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Abstract. We present a new approach for exactly solving general chance constrained mathe-
matical programs having discrete distributions. Such problems have been notoriously difficult to
solve due to nonconvexity of the feasible region, and currently available methods are only able
to find provably good solutions in certain very special cases. Our approach uses both decompo-
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programming formulation and a simple decomposition approach that does not use strong valid
inequalities. Thus, the strength of this approach results from the successful merger of stochastic
programming decomposition techniques with integer programming techniques for finding strong
valid inequalities.
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1 Introduction

We introduce a new approach for exactly solving general chance-constrained mathematical programs
(CCMPs). A chance constraint states that the chosen decision vector should, with high probability,
lie within a region that depends on a set of random variables. A generic CCMP can be stated as

min
{
f(x) | P{x ∈ P (ω)} ≥ 1− ε, x ∈ X

}
, (1)

where x ∈ Rn is the vector of decision variables to be chosen to minimize f(x), ω is a random
vector and P (ω) ⊆ Rn is a region parameterized by ω. The interpretation is that the region P (ω) is
defined such that the event x /∈ P (ω) is an undesirable outcome. The parameter ε ∈ (0, 1) is a risk
tolerance, typically small, that limits the likelihood of such an outcome. A problem with uncertain
linear constraints is the special case of this problem in which P (ω) = {x | T (ω)x ≥ b(ω)} and a
two-stage problem with the possibility to take recourse after observing the random outcome has
P (ω) = {x | ∃y with T (ω)x+W (ω)y ≥ b(ω)}. (In §5.1 we describe an example application.)

Our approach works for CCMP’s with discrete (and finite support) distribution. Specifically, we
assume that1 P{ω = ωk} = 1/N for k = 1, . . . , N . We shall refer to the possible outcomes as sce-
narios. While this is certainly a restriction, recent results on using sample average approximations
on problems with more general distributions [19] demonstrate that such finite support approxima-
tions, when obtained from a Monte Carlo sample of the original distribution, can be used to find
good feasible solutions to the original problem and statistical bounds on solution quality. We will
also assume that the sets Pk := P (ωk) are polyhedra described by

Pk = {x ∈ Rn
+ | ∃y ∈ Rd

+ with T kx+W ky ≥ bk}, (2)

where bk ∈ Rm and T k and W k are appropriately sized matrices. Note the special case with
d = 0 yields a mathematical program with chance-constrained linear constraints having random
coefficients: P{T (ω)x ≥ b(ω)} ≥ 1− ε. However, our approach can be extended to the more general
case in which P (ω) is convex, provided we have oracles for separation and optimization over P (ω).

CCMPs have a long history dating back to Charnes, Cooper and Symonds [11]. The general
version considered here, which enforces a system of constraints to be enforced with high proba-
bility, was introduced by Prékopa [24] (where chance constraints are referred to as probabilistic
constraints). However, solution of the general problem (1) has remained computationally challeng-
ing for two reasons: the feasible region is generally not convex, and evaluating solution feasibility
requires multi-dimensional integration. As discussed in the previous paragraph, the latter difficulty
can be addressed by a sample-average approximation approach. However, this approach still re-
quires a computationally efficient method for solving the resulting approximation problem which
still has the form (1), except that the probability distribution is simplified to one with finite support.

Methods for obtaining provably good solutions for CCMPs have been successful in only a couple
very special cases. If the chance constraint consists of a single row and all random coefficients are
normally distributed [10, 9], then a deterministic (nonlinear and convex) reformulation is possible.
If the randomness appears only in the right-hand side of the chance constraints (i.e. P (ω) =
{x | Tx ≥ b(ω)}) and the random vectors b(ω) have continuous and log-concave distributions, the
resulting feasible region is convex and so nonlinear programming techniques can be used [24]. If
the randomness appears only in the right-hand side and the distribution of b(ω) is discrete, then
approaches based on certain “efficient points” of the random vector [5, 12] or on strong integer
programming formulations [21, 26] have been proposed.

1The extension to more general discrete distributions of the form P{ω = ωk} = pk, where pk ≥ 0 and
P

k pk = 1,
is straightforward and is omitted to simplify exposition.
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Very few methods are available for finding provably good solutions for CCMPs with the general
structure we consider here, e.g. for problems having linear constraints with random coefficients or
two stage problems as in (2). In [25], an approach based on an integer programming formulation
(which we give in §2), strengthened with precedence constraints is presented. In more recent
work, [28] presents a specialized branch-and-cut algorithm based on identification of irreducible
infeasible sets of certain linear inequality systems. While these are important contributions, the
size of instances that are demonstrated to be solvable with these approaches is very limited, in
particular, because these approaches do not enable decomposition. In another recent important
stream of research, a number of conservative approximations [4, 6, 8, 22, 23, 13, 14] have been
studied that solve tractable (convex) approximations to yield feasible solutions to general CCMPs.
However, these approaches do not say anything about the cost of the resulting solutions relative to
the optimal, and tend to yield highly conservative solutions.

Our approach is important because it is an exact approach for solving problems with general
chance constraints, and as we show in §5, has the potential to solve problems with high-dimensional
random parameters and a large number of scenarios. The approach builds on the ideas of [20, 21]
that were very successful for solving chance-constrained problems with random right-hand side only
by developing a method to apply the same types of valid inequalities used there to the much more
general case considered here. The other important aspect of our approach is that it enables de-
composition of the problem into single scenario subproblems. This is important for solving CCMPs
with discrete distributions because the problem size grows as the size of the support increases. The
ability of this approach to solve large instances of this problem, even for the particular structure of
the test problem described in §5.1, is significant because, until now, a major impediment to using a
chance-constrained model has been the difficulty in solving such problems in all but a few very spe-
cial cases. The approach we present here, when combined with the sample average approximation
results of [19], has the potential to remove this barrier.

Decomposition has long been used for solving traditional two-stage stochastic programming
problems, where the objective is to minimize the sum of costs of the first stage decisions and
the expected costs of second-stage recourse decisions (see, e.g. [7, 29, 17]). For CCMPs, the only
existing paper we are aware of that considers a decomposition approach is [27] which applies a
decomposition approach to a chance-constrained formulation of an application insuring vital arcs
in a critical path network. The decomposition idea is similar to what we present here, but the
mechanism for generating cuts is significantly different: they use a convex hull reformulation (based
on Relaxation-Linearization techniques) which involves “big-M” constants, likely leading to weak
inequalities. In contrast, we combine the valid inequalities we obtain from different subproblems
in a way that avoids the need for “big-M” constants and hence yields strong valid inequalities
for the overall problem. As we will see in the computational results in §5, the use of strong valid
inequalities makes a very significant difference beyond the benefits obtained from decomposition.

The remainder of this extended abstract is organized as follows. We start with an overview
of the approach in §2. In §3 we describe how we generate strong valid inequalities, and in §4
we describe the actual decomposition branch-and-cut algorithm. Finally, we present preliminary
computational results of the approach in §5.

2 Overview of the approach

To fix notation, and motivate the approach, we first describe a standard integer programming
formulation of problem (1). We also make a couple assumptions that will assure this formulation
is well-defined, and that also simplify exposition of the main results in the rest of the paper. We
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assume without loss of generality that the sets Pk are non-empty for all k ∈ N , since we could
otherwise discard such a scenario and consider a problem with risk tolerance ε′ = ε − 1/N . We
also assume that the sets Pk ∩X are compact for all k ∈ N . Finally, for notational convenience we
define the scenario index set N = {1, . . . , N}.

The standard mixed-integer programming formulation (e.g. [25]) uses a binary variable zk for
each scenario k, where zk = 0 implies the constraints of scenario k should be satisfied:

min f(x) (3a)

s.t. T kx+W kyk + zkMk ≥ bk, k ∈ N , (3b)
N∑
k=1

zk ≤ p (3c)

x ∈ X, z ∈ {0, 1}N , yk ∈ Rd
+, k ∈ N . (3d)

Here p := b(1 − ε)Nc and Mk ∈ Rm
+ are sufficiently large to ensure that when zk = 1, constraints

(3b) are not active. On the other hand, when zk = 0, constraints (3b) enforce x ∈ Pk. Thus, (3c),
which is a rewritten and strengthened version of the constraint

1
N

N∑
k=1

(1− zk) ≥ 1− ε,

successfully models the constraint P{x ∈ P (ω)} ≥ 1− ε. Our approach is motivated by the desire
to avoid the use of big-M constants as in (3b), which are likely to lead to weak lower bounds when
solving a continuous relaxation of (3), and also to use decomposition to avoid explicit introduction
of the constraints (3b) and recourse variables yk which may make (3) very large-scale if N is large.

Our decomposition algorithm is based on a master problem that includes the original variables
x, and the binary variables z. The constraints (3b) are enforced implicitly with cutting planes,
similar in spirit to a Benders’ decomposition approach. The key difference, however, is that given
the mixed-integer nature of our master problem, we seek to add cutting planes that are strong.
Specifically, we are interested in strong valid inequalities for the projection of the feasible region of
(3) into the space of x and z variables. Specifically, we define this projection as

F =
{
x ∈ X, z ∈ {0, 1}N | ∃y ∈ Rd×N

+ s.t. (3b)− (3c) hold
}
. (4)

Note that (x, z) ∈ F if and only if x ∈ X, z ∈ {0, 1}N satisfies (3c), and x ∈ Pk for any k with
zk = 0. Given this definition of F , we can then succinctly state a reformulation of the original
chance-constrained problem (1) as:

min{f(x) | (x, z) ∈ F}. (5)

Our algorithm will solve this reformulation.
In §3 we describe how we obtain strong valid inequalities for F , for a given set of coefficients

on the x variables. Then, in §4 we describe the decomposition approach which naturally suggests a
choice for the coefficients on the x variables that leads to a convergent branch-and-cut algorithm.
In our current implementation, we use only this approach for choosing these coefficients, but we
believe that, depending on the problem structure, alternative approaches may be useful for yielding
additional strong valid inequalities.
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3 Generating strong valid inequalities

We now describe our procedure for generating strong valid inequalities of the form

αx+ πz ≥ β (6)

for the set F defined in (4), where α ∈ Rn, π ∈ RN , and β ∈ R. We assume here that the coefficients
α are given so our task is find π and β that make (6) valid for F . In addition, given a possibly
fractional solution (x̂, ẑ) our separation task is to find, if possible, π and β such that (x̂, ẑ) violate
the resulting inequality.

The approach is very similar to that used in [20, 21], which applies only to chance-constrained
problems with random right-hand side. However, by exploiting the fact that we have assumed α
to be fixed, we are able to reduce our significantly more general problem to the structure studied
in [20, 21] and ultimately apply the same types of valid inequalities.

The first step in our procedure is to solve the following auxiliary “single scenario” problems:

hk(α) := min
{
αx | x ∈ Pk ∩ X̄

}
, k ∈ N . (7)

Here X̄ ⊆ Rn is a relaxation of the set X, i.e. X̄ ⊇ X, chosen such that Pk ∩ X̄ is non-empty and
compact, guaranteeing that the above optimal values exist. The choice of X̄ represents a trade-off in
time to compute the values hk(α) and strength of the resulting valid inequalities. Choosing X̄ = Rn

leads to a problem for calculating hk(α) that has the fewest number of constraints (and presumably
the shortest computation time), but choosing X̄ = X will yield the strongest inequalities. In
particular, if X is described as a polyhedron with additional integer restrictions on some of the
variables, problem (7) would become a mixed-integer program and hence could be computationally
demanding to solve, although doing so may yield significantly better valid inequalities.

Observe that calculation of the hk(α) values decomposes by scenario and can be easily imple-
mented in parallel. Having obtained the values hk(α) for k ∈ N , we then sort them to obtain a
permutation σ of N such that:

hσ1(α) ≥ hσ2(α) ≥ · · · ≥ hσN (α).

Although the permutation depends on α, we will suppress this dependence to simplify notation.
Our first lemma uses these values to establish a set of “base” inequalities that are valid for F , which
we ultimately combine to obtain stronger valid inequalities.

Lemma 1. The following inequalities are valid for F :

αx+ (hσi(α)− hσp+1(α))zσi ≥ hσi(α), i = 1, . . . , p. (8)

Proof. Observe that for each k ∈ N , by construction, the inequality αx ≥ hk(α) is valid for Pk,
and hence must be satisfied for any (x, z) ∈ F such that zk = 0. Thus, (8) holds for any (x, z) ∈ F
with zσi = 0. On the other hand, inequality (3c) (

∑
k zk ≤ p) implies that for any (x, z) ∈ F there

must be an index i ∈ {1, . . . , p+ 1} with zσi = 0, and hence αx ≥ hσp+1(α) is a valid inequality for
F . This implies that (8) is also satisfied for any (x, z) ∈ F with zσi = 1.

Now, as was done in [20, 21], we can apply the star inequalities of [3], or equivalently in this
case, the mixing inequalities of [15] to “mix” the inequalities (8) to obtain additional strong valid
inequalities.
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Theorem 2. Let T = {t1, t2, . . . , tl} ⊆ {σ1, . . . , σp} be such that hti(α) ≥ hti+1(α) for i = 1, . . . , l,
where htl+1

(α) := hσp+1(α). Then the inequality

αx+
l∑

i=1

(hti(α)− hti+1(α))zti ≥ ht1(α) (9)

is valid for F .

These inequalities are strong in the sense that if we consider the set Y defined by

Y =
{

(y, z) ∈ R× {0, 1}p | y + (hσi(α)− hσp+1(α))zσi ≥ hσi(α), i = 1, . . . , p
}

then the inequalities (9), with αx replaced by y, define the convex hull of Y [3]. Furthermore, the
inequalities of Theorem 2 are facet-defining for the convex hull of Y (again with y = αx) if and
only if ht1(α) = hσ1(α), which suggests that when searching for a valid inequality of the form (9),
one should always include σ1 ∈ T . In particular, the valid inequalities

αx+ (hσ1(α)− hσi(α))zσ1 + (hσi(α)− hσp+1(α))zσi ≥ hσ1(α), i = 1, . . . , p. (10)

dominate the inequalities (8) which can be obtained by aggregating (10) with the valid inequalities
zσ1 ≤ 1 with a weight of (hσ1(α)− hσi(α)) on the latter.

Theorem 2 presents an exponential family of valid inequalities, but given a point (x̂, ẑ) separation
of these inequalities can be accomplished very efficiently. In [3] an algorithm based on finding a
longest path in an acyclic graph is presented that has complexity O(p2), and [15] gives an O(p log p)
algorithm. We use the algorithm of [15].

4 Decomposition algorithm

We are now ready to describe the branch-and-cut decomposition algorithm. The algorithm will
work with a master relaxation defined as follows:

RP∗(N0, N1, C) := min f(x) (11a)

s.t.
N∑
k=1

zk ≤ p, (x, z) ∈ C, x ∈ X, z ∈ [0, 1]N (11b)

zk = 0, k ∈ N0, zk = 1, k ∈ N1. (11c)

Here N0 is the set of binary variables currently fixed to 0, N1 is the set of binary variables currently
fixed to 1, and C is the relaxation defined by all the globally valid inequalities added so far when
the relaxation is solved. At the root node in the search tree, we will have N0 = N1 = ∅ and C = Rn.

In Algorithm 1, we describe a simple version of the proposed approach. The algorithm is a
basic branch-and-bound algorithm, with branching being done on the binary variables zk, with the
only important difference being the way each node is processed (Step 2 in the algorithm). This
step consists of a loop in which the current node relaxation (11) is solved repeatedly until no cuts
have been added to the description of C or the lower bound exceeds the incumbent objective value
U . Whenever an integer feasible solution ẑ is found, and optionally otherwise, the cut separation
routine SepCuts is called. The SepCuts routine must be called when ẑ is integer feasible to check
whether the solution (x̂, ẑ) is truly feasible to the set F . The routine is optionally called otherwise
to possibly improve the lower bound.
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Algorithm 1: Simple version of branch-and-cut decomposition algorithm.

t← 0, N0(0)← ∅, N1(0)← ∅, C ← Rn×N , OPEN← {0}, U ← +∞;1

while OPEN 6= ∅ do2

Step 1: Choose l ∈ OPEN and let OPEN← OPEN \ {l};3

Step 2: Process node l;4

repeat5

Solve (11);6

if (11) is infeasible then7

CUTFOUND← FALSE;8

else9

Let (x̂, ẑ) be an optimal solution to (11), and lb← RP∗(N0(l), N1(l), C);10

if ẑ ∈ {0, 1}N then11

CUTFOUND← SepCuts(x̂, ẑ, C);12

if CUTFOUND = FALSE then U ← lb;13

else14

CUTFOUND← FALSE;15

Optional: CUTFOUND← SepCuts(x̂, ẑ, C);16

end17

end18

until CUTFOUND 6= TRUE or lb ≥ U ;19

Step 3: Branch if necessary;20

if lb < U then21

Choose k ∈ N such that ẑk ∈ (0, 1);22

N0(t+ 1)← N0(l) ∪ {k}, N1(t+ 1)← N1(l);23

N0(t+ 2)← N0(l), N1(t+ 2)← N1(l) ∪ {k};24

t← t+ 2;25

end26

end27

The SepCuts routine, described in Algorithm 2, attempts to find strong violated inequalities
using the approach described in §3. The key here is the method for selecting the coefficients α
that are taken as given in §3. The idea is to consider all scenarios k such that ẑk = 0, so that
the associated constraints x ∈ Pk are supposed to be satisfied, and for such scenarios test whether
indeed this holds. If x̂ ∈ Pk, then the condition that ẑk = 0 should imply x̂ ∈ Pk is not violated.
However, if x̂ /∈ Pk, this contradicts the value of ẑk, and hence we seek to find an inequality that
cuts off this infeasible solution. We therefore find an inequality, say αx ≥ β, that is facet-defining
for Pk, and that separates x̂ from Pk. We then use the coefficients α to generate one or more strong
valid inequalities as derived in §3. While stated as two separate steps, the test of x̂ ∈ Pk (line 3)
and subsequent finding of a facet-defining inequality of Pk that cuts off x̂ if not would typically be
done together. For example, if we have an inequality description of Pk (possibly in a lifted space
such as in (2)) then this can be accomplished by solving an appropriate linear program. If Pk has
special structure (such as the constraint set of a shortest path problem) it may be accomplished
with a specialized (e.g. combinatorial) algorithm.

Observe that, in line 2 of Algorithm 2, we actually test whether x̂ ∈ Pk for any k such that
ẑk < 1. To obtain a convergent algorithm, it would be sufficient to check only those k such that
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Algorithm 2: Cut separation routine SepCuts(x̂, ẑ, C).
Data: x̂, ẑ, C
Result: If one or more valid inequalities for F are found that are violated by (x̂, ẑ), adds

these to description of C and returns TRUE, else returns FALSE.

CUTFOUND← FALSE;1

for k ∈ N such that ẑk < 1 do2

if x̂ /∈ Pk then3

Separate x̂ from Pk: Find an inequality αx ≥ β that is facet-defining for Pk such that4

αx̂ < β;
Using the coefficients α, find a violated inequality for F of the form (9) that is5

violated by (x̂, ẑ) and add this to the description of C;
CUTFOUND← TRUE;6

Optionally break;7

end8

end9

return CUTFOUND;10

ẑk = 0; we also optionally check k such that ẑk ∈ (0, 1) in order to possibly generate additional
strong valid inequalities. We now establish that Algorithm 1 solves (5).

Theorem 3. Algorithm 1 terminates finitely, and at termination if U = +∞, problem (5) is
infeasible, otherwise U is the optimal value of (5).

Proof (Sketch). The details of the proof are left out of this extended abstract. However, the first
main point is that the algorithm terminates finitely because it is based on branching on a finite
number of binary variables, and the processing of each node terminates finitely because the valid
inequalities are derived from a finite number of facet-defining inequalities (for the polyhedral sets
Pk). The second point is that the algorithm never cuts off an optimal solution because the branching
never excludes part of the feasible region and only valid inequalities for the set F are added. The
final point is that no solutions that are not in the feasible region F are accepted for updating the
incumbent objective value U (in line 13 of the algorithm) because the SepCuts routine is always
called for integer feasible solutions ẑ and it can be shown that it is guaranteed to find a violated
inequality if (x̂, ẑ) /∈ F .

Aside from solving the master relaxation (11) the main work of Algorithm 1 happens within the
SepCuts routine. An advantage of this approach is that most of this work is done for one scenario at
a time (i.e. it is decomposed) and can be implemented to be done in parallel. In particular, checking
whether x̂ ∈ Pk (and finding a violated facet-defining if not) for any k such that ẑk < 1 can be
done in parallel. The subsequent work of generating a strong valid inequality is likely dominated
by calculation of the values hk(α) for each k as in (7), which can also be done in parallel.

We have stated our approach in relatively simple form in Algorithm 1. However, as this approach
is essentially a variant of branch-and-cut for solving a (particularly structured) integer programming
problem, we can also use all the computational enhancements commonly used in such algorithms.
In particular, using heuristics to find good feasible solutions early and using some sort of pseudocost
branching [18], strong branching [2], or reliability branching [1] approach for choosing which variable
to branch on would be important. In our implementation (described in §5.2) we have embedded
the key cut generation step of our algorithm within the CPLEX commercial integer programming
solver which has such enhancements already implemented.
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In our definition of the master relaxation (11), we have enforced the constraints x ∈ X. If, X is a
polyhedron and f(x) is linear, (11) is a linear program. However, if X is not a polyhedron, suitable
modifications to the algorithm could be made to ensure that the relaxations solved remain linear
programming problems. For example, if X is defined by a polyhedron Q with integrality constraints
on some of the variables, then we could instead define the master relaxation to enforce x ∈ Q, and
then perform branching both on the integer-constrained x variables and on the zk variables. Such
a modification is also easy to implement within existing integer programming solvers. Note also
that, in this case, Q would be a natural choice for the relaxation X̄ of X used in §3 when obtaining
the hk(α) values as in (7).

5 Preliminary computational results

5.1 Call center staffing problem

We tested our approach on randomly generated instances of a call center staffing problem recently
studied in [16]. In this problem the staffing levels of different types of available servers (xi for
i = 1, . . . , n) must be set before knowing what the actual arrival rates of the customers will be.
The routing of arriving customers to servers, however, can be done as the arrivals are observed. In
[16], a static and fluid approximation of the second-stage dynamic routing problem is used in which
servers are simply (fractionally) allocated to customers, leading to the following formulation:

min
{
cx
∣∣ P{x ∈ P (Λ)} ≥ 1− ε, x ∈ Rn

+

}
where c ∈ Rn

+ represent the staffing costs, Λ is a m-dimensional random vector of arrival rates, and

P (λ) =
{
x ∈ Rn

+ | ∃y ∈ Rn×m
+ s.t.

m∑
j=1

yij ≤ xi, i = 1, . . . , n,
n∑
i=1

µijyij ≥ λj , j = 1, . . . ,m
}
. (12)

Here µij is the service rate of server type i when serving customer type j (µij = 0 if server type i
cannot serve customer type j). This formulation aims to choose minimum cost staffing levels such
that the probability of meeting quality of service targets is high.

When generating the test instances, we first generated the service rates, and the mean and
covariance of the arrival rate vector, then generated the cost vector in such a way that “more
useful” server types were generally more expensive, in order to make the solutions nontrivial.
Finally, to generate specific instances with finite support, we sampled N joint-normally distributed
arrival rate vectors independently using the fixed mean and covariance matrix for various sample
sizes N . In all our test instances we use ε = 0.1 as the risk tolerance.

We see that this problem has the two-stage structure given in (2), and hence available methods
for finding exact solutions (or even any solution with a bound on optimality error) are very limited.
However, we do want to point out that the form of P (λ) still possesses some special structure in
that the second-stage constraints have no random coefficients (i.e. in the form of (2) the matrices T k

and W k do not vary with k). In addition, the constraints x ∈ X are very simple for this problem;
we simply have X = Rn

+. Thus, while this test problem is certainly beyond the capabilities of
existing approaches, it is not yet a test of the algorithm in the most general settings.

Technically, this problem does not satisfy our assumptions given in §2 because the sets Rn
+∩P (λ)

are not bounded. However, our approach really only requires that the optimal solutions to (7)
always exist for any coefficient vector α of a facet-defining inequality for P (λ). As valid inequalities
for P (λ) necessarily have non-negative coefficients, this clearly holds.
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5.2 Implementation details

We implemented our approach within the commercial integer programming solver CPLEX 11.2.
The main component of the approach, separation of valid inequalities of the form (9), was imple-
mented within a cut callback that CPLEX calls whenever it has finished solving a node (whether
the solution is integer feasible or not) and also after it has found a heuristic solution. In the fea-
sibility checking phase of the SepCuts routine (line 2) we searched for k with ẑk < 1 and x /∈ Pk
in increasing order of ẑk (so, in particular we always first check the scenarios k with ẑk = 0). For
the first such k we find (and only the first) we add all the violated valid inequalities of the form
(10) as well as the single most violated inequality of the form (9). Our motivation for adding the
inequalities (10) is that they are sparse and this is a simple way to add additional valid inequalities
in one round; we found that doing this yielded somewhat faster convergence.

5.3 Results

We compared our algorithm against the Big-M formulation (3) (with the M values chosen as small
as possible) and also against a basic decomposition algorithm that does not use the strong valid
inequalities of §3. We compare against this simple decomposition approach to understand whether
the success of our algorithm is due solely to the decomposition, or whether the strong inequalities
are also important. The difference between the basic decomposition algorithm and the strengthened
version is in the type of cuts that are added in the SepCuts routine. Specifically, in the case of
an uncertainty set Pk of the form (12), if we find a scenario k with ẑk = 0, and a valid inequality
αx ≥ β for the set Pk that is violated by x̂, the basic decomposition algorithm simply adds the
inequality

αx ≥ βzk.

It is not hard to see that when the sets Pk have the form (12), this inequality is valid for F because
x ≥ 0 and any valid inequality for Pk has α ≥ 0. Furthermore, this inequality successfully cuts off
the infeasible solution (x̂, ẑ).

n m N Big-M Basic Decomp Strong Decomp
10 20 500 23.0% 1752a 2.9

1000 27.3% 5.5% 17.3
2000 - 10.1% 143.4

20 30 1000 28.9%b 7.3% 11.8
2000 - 16.7% 27.5
3000 - 24.3% 73.9

40 50 1000 - 16.2% 65.3
2000 - 24.1% 190.9
3000 - 28.7% 256.3

a Average based on nine instances that solved in time limit.
b Gap for one instance, remaining nine instances failed.

Table 1: Results on call center staffing instances; solution time (sec) or final optimality gap (%).

Table 1 presents the results of these three approaches for varying problem size in terms of
number of agent types (n), number of customer types (m) - which is also the dimension of the
random vector Λ, and number of scenarios N . These tests were done with a time limit of one
hour. Unless stated otherwise, each entry is an average over ten randomly generated samples from
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the same base underlying instance (i.e. the instance is fixed, but ten different samples of the N
scenarios are taken). The big-M formulation (3) only successfully solves the LP relaxation and
finds a feasible solution for the two smallest instance sizes. The entries ‘-’ in the other cases mean
that either no solution was found in the time limit, or that the LP relaxation did not solve in
the time limit. For the largest instances, CPLEX failed with an out-of-memory error before the
time limit was reached. Using the basic decomposition approach makes a significant improvement
over the big-M formulation in that feasible solutions are now found for all instances. However,
only the smallest of the instances (and only 9 of 10 of them) could be solved to optimality within
the time limit, and the larger instances had very large optimality gaps after the limit. Combining
decomposition with strong valid inequalities (“Strong Decomp” in the table) we are able to solve
all the instances to optimality in an average of less than five minutes.

To understand these results a little better, we present in Table 2 the root gaps (relative to
the optimal values) after all cuts have been added for the two decomposition approaches. We also
present the average number of nodes processed in each approach (to the time limit for the basic
approach, and to optimality for our approach). It is clear that the strong valid inequalities lead to
very strong relaxations for this particular problem, and hence almost no nodes need to be explored.
In comparison, for the smallest instance size, in which the basic decomposition approach can solve
most of the instances, the average number of nodes required is over 20,000. (The smaller number
of nodes for the larger instances merely reflects that fewer could be processed in the time limit.)

Root gap (%) Nodes
n m N Basic Strong Basic Strong

10 20 500 20.3% 0.00% 22969 0
1000 20.1% 0.01% 15034 0
2000 19.5% 0.01% 4641 6.7

20 30 1000 20.2% 0.00% 6271 0
2000 19.9% 0.01% 557 0
3000 20.4% 0.00% 399 0.1

40 50 1000 20.1% 0.00% 878 0.3
2000 20.7% 0.00% 101 0.1
3000 20.7% 0.00% 13 1

Table 2: Average root gaps and nodes for decomposition approaches.

6 Discussion

We have presented a promising approach for solving general CCMPs, although additional compu-
tational tests are needed on problems having more general structures than the test problem we
considered. The approach uses both decomposition, to enable processing subproblems correspond-
ing to one scenario at a time, and integer programming techniques, to yield strong valid inequalities.
From a stochastic programming perspective, it is not surprising that decomposition is necessary
to yield an efficient algorithm, as this is well-known for traditional two-stage stochastic programs.
From an integer programming perspective, it is not surprising that using strong valid inequalities
has an enormous impact. The approach presented here represents a successful merger of these
approaches to solve CCMPs.

Acknowledgments. The author thanks Shabbir Ahmed for the suggestion to compare the pre-
sented approach with a basic decomposition algorithm.
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