
Operations Research Letters 39 (2011) 163–171
Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Conditional value-at-risk in portfolio optimization: Coherent but fragile
Andrew E.B. Lim a, J. George Shanthikumar b, Gah-Yi Vahn a,∗

a Department of Industrial of Engineering & Operations Research, University of California, Berkeley, CA 94720, United States
b Krannert School of Management, Purdue University, West Lafayette, IN 47907, United States

a r t i c l e i n f o

Article history:
Received 29 August 2010
Accepted 21 February 2011
Available online 17 March 2011

Keywords:
Portfolio optimization
Conditional value-at-risk
Expected shortfall
Coherent measures of risk
Mean-CVaR optimization
Mean-variance optimization

a b s t r a c t

We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We
show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable
due to estimation errors of CVaR and/or the mean, which are magnified by optimization. This problem is
exacerbated when the tail of the return distribution is made heavier. We conclude that CVaR, a coherent
risk measure, is fragile in portfolio optimization due to estimation errors.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Conditional value-at-risk (CVaR, also known as Expected
Shortfall, or ES) has gained considerable attention in the financial
risk management literature as a viable risk measure. CVaR at
level β refers to the conditional expectation of losses in the top
100(1 − β)%, and is anticipated to be a superior risk measure
to value-at-risk (VaR), which, at level β , refers to the threshold
level for losses in the top 100(1 − β)%. At a time when the use
of VaR is partly blamed for the 2007–2008 financial crisis, CVaR
is more appealing than VaR because it takes into account the
contribution from the very rare but very large losses. Formally,
CVaR is a ‘‘coherent’’ risk measure, in that it satisfies [26,1] the
four coherence axioms of [2]: translation invariance, subadditivity,
positive homogeneity and monotonicity (whereas VaR violates
subadditivity [2,10], i.e. diversification can result in greater risk).
See [12] and the references therein for an overview of discussion
on risk measures.

There have been many studies on CVaR once its coherence
was established. In statistics/econometrics, there have been stud-
ies about CVaR estimation. Another line of work has been in
incorporating CVaR as a risk measure in portfolio optimization,
led by [27], which developed numerical methods for computing
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optimal portfolios with CVaR as the objective. These papers
demonstrate CVaR portfolio optimization from a purely data-
driven approach, i.e. the investor optimizes the portfolio based on
empirical estimates of mean and CVaR.

If the underlying return distribution is multivariate normal
and the investor knows its parameters, then the portfolio that
minimizes CVaR with an expected return R is equivalent to the
portfolio that minimizes variance (or VaR) with the same expected
return R [27,8]. As a consequence, the frontiers of mean-variance
and mean-CVaR portfolios coincide if plotted on the same scale.
The authors of [27,8] also consider the case where the investor
does not know the model and computes optimal portfolios purely
based on historical data. Using real market data, they show that
the empirical frontiers (see Section 2 for a precise definition)
of mean-variance and mean-CVaR portfolios are very similar
for the (different) assets and time periods under consideration.
This merely indicates that the data used were approximately
multivariate normal, and deems the use of CVaR over variance in
a ‘normal’ market unnecessary (of the four papers, only De Giorgi
correctly identifies this point). Nevertheless, the proponents of
CVaR argue that its usefulness will be evident when the return
distributions deviate from normality; in particular when they have
fat left tails, as is often the case in ‘crisis’ periods [23]. However, to
date, we are not aware of any studies on the use of CVaR as a risk
measure in such a market have been done to validate this claim.

One important point that has been omitted by Artzner et al.
and subsequent discussions on risk measures ([12,3,13], to name
a few) is the role of estimation errors in the computation of
a risk measure, and their effect on decision-making, such as
portfolio optimization. CVaR may be coherent, but a large number
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of observations are needed to estimate it accurately because
it is a tail statistic. However, in financial risk management,
historical data older than 5 years may be irrelevant because
of non-stationarity in the underlying return distribution. Thus
from a practical perspective, data-driven portfolio optimization
that involves estimated statistics is subject to estimation errors
that may be very significant. Such observations in the context of
mean-variance optimization have been made by [21,25,5,6]. We
believe that an understanding of the impact of estimation errors
in CVaR (as well as other tail risk measures) is important given
its increasing popularity. The only works we are currently aware
of that investigate issues concerning CVaR estimation are [7,17],
where CVaR estimation is shown to be less ‘‘robust’’ than VaR in
the sense of robustness defined by [19,15].

We note that this work is different in that we are investigating
the estimation errors associated with CVaR in the context of
an optimization problem—and we will see that the optimization
procedure introduces extra ‘‘bias’’ to the statistical estimation
errors already present.

The goal of this paper is thus to provide an objective analysis
of the use of CVaR as a risk measure in data-driven portfolio
optimization. Specifically, we set out to answer the following
questions:

• Howdo estimation errors affect data-driven portfolio optimiza-
tion that minimize CVaR as an objective?

• Is CVaR a reliable risk measure, in terms of estimation errors,
for portfolio optimization in a heavy-tailed market?

To address these questions, we look at the mean-CVaR frontiers
associated with the solution of empirical mean-CVaR problems
constructed from data generated under different market models.
We will first show that these empirical mean-CVaR frontiers
vary wildly when both mean and CVaR are empirically estimated
(call this problem EMEC, for empirical mean-empirical CVaR). Of
course, such a variation may be due to the well-known problem of
estimation errors of themean [24]. To isolate the effect of themean,
we also consider (i) global minimum CVaR portfolio optimization
(GMC) and (ii) mean-CVaR problemwhere the truemean is known
(TMEC for true mean-empirical CVaR). For comparative purposes,
we also analyze empirical mean-empirical variance (EMEV), global
minimum variance (GMV) and truemean-empirical variance (TMEV)
problems.

To see the effect of the tail behavior of return distributions,
we do the analysis mentioned above for three different market
scenarios: relative return distribution ismultivariate normal (M1),
mixture of multivariate normal and negative exponential tail
(M2), or mixture of multivariate normal and one-sided power
tail (M3). Such mixture distributions represent a normal market
that undergoes a shock with a small probability, with increasing
heaviness in the tail.

The details of the evaluation methodology can be found in
Section 2, of the optimization problems in Section 3 and simulation
results and discussion in Section 4.

2. Evaluation methodology

We consider single-period portfolio optimization with n risky
assets. We denote the excess returns of the assets by the random
vectorX = [X1, . . . , Xn]

′. To see howestimation errors affect EMEC
portfolio optimization, we employ the following procedure:

1. Choose β (usually, 95% or 99%) and a model M for the distribu-
tion of the underlying assets. For example, M could be a multi-
variate normal distribution with parameters (µ,V).

2. Simulate asset returnsD = [x1, . . . , xq] for a time period of size
q under M. This is the historical data the investor observes.
3. Fix a portfolio return level R. Compute the optimal solution of
the EMEC(R;D, β) problem (see Section 3 for details on the op-
timization). For the same data setD, vary the range of R to com-
pute a family of optimal portfolios. Note this family is random
since the input data D is random.

4. For each portfolio in the family of optimal portfolios computed
in Step 3, compute its expected (excess) return and CVaR un-
der the truemodelM, and plot the resultingmean-CVaR values.
This generates a curve, the empirical frontier, representing the
mean and CVaR of the portfolios computed in Step 3 under the
true model M. We do this because we are interested in the true
performance of the EMEC portfolios. Note the empirical frontier
is also random.

5. Repeat Steps 3–4 for EMEV(R;D, β) portfolio optimization.
6. Repeat Steps 2–5 many times (50 in our study), each time with

fresh input data D. We can now compare the distribution of
EMEC and EMEV empirical frontiers.

We employ a similar procedure for TMEC/TMEV and GMC/GMV
portfolio optimization; the only difference is in the optimization
problem we solve in Step 3. To see the effect of the tail of return
distributions, we consider market models M with increasingly
heavier one-sided tail; the exact characterizations of thesemarkets
are in Section 4.2. Next, we provide details of the optimization.

3. Data-driven portfolio optimization

3.1. Data-driven mean-variance portfolio optimization

The optimal data-driven mean-variance portfolio π∗

MV is given
by solving the quadratic program:

min
π

π′V (q)π (1a)

s.t.
n−

i=1

πi = 1 (1b)

π′g = R, (1c)

where V (q) is the sample covariance matrix computed from the
observed data. For the EMEV problem, g = q−1 ∑q

i=1 xi, i.e. the
sample mean, and for the TMEV problem, g = E(X). For the GMV
problem, we omit the constraint (1c).

3.2. Data-driven mean-CVaR portfolio optimization

The optimal data-driven mean-CVaR portfolio π∗

CVaR is given by
solving:

min
π,α

α +
1

q(1 − β)

q−
i=1

(−π′xi − α)+ (2a)

s.t.
n−

i=1

πi = 1 (2b)

π′g = R, (2c)

where D = [x1, . . . , xq] are vectors of observed asset returns. We
know from [27] that (2) can be transformed into a linear program.
Again, for the EMEC problem, g = q−1 ∑q

i=1 xi, and for the TMEC
problem, g = E(X), and for the GMC problem, we omit the
constraint (2c).
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Fig. 1. The frontiers of empiricalmean-empirical CVaR (red) and empiricalmean-empirical variance (blue) portfolios undermodel. All scales are bps/mth. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4. Results and discussion

4.1. Returns ∼ multivariate normal

4.1.1. Model description
We first consider the case where excess returns of n = 5 assets

have a multivariate normal distribution:

X ∼ N(µ,V ) (M1)

where

µ =

26.11, 25.21, 28.90, 28.68, 24.18


× 10−4,

V =


3.715, 3.730, 4.420, 3.606, 3.673
3.730, 3.908, 4.943, 3.732, 3.916
4.420, 4.943, 8.885, 4.378, 5.010
3.606, 3.732, 4.378, 3.930, 3.789
3.673, 3.916, 5.010, 3.799, 4.027

 × 10−4.

The vectorµ and thematrixV are the samplemean and covariance
matrix of 299monthly excess returns of 5 stock indices (NYA, GSPC,
IXIC, DJI, OEX) from the period spanning August 3, 1984 to June 1,
2009. The histogram for the 10,000 sample returns of X1 is shown
in Fig. 2(a).

4.1.2. Empirical mean-empirical CVaR (EMEC) problem
As described in Section 2, we generate data using model

(M1) and solve for EMEC and EMEV portfolios for a number of
target expected returns R. We then simulate the returns for these
portfolios under model (M1) to compute the true expected return
and true CVaR, and generate the empirical frontiers in Fig. 1. Note
we could have equally chosen true variance as the common risk
scale.We also emphasize that the frontiers are not observed by the
investor herself; they show the variability in the performance of
empirical portfolio optimization under the true model.

The EMEC and EMEV frontiers both vary wildly; for example,
with q = 50 (≈4 years), the range of expected excess return
of a portfolio with CVaR = 1000 bps/mth per dollar invested
(we will omit ‘per dollar invested’ hereafter) is greater than the
range 25–72 bps/mth, which translates to a relative excess return
ratio greater than (1.007212

− 1)/(1.002512
− 1) ≈ 300%

per year. The performance of EMEC and EMEV portfolios are
very similar in that the positions and the spread of the frontiers
are very similar. This is not very surprising, since, as previously
mentioned, theoretical mean-variance and mean-CVaR problems
yield equivalent solutions if the underlying asset returns have a
multivariate normal distribution. Thus in a normal market, the
EMEC problem is subject to large estimation errors of the mean,
as is the EMEV problem. The same shortcomings apply to markets
with heavier tails, as estimating the mean becomes more difficult
as the underlying distribution becomes more irregular.

However, we cannot attribute the variation of the empirical
frontiers solely to errors of the mean. What if we remove the
expected return constraint, or assume the investor knows the true
mean of asset returns? Removing the expected return constraint is
a natural extension of EMEC and EMEV problems [20,9], and allows
us to compare errors of CVaR and variance without errors of the
mean. On the other hand, assuming the investor knows the true
mean is an idealization where the investor has a good estimate
of the mean obtained from alternatives to the sample average,
e.g. based on CAPM [18], forecasts of exceptional returns [14],
factor models [11], or incorporating investor knowledge via
Black–Litterman [4]. In this regard, the TMEC model will allow us
to evaluate whether the hard work put into estimating the mean
can be destroyed by the errors associated with estimating CVaR.
Hence, for the rest of the paper, we consider (i) GMC/GMV and
(ii) TMEC/TMEV problems.

4.1.3. Global minimum CVaR (GMC) problem
We plot expected return vs. true CVaR of portfolios that solve

the GMC problem (red) for (M1) in Fig. 4(a). For comparative
purposes, GMV portfolios are also plotted (blue). In Table 1, we
give the ranges for CVaR and expected return values corresponding
to the solutions of GMC/GMV problems from our 50 simulations.
We observe that GMVportfolios outperformGMCportfolios in that
most blue stars are found on the left of the red stars (i.e. more
accurate) and also are less spread out (i.e. more precise). The GMC
portfolios are not precise at all; e.g. for our 50 simulations, when
q = 50, the range of expected return is 9.15–43.2 bps/mth (481%
per year relative difference) and for CVaR is 465–723 bps/mth.

What are the origins of the variation in the GMC empirical
frontiers? In order to distinguish between the effects of inherent
estimation errors and the optimization procedure, we plot in
Fig. 3(a) Perceived CVaR and Random Empirical CVaR against True
CVaR. By Perceived CVaR we mean the optimal objective from
solving the GMC problem, i.e. the CVaR value perceived by
the investor. By Random Empirical CVaR we mean the empirical
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(a) Normal. (b) Laplace tail (λ = 10). (c) Power tail (λ = 3.5).

Fig. 2. Histogram for 10,000 samples of X1 (bps/mth) under model (a) (M1), (b) (M2) and (c) (M3).
Fig. 3. Random Empirical CVaR vs. True CVaR (blue) and Perceived CVaR vs. True CVaR (red) for (a) global minimum CVaR problem under model (M1) and (b) true mean-
empirical CVaR problem. All scales are bps/mth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. The empirical frontiers of global minimum variance (blue) and global minimum CVaR (red) portfolios under models (a) (M1) (b) (M2) and (c) (M3). All scales are
bps/mth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
CVaR, defined by (2a), of portfolios that are randomly drawn
(note the drawing procedure was not uniform) from the set of
portfolios that satisfy the constraint (2b). True CVaR refers to the
true CVaR value of a portfolio. Thus the scatter plot of Random
Empirical CVaR against True CVaR (blue) gives an indication of
the inherent estimation errors before optimization, and the scatter
plot of Perceived CVaR against True CVaR (red) gives an indication
of how the optimization affects the already present estimation
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Table 1
Expected return and CVaR (true and perceived) ranges (bps/mth) for 50 GMC and GMV portfolios. In parenthesis is the size of the range.

(M1) (M2) (M3)
GMV GMC (true) GMC (per) GMV GMC (true) GMC (per) GMV GMC (true) GMC (per)

CVaR
q = 50 465 to 560 465 to 723 165 to 380 2298 to 2391 2204 to 11120 188 to 4706 990 to 2151 1043 to 2758 255 to 687

(96) (257) (257) (93) (8916) (4518) (1161) (1715) (432)
q = 200 463 to 481 466 to 657 314 to 494 2332 to 2374 2202 to 4258 1020 to 4738 974 to 1764 1007 to 1403 480 to 837

(18) (191) (180) (42) (2056) (3718) (792) (396) (357)
q = 400 463 to 472 464 to 562 377 to 497 2339 to 2376 2194 to 2876 1240 to 3439 980 to 1580 988 to 1177 555 to 946

(9) (98) (121) (37) (682) (2199) (600) (189) (391)

Exp. return
q = 50 16.5 to 31.7 9.15 to 43.2 −14.9 to 84.7 −42.4 to −25.8 −90.0 to 27.0 −318 to 426 −45.8 to 9.63 −66.3 to 19.6 −183 to 48.1

(15.2) (34.1) (99.6) (16.6) (117) (744) (55.4) (85.9) (232)
q = 200 20.9 to 27.5 10.1 to 34.6 −11.4 to 37.8 −36.9 to −31.6 −70.9 to −1.43 −34.4 to 98.5 −28.8 to 10.2 −18.9 to 17.3 −19.7 to −34.8

(6.67) (24.5) (49.2) (5.30) (69.5) (132.8) (39.0) (36.3) (54.6)
q = 400 22.4 to 25.9 17.8 to 33.5 8.31 to 41.5 −36.9 to −32.5 −73.6 to −9.21 −52.9 to 8.03 −21.8 to 7.94 −9.30 to 14.9 −20.4 to −5.65

(3.55) (15.7) (33.2) (4.40) (64.4) (61.0) (29.8) (24.2) (14.8)
Table 2
CVaR (true and perceived) ranges (bps/mth) for 50 mean-risk empirical frontiers at fixed expected return levels. In parenthesis is the size of the range.

Exp.
return

EMEV/EMEC TMEV/TMEC

(M1) (M1) (M2) (M3)
TMEV TMEC TMEV TMEC

(true)
TMEC
(per)

TMEV TMEC
(true)

TMEC
(per)

TMEV TMEC
(true)

TMEC (per)

40bps/mth
q = 50 470–2210 490–2150 613–691 621–942 171–588 2721–2992 2736–10610 1053–4957 1110–1242 1123–1778 469–916

(1740) (1660) (78) (321) (417) (271) (7874) (3903) (132) (655) (447)
q = 200 460–2970 490–3120 612–624 624–910 426–697 2720–2772 2739–4423 1759–4998 1109–1291 1113–1518 686–1159

(2510) (2630) (12) (286) (271) (52) (1684) (3239) (182) (405) (472)
q = 400 470–1200 470–1250 612–620 612–709 484–692 2720–2745 2728–3388 1904–3940 1110–1179 1112–1299 846–1288

(730) (780) (8) (97) (208) (25) (660) (2036) (69) (187) (443)

60bps/mth
q = 50 460–2720 470–2650 1039–1179 1056–1747 220–963 3139–3542 3161–10570 1282–5031 1287–1530 1294–2072 565–1100

(2260) (2180) (140) (691) (742) (403) (7409) (3750) (243) (779) (536)
q = 200 480–4220 520–4440 1038–1063 1042–1294 692–1182 3140–3213 3155–4538 2002–5126 1286–1740 1288–1719 814–1362

(3740) (3920) (25) (252) (490) (73) (1383) (3124) (455) (431) (549)
q = 400 550–2280 560–2300 1038–1055 1045–1183 798–1186 3139–3175 3148–3555 2393–4122 1286–1450 1287–1454 1008–1492

(1730) (1740) (17) (138) (388) (36) (406) (1729) (164) (167) (484)
errors. We observe that empirical CVaR values of randomly
drawn, unoptimized portfolios are slightly biased in the direction
of underestimating the true CVaR. This is because the sample
estimator from (2a) is biased in the direction of underestimation.
However, this underestimation is aggravated by the optimization
procedure, as can be seen by the position of the red dots—they are
generally further below the black line (perfect estimation) than the
blue dots. In Table 1, we highlight this phenomenon by listing the
ranges of Perceived CVaR as well as the true CVaR for the GMC
problem.

4.1.4. True mean-empirical CVaR (TMEC) problem
Fig. 5(a) shows TMEV empirical frontiers (blue) and TMEC(β =

0.99) empirical frontiers (red) for different data sizes q =

50, 200, 400 (months).We also plot the theoretical mean-variance
(equivalently, mean-CVaR) frontiers in green (left edge of the blue
curves). In Table 2,we give the ranges for CVaR and expected return
values corresponding to the solutions of TMEC/TMEV problems
from our 50 simulations. In all three instances, the spreads of
the TMEV empirical frontiers are significantly smaller than the
TMEC empirical frontiers, and the TMEV empirical frontiers lie on
the left-most side of the TMEC curves, closer to the theoretical
frontier. Thus a portfolio manager who wishes to find the optimal
TMEC portfolio should solve the TMEV problem to get a portfolio
with higher accuracy and precision. For example, a manager with
risk level CVaR = 1000 bps/mth and q = 50 using TMEV
optimization generates an average excess return of 56.6 bps/mth,
but a manager with the same risk level using TMEC optimization
generates 52.3 bps/mth—≈ 8.5% per year higher excess return, on
average. Furthermore, the TMEV manager is more reliable; e.g. for
our 50 simulations and q = 50, the range of true CVaR is 613–691
bps/mth whereas for the TMEC manager it is 621–942 bps/mth for
the same expected return of 40 bps/mth.

As with the GMC problem, the variation in the TMEC portfolios
is due to inherent estimation errors of CVaR coupledwith the effect
of optimization. In Fig. 3(b) we plot the Perceived CVaR of TMEC
portfolios in red, and empirical CVaR of random portfolios that
satisfy (2b) in blue; notice the red dots are generally further below
the black line (perfect estimation) than the blue dots. This is further
verified by the CVaR (per) column in Table 2. This tells us that
the TMEC investor can substantially underestimate the true CVaR
value of her ‘optimal’ portfolio and be exposed to more risk than
suggested by her perceived value.

Lastly,we comment on the difference between the performance
of TMEC and TMEV empirical frontiers. Theoretically, the mean-
CVaR and mean-variance empirical frontiers coincide; thus the
discrepancy in the observed performance suggests that estimation
errors of CVaR are more significant than of variance. This is
not surprising since the mean vector and the covariance matrix
are minimal sufficient statistics of a multivariate normal model
(see, for example, [22]). Thus minimizing portfolio variance only
contains errors of the covariance matrix, which are less significant
than errors of the mean, whereas minimizing portfolio CVaR
contains errors of both themean vector and the covariancematrix.
Of course, we could construct an artificial distribution that has
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Fig. 5. The empirical frontiers of true mean-empirical variance (blue) and true mean-empirical CVaR (red) portfolios under models (a) (M1) (b) (M2) and (c) (M3). In
(a), we also plot the theoretical mean-variance (equivalently, mean-CVaR) frontier in green (found at the left-most edge of the blue curves). All scales are bps/mth. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
CVaR (and/or the mean) being the minimal sufficient statistic
rather than the mean and the covariance matrix and for which the
solution to the TMEV problem is more reliable. However, as our
purpose is to evaluate empirical CVaR optimization in the context
of financial applications, such artificial distributions are not of
interest in this study.
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4.2. Returns ∼ multivariate normal + heavy loss tail

Recall that one of our objective is to evaluate CVaR portfolio
optimization in markets with heavier tails. We now present
analysis of GMC/GMV and TMEC/TMEV problems for two such
markets.

4.2.1. Negative exponential tail
Let us consider returns being driven by a mixture of multi-

variate normal and negative exponential distributions, such that
with a small probability, all assets suffer a perfectly correlated
exponential-tail loss. Formally,

X ∼ (1 − I(ϵ))N(µ,V) + I(ϵ)(Ye + f), (M2)

where I(ϵ) is a Bernoulli random variable with parameter ϵ, e is
a n × 1 vector of ones, and f = [f1, . . . , fn]′ is a n × 1 vector of
constants, and Y is a negative exponential random variable with
density

P(Y = y) =


λeλy, if y ≤ 0
0 otherwise.

In our simulations, we consider ϵ = 0.05 (i.e. one shock every ≈

1.7 years), fi = µi −
√
Vii and λ = 10. The histograms for 10,000

sample returns of X1 is shown in (Fig. 2(b)).

4.2.2. One-sided power tail
Finally, we consider returns being driven by amixture of multi-

variate normal and one-sided power distribution, such that with a
small probability, all assets suffer a perfectly correlated power-tail
loss. Formally,

X ∼ (1 − I(ϵ))N(µ,V) + I(ϵ)Z(γ )f, (M3)

where I(ϵ) is a Bernoulli random variable with parameter ϵ, f =

[f1, . . . , fn]′ is a n × 1 vector of constants, and Z(γ ) is a random
variable defined for γ ≥ 1 such that

P(Z(γ ) = z) =


(γ − 1)(−z)−γ if z ≤ −1
0 otherwise.

Note X under (M3) has finite variance for γ > 3. In our simula-
tions, we consider ϵ = 0.05, fi = µi − 5

√
Vii, and γ = 3.5. The

histogram for 10,000 sample returns of X1 is shown in (Fig. 2(c)).

4.3. Discussion of results

4.3.1. Global minimum CVaR (GMC) problem
The expected return vs. true CVaR of GMC and GMV portfolios

under models (M1), (M2) and (M3) are plotted in Fig. 4. In
Table 1, we give the ranges for CVaR and expected return values
corresponding to the solutions of GMC and GMV problems from
our 50 simulations. In (M1) and (M2), the GMVportfolios perform
better than GMC portfolios in that the blue stars are further to the
left (i.e. more accurate) and have substantially smaller vertical and
horizontal spreads (i.e. more precise) than the red stars. In (M3),
the GMV portfolios are slightly more accurate and precise than
GMC portfolios when q = 50, but the GMC portfolios converge
faster with increasing data size. However, as financial data older
than 5 years is rarely used in practice, q = 50 presents the most
realistic scenario, and in this case, the GMVproblem is clearlymore
reliable than the GMCproblem across allmodels. In addition, when
q = 50, the investor substantially underestimates the CVaR value—
for our 50 simulations, True CVaR range is 2736–10610 bps/mth,
whereas Perceived CVaR range is 1053–4957 bps/mth for the same
expected return 40 bps/mth.
4.3.2. True mean-empirical CVaR (TMEC) problem
The empirical frontiers of TMEC and TMEV portfolios under

models (M1), (M2) and (M3) are plotted in Fig. 5. In Table 2, we
give the ranges for CVaR and expected return values corresponding
to the solutions of TMEC/TMEV problems from our 50 simulations.
For comparison, we also provide the ranges for EMEC/EMEV
problems under (M1). Across all models, the TMEV empirical
frontiers perform better than TMEV empirical frontiers in that
the blue curves are further to the left and have smaller spreads
than the red curves. There are differences between the models,
however—the TMEV most outperform TMEC portfolios in (M2),
whereas in (M3), the outperformance of TMEV empirical frontiers
at q = 50 diminishes with increasing data. However, as previously
mentioned, q = 50 presents the most realistic scenario, and
in this case, the TMEV problem is clearly more reliable than
the TMEC problem across all models. The investor remains too
optimistic when q = 50—for our 50 simulations, True CVaR
range is 1123–1778 bps/mth, whereas Perceived CVaR range is
461–916 bps/mth for the same expected return 40 bps/mth.

We can also see the effect of assuming the investor knows the
truemean—from the (M1) columns in Table 2 and comparing Fig. 1
and (Fig. 5(a)), we see that the variation of both mean-variance
and mean-CVaR empirical frontiers decrease substantially when
the true mean is known. However, even if the investor estimates
themean exactly, estimation errors in CVaR can significantly affect
the reliability of empirical frontiers, as is the case for (M2).

5. Concluding remarks

It is natural to ask whether these fragility problems could be
alleviated if the investor had more knowledge about the asset
returns and incorporated this into the model. This may be the
case, but it would require alternative formulations of the mean-
CVaR problem, since a general structure is not easily incorporated
into Rockafellar–Uryasev’s problem formulation. Furthermore,
while incorporating structural information may improve the
situation, substantial fragility problems may still remain. A simple
illustration of this is the case where the investor correctly assumes
that log-returns are i.i.d. Gaussian, but with unknown mean
and covariance that need to be estimated from data. It is well
known, however, that the Markowitz and mean-CVaR problems
are equivalent for Gaussian models [27,8], and as the parametric
Markowitz problem is susceptible to estimation errors if plug-
in parameter estimates are used (see Fig. 1 and other studies of
the Markowitz problem mentioned in the introduction), so is the
mean-CVaR problem. Thus the impact of estimation errors can be
substantial, even if investors are fortunate enough to have correct
structural information (that the log-returns follow a Gaussian
distribution).

The actual situation, of course, is much more difficult. It is
well established that the tails of the return distributions are
typically heavier than those of a Gaussian, and that the dependence
structure between asset returns can be complex. This is important
for CVaR because it is very sensitive to the tail of the return
distribution. We know, however, that distinguishing between
different tail behaviors is extremely difficult – for example, [16]
show that evenwith 20 years of i.i.d. daily observations, one cannot
distinguish between exponential and power-type tail – so the
distributional information that is particularly relevant to CVaR is
difficult to specify.

Several research directions are of interest: (i) investigating
methods of reducing the impact of estimation errors in portfo-
lio optimization problems when using risk measures with desir-
able theoretical properties such as CVaR, possibly by accounting
for them explicitly in the model, (ii) developing risk measures that
account for statistical errors and model uncertainty, and (iii) inte-
grating these methods with structural information about the sys-
tem being modeled.
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