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Abstract

Recently, a new approach for optimization of Conditional Value-at-Risk (CVaR) was sug-

gested and tested with several applications. By de�nition, CVaR, also called Mean Excess

Loss, Mean Shortfall or Tail VaR, is the expected loss exceeding Value-at Risk (VaR). Cen-

tral to the approach is an optimization technique for calculating VaR and optimizing CVaR

simultaneously. This paper extends this approach to the optimization problems with CVaR

constraints. In particular, the approach is used for �nance applications such as maximizing

returns under CVaR constraints. A case study for the portfolio of S&P 100 stocks is per-

formed to demonstrate how the new optimization techniques can be implemented. Historical

data were used for scenario generation.
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1 Introduction

Portfolio optimization has come a long way from Markowitz seminal work in 1952 [17]. Develop-

ments in portfolio optimization are stimulated by two basic requirements: (1) adequate modeling

of utility functions, risks, and constraints; (2) e�ciency, i.e., ability to handle large number of

instruments and scenarios. These factors drove developments of such e�cient tools as the mean

absolute deviation approach [12], the regret optimization approach [5], and the minimax ap-

proach [34]. Mostly, high e�ciency of these tools can be attributed to using linear programming

techniques, rather than the Markowitz quadratic programming approach.

Recently, it was demonstrated [26] that linear programming techniques can be used for opti-

mization of Conditional Value-at-Risk (CVaR), which is known also as Mean Excess Loss, Mean

Shortfall, or Tail Value-at-Risk. A simple description of the approach for minimization of CVaR

and optimization problems with CVaR constraints can be found in [33]. CVaR performance

measure is closely related to Value-at-Risk (VaR). By de�nition, with respect to a speci�ed prob-

ability level �, the �-VaR of a portfolio is the lowest amount � such that, with probability �, the

loss will not exceed �, whereas the �-CVaR is the conditional expectation of losses above that

amount �. The de�nition of CVaR ensures that the �-VaR is never more than the �-CVaR, so

portfolios with low CVaR must have low VaR as well.

A description of various methodologies for the modeling of VaR can be seen, along with related

resources, at URL http://www.gloriamundi.org/. Mostly, approaches to calculating VaR rely on

linear approximation of the portfolio risks and assume a joint normal (or log-normal) distribution

of the underlying market parameters [6, 9, 21, 24, 28, 31, 29]. Also, historical or Monte Carlo

simulation-based tools are used when the portfolio contains nonlinear instruments such as options

[4, 9, 18, 21, 24, 31, 29]. Discussions of optimization problems involving VaR can be found in

[14, 15, 10, 16].

The popularity of VaR is mostly related to a simple and easy to understand representation

of the high losses. Although VaR is a very popular measure of risk, it has undesirable properties

[2, 3] such as lack of sub-additivity, i.e., VaR of a portfolio with two instruments may be greater

than the sum of individual VaRs of these two instruments. Also, VaR is di�cult to optimize

when calculated using scenarios. In this case, VaR is non-convex [18] (see de�nition of convexity

in [25]), non-smooth as a function of positions, and it has multiple local extrema. CVaR, which

is a quite similar to VaR measure of risk has much more attractive properties than VaR. CVaR

is more conservative than VaR and is a more consistent measure of risk since it is sub-additive
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[2, 3] and convex [26]. Numerical experiments indicate that the minimization of CVaR also leads

to near optimal solutions in VaR terms because CVaR is always greater than or equal to VaR.

Moreover, when the return-loss distribution is normal, these two measures are equivalent [26],

i.e., they provide the same optimal portfolio. Although CVaR has not become a standard in the

�nance industry, CVaR is gaining in the insurance industry [8]. CVaR is used also in credit risk

studies [4]. Similar measures as CVaR have been earlier introduced in the stochastic programming

literature, although not in �nancial mathematics context. The conditional expectation constraints

and integrated chance constraints described in [20] may serve the same purpose as CVaR.

Several case studies showed that risk optimization with the CVaR performance function and

constraints can be done for large portfolios and a large number of scenarios with relatively small

computational resources. A case study on the hedging of a portfolio of options using the CVaR

minimization technique is included in [26]. This problem was �rst studied at Algorithmics, Inc.

with the minimum expected regret approach [18]. Also, the CVaR minimization approach was

applied to credit risk management of a portfolio of bonds [1]. This portfolio was put together

by several banks to test various credit risk modeling techniques. Earlier, the minimum expected

regret optimization technique was applied to the same portfolio at Algorithmics, Inc. [19]. Paper

[1] have used the same set of scenarios to test the minimumCVaR technique. The reader interested

in other applications of optimization techniques in the �nance area can �nd relevant papers in

[35].

This paper extends the CVaR minimization approach [26] for optimizing portfolios of �nancial

instruments. We show that the approach [26] can be used also for maximizing returns under

a CVaR constraint as opposed to minimizing CVaR. First, we brie
y describe the approach

from [26] to lay foundation for the further extension of this approach. Second, we formulate a

general theorem on various equivalent representations of the e�cient frontier with convex risk

performance functions. This equivalence is well known for mean-variance, see for instance, [30],

and for mean-regret [5] performance functions. We have shown that it holds for any convex risk

function, in particular for the CVaR function considered in this paper. Third, using an auxiliary

variable, we formulated a theorem on reduction of the problem with CVaR constraints to a much

simpler convex problem. Similar result is formulated also for the case when both return and

CVaR are included in the performance function. As it was earlier identi�ed in [26], optimization

automatically sets the auxiliary variable to VaR which signi�cantly simpli�es the problem solution

(recall that CVaR is de�ned as a mean losses exceeding VaR). Further, when the distribution is

given by �xed number of scenarios and the loss function is linear, we showed how the CVaR

3



function can be replaced by a linear function and an additional set of linear constraints. Fourth,

to test the approach, we developed a one-period model for optimization of a portfolio of stocks

using historical scenario generation. A case study was conducted on the optimization of S&P100

portfolio of stocks with CVaR constraints. Finally, formal proofs of theorems are included in the

appendix after the list of references.

2 Conditional Value-at-Risk

Approach developed in [26] provides the foundation for the analysis conducted in this paper. First,

following [26], we formally de�ne CVaR and present theorems which are needed for understanding

of this paper. Let f(x;y) be the loss associated with the decision vector x, to be chosen from

a certain subset X of IRn, and the random vector y in IRm. (We use boldface type for vectors

to distinguish them from scalars.) The vector x can be interpreted as representing a portfolio,

with X as the set of available portfolios (subject to various constraints), but other interpretations

could be made as well. The vector y stands for the uncertainties, e.g., some market parameters,

that can a�ect the loss. Of course the loss might be negative and thus, in e�ect, constitute a

gain.

For each x, the loss f(x;y) is a random variable having a distribution in IR induced by that

of y. The underlying probability distribution of y in IRm will be assumed for convenience to have

density, which we denote by p(y). This assumption is not critical for the considered approach

and can be relaxed. The probability of f(x;y) not exceeding a threshold � is then given by

	(x; �) =

Z
f(x;y)��

p(y) dy: (1)

As a function of � for �xed x, 	(x; �) is the cumulative distribution function for the loss asso-

ciated with x. It completely determines the behavior of this random variable and is fundamental

in de�ning VaR and CVaR.

The function 	(x; �) is nondecreasing with respect to (w.r.t.) � and we assume that 	(x; �)

is everywhere continuous w.r.t. �. This assumption, like the previous one about density in y, is

made for simplicity. In some common situations, the required continuity follows from properties

of the loss f(x;y) and the density p(y); see [32].

The �-VaR and �-CVaR values for the loss random variable associated with x and any speci�ed

probability level � in (0; 1) will be denoted by ��(x) and ��(x). In our setting they are given by
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��(x) = minf� 2 IR : 	(x; �) � � g (2)

and

��(x) = (1� �)�1
Z
f(x;y)��� (x)

f(x;y)p(y) dy: (3)

In the �rst formula, ��(x) comes out as the left endpoint of the nonempty interval consisting

of the values � such that actually 	(x; �) = �. (This follows from 	(x; �) being continuous

and nondecreasing w.r.t. �. The interval might contain more than a single point if 	 has \
at

spots.") In the second formula, the probability that f(x;y) � ��(x) is therefore equal to 1� �.

Thus, ��(x) comes out as the conditional expectation of the loss associated with x relative to

that loss being ��(x) or greater.

The key to the approach is a characterization of ��(x) and ��(x) in terms of the function F�

on X � IR that we now de�ne by

F�(x; �) = �+ (1� �)�1
Z
y2IRn

[f(x;y) � �]+ p(y) dy; (4)

where [t]+ = t when t > 0 but [t]+ = 0 when t � 0. The crucial features of F� , under the

assumptions made above, are as follows.

The following theorem is proved in [26].

Theorem 1. As a function of �, F�(x; �) is convex and continuously di�erentiable. The �-CVaR

of the loss associated with any x 2 X can be determined from the formula

��(x) = min
�2IR

F�(x; �): (5)

In this formula, the set consisting of the values of � for which the minimum is attained, namely

A�(x) = argmin
�2IR

F�(x; �); (6)

is a nonempty, closed, bounded interval (perhaps reducing to a single point), and the �-VaR of

the loss is given by

��(x) = left endpoint of A�(x). (7)

In particular, one always has

��(x) 2 argmin
�2IR

F�(x; �) and ��(x) = F�(x; ��(x)): (8)
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For background on convexity, which is a key property in optimization that in particular

eliminates the possibility of a local minimum being di�erent from a global minimum, see [25, 27],

for instance. Other important advantages of viewing VaR and CVaR through the formulas in

Theorem 1 are captured in the next theorem, also proved in [26].

Theorem 2. Minimizing the �-CVaR of the loss associated with x over all x 2 X is equivalent

to minimizing F�(x; �) over all (x; �) 2 X� IR, in the sense that

min
x2X

��(x) = min
(x;�)2X�IR

F�(x; �); (9)

where moreover a pair (x�; ��) achieves the right hand side minimum if and only if x� achieves

the left hand side minimum and �� 2 A�(x
�). In particular, therefore, in circumstances where

the interval A�(x
�) reduces to a single point (as is typical), the minimization of F (x; �) over

(x; �) 2 X � IR produces a pair (x�; ��), not necessarily unique, such that x� minimizes the

�-CVaR and �� gives the corresponding �-VaR.

Furthermore, F�(x; �) is convex w.r.t. (x; �),and ��(x) is convex w.r.t. x, when f(x;y) is

convex with respect to x, in which case, if the constraints are such that X is a convex set, the

joint minimization is an instance of convex programming.

According to Theorem 2, it is not necessary, for the purpose of determining a x that yields the

minimum �-CVaR, to work directly with the function ��(x), which may be hard to do because

of the nature of its de�nition in terms of the �-VaR value ��(x) and the often troublesome

mathematical properties of that value. Instead, one can operate on the far simpler expression

F�(x; �) with its convexity in the variable � and even, very commonly, with respect to (x; �).

3 E�cient Frontier: Di�erent Formulations

Paper [26] considered minimization of CVaR while requiring a minimum expected return. How-

ever, usually it is needed to maximize returns while not allowing large risks. We, therefore,

swapped the CVaR function and the expected return in the problem formulation (compared to

[26]), thus minimizing the negative of the expected return with a CVaR constraint. We will show

on a general level that there are three equivalent formulations of the optimization problem. They

are equivalent in the sense that they produce the same e�cient frontier.

The e�cient frontier is made up of points such that given the return and risk of a point on

the frontier, one can not achieve the same or higher return with a lower risk, nor the same or

lower risk with a higher return.
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Theorem 3. Consider a risk function ��(x) and a reward function R(x), both dependent on the

decision vector x, and consider the following three problems:

(P1) min
x

��(x)� �1R(x); x 2 X; �1 � 0;

(P2) min
x

��(x); R(x) � �; x 2 X;

(P3) min
x

�R(x); ��(x) � !; x 2 X:

Varying the parameters �1, �, and !, traces the e�cient risk-return frontiers for the problems

(P1)-(P3), accordingly. If ��(x) is convex, R(x) is concave and the set X is convex, then the

three problems, (P1)-(P3), generate the same e�cient frontier.

The proof of Theorem 3 is furnished in Appendix A. From Theorem 2 we have that ��(x) is

convex if the loss function f(x;y) is convex w.r.t. x. Since, further in this paper, both the return

function, R(x), and the constraint matrix are linear, the conditions of Theorem 3 are satis�ed,

In this paper, we always assume that ��(x) is convex, R(x) is concave and the set X is convex.

Therefore, maximizing return under a CVaR constraint, generates the same e�cient frontier as

the minimization of CVaR performed in [26].

The equivalence between problems (P1)-(P3) is well known for mean-variance [30] and mean-

regret [5] performance functions. We have shown that it holds for any convex risk function, in

particular for the CVaR function considered in this paper.

4 Equivalent Formulations with Auxiliary Variables

Theorem 3 implies that we can use problem formulation (P3) or (P1) instead of (P2) for generating

the e�cient frontier. Theorem 2 shows that the function F�(x; �) can be used instead of ��(x)

to solve problem (P2). Further, we demonstrate that, similar, the function F�(x; �) can be used

instead of ��(x) in problems (P1) and (P3).

Theorem 4. The two minimization problems below

(P3) min
x2X

�R(x); ��(x) � !; x 2 X

and

(P30) min
(�;x)2X�IR

�R(x); F�(x; �) � !; x 2 X
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are equivalent in the sense that their objectives achieve the same minimum values. Moreover, if

the CVaR constraint in (P3) is active, a pair (x�; ��) achieves the minimum of (P30) if and only

if x� achieves the minimum of (P3) and �� 2 A�(x
�). In particular, when the interval A�(x

�)

reduces to a single point, the minimization of �R(x) over (x; �) 2 X�IR produces a pair (x�; ��)

such that x� maximizes the return and �� gives the corresponding �-VaR.

Theorem 5. The two minimization problems below

(P1) min
x2X

��(x)� �1R(x); �1 � 0; x 2 X

and

(P10) min
(�;x)2X�IR

F�(x; �) � �1R(x); �1 � 0; x 2 X

are equivalent in the sense that their objectives achieve the same minimum values. Moreover a

pair (x�; ��) achieves the minimum of (P10) if and only if x� achieves the minimum of (P1) and

�� 2 A�(x
�). In particular, when the interval A�(x

�) reduces to a single point, the minimization

of F�(x; �) � �1R(x) over (x; �) 2 X � IR produces a pair (x�; ��) such that x� minimizes

��(x)� �1R(x) and �
� gives the corresponding �-VaR.

The proof of Theorems 4 and 5 are furnished in Appendix B.

5 Discretization

The equivalent problem formulations presented in Theorems 2, 4 and 5 can be combined with

ideas for approximating the integral in F�(x; �), see (4). This o�ers a rich range of possibilities.

The integral in F�(x; �) can be approximated in various ways. For example, this can be

done by sampling the probability distribution of y according to its density p(y). If the sampling

generates a collection of vectors y1;y2; : : : ;yJ , then the corresponding approximation to

F�(x; �) = �+ (1� �)�1
Z
y2IRn

(f(x;y) � �)+p(y)dy

is

~F�(x; �) = �+ �
JX

j=1

[f(x;yj)� �]+ ; (10)

where � = J�1(1��)�1 . If the loss function f(x;y) is linear w.r.t. x, then the function ~F�(x; �)

is convex and piecewise linear.
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6 Linearization

The function F�(x; �) in optimization problems in Theorems 2,4, and 5 can be approximated by

the function ~F�(x; �) . Further, using dummy variables zj; j = 1; :::; J , the function ~F�(x; �) can

be replaced by the linear function �+ �
PJ

j=1 zj and the set of linear constraints

zj � f(x;yj)� �; zj � 0; j = 1; :::; J:

For instance, using Theorem 4 we can replace the constraint

��(x) � !

in optimization problem (P3) by the constraint

F�(x; �) � ! :

Further, the above constraint can be approximated by

~F�(x; �) � ! ; (11)

and reduced to the following system of linear constraints

�+ �
JX

j=1

zj � !; (12)

zj � f(x;yj)� �; zj � 0; j = 1; :::; J: (13)

Similar, approximations by linear functions can be done in optimization problems in Theorems 2

and 5.

7 One Period Portfolio Optimization Model with Transaction

Costs

Let us consider a portfolio of n di�erent �nancial instruments in the market, si; (i = 1; :::; n).

Let x0 = (x01; x
0
2; :::; x

0
n) be the positions, e.g., number of shares, of each instrument in the initial

portfolio, and let x = (x1; x2; :::; xn) be the positions in the optimal portfolio that we intend to

�nd using the algorithm. Both, x0 and x, describe how many of each instrument there are in

the respective portfolios. The initial prices for the instruments are given by q = (q1; q2; :::; qn).

The product qTx0 is thus the initial portfolio value. The scenario-dependent prices for each
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instrument at the end of the period are given by y = (y1; y2; :::; yn). The transaction cost, ci, is

de�ned as a �xed percentage cost of the value traded. The loss function over the period is

f(x;y;x0;q) = �yTx+ qTx0: (14)

Further, we will consider the optimization problem (P30) with the function F�(x; �) discretized

according to (10) and linearized with the set of constraints (12) and (13).

7.1 Return Performance Function

The objective function is de�ned as the return over the optimization period, which is the expected

value at the end of the period divided by the initial value. Let us denote by v, the initial value

of the portfolio, v =
Pn

i=1 qix
0
i . Then, the objective function to be minimized, equals

R(x) =
1

v

nX
i=1

�IE[yi]xi : (15)

7.2 Cash

Among the n instruments available, we de�ne one as cash. This allows the model to be used

without modi�cations when an investor starts out with cash in the �rst period. Most investors

also hold some cash in the following periods. It generates a low but certain return, rcash.

7.3 Transaction costs

In this paper, we assume a linear transaction cost, proportional to the value of the shares traded.

For a treatment of non-convex transaction costs, see [11]. With every instrument, we associate a

transaction cost ci. When buying or selling instrument i, one pays ci times the value of the stocks

traded. For cash we set ccash = 0. That is, one only pays for buying and selling the instrument,

and not for moving the cash in and out of the account.

First, we consider the balance constraint that maintains the total value of the portfolio less

transaction costs
nX
i=1

qix
0
i =

nX
i=1

ciqijx
0
i � xij+

nX
i=1

qixi :

Since we assume a proportional trading fee, the problem can also be formulated using the following

set of linear constraints
nX
i=1

qix
0
i =

nX
i=1

ciqi(�i + �i) +
nX
i=1

qixi ;

x0i � �i + �i = xi; i = 1; :::; n;
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�i � 0; �i � 0; i = 1; :::; n:

The nonlinear constraint �i�i = 0 can be omitted since simultaneous buying and selling of the

same instrument, i, can never be optimal.

As is apparent from the formulation of the conditions above, we could just as well have used a

transaction cost proportional to the number of shares traded. In the value maintaining condition,

we would have ci instead of ciqi.

7.4 Change in Individual Positions

We consider that the position changes can be bounded. This bound could be, for example, a

�xed number or be proportional to the initial position in the instrument

0 � �i � �max
i ; 0 � �i � �

max
i ; i = 1; :::; n:

7.5 Bounds on Positions

We, also, consider that the positions themselves can be bounded

xi � xi � xi; i = 1; :::; n: (16)

7.6 Value Constraint

We do not allow for an instrument i to constitute more than a given percent, �i, of the total

portfolio value

qixi � �i

nX
i=1

xiqi :

This constraint of course has sense only when short positions are not allowed.

7.7 CVaR Constraint

Current regulations impose capital requirements for investment companies, proportional to the

VaR of a portfolio. This requirement can be enforced by the constraint on CVaR since CVaR

� VaR. The upper bound on CVaR, !, could be chosen as the maximum VaR. Here we use the

linearized set of constraints

�+ �
JX

j=1

zj � ! ; (17)

zj �
nX
i=1

(�yijxi + qix
0
i )� � ; zj � 0; j = 1; :::; J: (18)

11



7.8 Optimization Problem

Below we present the optimization problem described in sections (7.1)-(7.7).

min
x;�

1

v

nX
i=1

�IE[yi]xi; (19)

subject to the constraints

�+ �
JX

j=1

zj � !; (20)

zj �
nX
i=1

(�yijxi + qix
0
i )� �; zj � 0; j = 1; :::; J; (21)

nX
i=1

qix
0
i =

nX
i=1

ci(�i + �i) +
nX
i=1

qixi; (22)

x0i � �i + �i = xi; i = 1; :::; n; (23)

0 � �i � �max
i ; 0 � �i � �

max
i ; i = 1; :::; n; (24)

xi � xi � xi; i = 1; :::; n; (25)

xi � �i

nX
k=1

xkqk; i = 1; :::; n: (26)

By solving problem (19)-(26) above, we get the optimal vector x�, the corresponding VaR,

which equals ��, and the maximum expected return, which equals 1
v
IE[y]x�. By solving prob-

lem (19)-(26) for di�erent portfolio CVaRs, !, we get the e�cient return-CVaR frontier for the

portfolio.

7.9 Size of LP

For n instruments and J scenarios, the formulation of the LP problem presented above has

3n + J + 1 variables and 2(n + 1) + J constraints, not including bounds on �i, �i and xi. The

number of nonzero coe�cients in the constraint matrix is 6n+ nJ + n2 + 3J + 1.
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7.10 Scenario Generation

With our approach, the integral in the CVaR function is approximated by the sum over all

scenarios. The approach can be used with di�erent schemes for generating scenarios [23]. One

can assume a joint distribution for the price-return process for all instruments and generate

scenarios in a Monte Carlo simulation. Also, the approach allows for easy use of historical data

without assuming a particular distribution. When generating the scenarios, we start with historic

time series of prices for the n instruments. Dividing these series into J periods (scenarios), we

can calculate the return over each of these periods. The length of the period, �t, is the same as

the length of the period over which we optimize the portfolio. For instance, minimizing over a

one day period, we take the closing prices of two consecutive days, pt and pt+1. Similarly, for a

two week period, we start with the closing price at trading day 1 and take the closing price at

trading day 10 and then we step forward to day 2 and take the prices at days 2 and 11, and so

on. For every pair of consecutive historic prices, we generate a scenario with the corresponding

return, for every instrument i,

rhij = pt+�t
i =pti :

The h indicates that the numbers are generated using historic data. From these scenarios, we

can calculate the expected return for each instrument

IE[rhi ] = J�1
JX

j=1

rhij :

These returns can be used to calculate prices for each scenario and the expected price for each

instrument at the end of the period over which we optimize,

yhij = qir
h
ij;

IE[yhi ] = J�1
JX

j=1

yhij:

Further, in the numerical simulations, we consider a two week period.

8 Case Study: Portfolio of S&P 100 Stocks

We now proceed with a case study and construct the e�cient frontier of a portfolio consisting

of stocks in the S&P100 index. We maximized the portfolio value subject to various constraints

on CVaR. The algorithm was implemented in C++ and we used CPLEX 4.0 Callable Library to
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solve the LP problem. The optimization was run for the two-week period, ten business days, from

June 14, 1999 to June 28, 1999. The initial portfolio contained only cash in amount of 10,000

U.S. dollars. For scenario generation we used the �ve hundred most recent overlapping two-week

periods. That is, the oldest data we used were from June 1, 1997. The CVaR constraint, ! was

set equal to the percentage of the initial portfolio value. The limits on the positions were set to

xi = 0 and xi = 1 respectively. We do not allow short positions. The limits on the changes in

the individual positions, �max and �
max

, were both set to in�nity. The limit on how large a part

of the total portfolio value one single asset can constitute, �i, was set to 20 percent for all i. The

return on any cash was set to 0.16 percent over two weeks.

8.1 Set of Instruments

As stated above, the set of instruments to invest in was set to the stocks in the S&P100 as of

the �rst of September 1999. Due to insu�cient data, six of the stocks were excluded1. We used

historical price data (end-of-the-day prices) from 1997-07-14 to 1999-07-28, and the investment

date was 1999-07-14.

Fig. 1 shows the e�cient frontiers for the portfolio under CVaR optimization. Rate of

return was calculated as the ratio of the optimized portfolio value to the initial value; risk is the

percentage of the initial portfolio value which is allowed to be risked. For example, setting risk

= 0.10 and � = 0:95 means that we allow for a 10% loss of the initial portfolio value with a

probability of 5%. It is apparent from the �gure that larger �-CVaR constraint values allow us to

achieve higher returns. In this numerical example, the maximum rate of return of the optimized

portfolio equals 1.29 .

Table 1 presents the portfolio con�gurations for di�erent risk levels (� = 0:90). Earlier, we

imposed constraint on the percentage of the total portfolio value that one stock can constitute

(26). In the numerical experiment, we set � equal to 0.2, so a single asset cannot constitute more

than 20% of the total portfolio value. Analyzing the data in Table 1, we see that for higher levels

of allowed risk, the algorithm reduces the number of the instruments in the portfolio in order to

achieve a higher return (due to the imposed constraints, the minimal number of stocks in the

portfolio equals �ve). This con�rms the well-known fact that `diversifying' the portfolio reduces

the risk. `Loosening' the constraint on risk causes the algorithm to choose only a few of the `most

pro�table' stocks. As we decrease our level of risk, the number of instruments in the portfolio

1Citigroup Inc., Hartford Financial Svc.Gp., Lucent Technologies, Mallinckrodt Inc., Raytheon Co., U.S. Ban-

corp.
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Figure 1: E�cient frontier (optimization with CVaR constraints). Rate of Return is the rate of return

of the optimized portfolio during a 2 week period. Risk is the percentage o the portfolio value, which is

allowed to be lost with probability 1-� during 2 week period.

increases, and for `conservative' investing (1 or 2% of risk), we obtain a portfolio with more than

10 assets, which also includes cash (the least risky asset). For 1%-risk the share of cash in the

portfolio will be greater if we relax the constraint (26) for the cash, i.e. the algorithm would

invest more in the `risk-free' cash.

8.2 Transaction Cost

Transaction costs need to be taken into account when employing an active trading strategy.

Except fee paid to the broker/market, there are costs induced by bid-ask spreads and poor

liquidity. To examine impact of the transaction costs, we calculated the e�cient frontier with

the following transaction costs, c = 0%; 1%, and 4%. From Figure 2, we can see how much the

transaction cost lowers the return. The transaction cost does not lower the return linearly. Since

it is incorporated into the optimization, it can also a�ect the choice of stocks.
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Figure 2: E�cient frontier with transaction costs c = 0%; 1%, and 4% (optimization with 0.95-CVaR

constraints). Rate of Return is the rate of return of the optimized portfolio during 2 week period. Risk is

the percentage of the portfolio value, which is allowed to be lost with a probability of 0.05 during a 2 week

period.

9 Concluding Remarks

The paper extends the approach for portfolio optimization [26] which simultaneously calculates

VaR and optimizes CVaR. We �rst showed (Theorem 3) that for risk-return optimization prob-

lems with convex constraints, one can use di�erent optimization formulations. This is true in

particular for the considered CVaR optimization problem. We then showed (Theorems 4 and 5)

that the approach [26] can be extended to the reformulated problems with CVaR constraints and

the weighted return-CVaR performance function. We developed a model for optimizing portfolio

returns with CVaR constraints using historical scenarios. We conducted a case study on opti-

mizing the portfolio of S&P100 stocks with return performance function and CVaR constraints.

The case study showed that the optimization algorithm, which is based on linear programming

techniques, is very stable and e�cient. Numerical experiments demonstrated that the suggested

portfolio optimization approach with CVaR constraints may lead to new e�cient investment

strategies.
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Table 1: Portfolio con�guration: number of shares of stock in the optimized portfolio depending

on the risk level.

Risk 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Cash 2000 960.16 0 0 0 0 0 0 0 0

AA 1.25 1.30 0 0 0 0 0 0 0 0

AIT 0 11.90 24.09 24.61 28.32 28.32 17.12 0 0 0

AVP 0 0 0.63 0 0 0 0 0 0 0

BAX 4.42 0 0 0 0 0 0 0 0 0

BEL 3.25 2.28 3.63 0 0 0 0 0 0 0

CSC 0 0.67 0 0 0 0 0 0 0 0

CSCO 0 0 0 3.55 7.97 21.96 30.62 30.62 30.62 30.62

ETR 33.99 10.54 0 0 0 0 0 0 0 0

GD 10.58 13.26 8.45 0 0 0 0 0 0 0

HM 50.21 0 0 0 0 0 0 0 0 0

IBM 5.43 10.44 11.12 5.51 3.32 0 1.80 1.39 0 9.60

IFF 1.59 0 0 0 0 0 0 0 0 0

LTD 5.48 5.63 3.59 0 0 0 0 0 0 0

MOB 4.08 5.57 0 0 0 0 0 0 0 0

MSFT 0 0 0 0 0 0 0 0 0 7.19

MTC 0 0 0 0 0 0 0 0 0 0

SO 26.45 11.02 0 0 0 0 0 0 0 0

T 11.46 21.08 31.66 35.52 35.52 35.52 35.52 35.52 17.03 0

TAN 8.98 18.33 28.03 32.50 37.78 37.78 37.78 37.78 37.78 37.78

TXN 0 0 0 0 0 0 0 12.42 26.08 26.73

UCM 47.62 47.62 47.62 47.62 29.92 13.47 0 0 0 0

UIS 0 0 9.66 27.79 40.11 45.39 45.39 45.39 45.39 45.39

WMT 0 0 1.56 6.90 0 0 11.42 18.47 22.89 0
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Appendix A. Proof of Theorem 3

The proof of Theorem 3 is based on the Kuhn-Tucker necessary and su�cient conditions

stated in the following theorem.

Theorem A1 (Kuhn-Tacker, Theorem 2.5, [22]). Consider the problem

min 0(x);

 i(x) � 0 i = �m; :::;�1;

 i(x) = 0 i = 1; :::; n;

x 2 X:

Let  i(x) be functionals on a linear space, E, such that  i(x) are convex for i � 0 and linear for

i � 0 and X is some given convex subset of E. Then in order that  0(x) achieves its minimum

point at x� 2 E it is necessary that there exists constants �i; i = �m; :::; n, such that

nX
i=�m

�i i(x
�) �

nX
i=�m

�i i(x)

for all x 2 X. Moreover, �i � 0 for each i � 0, and �i i(x0) = 0 for each i 6= 0. If �0 � 0, then

the conditions are also su�cient.

Let us write down the necessary and su�cient Kuhn-Tacker conditions for problems (P1),(P2),

and (P3). After some equivalent transformations these conditions can be stated as follows:

Kuhn-Tacker conditions for (P1) are, actually, a de�nition of the minimum point.

K-T conditions for (P1)

(KT1) ��(x
�)� �1R(x

�) � ��(x)� �1R(x) ; �1 � 0 ; x 2 X :

K-T conditions for (P2)

�20��(x
�) + �21( ��R(x�)) � �20��(x) + �21( ��R(x)) ;

�21( ��R(x)) = 0 ; �20 > 0 ; �21 � 0 ; x 2 X :

+
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(KT2) ��(x
�)� �2R(x

�) � ��(x)� �2R(x) ;

�2( ��R(x�)) = 0 ; �2 � 0 ; x 2 X :

K-T conditions for (P3)

�30(�R(x
�)) + �31(��(x

�)� !) � �30(�R(x)) + �31(��(x)� !) ;

�31(��(x
�)� !) = 0 ; �30 > 0 ; �31 � 0 ; x 2 X :

+

(KT3) �R(x�) + �3��(x
�) � �R(x) + �3��(x) ;

�3(��(x
�)� !) = 0 ; �3 � 0 ; x 2 X :

Following [30], we call �2 in (KT2) the optimal reward multiplier, and �3 in (KT3) the risk

multiplier. Further, using conditions (KT1) and (KT2), we show that a solution of problem (P1)

is also a solution of (P2) and vice versa, a solution of problem (P2) is also a solution of (P1).

Lemma A1. If a point x� is a solution of (P1), then the point x� is a solution of (P2) with

parameter � = R(x�). Also, stated in the other direction, if x� is a solution of (P2) and �2 is the

optimal reward multiplier in (KT2), then x� is a solution of (P1) with �1 = �2.

Proof of Lemma A1. Let us prove the �rst statement of Lemma A1. If x� is a solution of (P1),

then it satis�es condition (KT1). Evidently, this solution x� satis�es (KT2) with � = R(x�) and

�2 = �1.

Now, let us prove the second statement of Lemma A1. Suppose that x� is a solution of (P2)

and (KT2) is satis�ed. Then, (KT1) is satis�ed with parameter �1 = �2 and x
� is a solution of

(P1). Lemma A1 is proved. �

Further, using conditions (KT1) and (KT3), we show that a solution of problems (P1) is also a

solution of (P3) and vice versa, a solution of problems (P3) is also a solution of (P1).
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Lemma A2. If a point x� is a solution of (P1), then the point x� is a solution of (P3) with

the parameter ! = ��(x). Also, stated in other direction, if x� is a solution of (P3) and �3 is a

positive risk multiplier in (KT3), then x� is a solution of (P1) with �1 = 1=�3.

Proof of Lemma A2. Let us prove the �rst statement of Lemma A2. If x� is a solution of

(P1), then it satis�es the condition (KT1). If �1 > 0, then this solution x� satis�es (KT3) with

�3 = 1=�1 and ! = ��(x).

Now, let us prove the second statement of Lemma A2. Suppose that x� is a solution of (P3)

and (KT3) is satis�ed with �3 > 0. Then, (KT1) is satis�ed with parameter �1 = 1=�3 and x
� is

a solution of (P1). Lemma A2 is proved. �

Lemma A1 implies that the e�cient frontiers of problems (P1) and (P2) coincide. Similar, Lemma

A2 implies that the e�cient frontiers of problems (P1) and (P3) coincide. Consequently, e�cient

frontiers of problems (P1), (P2), and (P3) coincide. Theorem 3 is proved. �
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Appendix B. Proofs of Theorems 4 and 5.

Proof of Theorems 4. With Theorem A1, the necessary and su�cient conditions for the

problem (P3') are stated as follows

(KT30) �R(x�) + �3F�(x
�; ��) � �R(x) + �3F�(x; �) ;

�3(F�(x
�; ��)� !) = 0 ; �3 � 0 ; x 2 X :

First, suppose that x� is a solution of (P3) and �� 2 A�(x
�). Let us show that (x�; ��) is a

solution of (P3'). Using necessary and su�cient conditions (KT3) and Theorem 1 we have

�R(x�) + �3F�(x
�; ��) = �R(x�) + �3��(x

�)

� �R(x) + �3��(x) = �R(x) + �3min
�
F�(x; �)

� �R(x) + �3F�(x; �) ;

and

�3(F�(x
�; ��)� !) = �3(��(x

�)� !) = 0 ; �3 � 0 ; x 2 X :

Thus, (KT3') conditions are satis�ed and (x�; ��) is a solution of (P3').

Now, let us suppose that (x�; ��) achieves the minimum of (P3') and �3 > 0. For �xed

x�, the point �� minimizes the function �R(x�) + �3F�(x
�; �), and, consequently, the function

F�(x
�; �). Then, Theorem 1 implies that �� 2 A�(x

�). Further, since (x�; ��) is a solution of

(P3'), conditions (KT3') and Theorem 1 imply that

�R(x�) + �3��(x
�) = �R(x�) + �3F�(x

�; ��)

� �R(x) + �3F�(x; ��(x)) = �R(x) + �3��(x)

and

�3(��(x
�)� !) = �3(F�(x

�; ��)� !) = 0 ; �3 � 0 ; x 2 X :

We proved that conditions (KT3) are satis�ed, i.e., x� is a solution of (P3). Theorem 4 is proved.

�

Proof of Theorems 5. Let x� is a solution of (P1), i.e.,

��(x
�)� �1R(x

�) � ��(x)� �1R(x) ; �1 � 0 ; x 2 X :
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and �� 2 A�(x
�). Using Theorem 1 we have

F�(x
�; ��)� �1R(x

�) = ��(x
�)� �1R(x

�)

� ��(x)� �1R(x) = min
�
F�(x; �) � �1R(x)

� F�(x; �) � �1R(x) ; x 2 X ;

i.e, (x�; ��) is a solution of problem (P1').

Now, let us consider that (x�; ��) is a solution of problem (P1'). For the �xed point x�, the

point �� minimizes the functions F�(x
�; �)��1R(x

�) and, consequently, the point �� minimizes

the function F�(x
�; �). Then, Theorem 1 implies that �� 2 A�(x

�). Further, since (x�; ��) is a

solution of (P1'), Theorem 1 implies

��(x
�)� �1R(x

�) = F�(x
�; ��)� �1R(x

�)

� F�(x; ��(x)) � �1R(x) = ��(x)� �1R(x) ; x 2 X :

Theorem 5 is proved. �
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