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Abstract. We study approximations of optimization problems with probabilistic constraints
in which the original distribution of the underlying random vector is replaced with an empirical
distribution obtained from a random sample. We show that such a sample approximation problem
with risk level larger than the required risk level will yield a lower bound to the true optimal value
with probability approaching one exponentially fast. This leads to an a priori estimate of the sample
size required to have high confidence that the sample approximation will yield a lower bound. We
then provide conditions under which solving a sample approximation problem with a risk level smaller
than the required risk level will yield feasible solutions to the original problem with high probability.
Once again, we obtain a priori estimates on the sample size required to obtain high confidence that
the sample approximation problem will yield a feasible solution to the original problem. Finally,
we present numerical illustrations of how these results can be used to obtain feasible solutions and
optimality bounds for optimization problems with probabilistic constraints.
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1. Introduction. We consider optimization problems with probabilistic con-
straints (also known as chance constraints) of the form

(PCP) min
{
f(x) : x ∈ X, Pr

{
G(x, ξ) ≤ 0

}
≥ 1− ε

}
where X ⊂ Rn represents a deterministic feasible region, f : Rn → R represents the
objective to be minimized, ξ is a random vector with suport Ξ ⊆ Rd, G : Rn×Rd →
Rm is a given constraint mapping and ε is a risk parameter chosen by the decision
maker, typically near zero, e.g., ε = 0.01 or ε = 0.05. Such problems are sometimes
called probabilistic programs. In PCP a single probabilistic constraint is enforced
over all rows in the constraints G(x, ξ) ≤ 0, rather than requiring that each row
independently be satisfied with high probability. Such a constraint is known as a
joint probabilistic constraint, and is appropriate in a context in which it is important
to have all constraints satisfied simultaneously and there may be dependence between
random variables in different rows.

Problems with joint probabilistic constraints have been extensively studied; see
[25] for background and an extensive list of references. Probabilistic constraints have
been used in various applications including supply chain management [17], production
planning [21], optimization of chemical processes [13, 14] and surface water quality
management [30].

Unfortunately, probabilistic programs are still largely intractable except for a
few special cases. There are two primary reasons for this intractability. First, in
general, for a given x ∈ X, the quantity Pr

{
G(x, ξ) ≤ 0

}
is hard to compute, as it

requires multi-dimensional integration, and hence just checking feasibility of a solution
is difficult. Second, the feasible region defined by a probabilistic constraint generally
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is not convex. In this paper, we study how the difficulty in checking feasibility can
be addressed by solving a sample approximation problem based on a Monte Carlo
sample of ξ. In particular, we study how this approximation can be used to generate
feasible solutions and optimality bounds for general probabilistic programs.

The sample approximation we study is a probabilistic program in which the orig-
inal distribution of the random vector ξ is replaced with the empirical distribution
obtained from the random sample. We show that such a sample approximation prob-
lem with risk level larger than the nominal risk level ε will yield a lower bound to the
true optimal value with probability approaching one exponentially fast. This leads
to an a priori estimate of the sample size required to have high confidence that the
sample approximation will yield a lower bound. We also discuss alternative means of
generating lower bounds, which can be used regardless of the sample size used. We
then provide conditions under which solving a sample approximation problem with a
risk level smaller than ε will yield feasible solutions to the original problem with high
probability. Once again, we obtain a priori estimates on the sample size required to
obtain high confidence that the sample approximation problem will yield a feasible
solution to the original problem.

Recently, a number of approaches have been proposed to find approximate so-
lutions to probabilistic programs; the common theme among these is that they all
seek “safe” or conservative approximations which can be solved efficiently. That is,
they propose approximation problems which are convex and yield solutions which
are feasible, or at least highly likely to be feasible, to the original probabilistic pro-
gram. Approaches of this type include: the scenario approximation method studied
by Calafiore and Campi [7, 8] and extended by Nemirovski and Shapiro [22]; the Bern-
stein approximation scheme of Nemirovski and Shapiro [23]; and robust optimization
e.g., [4, 6, 11]. The conservative approximations, when applicable, are attractive be-
cause they allow efficient generation of feasible solutions. In particular, they can yield
feasible solutions when the probabilistic constraint is “hard,” that is, with ε very
small, such as ε = 10−6 or even ε = 10−12. However, in a context in which ε is not
so small, such as ε = 0.05 or ε = 0.01, the probabilistic constraint is more likely to
represent a “soft” constraint, one which the decision-maker would like to have sat-
isfied, but is willing to allow a nontrivial chance that it will be violated if doing so
would sufficiently decrease the cost of the implemented solution. In this latter con-
text, it would be desirable to obtain solutions which are feasible to the probabilistic
constraint along with an assurance that the solutions are not much more costly than
the lowest cost solution attaining the same risk level. In this way, the decision-maker
can be confident they are choosing from solutions on the efficient frontier between the
competing objectives of cost and risk. Unfortunately, the recently proposed conser-
vative approximations say very little in terms of how conservative the solutions are.
In particular, it is generally not possible to make a statement about how much worse
the objective is relative to the optimal value at a fixed risk level ε.

The scenario approximation methods are most similar to the sample approach we
study in that they solve an approximation problem based on an independent Monte
Carlo sample of the random vector. For example, the scenario approximation of [7, 8]
takes a sample ξ1, . . . , ξN and solves the problem

(1) min
x∈X

{
f(x) : G(x, ξi) ≤ 0 i = 1, . . . , N

}
.

That is, the scenario approximation enforces all of the constraints corresponding to
the sample taken. When the nominal problem is convex (that is, X ⊆ Rn is a
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convex set, f is convex and G is convex in x for each ξ), they show that the scenario
approximation problem will yield a feasible solution to PCP with probability at least
1− δ for

(2) N ≥ 2
ε

log
(

1
δ

)
+ 2n +

2n

ε
log

(
2
ε

)
.

In addition, under the stated convexity assumptions, the scenario approximation prob-
lem remains a convex program. An advantage of this approach relative to the approx-
imations [4, 6, 11, 23] is that the only assumption that is made on the distribution of
ξ is that it can be sampled from.

The key difference between the sample approximation we study and scenario
approximation is that we allow the risk level in the sample approximation problem
to be positive, that is, we do not require that all sampled constraint sets be satisfied.
Instead, the constraint sets which will be satisfied can be chosen optimally. The
disadvantage of this scheme is that the sample approximation problem with positive
risk level has a non-convex feasible region, and hence may be difficult to solve despite
having a simplified probabilistic structure. Specifically, if we allow k of the N sampled
constraint sets to be violated, then we must choose a set of k constraint sets which
will not be enforced, and there are

(
N
k

)
possible sets to choose from. Choosing the

optimal set is an NP -hard problem even in a very special case [20]. However, in some
special cases, such as when randomness appears only in the right-hand side of the
constraints, the sample approximation problem may be relatively tractable to solve
with integer programming techniques, see [20, 19]. In addition, for generating feasible
solutions to PCP, our analysis indicates that with appropriately chosen parameters
any feasible solution to the sample approximation problem will be feasible to the
original problem with high probability, so that it is sufficient to generate heuristic
solutions. Similarly, to obtain a lower bound for PCP, it is sufficient to obtain a lower
bound for the appropriate sample approximation problem.

In the context of generating feasible solutions for PCP, our sample approximation
scheme includes as a special case the scenario approximation of [7, 8] in which the
constraints corresponding to all sampled vectors ξi are enforced. In this special case,
we obtain results very similar to those in [8] in terms of how many samples should be
used to yield a solution feasible to PCP with high probability. However, our analysis
is quite different from the analysis of [8], and in particular, requires a significantly
different set of assumptions. In some cases our assumptions are more stringent, but
there are also a number of cases in which our assumptions apply and those of [8] do not,
most notably if the feasible region X is not convex, as in the case of a mixed-integer
program. Thus, our results complement those of [8] in two ways: first we show that
sample approximations with positive risk levels can be used to yield feasible solutions
to PCP, and second we relax the convexity assumptions. Another closely related work
is [9], in which the authors consider a sample approximation problem in which some
of the sampled constraints are allowed to be violated. When the nominal problem
is convex and a nondegeneracy assumption holds, they present an estimate on the
sample size needed to obtain a feasible solution with high probability when a fixed
number of sampled constraint sets are discarded optimally. Under these assumptions,
their results for generating feasible solutions are very similar to the results we present.
The unique contributions of the present paper are: (1) we use assumptions which are
significantly different from the convexity and nondegeneracy assumptions used in [9]
(neither set of assumptions implies the other), (2) we analyze a method for generating
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lower bounds on the optimal value (which is useful for validating the quality of a given
solution), (3) we prove that the sample approximation yields an exact optimal solution
with high probability when X is finite (as in the case of an integer program) and (4)
we conduct extensive numerical experiments on practical size problems indicating the
potential of the approach.

The sample approximation problem we study can be thought of as a variation
of the well studied Sample Average Approximation (SAA) approach, see e.g. [1, 10,
16, 29]. The difference is that the approximation we study enforces a sample average
constraint involving expectations of indicator functions, whereas the SAA approach
typically optimizes a sample average objective. Shapiro [28] and Wang [32] have con-
sidered SAA approximation for expected value constraints. However, in these works,
the function taken under expectation in the constraints is assumed to be continuous,
and hence these results cannot be directly applied because of the discontinuity of indi-
cator functions. In [2] a model with expected value constraints in which the function
taken under expectation is not necessarily continuous is considered, and hence their
analysis does apply to the case of probabilistic constraints. However, they consider
only the case in which the feasible region is finite, and they only discuss the theoretical
rate of convergence. In contrast, we begin with a similar analysis for the finite feasible
region case, but then extend the analysis to a number of significantly more general
settings. In addition, we separate the analysis of when the sample approximation will
be likely to yield a lower bound, and when it will be likely to yield feasible solutions.
This separate analysis allows for the development of methods which yield optimality
statements which hold with high probability.

Finally, we mention the work of Vogel [31], which considers convergence properties
of the sample approximation we use for probabilistic programs. When only the right-
hand side is random with continuous distribution, it is shown that the probability
that the distance between the sample feasible region and true feasible region is larger
than any positive threshold decreases exponentially fast with the size of the sample.
However, the convergence rate has poor dependence on the dimension of the random
vector, implying that the number of samples required to yield a reasonable approx-
imation would have to grow exponentially in this dimension. Better convergence is
demonstrated for the case of random right-hand side with discrete distribution. For
the general case, linear convergence is demonstrated in the case of continuous distri-
butions. Our analysis of the sample approximation problem extends these results by
improving on the convergence rates and by analyzing what happens when the sample
approximation problem is allowed to have different risk level than the nominal risk
level ε. This allows the sample approximation problem to be used to generate feasible
solutions and optimality bounds.

The remainder of this paper is organized as follows. In §2 we present and analyze
the sample approximation scheme. We present results of a preliminary computational
study of the use of the sample approximation scheme in §3. We close with concluding
remarks and directions for future research in §4.

2. Analysis of Sample Approximation. We now study how Monte Carlo
sampling can be used to generate probabilistically constrained problems with finite
distribution which can be used to approximate problems with general distributions.
Let us restate PCP as

z∗ε = min
{
f(x) : x ∈ Xε

}
(Pε)
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where

Xε =
{

x ∈ X : Pr
{
G(x, ξ) ≤ 0

}
≥ 1− ε

}
.

We assume z∗ε exists and is finite. For example, if X is compact and G(x, ξ) is affine
in x for each ξ ∈ Ξ, then Xε is closed [12] and hence compact, and so if f(x) is
continuous then an optimal solution exists whenever Xε 6= ∅. Furthermore, we take
as an assumption the measurability of any event S taken under probability, such as
the event {G(x, ξ) ≤ 0} for each x ∈ X.

If X is a polyhedron, f(x) = cx, G(x, ξ) = ξ − Tx (d = m) then we obtain the
probabilistically constrained linear program with random right-hand side

min
{

cx : x ∈ X, Pr
{
Tx ≥ ξ

}
≥ 1− ε

}
.

We can also model a two-stage problem in which we make a decision x and wish to
guarantee that with probability at least 1 − ε there is a feasible recourse decision y
satisfying Wy ≥ H(x, ξ), where W is an m by l matrix, and H : Rn × Rd → Rm.
This is accomplished by letting G : Rn ×Rd → R be defined by

G(x, ξ) = min
µ,y

{µ : Wy + µe ≥ H(x, ξ), µ ≥ −1}

where e ∈ Rm is a vector of all ones. Indeed, G(x, ξ) ≤ 0 if and only if there exists
y ∈ Rl and µ ≤ 0 such that Wy + µe ≥ H(x, ξ), which occurs if and only if there
exists y ∈ Rl such that Wy ≥ H(x, ξ).

Due to the general difficulty in calculating Pr
{
G(x, ξ) ≤ 0

}
for a given x ∈ X,

we seek to approximate Pε by solving a sample approximation problem. We let
ξ1, . . . , ξN be an independent Monte Carlo sample of the random vector ξ. Then, for
fixed α ∈ [0, 1) the sample approximation problem is defined to be

ẑN
α = min

{
f(x) : x ∈ XN

α

}
(PN

α )

where

XN
α =

{
x ∈ X :

1
N

N∑
i=1

I
(
G(x, ξi) ≤ 0

)
≥ 1− α

}
where I

(
·
)

is the indicator function which takes values one when · is true and zero
otherwise. We adopt the convention that if XN

α = ∅ then ẑN
α = +∞, whereas if PN

α is
unbounded, we take ẑN

α = −∞. We assume that, except for these two cases, PN
α has

an optimal solution. This assumption is satisfied, for example, if X is compact, f(x)
is continuous and G(x, ξ) is continuous in x for each ξ ∈ Ξ, since then XN

α is the union
of finitely many compact sets (in this case ẑN

α = −∞ is also not possible). If α = 0,
the sample approximation problem PN

0 corresponds to the scenario approximation of
probabilistic constraints, studied in [8] and [22]. Our goal is to establish statistical
relationships between problems Pε and PN

α for α ≥ 0. We first consider when PN
α

yields lower bounds for Pε, then consider when PN
α yields feasible solutions for Pε.

2.1. Lower Bounds. We now establish a bound on the probability that PN
α

yields a lower bound for Pε. Let

ρ(α, ε,N) =
bαNc∑
i=0

(
N

i

)
εi(1− ε)N−i.
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ρ(α, ε,N) represents the probability of having at most bαNc “successes” in N inde-
pendent trials, in which the probability of a success in each trial is ε.

Lemma 1. Assume Pε has an optimal solution. Then,

Pr
{
ẑN
α ≤ z∗ε

}
≥ ρ(α, ε,N).

Proof. Let x∗ ∈ Xε be an optimal solution to Pε. Then, Pr
{
G(x∗, ξi) � 0

}
≤ ε for

each i. Hence, if we call the event {G(x∗, ξi) � 0} a success, then the probability of
a success in trial i is φ̄(x∗) := Pr

{
G(x∗, ξi) � 0

}
≤ ε. By definition of XN

α , x∗ ∈ XN
α

if and only if

1
N

N∑
i=1

I
(
G(x∗, ξi) ≤ 0

)
≥ 1− α ⇔ 1

N

N∑
i=1

I
(
G(x∗, ξi) � 0

)
≤ α

⇔
N∑

i=1

I
(
G(x∗, ξi) � 0

)
≤ bαNc.

Hence, Pr
{
x∗ ∈ XN

α

}
is the probability of having at most bαNc successes in N trials.

Also, if x∗ ∈ XN
α then ẑN

α ≤ z∗ε . Thus,

Pr
{
ẑN
α ≤ z∗ε

}
≥ Pr

{
x∗ ∈ XN

α

}
= ρ(α, φ̄(x∗), N) ≥ ρ(α, ε,N)

since ρ(α, ε,N) is decreasing in ε.
For example, if α = 0 as in previously studied scenario approximation [8, 22],

then we obtain Pr
{
ẑN
α ≤ z∗ε

}
≥ ρ(0, ε, N) = (1− ε)N . For this choice of α, it becomes

very unlikely that the sample approximation PN
α will yield a lower bound as N gets

large. For α > ε we see different behavior: the sample approximation yields a lower
bound with probability approaching one exponentially fast as N increases. The proof
is based on Hoeffding’s inequality.

Theorem 2 (Hoeffding’s Inequality [15]). Let Y1, . . . , YN be independent random
variables with Pr

{
Yi ∈ [ai, bi]

}
= 1 where ai ≤ bi for i = 1, . . . , N . Then, if t > 0

Pr
{ N∑

i=1

(Yi − E[Yi]) ≥ tN
}
≤ exp

{
− 2N2t2∑N

i=1(bi − ai)2

}
.

Theorem 3. Let α > ε and assume Pε has an optimal solution. Then,

Pr
{
ẑN
α ≤ z∗ε

}
≥ 1− exp

{
−2N(α− ε)2

}
.

Proof. Let x∗ be an optimal solution to Pε. As in the proof of Lemma 1, if
x∗ ∈ XN

α then ẑN
α ≤ z∗ε . For i = 1, . . . , N let Yi be a random variable taking value 1

if G(x∗, ξi) � 0 and 0 otherwise. Then, Pr
{
Yi ∈ [0, 1]

}
= 1 and E[Yi] ≤ ε. Hence,

Pr
{
ẑN
α > z∗ε

}
≤ Pr

{
x∗ /∈ XN

α

}
= Pr

{ 1
N

N∑
i=1

Yi > α
}

≤ Pr
{ 1

N

N∑
i=1

(Yi − E[Yi]) > α− ε
}

≤ exp
{
−2N2(α− ε)2

N

}
= exp

{
−2N(α− ε)2

}



SAMPLE APPROXIMATION OF PROBABILISTIC CONSTRAINTS 7

where the first inequality follows since E[Yi] ≤ ε and the second inequality follows
from Hoeffding’s inequality.

Theorem 3 states that by taking a risk parameter α > ε in our sample approxima-
tion problem, we will obtain a lower bound to the true optimal value with probability
approaching one exponentially fast as N increases. Stated another way, suppose we
solve a sample approximation problem PN

α with α = ε. Then for any γ > 0 such that
γ < ε, the optimal value of this problem, ẑN

ε will be a lower bound to the optimal
value of Pε−γ with probability approaching one exponentially fast with N . If γ is
small this states that the optimal solution to the sample problem will have cost no
worse than any solution that is “slightly less risky” than the nominal risk level ε.

Theorem 3 immediately yields a method for generating lower bounds with speci-
fied confidence 1− δ, where δ ∈ (0, 1). If we select α > ε and

N ≥ 1
2(α− ε)2

log
(1

δ

)
then Theorem 3 ensures that ẑN

α ≤ z∗ε with probability at least 1 − δ. Indeed, with
this choice of α and N , we have

Pr
{
ẑN
α > z∗ε

}
≤ exp

{
−2N(α− ε)2

}
≤ exp

{
− log

(1
δ

)}
= δ.

Because 1/δ is taken under logarithm, we can obtain a lower bound with high confi-
dence, i.e. with δ very small, without increasing the sample size N too large. On the
other hand, the required sample size grows quadratically with 1/(α − ε) and hence
will be large for α very close to ε.

Lemma 1 can also be used to obtain lower bounds with specified confidence, using
the bounding procedure proposed by Nemirovski and Shapiro [23]. They restrict α = 0
in the sample approximation, but the technique can be applied in exactly the same
way when α > 0, and it is likely this can make the bounding technique significantly
more powerful. The idea is as follows. Take M sets of N independent samples of ξ,
given by ξi,j for j = 1, . . . ,M and i = 1, . . . , N and for each j solve the associated
sample approximation problem

ẑN
α,j = min

{
f(x) : x ∈ XN

α,j

}
where

XN
α,j =

{
x ∈ X :

1
N

N∑
i=1

I
(
G(x, ξi,j) ≤ 0

)
≥ 1− α

}
.

We then rearrange the values {ẑN
α,j}M

j=1 to obtain the order statistics ẑN
α,[j] for j =

1, . . . ,M satisfying ẑN
α,[1] ≤ · · · ≤ ẑN

α,[M ]. Then, a lower bound which is valid with
specified confidence 1− δ can be obtained as follows.

Theorem 4. Let δ ∈ (0, 1), α ∈ [0, 1), and N,L and M be positive integers such
that L ≤ M and

(3)
L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1− ρ(α, ε,N)

)M−i ≤ δ.

Then,

Pr
{
ẑN
α,[L] ≤ z∗ε

}
≥ 1− δ.
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Proof. We show Pr
{
ẑN
α,[L] > z∗ε

}
≤ δ. Note that ẑN

α,[L] > z∗ε if and only if less
than L of the values ẑN

α,j satisfy ẑN
α,j ≤ z∗ε . Thus, calling the event {ẑN

α,j ≤ z∗ε } a
success, the event ẑN

α,[L] > z∗ε occurs if and only if there are less than L successes in
M trials, in which the probability of a success is η := Pr

{
ẑN
α,j ≤ z∗ε

}
. The result then

follows since η ≥ ρ(α, ε,N) by Lemma 1 and so

L−1∑
i=0

(
M

i

)
ηi(1− η)M−i ≤

L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1− ρ(α, ε,N)

)M−i ≤ δ

by (3).
An interesting special case of Theorem 4 is obtained by taking L = 1. In this

case, we are taking as our lower bound the minimum of the optimal values obtained
from solving the M sample approximation problems. To have confidence 1 − δ that
the lower bound is truly a lower bound, we should choose M such that

(4)
(
1− ρ(α, ε,N)

)M ≤ δ.

With the choice of L = 1, let us consider how large M should be with α = 0 and with
α = ε. With α = 0, we obtain ρ(0, ε, N) = (1− ε)N . Hence, to have confidence 1− δ
to obtain a lower bound, we should take

(5) M ≥ log
(

1
δ

)
/ log

(
1

1− (1− ε)N

)
.

Using the inequality log(1 + x) ≤ x for x > 0 we have

log
(

1
1− (1− ε)N

)
= log

(
1 +

(1− ε)N

1− (1− ε)N

)
≤ (1− ε)N

1− (1− ε)N
.

Hence, when α = 0, we should take

M ≥ log
(

1
δ

)
1− (1− ε)N

(1− ε)N
.

Thus, for fixed ε ∈ (0, 1), the required M grows exponentially in N . For example,
using (5), if δ = 0.001 and ε = 0.01, then for N = 250 we need M ≥ 82, for N = 500
we need M ≥ 1, 048, and for N = 750 we need M ≥ 12, 967. If δ = 0.001 and ε = 0.05,
then for N = 50 we should take M ≥ 87, for N = 100 we should take M ≥ 1, 160,
and for N = 150 we must already have M ≥ 15, 157! Thus, to keep M reasonably
small, we must keep N small, but this will weaken the lower bound obtained in each
sample.

Now suppose we take L = 1 and α = ε. Then, for N “large enough” (e.g. Nε ≥
10), we have ρ(ε, ε, N) ≈ 1/2. Indeed, ρ(ε, ε, N) is the probability that a binomial
random variable with success probability ε and N trials is at most bεNc. With N
large enough relative to ε, this probability can be approximated by the probability
that a random variable with Normal distribution having mean εN does not exceed
bεNc. Because the median of the normal distribution equals the mean, we obtain
ρ(ε, ε, N) & 1/2. Thus, with L = 1 and α = ε, we should choose M such that
(1/2)M ≤ δ, or

M ≥ log2

(
1
δ

)
.
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Note that this bound is independent of N and ε. For example, for δ = 0.001, we
should take M ≥ 10. The independence of N has the advantage that we can take N
to be as large as is computationally tractable, which will tend to make each of the
optimal values ẑN

ε,j closer to the true optimal z∗ε , and hence make the lower bound
minj{ẑN

ε,j} tighter.
We close this section by commenting that although our results have been stated

in terms of the exact optimal solution ẑN
α of the sample approximation problem, it is

not necessary to calculate this value exactly to use the results. All the results about
lower bounds for z∗ε will be valid if ẑN

α is replaced with a lower bound of ẑN
α , at the

expense, of course, of weakening the lower bound.

2.2. Feasible Solutions. We now consider conditions under which an optimal
solution to PN

α , if one exists, is feasible to Pε. The idea is that if we take the risk
parameter α in PN

α to be smaller than ε, then for N large enough the feasible region
of PN

α will be a subset of the feasible region of Pε, so that any optimal solution to
PN

α must be feasible to Pε. Unlike the case for lower bounds, we will need to make
additional assumptions to assure PN

α yields a feasible solution with high probability.
We begin by assuming that the feasible region X is finite. Note, however, that |X|

may be exponentially large, for example X could be the feasible region of a bounded
integer program. We then show how this assumption can be relaxed and replaced
with some milder assumptions.

2.2.1. Finite X. Theorem 5. Suppose X is finite and α ∈ [0, ε). Then,

Pr
{
XN

α ⊆ Xε

}
≥ 1− |X \Xε| exp

{
−2N(ε− α)2

}
.

Proof. Consider any x ∈ X \ Xε, i.e. x ∈ X with Pr
{
G(x, ξ) ≤ 0

}
< 1 − ε.

We want to estimate the probability that x ∈ XN
α . For i = 1, . . . , N define the

random variable Yi by Yi = 1 if G(x, ξi) ≤ 0 and Yi = 0 otherwise. Then, E[Yi] =
Pr

{
G(x, ξi) ≤ 0

}
< 1 − ε and Pr

{
Yi ∈ [0, 1]

}
= 1. Observing that x ∈ XN

α if and
only if (1/N)

∑N
i=1 Yi ≥ 1− α and applying Hoeffding’s inequality, we obtain

Pr
{
x ∈ XN

α

}
= Pr

{ 1
N

N∑
i=1

Yi ≥ 1− α
}
≤ Pr

{ N∑
i=1

(Yi − E[Yi]) ≥ N(ε− α)
}

≤ exp
{
−2N(ε− α)2

}
.

Then,

Pr
{
XN

α * Xε

}
= Pr

{
∃x ∈ XN

α s.t. Pr
{
G(x, ξ) ≤ 0

}
< 1− ε

}
≤

∑
x∈X\Xε

Pr
{
x ∈ XN

α

}
≤ |X \Xε| exp

{
−2N(ε− α)2

}
.

For fixed α < ε and δ ∈ (0, 1), Theorem 5 shows that if we take

N ≥ 1
2(ε− α)2

log
(
|X \Xε|

δ

)
then if PN

α is feasible, it will yield a feasible solution to Pε with probability at least
1− δ. If |X| ≤ Un, we can take

(6) N ≥ 1
2(ε− α)2

log
(

1
δ

)
+

n

2(ε− α)2
log(U).
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Note that N grows linearly with the dimension n of the feasible region, and logarith-
mically with 1/δ, so that the confidence of generating a feasible solution can be made
large without requiring N to be too large. However, the quadratic dependence on
ε−α implies that this a priori estimate of how large N should be will grow quite large
for α near ε.

Theorem 5 states that for α < ε, every feasible solution to the sample approx-
imation problem will be feasible to the original problem with risk level ε with high
probability as N gets large. This is in contrast to the results of scenario approxima-
tion presented in [8] in which α = 0.0 is required, and the result is that the optimal
solution to the sample approximation problem will be feasible to the original prob-
lem with high probability. The advantage of our approach is that one need not solve
the sample approximation problem to optimality to obtain a solution to the original
problem. Simple heuristics which select which sampled constraints to be satisfied,
e.g. greedily or by local search, can be used to yield feasible solutions for the approx-
imation problem, which by virtue of Theorem 5 will have high probability of being
feasible to the original problem. This comment also applies to subsequent feasibility
results in which we relax the assumption that the feasible region X is finite.

In this case of finite X, we can combine Theorem 5 with Theorem 3 to demonstrate
that solving a sample approximation with α = ε will yield an exact optimal solution
with probability approaching one exponentially fast with N . Let X∗

ε be the set of
optimal solutions to Pε and define α = max

{
Pr

{
G(x, ξ) � 0

}
: x ∈ X∗

ε

}
. By

definition, we have z∗α = z∗ε . Next, let α = min
{
Pr

{
G(x, ξ) � 0

}
: x ∈ X \Xε

}
. By

definition, we have α > ε. Finally, define κ = min{ε− α, α− ε}.
Corollary 6. Assume α < ε. Then,

Pr
{
ẑN
ε = z∗ε

}
≥ 1− (|X|+ 1) exp

{
−2Nκ2

}
.

Proof. First observe that κ > 0 when α < ε. Next, we apply Theorem 3 with α
in place of ε and ε in place of α to obtain Pr

{
ẑN
ε ≤ z∗α

}
≥ 1 − exp{−2N(ε − α)2}.

Because z∗α = z∗ε this implies Pr
{
ẑN
ε > z∗ε

}
≤ exp{−2N(ε− α)2}.

We next observe that the proof of Theorem 5 can be modified to show the slightly
stronger result that

Pr
{
XN

α ⊆ X ′
ε

}
≥ 1− |X \X ′

ε| exp
{
−2N(ε− α)2

}
where X ′

ε = {x ∈ X : Pr
{
G(x, ξ) ≤ 0

}
> 1 − ε}. (In the proof, we consider each

x ∈ X \ X ′
ε and observe that the defined random variable Yi satisfies E[Yi] ≤ 1 − ε.

The remainder of the proof is identical with Xε replaced by X ′
ε.) Applying this result,

we obtain

Pr
{
XN

ε ⊆ X ′
α

}
≥ 1− |X \X ′

α| exp
{
−2N(α− ε)2

}
.

However, if x ∈ X ′
α then Pr

{
G(x, ξ) � 0

}
< α and by definition of α this implies

Pr
{
G(x, ξ) � 0

}
≤ ε and thus X ′

α ⊆ Xε. It follows that

Pr
{
ẑN
ε < z∗ε

}
≤ Pr

{
XN

ε * Xε

}
≤ |X| exp

{
−2N(α− ε)2

}
.

Therefore,

Pr
{
ẑN
ε 6= z∗ε

}
≤ Pr

{
ẑN
ε > z∗ε

}
+ Pr

{
ẑN
ε < z∗ε

}
≤ exp

{
−2N(ε− α)2

}
+ |X| exp

{
−2N(α− ε)2

}
≤ (1 + |X|) exp

{
−2Nκ2

}
.
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The assumption that α < ε is mild since, because X is finite, there are only finitely
many values of ε ∈ [0, 1] for which it is possible to have ε = α. Stated another way, if
we add a random perturbation uniformly distributed in (−γ, γ) to ε, where γ can be
arbitrarily small, then the assumption will hold with probability one. On the other
hand, the number of scenarios required to guarantee reasonably high probability of
obtaining the optimal solution will be at least proportional to (ε − α)−2, and hence
may be very large. Thus, Corollary 6 illustrates the qualitative behavior of the sample
approximation with α = ε in the finite feasible region case but may not be useful for
estimating the required sample size.

If we take α = 0 in Theorem 5, we obtain improved dependence of N on ε.
Theorem 7. Suppose X is finite and α = 0. Then,

Pr
{
XN

0 ⊆ Xε

}
≥ 1− |X \Xε|(1− ε)N .

Proof. With α = 0, if x ∈ X satisfies Pr
{
G(x, ξ) ≤ 0

}
< 1 − ε, then x ∈ XN

0 if
and only if G(x, ξi) ≤ 0 for each i = 1, . . . , N , and hence Pr

{
x ∈ XN

0

}
< (1 − ε)N .

The claim then follows just as in the proof of Theorem 5.
When α = 0, to obtain confidence 1− δ that PN

α will yield a feasible solution to
Pε whenever PN

α is feasible, we should take

N ≥ log−1

(
1

1− ε

)
log

(
|X \Xε|

δ

)
.

If |X| ≤ Un, then it is sufficient to take

(7) N ≥ 1
ε

log
(

1
δ

)
+

n

ε
log U

where we have used the inequality log(1/(1 − ε)) ≥ ε. Hence, with α = 0, the
required sample size again grows linearly in n, but now also linearly with 1/ε. Note
the similarity between the bound (7) and the bound of Campi and Calafiore [8],

N ≥ 2
ε

log
(

1
δ

)
+ 2n +

2n

ε
log

(
2
ε

)
which also exhibits linear dependence in n and (nearly) linear dependence in 1/ε. This
is interesting considering the significantly different assumptions used for the analysis.
In [8] it is assumed that X is a convex set and G(x, ξ) is a convex function of x for
every possibly value of ξ. In contrast, we make the strong assumption that X is finite,
but require no other assumptions on the form of the random constraint G(x, ξ) ≤ 0.

2.2.2. Random right-hand side. We now show how the assumption that X
is finite can be relaxed when the probabilistic constraint involves randomness only
in the right-hand side. Thus, in this section we assume G(x, ξ) = ξ − g(x) where
g : Rn → Rm, and Ξ ⊆ Rm. Let the cumulative distribution function of ξ be
F (y) = Pr

{
ξ ≤ y

}
for y ∈ Rm. Then, the feasible region of the probabilistically

constrained problem with random right-hand side is

X̄ε =
{

x ∈ X : F (g(x)) ≥ 1− ε
}

.
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The feasible region of the sample approximation problem for α ∈ [0, 1) is

X̄N
α =

{
x ∈ X :

1
N

N∑
i=1

I
(
g(x) ≥ ξi

)
≥ 1− α

}
.

We first consider the case that ξ has a finite distribution, that is, Ξ = {ξ1, . . . , ξK}.
Note that K may be very large, for example K = Um for a positive integer U . Next,
for j = 1, . . . ,m define Ξj = {ξk

j : k = 1, . . . ,K} and finally let C =
∏m

j=1 Ξj .
Theorem 8. Suppose ξ has a finite distribution and let α ∈ [0, ε). Then,

Pr
{
X̄N

α ⊆ X̄ε

}
≥ 1− |C| exp

{
−2N(ε− α)2

}
.

Proof. Let Cε = {y ∈ C : F (y) ≥ 1− ε} and

CN
α =

{
y ∈ C :

1
N

N∑
i=1

I
(
y ≥ ξi

)
≥ 1− α

}
.

Because C is a finite set, we can apply Theorem 5 to obtain

(8) Pr
{
CN

α ⊆ Cε

}
≥ 1− |C| exp

{
−2N(ε− α)2

}
.

Now, let x ∈ X̄N
α , so that x ∈ X and

∑N
i=1 I

(
g(x) ≥ ξi

)
≥ N(1−α). Define ȳ ∈ C by

ȳj = max{yj ∈ Ξj : yj ≤ gj(x)} j = 1, . . . ,m

so that by definition, ȳ ≤ g(x). Next, note that if g(x) ≥ ξi for some i, then also
ȳ ≥ ξi since ξi ∈ C. Hence,

∑N
i=1 I

(
ȳ ≥ ξi

)
≥ N(1−α) and so ȳ ∈ CN

α . Hence, when
CN

α ⊆ Cε, F (ȳ) ≥ 1 − ε and because ȳ ≤ g(x), also F (g(x)) ≥ 1 − ε and so x ∈ X̄ε.
Since x ∈ X̄N

α was arbitrary, this shows that when CN
α ⊆ Cε, X̄N

α ⊆ X̄ε and the result
follows from (8).

If, for example, |Ξj | ≤ U for each j, then |C| ≤ Um so to obtain confidence 1− δ
that X̄N

α ⊆ X̄ε it is sufficient to take

(9) N ≥ 1
2(ε− α)2

log
(

1
δ

)
+

m

2(ε− α)2
log U.

The difference between this bound and (6) is that (9) depends linearly on m, the
dimension of ξ, whereas (6) depends linearly on n, the dimension of x.

Similar to the case of finite feasible region X, when ξ has a finite distribution, it
can be shown that the sample approximation problem with ε = α will yield an exact
optimal solution with probability approaching one as N increases. The statement and
proof of this result is completely analogous to that of Corollary 6 and is omitted for
the sake of brevity.

As in the case of Theorem 7, if we take α = 0, we can obtain the stronger
convergence result

Pr
{
X̄N

0 ⊆ X̄ε

}
≥ 1− |C|(1− ε)N .

The assumption in Theorem 8 that Ξ is finite can be relaxed if we assume X̄ε ⊆
X̄(l, u) := {x ∈ X : l ≤ g(x) ≤ u} for some l, u ∈ Rm. This assumption is not very
strict. Indeed, if we define l ∈ Rm by

lj = min{l ∈ R : Fj(l) ≥ 1− ε}
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where Fj is the marginal distribution of ξj for j = 1, . . . ,m then g(x) ≥ l for any
x ∈ X̄ε. This holds because if gj(x) < lj for some j, then Pr

{
g(x) ≥ ξ

}
≤ Pr

{
gj(x) ≥

ξj

}
= Fj(gj(x)) < 1 − ε by definition of lj and hence x /∈ X̄ε. Furthermore, if X is

compact and g(x) is continuous in x, then if we define u ∈ Rm by

uj = max{gj(x) : x ∈ X} j = 1, . . . ,m

then each uj is finite, and by definition, g(x) ≤ u for any x ∈ X̄. Under the assumption
that X̄ε ⊆ X̄(l, u) the assumption that Ξ is finite can be replaced by the assumption
that Ξ∩{y ∈ Rm : l ≤ y ≤ u} is finite, leading to a result similar to Theorem 8, with
a nearly identical proof.

Alternatively, when X̄ε ⊆ X̄(l, u), we can obtain a similar result if ξ has a Lips-
chitz continuous cumulative distribution function F on [l, u] = {y ∈ Rm : l ≤ y ≤ u}.
That is, we assume there exists L > 0 such that

|F (y)− F (y′)| ≤ L‖y − y′‖∞ ∀y, y′ ∈ [l, u]

where ‖y‖∞ = max{|yj | : j = 1, . . . ,m}. Under the assumption that X̄ε ⊆ X̄(l, u) we
add the constraints l ≤ g(x) ≤ u to the sample approximation problem to obtain

X̄N
α (l, u) =

{
x ∈ X̄(l, u) :

1
N

N∑
i=1

I
(
g(x) ≥ ξi

)
≥ 1− α

}
.

We define D = max{uj − lj : j = 1, . . . ,m}. Then we have
Theorem 9. Suppose X̄ε ⊆ X̄(l, u) and F is Lipschitz continuous with constant

L. Let α ∈ [0, ε) and β ∈ (0, ε− α). Then,

Pr
{
X̄N

α (l, u) ⊆ X̄ε

}
≥ 1− dDL/βem exp

{
−2N(ε− α− β)2

}
.

Proof. Let K = dDL/βe and define Yj = {lj + (uj − lj)i/K : i = 1, . . . ,K} for
j = 1, . . . ,m and Y =

∏m
j=1 Yj , so that |Y | = Km and that for any y ∈ [l, u] there

exists y′ ∈ Y such that y′ ≥ y and ‖y − y′‖∞ ≤ β/L. Indeed, for a given y ∈ [l, u]
such a y′ can be obtained by letting

y′j = min{w ∈ Yj : w ≥ yj} j = 1, . . . ,m.

With this definition of y′, we have y′ ≥ y and

|y′j − yj | = y′j − yj ≤ (uj − lj)/K ≤ D/K ≤ β/L j = 1, . . . ,m.

Next, let Yε−β = {y ∈ Y : F (y) ≥ 1− ε + β} and

(10) Y N
α =

{
y ∈ Y :

1
N

N∑
i=1

I
(
y ≥ ξi

)
≥ 1− α

}
.

Since Y is finite and α < ε− β, we can apply Theorem 5 to obtain

Pr
{
Y N

α ⊆ Yε−β

}
≥ 1− |Y | exp

{
−2N(ε− α− β)2

}
.

Now, let x ∈ X̄N
α (l, u) and let y′ ∈ Y be such that y′ ≥ g(x) and ‖y′−g(x)‖∞ ≤ β/L.

By Lipschitz continuity of F , this implies

(11) F (y′)− F (g(x)) ≤ L‖y′ − g(x)‖∞ ≤ β.
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Because x satisfies
∑N

i=1 I
(
g(x) ≥ ξi

)
≥ N(1−α) and y′ ≥ g(x), we have

∑N
i=1 I

(
y′ ≥

ξi
)
≥ N(1− α) and hence y′ ∈ Y N

α . Thus, using (11), when Y N
α ⊆ Yε−β occurs,

F (g(x)) ≥ F (y′)− β ≥ (1− ε + β)− β = 1− ε.

Since x ∈ X̄N
α (l, u) was arbitrary, Y N

α ⊆ Yε−β implies X̄N
α (l, u) ⊆ X̄ε and the result

follows from (10).
To obtain confidence at least 1− δ that X̄N

α (l, u) ⊆ X̄ε it is sufficient to take

N ≥ 1
2(ε− α− β)2

log
(

1
δ

)
+

m

2(ε− α− β)2
log

⌈DL

β

⌉
.

Note that for fixed ε > 0 and α ∈ [0, ε), β is a free parameter which can be chosen in
(0, ε− α). If, for example, we take β = (ε− α)/2 we obtain

N ≥ 2
(ε− α)2

log
(

1
δ

)
+

2m

(ε− α)2
log

⌈ 2DL

ε− α

⌉
.

Once again, if α = 0, similar arguments can be used to conclude that if

N ≥ 2
ε

log
(

1
δ

)
+

2m

ε
log

⌈2DL

ε

⌉
then Pr

{
X̄N

0 (l, u) ⊆ X̄ε

}
≥ 1− δ.

2.2.3. Lipschitz continuous G. We now turn to the problem of using a sample
approximation problem to generate feasible solutions to Pε when X is not necessarily
finite, and G(x, ξ) does not necessarily have the form G(x, ξ) = g(x) − ξ. In this
section, we assume for simplicity of exposition that G takes values in R. This is
without loss of generality, since if Ḡ : Rn×Rd → Rm we can define G : Rn×Rd → R
by G(x, ξ) = max{Ḡj(x, ξ) : j = 1, . . . ,m} and the constraints G(x, ξ) ≤ 0 and
Ḡ(x, ξ) ≤ 0 are equivalent. In this section, we shall make the following Lipschitz
continuity assumption on G.

Assumption 1. There exists L > 0 such that

|G(x, ξ)−G(x′, ξ)| ≤ L‖x− x′‖∞ ∀x, x′ ∈ X and ∀ξ ∈ Ξ.

It is important that the Lipschitz constant L is independent of ξ ∈ Ξ, and this condi-
tion may make Assumption 1 appear rather stringent. There are, however, interesting
cases in which the assumption does hold. For example, if Ξ is finite (with possibly
huge cardinality) and G(x, ξ) is Lipschitz continuous with Lipschitz constant L(ξ) for
each ξ ∈ Ξ, then Assumption 1 holds with L = max{L(ξ) : ξ ∈ Ξ}. Alternatively, if Ξ
is compact and G(x, ξ) = max{Tj(ξ)x : j = 1, . . . ,m} and Tj : Ξ → Rn is continuous
in ξ for each j, then Assumption 1 holds with

L = sup
ξ∈Ξ

{
max{‖Tj(ξ)‖∞ : j = 1, . . . ,m}

}
.

To generate feasible solutions for this general case, we will also need to modify
the sample approximation problem somewhat. In addition to taking a risk level α less
than the nominal risk level ε, we will require that at least (1−α)N of the constraints
be satisfied strictly. That is, for a fixed γ > 0, we define the sample approximation
feasible region to be

XN
α,γ =

{
x ∈ X :

1
N

N∑
i=1

I
(
G(x, ξ) + γ ≤ 0

)
≥ 1− α

}
.
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Finally, we will assume that X is bounded, and let D = sup{‖x − x′‖∞ : x, x′ ∈ X}
be the diameter of X.

Theorem 10. Suppose X is bounded with diameter D and Assumption 1 holds.
Let α ∈ [0, ε), β ∈ (0, ε− α) and γ > 0. Then,

Pr
{
XN

α,γ ⊆ Xε

}
≥ 1− d1/βed2LD/γen exp

{
−2N(ε− α− β)2

}
.

Proof. For x ∈ X, let φ(x) = Pr
{
G(x, ξ) ≤ 0

}
. Let J = d1/βe and for j =

1, . . . , J − 1, define

Xj =
{

x ∈ X :
j − 1

J
≤ φ(x) <

j

J

}
and let XJ = {x ∈ X : (J − 1)/J ≤ φ(x) ≤ 1}. Next, we claim that for each j there
exists a finite set Zγ

j ⊆ Xj such that |Zγ
j | ≤ d2LD/γen and for all x ∈ Xj there exists

z ∈ Zγ
j such that ‖x− z‖∞ ≤ γ/L. Indeed, because Xj ⊆ X and X is bounded with

diameter D, there exists a finite set Y ⊆ Rn with |Y | ≤ d2LD/γen such that for all
x ∈ X there exists y ∈ Y such that ‖x − y‖∞ ≤ γ/2L. For any y ∈ Rn and η > 0,
define B(y, η) = {x ∈ RN : ‖y−x‖∞ ≤ η}. Now, let Y ′

j = {y ∈ Y : Xj∩B(y, γ/2L) 6=
∅}, and for y ∈ Y ′

j select an arbitrary xy ∈ Xj∩B(y, γ/2L). Then, let Zγ
j =

⋃
y∈Y ′

j
xy.

By definition, Zγ
j ⊆ Xj and |Zγ

j | ≤ d2LD/γen. In addition, for any x ∈ Xj , there
exists y such that x ∈ B(y, γ/2L) and because for this y, Xj ∩ B(y, γ/2L) 6= ∅ there
exists xy ∈ Zγ

j such that ‖xy − y‖∞ ≤ γ/2L. Hence,

‖xy − x‖∞ ≤ ‖xy − y‖∞ + ‖y − x‖∞ ≤ γ/L.

Now, define Zγ =
⋃J

j=1 Zγ
j and observe that |Zγ | ≤ Jd2LD/γen. Next, define

Zγ
ε−β =

{
x ∈ Zγ : Pr

{
G(x, ξ) ≤ 0

}
≥ 1− ε + β

}
and

Zγ,N
α =

{
x ∈ Zγ :

1
N

N∑
i=1

I
(
G(x, ξi) ≤ 0

)}
.

Since Zγ is finite and α < ε− β we can apply Theorem 5 to obtain

(12) Pr
{
Zγ,N

α ⊆ Zγ
ε−β

}
≥ 1− d1/βed2LD/γen exp

{
−2N(ε− α− β)2

}
.

Now consider an arbitrary x ∈ XN
α,γ . Let j ∈ {1, . . . , J} be such that x ∈ Xj . By

definition of Zγ
j there exists z ∈ Zγ

j such that ‖x − z‖∞ ≤ γ/L. By definition of
Xj and because Zγ

j ⊆ Xj , we have |φ(x) − φ(z)| ≤ β. In addition, Assumption 1
implies |G(x, ξi) − G(z, ξi)| ≤ γ. Hence, if G(x, ξi) + γ ≤ 0 then G(z, ξi) ≤ 0 and,
because x satisfies

∑N
i=1 I

(
G(x, ξi) + γ ≤ 0

)
≥ N(1 − α), it follows that z satisfies∑N

i=1 I
(
G(z, ξi) ≤ 0

)
≥ N(1 − α). Thus z ∈ Zγ,N

α and so if Zγ,N
α ⊆ Zγ

ε−β then
φ(z) ≥ 1− ε + β. Thus, φ(x) ≥ φ(z)− β ≥ 1− ε when Zγ,N

α ⊆ Zγ
ε−β . Since x ∈ XN

α,γ

was arbitrary, Zγ,N
α ⊆ Zγ

ε−β implies XN
α,γ ⊆ Xε and the result follows from (12).

Once again, for fixed ε and α < ε, β is a free parameter to be chosen in (0, ε−α).
If we choose, for example β = (ε−α)/2, then we can assure XN

α,γ ⊆ Xε with confidence
at least 1− δ by taking

N ≥ 2
(ε− α)2

[
log

(
1
δ

)
+ n log

⌈2LD

γ

⌉
+ log

⌈ 2
ε− α

⌉]
.
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Additionally, if α = 0, similar arguments show that XN
0,γ ⊆ Xε occurs with probability

at least 1− δ if

N ≥ 2
ε

[
log

(
1
δ

)
+ n log

⌈2LD

γ

⌉
+ log

⌈2
ε

⌉]
.

Regardless of whether α = 0 or α > 0 the term 1/γ is taken under log, and hence γ
can be made very small without significantly increasing the required sample size, sug-
gesting that modifying the sample approximation problem to require at least (1−α)N
of the sampled constraints to be satisfied with slack at least γ need not significantly
alter the feasible region.

2.2.4. A Posteriori Feasibility Checking. The results of §2.2.1 - 2.2.3 demon-
strate that with appropriately constructed sample approximation problems, the prob-
ability that the resulting feasible region will be a subset of the true feasible region
Xε approaches one exponentially fast. This gives strong theoretical support for using
these sample approximations to yield solutions feasible to Xε. These results yield a
priori estimates on how large the sample size N should be to have high confidence the
sample approximation feasible region will be a subset of Xε. However, these a priori
estimates are likely to yield required sample sizes which are very large, and hence the
sample approximation problems will still be impractical to solve. This is particularly
true if α > 0 and ε−α is small. However, typically in sampling approximation results
such as these, the a priori estimates of the required sample size are very conservative,
and in fact much smaller sample sizes are sufficient. See [18] for a computational
demonstration of this phenomenon for the case of Sample Average Approximation
applied to two-stage stochastic linear programs. Thus, a natural alternative to using
the sample size suggested by the a priori estimates is to solve a sample approxima-
tion problem with a smaller sample to yield a candidate solution x̂ ∈ X, and then
conduct an a posteriori check to see whether Pr

{
G(x̂, ξ) ≤ 0

}
≥ 1 − ε. A simple

method for conducting an a posteriori analysis of the risk of a candidate solution is
to take a single very large Monte Carlo sample ξ1, . . . , ξN ′

and count how many times
G(x̂, ξi) ≤ 0 holds. Bounds on the true risk Pr

{
G(x̂, ξ) ≤ 0

}
which hold with high

confidence can then be constructed, and if N ′ is very large, these bounds should be
tight. This approach will not work well if the allowed risk ε is extremely small, but on
the other hand, we do not expect the sample approximation approach to be practical
in this case anyway. Of course, if good estimates of Pr

{
G(x̂, ξ) ≤ 0

}
can be obtained

efficiently by some other method, then this other method should be used for a poste-
riori feasibility checking. For example, if G(x, ξ) = ξ − g(x) and the components of ξ
are independent, then Pr

{
g(x) ≥ ξ

}
can be calculated as

∏
i Pr

{
gi(x) ≥ ξi

}
.

3. Numerical Experiments. We conducted experiments to test the effective-
ness of the sample approximation approach for yielding good feasible solutions and
lower bounds. In particular, our aim is to determine whether using α > 0 in the sam-
ple approximation can yield better solutions than when using α = 0 as in the scenario
approximation approach of [7, 22]. In addition, we test whether reasonable lower
bounds which are valid with high probability can be obtained. We first conducted
tests on a probabilistic version of the classical set covering problem, which has been
studied recently in [5, 26, 27]. This problem has both finite feasible region and finite
distribution (although both are exponentially large) so that for generating feasible
solutions, the stronger Theorems 5 and 8 apply. These results are given in §3.1. We
also conducted tests on a probabilistic version of the transportation problem. For this
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problem, the feasible region is continuous and we also use a joint normal distribution
for the right-hand side vector, so that Theorem 9 applies. These results are presented
in §3.2.

Note that although Theorem 3 provides support for using the sample approxima-
tion scheme to generate lower bounds, we will use Theorem 4 to actually obtain lower
bounds which are valid with high confidence, because it can be used regardless of how
large the sample size N is (with the possible drawback that using smaller N will yield
weaker lower bounds). Similarly, Theorems 5, 8, and 9 support the use of sample
approximation to yield feasible solutions, but we do not use these Theorems to guide
our choice of α and N . Indeed, the bounds implied by these theorems would suggest
using N which is far too large to be able to solve the approximation problem. Instead,
we experiment with different values of α and N , and perform an a posteriori test on
each solution generated to determine whether it is feasible (with high confidence).

3.1. Probabilistic Set Cover Problem. The Probabilistic Set Cover Problem
is given by

(PSC) min
{
cx : Pr

{
Ax ≥ ξ

}
≥ 1− ε, x ∈ {0, 1}n

}
where c ∈ Rn is the cost vector, A is an m × n zero-one matrix and ξ is a random
vector taking values in {0, 1}m. We conducted tests on a single instance of PSC, with
two values of ε, 0.05 and 0.1.

3.1.1. Test Instance. Following [5], we based our tests on a deterministic set
covering instance, scp41, of the OR library [3], which has m = 200 rows and n = 1000
columns. Also following [5], the random vector ξ is assumed to consist of 20 indepen-
dent sub-vectors, with each sub-vector having size k = 10 following the circular distri-
bution. The circular distribution is defined by parameters λj ∈ [0, 1] for j = 1, . . . , k.
First, Bernoulli random variables Yj for j = 1, . . . , k are generated independently with
Pr

{
Yj = 1

}
= λi. Then, the random sub-vector is defined by ξj = max{Yj , Yj+1}

for j < k and by ξk = max{Y1, Yk}. Because of the simple form of this distribu-
tion, given a solution x, it is possible to calculate exactly Pr

{
Ax ≥ ξ

}
. Thus, when

a solution is obtained from a sample approximation problem, we test a posteriori
whether it is feasible at a given risk level by exactly calculating Pr

{
Ax ≥ ξ

}
. To

illustrate this calculation, we show how to calculate the probability for a single sub-
vector, that is Pr

{
ξj ≤ yj , j = 1, . . . , k

}
. Then, with y = Ax, the overall probability

Pr
{
Ax ≥ ξ

}
is calculated as the product of the probabilities for each sub-vector. Let

J = {1 ≤ j ≤ k : yj = 0}. Then,

Pr
{
ξj ≤ yj , j = 1, . . . , k

}
= Pr

{
ξj = 0, j ∈ J

}
= Pr

{
Yj = 0, j ∈ J+

}
=

∏
j∈J+

(1− λj)

where J+ = ∪j∈J{j, (j + 1) mod k}. Although in this test, calculation of the dis-
tribution function is easy, we stress that this is not a necessary condition to use the
sample approximation, it is only necessary that sampling from the distribution can
be done efficiently.

3.1.2. Solving the Sample Approximation. To solve the sample approxi-
mation problem of the PSC, we used a MIP formulation which is equivalent to an
extended formulation studied in [20] (see also [19]). The formulation is not exactly
the same, since because the random right-hand side can take on only two values, it
can be simplified somewhat. Let the scenarios obtained in the sample of size N be
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denoted by ξi for i = 1, . . . , N , where each ξi ∈ {0, 1}m. Then, the formulation we
use is

min cx

s.t. Ax ≥ y

yj + zi ≥ 1 ∀i, j s.t. ξi
j = 1(13)

N∑
i=1

zi ≤ p(14)

x ∈ {0, 1}n, z ∈ {0, 1}N
, y ∈ {0, 1}m

where p = bαNc. We could relax the intregrality restriction on the y variables, but
we found that leaving this restriction and also placing higher branching priority on
these variables significantly improved performance when solving with CPLEX 9.0.
The intuition behind this is that if we fix yj = 1, then we are enforcing the constraint
Ajx ≥ 1, and on the other hand, if we fix yj = 0, then any scenario i for which ξi

j = 1
will be fixed to 1, and constraint (14) will quickly become binding. We also found
that some simple preprocessing of the formulation significantly helped solution times.
If, for a row j,

∑
i ξi

j > p, then we cannot have yj = 0, and so we fixed yj = 1, and
the corresponding inequalities (13) for j were not included. After this preprocessing,
for each j there will be at most p inequalities in (13), so that these inequalities add
at most mp rows and O(mp) nonzeros to the formulation. Using this formulation, we
found the sample approximation problems could be solved quickly, in all cases in less
than ten seconds, and usually much less. However, this may be due to the particular
distribution used (and the simplicity of the underlying set cover instance), and thus
this should not be taken as a study of the effectiveness of this formulation in general.
Rather, we are interested here only in the properties of the solutions generated by the
sample approximation problems.

3.1.3. Feasible Solutions. We first tested the effectiveness of the sample ap-
proximation approach for generating feasible solutions. To do so, we varied the risk
level of the approximation problem, α, and sample size, N . For each combination of
α and N we generated and solved 10 sample approximation problems. Table 1 gives
statistics of the solutions generated for the PSC instance with ε = 0.05, and Table
2 gives the same for the PSC instance with ε = 0.1. For each combination of α and

Table 1
Solution results for PSC sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.00 100 0.107 0.048 0.185 0.042 1 425.0 425 425 ***

110 0.071 0.013 0.100 0.029 3 425.7 424 429 2.9
120 0.069 0.013 0.152 0.049 4 424.8 424 427 1.5
130 0.062 0.020 0.124 0.036 5 424.8 420 429 4.3
140 0.042 0.018 0.080 0.017 8 425.6 421 429 2.8
150 0.041 0.005 0.080 0.026 6 427.3 421 429 3.1

0.05 1000 0.056 0.041 0.072 0.009 2 414.0 414 414 0.0
3000 0.044 0.041 0.055 0.005 8 414.0 414 414 0.0
5000 0.044 0.041 0.060 0.006 8 414.0 414 414 0.0
7500 0.041 0.041 0.041 0.000 10 414.0 414 414 0.0

10000 0.044 0.041 0.054 0.005 8 414.0 414 414 0.0

N , we report statistics on the risk of the generated solutions, where for a solution x,



SAMPLE APPROXIMATION OF PROBABILISTIC CONSTRAINTS 19

the risk is Pr
{
Ax � ξ

}
, as well as on the costs of the feasible solutions generated,

i.e. those solutions which have risk less than 0.05 and 0.1 respectively. For the risk
of the solutions, we report the average, minimum, maximum and sample standard
deviation over the 10 solutions. For the solutions costs, we report first how many
solutions were feasible, then report the average, minimum, maximum and sample
standard deviation of the cost taken over these solutions.

Table 2
Solution results for PSC sample problems with ε = 0.1.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.0 80 0.203 0.095 0.311 0.076 1 420.0 420 420 ***
90 0.169 0.084 0.239 0.051 1 428.0 428 428 ***

100 0.107 0.048 0.185 0.042 4 426.0 423 428 500.7
110 0.071 0.013 0.100 0.029 9 425.4 421 429 499.8
120 0.069 0.013 0.152 0.049 7 424.6 419 428 534.3
130 0.062 0.020 0.124 0.036 7 425.3 420 429 488.8

0.1 1000 0.111 0.095 0.141 0.015 4 401.3 400 403 1.5
3000 0.101 0.092 0.115 0.006 6 401.0 400 402 1.1
5000 0.101 0.092 0.108 0.005 5 401.2 400 402 1.1
7500 0.099 0.092 0.105 0.004 7 401.1 400 402 1.1

10000 0.097 0.088 0.103 0.004 8 401.8 400 404 1.3

We first discuss results for the case of nominal risk level ε = 0.05. When using
α = 0, the best results were obtained with N in the range of 100-150, and these are the
results we report. With α = 0, as N increases more constraints are being enforced,
which leads to smaller feasible region of the approximation and higher likelihood
that the optimal solution of the approximation is feasible at the nominal risk level.
However, the smaller feasible region also causes the cost to increase, so that increasing
N more would yield overly conservative solutions. We also conducted tests with
α = 0.05, and for this value of α we used significantly larger sample sizes. The best
feasible solution found using α = 0 had cost 420, and the average cost of the feasible
solutions found was significantly greater than this. When α = 0.05, every sample size
N yielded at least one feasible solution in the ten runs, and every feasible solution
found had cost 414. Thus, using α = 0.05 consistently yields solutions which are
closer to the efficient frontier between the objectives of risk and cost.

For ε = 0.1, we observed similar results. In this case, when using α = 0, the best
results were obtained with N in the range of 80-130. The best solution found using
α = 0 had cost 419, whereas the best solution found using α = 0.1 was 400, which
was obtained by one of the ten runs for every sample size N . In addition, observe
from Table 1 that using α = 0.05 yields solutions with risk not exceeding 0.05 and
cost of 414, which is also less than the cost of the best solution found that had risk
not exceeding 0.1 when using α = 0. Thus, using α > 0 we are able to get solutions
with lower risk and lower cost as compared to those obtained when using α = 0.

In terms of the variability of the risks and costs of the solutions generated, using
α > 0 and a much larger sample size yielded solutions with much lower variability
than when using α = 0 and small sample size. This is not surprising since using a
larger sample size naturally should reduce variability. On the other hand, constraining
the sample approximation to have α = 0 prohibits the use of a larger sample size, as
the solutions produced then become overly conservative.

3.1.4. Lower Bounds. We next discuss the results for obtaining lower bounds
for the PSC. We used the procedure of Theorem 4 with α = ε and M = 10. We use
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the same 10 sample approximation problems as when generating feasible solutions.
As argued after Theorem 4, with α = ε, we have ρ(α, ε,N) = ρ(ε, ε, N) & 1/2. Then,
if we take L = 1 the test of Theorem 4 yields a lower bound with confidence 0.999.
Taking L = 1 corresponds to taking the minimum optimal value over all the M = 10
runs (not just over the ones which yielded feasible solutions). More generally, we can
take L ∈ {1, . . . , 10} yielding a lower bound with confidence at least

1−
L−1∑
i=0

(
10
i

)
ρ(ε, ε, N)i

(
1− ρ(ε, ε, N)

)10−i
& 1−

L−1∑
i=0

(
10
i

)
(1/2)10

to obtain possibly “tighter” lower bounds of which we are less confident.

Table 3
Lower bounds for PSC sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
1000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
3000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
5000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
7500 414 414 414 414 0.0% 0.0% 0.0% 0.0%

10000 413 414 414 414 0.2% 0.0% 0.0% 0.0%

The results obtained using varying values of N and ε = α = 0.05 are given in
Table 3. The gaps reported are the percent by which the lower bound is below the
best feasible solution (414, obtained with α = 0.05 and any if the tested sample
sizes N). Thus, for example, by solving 10 problems with sample size N = 1000 we
obtained a feasible solution of cost 414, and lower bound of 412, which is valid with
probability at least 0.999. In addition, we obtain a lower bound of 414 which is valid
with probability at least 0.989. Thus, we have confidence at least 0.989 that 414 is
the optimal value. Similar results were obtained with larger sample sizes.

Table 4 yields the lower bound results obtained with ε = α = 0.1 and varying
sample size N . Solving 10 sample problems with N = 1000 we obtained a feasible
solution of cost 400, and can say with confidence 0.999 that the optimal solution is at
most 0.8% less costly than this solution. Using N = 5000 (or greater), we obtain a
feasible solution of the same cost, but a lower bound which states that with confidence
at least 0.999 this feasible solution is optimal.

Table 4
Lower bounds for PSC sample problems with α = ε = 0.1.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828
1000 397 397 398 398 0.8% 0.8% 0.5% 0.5%
3000 399 400 400 400 0.3% 0.0% 0.0% 0.0%
5000 400 400 400 400 0.0% 0.0% 0.0% 0.0%
7500 400 400 400 400 0.0% 0.0% 0.0% 0.0%

10000 400 400 400 400 0.0% 0.0% 0.0% 0.0%

3.2. Probabilistic Transportation Problem. We next tested the sampling
approach on a probabilistic version of the classical transportation problem, which we
call the Probabilistic Transportation Problem (PTP). In this problem, we have a set
of suppliers I and a set of customers D with |D| = m. The suppliers have limited
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capacity Mi for i ∈ I. There is a transportation cost cij for shipping a unit of product
from supplier i ∈ I to customer j ∈ D. The customer demands are random and are
represented by a random vector d̃ taking values in Rm. We assume we must choose
the shipment quantities before the customer demands are known. We enforce the
probabilistic constraint

(15) Pr
{∑

i∈I

xij ≥ d̃j , j = 1, . . . ,m
}
≥ 1− ε

where xij ≥ 0 is the amount shipped from supplier i ∈ I to customer j ∈ D. The
objective is to minimize distribution costs subject to (15), and the supply capacity
constraints ∑

j∈D

xij ≤ Mi, ∀i ∈ I.

3.2.1. Test Instances. We conducted our tests on an instance with 40 sup-
pliers and 50 customers. The supply capacities and cost coefficients were randomly
generated using normal and uniform distributions respectively. The demand is as-
sumed to have a joint normal distribution. The mean vector and covariance matrix
were randomly generated. We considered two cases for the covariance matrix: a low
variance and a high variance case. In the low variance case, the standard deviation of
the one dimensional marginal random demands is 10% of the mean on average. In the
high variance case, the covariance matrix of the low variance case is multiplied by 25,
yielding standard deviations of the one dimensional marginal random demands being
50% of the mean on average. In both cases, we consider a single risk level ε = 0.05.

We remark that for this particular choice of distribution, the feasible region de-
fined by the probabilistic constraint is convex [24]. However, the dimension of the
random vector d̃ is m = 50, and so evaluating Pr

{
y ≥ d̃

}
for a single vector y ∈ Rm

would present a computational challenge, whereas in our approach we merely need to
generate random samples from the joint normal distribution, which is relatively easy.
On the other hand, we have not conducted experiments using the convex program-
ming approach, so we cannot comment on whether our approach works better than
this. This would be an interesting future experiment. Our intention here is merely to
test our approach on a problem with continuous feasible region and distribution.

Once a sample approximation is solved yielding solution x̂, we use a single very
large sample (N ′ = 250, 000), to estimate Pr

{
ŷ ≥ d̃

}
where ŷ ∈ Rm is the vector

given by ŷj =
∑

i∈I x̂ij for j ∈ D. Letting d1, . . . , dN ′
be the realizations of this

large sample, we calculate
∑N ′

i=1 I
(
ŷ ≥ di

)
and use the normal approximation to

the binomial distribution to construct an upper bound α̂ on the true solution risk
Pr

{
ŷ ≥ d̃

}
, which is valid with confidence 0.999. Henceforth for this experiment, if

we say a solution is feasible at risk level ε, we mean α̂ ≤ ε, and so it is feasible at this
risk level with confidence 0.999. We used such a large sample to get a good estimate of
the true risk of the solutions generated, but we note that because this sample was so
large, generating this sample and calculating

∑N ′

i=1 I
(
ŷ ≥ di

)
often took longer than

solving the sample approximation itself.

3.2.2. Solving the Sample Approximation. We solved the sample approxi-
mation problem using a mixed-integer programming formulation, augmented with a
class of strong valid inequalities. We refer the reader to [20, 19] for details of this
formulation and the valid inequalities, as well as detailed computational results for
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solving the sample approximation problems. However, we mention that in contrast to
the probabilistic set cover problem, solving the sample approximation problem with
the largest sample size we consider (N = 10000) and largest α (0.05) takes a non-
trivial amount of time, in some cases as long as 30 minutes. On the other hand, for
N = 5000, the worst case was again α = 0.05 and usually took less than 4 minutes to
solve.

Table 5
Solution results for low variance PTP sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.000 900 0.048 0.036 0.066 0.011 7 2.0266 2.0199 2.0320 0.0045

950 0.047 0.039 0.055 0.005 6 2.0244 2.0185 2.0291 0.0041
1000 0.045 0.040 0.051 0.004 8 2.0253 2.0185 2.0300 0.0039
1500 0.033 0.025 0.043 0.005 10 2.0336 2.0245 2.0406 0.0053

0.030 5000 0.049 0.045 0.050 0.002 6 2.0098 2.0075 2.0114 0.0013
7500 0.045 0.041 0.047 0.002 10 2.0112 2.0094 2.0136 0.0015

10000 0.042 0.041 0.044 0.001 10 2.0129 2.0112 2.0145 0.0010
0.033 5000 0.052 0.049 0.054 0.002 2 2.0080 2.0073 2.0088 0.0011

7500 0.048 0.045 0.051 0.002 7 2.0092 2.0075 2.0107 0.0012
10000 0.045 0.044 0.047 0.001 10 2.0103 2.0089 2.0118 0.0009

0.036 5000 0.055 0.053 0.057 0.002 0 *** *** *** ***
7500 0.052 0.049 0.054 0.002 2 2.0079 2.0077 2.0080 0.0002

10000 0.049 0.047 0.051 0.001 8 2.0080 2.0066 2.0093 0.0008

3.2.3. Low Variance Instance. We begin by presenting results for the instance
in which the distribution of demand has relatively low variance. For generating feasible
solutions, we tested α = 0 with various sample size N and report the results for the
sample sizes which yielded the best results. Once again, this means we use a relatively
small sample size for the case α = 0, as compared to the cases with α > 0. We tested
several values of α > 0 and varying sample size. In contrast to the PSC case, we
found that taking α = ε or even α close to ε did not yield feasible solutions, even with
a large sample size. Thus, we report results for several different values of α in the
range 0.03 to 0.036. The reason we report results for this many different values of α
is to illustrate that within this range, the results are not extremely sensitive to the
choice of α (results for more values of α can be found in [19]).

Table 6
Lower bounds for low variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 1.9755 1.9757 1.9775 1.9782 1.55% 1.54% 1.45% 1.42%
3000 1.9879 1.9892 1.9892 1.9910 0.93% 0.87% 0.87% 0.78%
5000 1.9940 1.9943 1.9948 1.9951 0.63% 0.62% 0.59% 0.57%
7500 1.9954 1.9956 1.9959 1.9963 0.56% 0.55% 0.54% 0.52%

10000 1.9974 1.9977 1.9980 1.9981 0.46% 0.45% 0.43% 0.42%

Table 5 gives the characteristics of the solutions generated for the different values
of α and N . We observe that as in the case of the PSC, the average cost of the feasible
solutions obtained using α > 0 is always less than the minimum cost of the feasible
solutions obtained with α = 0. However, for this instance, the minimum cost solution
obtained using α = 0 is not so significantly worse than the minimum cost solutions
using different values of α > 0, being between 0.40% and 0.58% more costly. As in
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the case of the PSC, using α > 0 and large N significantly reduced the variability of
the risk and cost of the solutions generated.

We next investigated the quality of the lower bounds that can be obtained for
PTP by solving sample approximation problems. As in the case of the PSC, we
obtained lower bounds by generating and solving 10 sample approximation problems
with α = ε = 0.05. By taking the lowest value of all the optimal values we obtain
a lower bound valid with confidence 0.999, taking the second smallest yields a lower
bound which is valid with confidence 0.989, etc. The results for different values of N
are given in Table 6. For reference, the percentage gap between these lower bounds
and the best feasible solution found (with cost 2.0066) is also given. Using N ≥ 3000
we obtain lower bounds that are valid with confidence 0.999 and are within one percent
of the best feasible solution, indicating that for this low variance instance, the lower
bounding scheme yields good evidence that the solutions we have found are good
quality.

Table 7
Solution results for high variance PTP sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.000 900 0.050 0.035 0.066 0.010 4 3.5068 3.4672 3.5488 0.0334

950 0.050 0.041 0.058 0.006 6 3.4688 3.4403 3.4917 0.0191
1000 0.045 0.041 0.052 0.004 9 3.4895 3.4569 3.5167 0.0234
1500 0.030 0.022 0.035 0.005 10 3.5494 3.5205 3.6341 0.0368

0.030 5000 0.050 0.045 0.053 0.002 4 3.4014 3.3897 3.4144 0.0101
7500 0.046 0.043 0.050 0.002 9 3.4060 3.3920 3.4235 0.0098

10000 0.043 0.041 0.046 0.001 10 3.4139 3.4001 3.4181 0.0055
0.033 5000 0.053 0.046 0.057 0.003 1 3.4107 3.4107 3.4107 ***

7500 0.049 0.046 0.054 0.002 7 3.3928 3.3865 3.4020 0.0062
10000 0.046 0.042 0.049 0.002 10 3.3982 3.3885 3.4139 0.0086

0.036 5000 0.057 0.049 0.060 0.003 1 3.3979 3.3979 3.3979 ***
7500 0.053 0.050 0.057 0.002 0 *** *** *** ***

10000 0.050 0.046 0.053 0.002 4 3.3927 3.3859 3.3986 0.0054

3.2.4. High Variance Instance. Table 7 gives the characteristics of the solu-
tions generated for the high variance instance. In this case, the maximum cost of
a feasible solution generated using any combination of α > 0 and N was less than
the minimum cost of any feasible solution generated using α = 0. The minimum
cost feasible solution generated with α = 0 was between 0.87% and 1.6% more costly
than the best feasible solution generated for the different combinations of α > 0 and
N . Thus, it appears that for the high variance instance, using α > 0 in a sample
approximation is more important for generating good feasible solutions than for the
low variance instance.

Table 8 gives the lower bounds for different confidence levels and sample sizes, as
well as the gaps between these lower bounds and the best feasible solution found. In
this case, solving 10 instances with sample size N = 1000 yields a lower bound that is
not very tight, 5.11% from the best solution cost at confidence level 0.999. Increasing
the sample size improves the lower bound, but even with N = 10000, the gap between
the lower bound at confidence 0.999 and the best solution found is 1.83%. Thus, it
appears that for the high variance instance, the sample approximation scheme exhibits
considerably slower convergence, in terms of the lower bounds, the feasible solutions
generated, or both.
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Table 8
Lower bounds for high variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 3.2089 3.2158 3.2178 3.2264 5.11% 4.91% 4.85% 4.59%
3000 3.2761 3.2775 3.2909 3.2912 3.12% 3.08% 2.69% 2.68%
5000 3.3060 3.3075 3.3077 3.3094 2.24% 2.19% 2.19% 2.14%
7500 3.3083 3.3159 3.3165 3.3169 2.17% 1.95% 1.93% 1.92%

10000 3.3200 3.3242 3.3284 3.3299 1.83% 1.70% 1.58% 1.53%

4. Concluding Remarks. We have studied a sample approximation scheme
for probabilistically constrained optimization problems and demonstrated how this
scheme can be used to generate optimality bounds and feasible solutions for very gen-
eral optimization problems with probabilistic constraints. We have also conducted a
preliminary computational study of this approach. This study demonstrates that us-
ing sample approximation problems that allow a choice of which sampled constraints
to satisfy can yield good quality feasible solutions. In addition, the sample approxima-
tion scheme can be used to obtain lower bounds which are valid with high confidence.
We found that good lower bounds could be found in the case of finite (but possibly ex-
ponential) feasible region and distribution, and also in the case of continuous feasible
region and distribution, provided the distribution has reasonably low variance. With
continuous feasible region and distribution, if the distribution has high variance the
lower bounds were relatively weak. Future work in this area will include conducting
more extensive computational tests, and also extending the theory to allow generation
of samples which are not necessarily independent and identically distributed. For ex-
ample, the use of variance reduction techniques such as Latin hypercube sampling or
Quasi-Monte Carlo sampling may yield significantly faster convergence. In addition,
to apply the results of this paper to more general probabilistic programs, such as
mixed-integer programming with a random constraint matrix, it will be necessary to
study how to solve the non-convex sample approximation problem in these cases.
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[5] P. Beraldi and A. Ruszczyński, The probabilistic set-covering problem, Oper. Res., 50 (2002),
pp. 956–967.

[6] D. Bertsimas and M. Sim, The price of robustness, Oper. Res., 52 (2004), pp. 35–53.
[7] G.C. Calafiore and M.C. Campi, Uncertain convex programs: randomized solutions and

confidence levels, Math. Program., 102 (2005), pp. 25–46.
[8] , The scenario approach to robust control design, IEEE Trans. Automat. Control, 51

(2006), pp. 742–753.
[9] M.C. Campi, G. Calafiore, and S. Garatti, New results on the identification of interval

predictor models, in Proc. 16th IFAC World Congress, Prague, 2005.



SAMPLE APPROXIMATION OF PROBABILISTIC CONSTRAINTS 25

[10] L. Dai, H. Chen, and J.R. Birge, Convergence properties of two-stage stochastic program-
ming, J. Optim. Theory Appl., 106 (2000), pp. 489–509.

[11] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 1035–1064.

[12] W.-R. Heilmann, A note on chance-constrained programming, Journal of the Operational
Research Society, 34 (1983), pp. 533–537.
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