukert, P. (1999). Quantile hedging. Finance and Stochastics,
3 (3), 251–273.
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We construct CVaR-optimal hedges subject to constraints on the initial wealth. 
We also discuss how to minimize hedging costs subject to a CVaR constraint. 
The approach is illustrated by deriving closed-form solutions in the Black-Scholes. 
A practical application: CVaR-hedging a unit-linked life insurance contract. 
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