
CORC Tech Report TR-2002-07

Robust dynamic programming∗

G. Iyengar †

Submitted Dec. 3rd, 2002. Revised May 4, 2004.

Abstract

In this paper we propose a robust formulation for discrete time dynamic programming (DP). The

objective of the robust formulation is to systematically mitigate the sensitivity of the DP optimal policy

to ambiguity in the underlying transition probabilities. The ambiguity is modeled by associating a

set of conditional measures with each state-action pair. Consequently, in the robust formulation each

policy has a set of measures associated with it. We prove that when this set of measures has a certain

“Rectangularity” property all the main results for finite and infinite horizon DP extend to natural robust

counterparts. We identify families of sets of conditional measures for which the computational complexity

of solving the robust DP is only modestly larger than solving the DP, typically logarithmic in the size

of the state space. These families of sets are constructed from the confidence regions associated with

density estimation, and therefore, can be chosen to guarantee any desired level of confidence in the robust

optimal policy. Moreover, the sets can be easily parameterized from historical data. We contrast the

performance of robust and non-robust DP on small numerical examples.

1 Introduction

This paper is concerned with sequential decision making in uncertain environments. Decisions are made

in stages and each decision, in addition to providing an immediate reward, changes the context of future

decisions; thereby affecting the future rewards. Due to the uncertain nature of the environment, there is

limited information about both the immediate reward from each decision and the resulting future state. In

order to achieve a good performance over all the stages the decision maker has to trade-off the immediate

payoff with future payoffs. Dynamic programming (DP) is the mathematical framework that allows the

decision maker to efficiently compute a good overall strategy by succinctly encoding the evolving information

state. In the DP formalism the uncertainty in the environment is modeled by a Markov process whose

transition probability depends both on the information state and the action taken by the decision maker. It

is assumed that the transition probability corresponding to each state-action pair is known to the decision

maker, and the goal is to choose a policy, i.e. a rule that maps states to actions, that maximizes some

performance measure. Puterman (1994) provides a excellent introduction to the DP formalism and its

various applications. In this paper, we assume that the reader has some prior knowledge of DP.
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The DP formalism encodes information in the form of a “reward-to-go” function (see Puterman, 1994, for

details) and chooses an action that maximizes the sum of the immediate reward and the expected “reward-

to-go”. Thus, to compute the optimal action in any given state the “reward-to-go” function for all the future

states must be known. In many applications of DP, the number of states and actions available in each state

are large; consequently, the computational effort required to compute the optimal policy for a DP can be

overwhelming – Bellman’s “curse of dimensionality”. For this reason, considerable recent research effort has

focused on developing algorithms that compute an approximately optimal policy efficiently (Bertsekas and

Tsitsiklis, 1996; de Farias and Van Roy, 2002).

Fortunately, for many applications the DP optimal policy can be computed with a modest computational

effort. In this paper we restrict attention to this class of DPs. Typically, the transition probability of the

underlying Markov process is estimated from historical data and is, therefore, subject to statistical errors. In

current practice, these errors are ignored and the optimal policy is computed assuming that the estimate is,

indeed, the true transition probability. The DP optimal policy is quite sensitive to perturbations in the tran-

sition probability and ignoring the estimation errors can lead to serious degradation in performance (Nilim

and El Ghaoui, 2002; Tsitsiklis et al., 2002). Degradation in performance due to estimation errors in param-

eters has also been observed in other contexts (Ben-Tal and Nemirovski, 1997; Goldfarb and Iyengar, 2003).

Therefore, there is a need to develop DP models that explicitly account for the effect of errors.

In order to mitigate the effect of estimation errors we assume that the transition probability corresponding

to a state-action pair is not exactly known. The ambiguity in the transition probability is modeled by

associating a set P(s, a) of conditional measures with each state-action pair (s, a). (We adopt the convention

of the decision analysis literature wherein uncertainty refers to random quantities with known probability

measures and ambiguity refers to unknown probability measures (see, e.g. Epstein and Schneider, 2001)).

Consequently, in our formulation each policy has a set of measures associated with it. The value of a

policy is the minimum expected reward over the set of associated measures, and the goal of the decision

maker is to choose a policy with maximum value, i.e. we adopt a maximin approach. We will refer to this

formulation as robust DP. We prove that, when the set of measures associated with a policy satisfy a certain

“Rectangularity” property (Epstein and Schneider, 2001), the following results extend to natural robust

counterparts: the Bellman recursion, the optimality of deterministic policies, the contraction property of

the value iteration operator, and the policy iteration algorithm. “Rectangularity” is a sort of independence

assumption and is a minimal requirement for these results to hold. However, this assumption is not always

appropriate, and is particularly troublesome in the infinite horizon setting (see Appendix A for details).

We show that if the decision maker is restricted to stationary policies the effects of the “Rectangularity”

assumption are not serious.

There is some previous work on modeling ambiguity in the transition probability and mitigating its effect

on the optimal policy. Satia and Lave (1973); White and Eldieb (1994); Bagnell et al. (2001) investigate

ambiguity in the context of infinite horizon DP with finite state and action spaces. They model ambiguity

by constraining the transition probability matrix to lie in a pre-specified polytope. They do not discuss how

one constructs this polytope. Moreover, the complexity of the resulting robust DP is at least an order of

magnitude higher than DP. Shapiro and Kleywegt (2002) investigate ambiguity in the context of stochastic

programming and propose a sampling based method for solving the maximin problem. However, they do not

discuss how to choose and calibrate the set of ambiguous priors. None of this work discusses the dynamic

structure of the ambiguity; in particular, there is no discussion of the central role of “Rectangularity”. Our

theoretical contributions are based on recent work on uncertain priors in the economics literature (Gilboa

and Schmeidler, 1989; Epstein and Schneider, 2001, 2002; Hansen and Sargent, 2001). The focus of this

2



body of work is on the axiomatic justification for uncertain priors in the context of multi-period utility

maximization. It does not provide any means of selecting the set of uncertain priors nor does it focus on

efficiently solving the resulting robust DP.

In this paper we identify families of sets of conditional measures that have the following desirable proper-

ties. These families of sets provide a means for setting any desired level of confidence in the robust optimal

policy. For a given confidence level, the corresponding set from each family is easily parameterizable from

data. The complexity of solving the robust DP corresponding to these families of sets is only modestly

larger that the non-robust counterpart. These families of sets are constructed from the confidence regions

associated with density estimation.

While this paper was being prepared for publication we became aware of a technical report by Nilim

and El Ghaoui (2002) where they formulate finite horizon robust DP in the context of an aircraft routing

problem. A “robust counterpart” for the Bellman equation appears in their paper but they do not justify

that this “robust counterpart”, indeed, characterizes the robust value function. Like all the previous work

on robust DP, Nilim and El Ghaoui also do not recognize the importance of Rectangularity. However, they

do introduce sets based on confidence regions and show that the finite horizon robust DP corresponding to

these sets can be solved efficiently.

The paper has two distinct and fairly independent parts. The first part comprising of Section 2 and

Section 3 presents the robust DP theory. In Section 2 we formulate finite horizon robust DP and the

“Rectangularity” property that leads to the robust counterpart of the Bellman recursion; and Section 3

formulates the robust extension of discounted infinite horizon DP. The focus of the second part comprising

of Section 4 and Section 5 is on computation. In Section 4 we describe three families of sets of conditional

measures that are based on the confidence regions, and show that the computational effort required to solve

the robust DP corresponding to these sets is only modestly higher than that required to solve the non-

robust counterpart. The results in this section, although independently obtained, are not new and were first

obtained by Nilim and El Ghaoui (2002). In Section 5 we provide basic examples and computational results.

Section 6 includes some concluding remarks.

2 Finite horizon robust dynamic programming

Decisions are made at discrete points in time t ∈ T = {0, 1, . . .} referred to as decision epochs. In this

section we assume that T finite, i.e. T = {0, . . . , N − 1} for some N ≥ 1. At each epoch t ∈ T the system

occupies a state s ∈ St, where St is assumed to be discrete (finite or countably infinite). In a state s ∈ St the
decision maker is allowed to choose an action a ∈ At(s), where At(s) is assumed to be discrete. Although

many results in this paper extend to non-discrete state and action sets, we avoid this generality because the

associated measurability issues would detract from the ideas that we want to present in this work.

For any discrete set B, we will denote the set of probability measures on B by M(B). Decision makers

can choose actions either randomly or deterministically. A random action is a state s ∈ St corresponds

to an element qs ∈ M(A(s)) with the interpretation that an action a ∈ A(s) is selected with probability

qs(a). Degenerate probability measures that assign all the probability mass to a single action correspond to

deterministic actions.

Associated with each epoch t ∈ T and state-action pair (s, a), a ∈ A(s), s ∈ St, is a set of conditional

measures Pt(s, a) ⊆ M(St+1) with the interpretation that if at epoch t, action a is chosen in state s, the

state st+1 at the next epoch t+1 is determined by some conditional measure psa ∈ Pt(s, a). Thus, the state

transition is ambiguous. (We adopt the convention of the decision analysis literature wherein uncertainty
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refers to random quantities with known probability measures and ambiguity refers to unknown probability

measures (see, e.g. Epstein and Schneider, 2001)).

The decision maker receives a reward rt(st, at, st+1) when the action at ∈ A(st) is chosen in state st ∈ S
at the decision epoch t, and the state at the next epoch is st+1 ∈ S. Since st+1 is ambiguous, we allow the

reward at time t to depend on st+1 as well. Note that one can assume, without loss of generality, that the

reward rt(·, ·, ·) is certain. The reward rN (s) at the epoch N is a only a function of the state s ∈ SN .

We will refer to the collection of objects
{
T, {St,At,Pt, rt(·, ·, ·) : t ∈ T}

}
as a finite horizon ambiguous

Markov decision process (AMDP). The notation above is a modification of that in Puterman (1994) and the

structure of ambiguity is motivated by Epstein and Schneider (2001).

A decision rule dt is a procedure for selecting actions in each state at a specified decision epoch t ∈ T . We

will call a decision rule history dependent if it depends on the entire past history of the system as represented

by the sequence of past states and actions, i.e. dt is a function of the history ht = (s0, a0, . . . , st−1, at−1, st).

Let Ht denote the set of all histories ht. Then a randomized decision rule dt is a map dt : Ht 7→ M(A(st)).
A decision rule dt is called deterministic if it puts all the probability mass on a single action a ∈ A(st), and
Markovian if it is a function of the current state st alone.

The set of all conditional measures consistent with a deterministic Markov decision rule dt is given by

T dt =
{
p : St 7→ M(St+1) : ∀s ∈ St, ps ∈ Pt(s, dt(s))

}
, (1)

i.e. for every state s ∈ S, the next state can be determined by any p ∈ Pt(s, dt(s)). The set of all conditional
measures consistent with a history dependent decision rule dt is given by

T dt =
{

p : Ht 7→ M(A(st)× St+1) :
∀h ∈ Ht, ph(a, s) = qdt(h)(a)psta(s),

psta ∈ P(st, a), a ∈ A(st), s ∈ St+1

}
(2)

A policy prescribes the decision rule to be used at all decision epochs. Thus, a policy π is a sequence of

decision rules, i.e. π = (dt : t ∈ T ). Given the ambiguity in the conditional measures, a policy π induces a

collection of measure on the history space HN . We assume that the set T π of measures consistent with a

policy π has the following structure.

Assumption 1 (Rectangularity) The set T π of measures consistent with a policy π is given by

T π =

{
P : ∀hN ∈ HN , P(hN ) =

∏

t∈T

pht(at, st+1), pht ∈ T dt , t ∈ T
}
,

= T d0 × T d1 × · · · × T dN−1 , (3)

where the notation in (3) simply denotes that each p ∈ T π is a product of pt ∈ T dt , and vice versa.

The Rectangularity assumption is motivated by the structure of the recursive multiple priors in Epstein and

Schneider (2001). We will defer discussing the implications of the this assumption until after we define the

objective of the decision maker.

The reward V π
0 (s) generated by a policy π starting from the initial state s0 = s is defined as follows.

V π
0 (s) = inf

P∈T π
EP

[∑

t∈T

rt(st, dt(ht), st+1) + rN (sN )

]
, (4)

where EP denotes the expectation with respect to the fixed measure P ∈ T π. Equation (4) defines the

reward of a policy π to be the minimum expected reward over all measures consistent with the policy π.

Thus, we take a worst-case approach in defining the reward. In the optimization literature this approach is
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known as the robust approach (Ben-Tal and Nemirovski, 1998). Let Π denote the set of all history dependent

policies. Then the goal of robust DP is to characterize the robust value function

V ∗0 (s) = sup
π∈Π

{
V π
0 (s)

}
= sup

π∈Π

{
inf

P∈T π
EP

[∑

t∈T

rt(st, dt(ht), st+1) + rN (sN )

]}
, (5)

and an optimal policy π∗ if the supremum is achieved.

In order to appreciate the implications of the Rectangularity assumption the objective (5) has to in-

terpreted in an adversarial setting: the decision maker chooses π; an adversary observes π, and chooses a

measure P ∈ T π that minimizes the reward. In this context, Rectangularity is a form of an independence

assumption: the choice of particular distribution p̄ ∈ P(st, at) in a state-action pair (st, at) at time t does

not limit the choices of the adversary in the future. This, in turn, leads to a separability property that is

crucial for establishing the robust counterpart of the Bellman recursion (see Theorem 1). Such a model for

an adversary is not always appropriate. See Appendix A for an example of such a situation. We will return

to this issue in the context of infinite horizon models in Section 3.

The optimistic value V̄ π
0 (s0) of a policy π starting from the initial state s0 = s is defined as

V̄ π
0 (s) = sup

P∈T π
EP

[∑

t∈T

rt(st, dt(ht), st+1) + rN (sN )

]
. (6)

Let V π
0 (s0;P) denote the non-robust value of a policy π corresponding to a particular choice P ∈ T π. Then

V̄ π
0 (s0) ≥ V π

0 (s0;P) ≥ V π
0 (s0). Analogous to the robust value function V ∗0 (s), the optimistic value function

V̄ ∗0 (s) is defined as

V̄ ∗0 (s) = sup
π∈Π

{
V̄ π
0 (s)

}
= sup

π∈Π

{
sup

P∈T π
EP

[∑

t∈T

rt(st, dt(ht), st+1) + rN (sN )

]}
. (7)

Remark 1 Since our interest is in computing the robust optimal policy π∗, we will restrict attention to the

robust value function V ∗0 . However, all the results in this paper imply a corresponding result for the optimistic

value function V̄ ∗0 with the infP∈T π (·) replaced by supP∈T π (·).

Let V π
n (hn) denote the reward obtained by using policy π over epochs n, n+ 1, . . . , N − 1, starting from

the history hn, i.e.

V π
n (hn) = inf

P∈T πn
EP

[N−1∑

t=n

rt(st, dt(ht), st+1) + rN (sN )

]
, (8)

where Rectangularity implies that the set of conditional measures T πn consistent with the policy π and the

history hn is given by

T πn =

{
Pn : Hn 7→

N−1∏

t=n

(At × St+1) :
∀hn ∈ Hn, Phn(an, sn+1, . . . , aN−1, sN ) =

∏N−1
t=n pht(at, st+1),

pht ∈ T dt , t = n, . . . , N − 1

}
,

= T dn × T d1 × · · · × T dN−1 ,

= T dn × T πn+1. (9)

Let V ∗n (hn) denote the optimal reward starting from the history hn at the epoch n, i.e.

V ∗n (hn) = sup
π∈Πn

{
V π
n (hn)

}
= sup

π∈Πn

{
inf

P∈T πn
EP

[N−1∑

t=n

rt(st, dt(ht), st+1) + rN (sN )

]}
, (10)

where Πn is the set of all history dependent randomized policies for epochs t ≥ n.
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Theorem 1 (Bellman equation) The set of functions {V ∗n : n = 0, 1, . . . , N} satisfies the following robust
Bellman equation:

V ∗N (hN ) = rN (sN ),

V ∗n (hn) = sup
a∈A(sn)

{
inf

p∈P(sn,a)
Ep
[
rn(sn, a, s) + V ∗n+1(hn, a, s)

]}
, n = 0, . . . , N − 1. (11)

Proof: From (9) it follows that

V ∗n (hn) = sup
π∈Π

{
inf

P=(p,P̄)∈T dn×T πn+1

EP

[N−1∑

t=n

rt(st, dt(ht), st+1) + rN (sN )

]}
.

Since the conditional measures P̄ do not affect the first term rn(sn, dn(hn), sn+1), we have:

V ∗n (hn) = sup
π∈Πn

{
inf

(p,P̄)∈T dn×T πn+1

Ep

[
rn(sn, dn(hn), sn+1) + EP̄

[ N−1∑

t=n+1

rt(st, dt(ht), st+1) + rN (sN )
]]}

,

= sup
π∈Πn

{
inf

p∈T dn
Ep

[
rn(sn, dn(hn), sn+1) + inf

P̄∈T πn+1

EP̄
[ N−1∑

t=n+1

rt(st, dt(ht), st+1) + rN (sN )
]]}

,

= sup
π∈Πn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V π

n+1(hn, dn(hn), sn+1)
]}
, (12)

where the last equality follows from the definition of V π
n+1(hn+1) in (8).

Let (dn(hn)(ω), sn+1(ω)) denote any realization of the random action-state pair corresponding the (ran-

domized) decision rule dn. Then V π
n+1(hn, dn(hn)(ω), sn+1(ω)) ≤ V ∗n+1(hn, dn(hn)(ω), sn+1(ω)). Therefore,

(12) implies that

V ∗n (hn) ≤ sup
π∈Πn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V ∗n+1(hn, dn(hn), sn+1)

]
,

= sup
dn∈Dn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V ∗n+1(hn, dn(hn), sn+1)

]}
, (13)

where Dn is the set of all history dependent decision rules at time n, and (13) follows from the fact that the

term within the expectation only depends on dn ∈ Dn.
Since V ∗n+1(hn+1) = supπ∈Πn+1

{
V π
n+1(hn+1)

}
, it follows that for all ε > 0 there exists a policy πεn+1 ∈

Πn+1 such that V
πεn+1

n+1 (hn+1) ≥ V ∗n+1(hn+1) − ε, for all hn+1 ∈ Hn+1. For all dn ∈ Dn, (dn, πεn+1) ∈ Πn.

Therefore,

V ∗n (hn) = sup
π∈Πn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V π

n+1(hn, dn(hn), sn+1)
]
,

≥ sup
dn∈Dn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V

πεn+1

n+1 (hn, dn(hn), sn+1)
]}
,

≥ sup
dn∈Dn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V ∗n+1(hn, dn(hn), sn+1)

]}
− ε. (14)

Since ε > 0 is arbitrary, (13) and (14) imply that

V ∗n (hn) = sup
dn∈Dn

{
inf

p∈T dn
Ep
[
rn(sn, dn(hn), sn+1) + V ∗n+1(hn, dn(hn), sn+1)

]}
.
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The definition of T dn in (2) implies that V ∗n (hn) can be rewritten as follows.

V ∗n (hn) = sup
q∈M(A(sn))

inf
psna∈Pn(sn,a)

{ ∑

a∈A(sn)

q(a)
[∑

s∈S

psna(s)
[
rn(sn, a, s) + V ∗n+1(hn, a, s)

]]}
,

= sup
q∈M(A(sn))

{ ∑

a∈A(sn)

q(a) inf
psna∈Pn(sn,a)

[∑

s∈S

psna(s)
[
rn(sn, a, s) + V ∗n+1(hn, a, s)

]]}
,

= sup
a∈A(sn))

{
inf

p∈Pn(sn,a)

[∑

s∈S

p(s)
[
rn(sn, a, s) + V ∗n+1(hn, a, s)

]]}
, (15)

where (15) follows from the fact that

sup
u∈W

w(u) ≥
∑

u∈W

q(u)w(u),

for all discrete sets W , functions w :W 7→ R, and probability measures q on W .

While this paper was being prepared for publication we became aware of a technical report by Nilim and El

Ghaoui (2002) where they formulate robust solutions to finite-horizon AMDPs with finite state and action

spaces. A “robust counterpart” of the Bellman equation appears in their paper. This “robust counterpart”

reduces to the robust Bellman equation (11) provided one assumes that the set of measures P(s, a) is convex.
The convexity assumption is very restrictive, e.g. a discrete set of measures P(s, a) = {q1, . . . , qm} is not

convex. Moreover, they do not prove that the solution Vt(s) of the “robust counterpart” is the robust value

function, i.e. there exists a policy that achieves Vt(s). Their paper does not discuss the dynamic structure

of the ambiguity; in particular, there is no discussion of the structure of the set T π of measures consistent

with a policy. The robust Bellman equation characterizes the robust value function if and only if T π satisfies

Rectangularity, it would be impossible to claim that the solution of a recursion is the robust value function

without invoking Rectangularity is some form. In summary, while the robust solutions to AMDPs were

addressed in Nilim and El Ghaoui (2002), we provide the necessary theoretical justification for the robust

Bellman recursion and generalize the result to countably infinite state and action sets.

The following corollary establishes that one can restrict the decision maker to deterministic policies

without affecting the achievable robust reward.

Corollary 1 Let ΠD be the set of all history dependent deterministic policies. Then ΠD is adequate for

characterizing the value function Vn in the sense that for all n = 0, . . . , N − 1,

V ∗n (hn) = sup
π∈ΠD

{
V π
n (hn)

}
.

Proof: This result follows from (11). The details are left to the reader.

Next, we show that it suffices to restrict oneself to deterministic Markov policies, i.e. policies where the

deterministic decision rule dt at any epoch t is a function of only the current state st.

Theorem 2 (Markov optimality) For all n = 0, . . . , N , the robust value function V ∗n (hn) is a function

of the current state sn alone, and V ∗n (sn) = supπ∈ΠMD
{V π

n (sn)}, n ∈ T , where ΠMD is the set of all

deterministic Markov policies. Therefore, the robust Bellman equation (11) reduces to

V ∗n (sn) = sup
a∈A(sn)

{
inf

p∈Pn(sn,a)
Ep
[
rn(sn, a, s) + V ∗n+1(s)

]}
, n ∈ T. (16)

Proof: The result is established by induction on the epoch t. For t = N , the value function V ∗N (hN ) =

rN (sN ) and is, therefore, a function of only the current state.
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Next, suppose the result holds for all t > n. From the Bellman equation (11) we have

V ∗n (hn) = sup
a∈A(sn)

{
inf

p∈Pn(sn,a)
Ep
[
rn(sn, a, s) + V ∗n+1(hn, a, s)

]}
,

= sup
a∈A(sn)

{
inf

p∈Pn(sn,a)
Ep
[
rn(sn, a, s) + V ∗n+1(s)

]}
, (17)

where (17) follows from the induction hypothesis. Since the right hand side of (17) depends on hn only via

sn, the result follows.

The recursion relation (16) forms the basis for robust DP. This relation establishes that, provided V ∗n+1(s
′) is

known for all s′ ∈ S, computing V ∗n (s) reduces to a collection of optimization problems. Suppose the action

set A(s) is finite. Then the optimal decision rule d∗n at epoch n is given by

d∗n(s) = argmax
a∈A(s)

{
inf

p∈Pn(s,a)
Ep
[
rn(s, a, s

′) + Vn+1(s
′)
]}
.

Hence, in order to compute the value function V ∗n efficiently one must be able to efficiently solve the opti-

mization problem infp∈P(s,a) E
p[v] for a specified s ∈ S, a ∈ A(s) and v ∈ R|S|. In Section 4 we describe

three families of sets P(s, a) of conditional measures for which infp∈P(s,a) E
p[v] can be solved efficiently.

As noted in Remark 1, Theorem 2 implies the following result for the optimistic value function V̄ ∗n .

Theorem 3 For n = 0, . . . , N , the optimistic value function V̄ ∗n (hn) is a function of the current state sn

alone, and

V̄ ∗n (sn) = sup
π∈ΠMD

{
V̄ π
n (sn)

}
, n ∈ T,

where ΠMD is the set of all deterministic Markov policies. Therefore,

V̄ ∗n (sn) = sup
a∈A(sn)

{
sup

p∈Pn(sn,a)

Ep
[
rn(sn, a, s) + V̄ ∗n+1(s)

]}
, n ∈ T. (18)

3 Infinite horizon robust dynamic programming

In this section we formulate robust infinite horizon robust DP with a discounted reward criterion and

describe methods for solving this problem. Robust infinite horizon DP with finite state and action spaces

was addressed in Satia (1968); Satia and Lave (1973). A special case of the robust DP where the decision

maker is restricted to stationary policies appears in Bagnell et al. (2001). We will contrast our contributions

with the previous work as we establish the main results of this section.

The setup is similar to the one introduced in Section 2. As before, we assume that the decisions epochs

are discrete, however now the set T = {0, 1, 2, . . . , } = Z+. The system state s ∈ S, where S is assumed

to be discrete, and in state s ∈ S the decision maker is allowed to take a randomized action chosen from a

discrete set A(s). As the notation suggests, in this section we assume that the state space is not a function

of the decision epoch t ∈ T .
Unlike in the finite horizon setting, we assume that the set of conditional measures P(s, a) ⊆M(S) is not

a function of the decision epoch t ∈ T . We continue to assume that the set T π of measures consistent with a

policy π satisfies Rectangularity, i.e. T π =
∏

t∈T T dt . Note that Rectangularity implies that the adversary is

allowed to choose a possibly different conditional measure p ∈ P(s, a) every time the state-action pair (s, a)

is encountered. Hence we will refer to this adversary model as the dynamic model. In many applications

of robust DP the transition probability is, in fact, fixed but the decision maker is only able to estimate to
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within a set. In such situations the dynamic model is not appropriate (see Appendix A for a discussion).

Instead, one would prefer a static model where the adversary is restricted to choose the same, but unknown,

psa ∈ P(s, a) every time the state-action pair (s, a) is encountered. We contrast the implications of the two

models in Lemma 3. Bagnell et al. (2001) also has some discussion on this issue.

As before, the reward r(st, at, st+1) is a function of the current state st, the action at ∈ A(st), and the

future state st+1; however, it is not a function of the decision epoch t. We will also assume that the reward

is bounded, i.e. sups,s′∈S,a∈A(s){r(s, a, s′)} = R < ∞. The reward V π(s) received by employing a policy π

when the initial state s0 = s is given by

V π
λ (s) = inf

P∈T π
EP
[ ∞∑

t=0

λtr(st, dt(ht), st+1)
]
, (19)

where λ ∈ (0, 1) is the discount factor. It is clear that for all policies π, sups∈S{V π
λ (s)} ≤ R

1−λ . The optimal

reward in state s is given by

V ∗λ (s) = sup
π∈Π

{
V π(s)

}
= sup

π∈Π

{
inf

P∈T π
EP
[ ∞∑

t=0

λtr(st, dt(ht), st+1)
]}
, (20)

where Π is the set of all history dependent randomized policies. The optimistic value function V̄ ∗λ can be

defined as follows.

V̄ ∗λ (s) = sup
π∈Π

{
sup

P∈T π
EP
[ ∞∑

t=0

λtr(st, dt(ht), st+1)
]}
. (21)

As noted in Remark 1, all the results in this section imply a corresponding result for the optimistic value

function V̄ ∗λ with the infP∈T π (·) replaced by supP∈T π (·).
The following result is the infinite horizon counterpart of Theorem 2.

Theorem 4 (Markov optimality) The decision maker can be restricted to deterministic Markov policies

without any loss in performance, i.e. V ∗λ (s) = supπ∈ΠMD
{V π

λ (s)}, where ΠMD is the set of all deterministic

Markov policies.

Proof: Since P(s, a) only depends on the current state-action pair, this result follows from robust extensions

of Theorem 5.5.1, Theorem 5.5.3 and Proposition 6.2.1 in Puterman (1994).

Let V denote the set of all bounded real valued functions on the discrete set S. Let ‖V ‖ denote the L∞

norm on V, i.e.

‖V ‖ = max
s∈S
|V (s)| .

Then (V, ‖·‖) is a Banach space. Let D be any subset of all deterministic Markov decision rules. Define the

robust Bellman operator LD on V as follows: For all V ∈ V,

LDV (s) = sup
d∈D

{
inf

p∈P(s,d(s))
Ep
[
r(s, d(s), s′) + λV (s′)

]}
, s ∈ S. (22)

Theorem 5 (Bellman equation) The operator LD satisfies the following properties:

(a) The operator LD is contraction mapping on V; in particular, for all U, V ∈ V,

‖LU − LV ‖ ≤ λ‖U − V ‖. (23)

(b) The operator equation LDV = V has a unique solution. Moreover,

V (s) = sup
{π:dπt ∈D}

inf
P∈T π

EP
[ ∞∑

t=0

λtr(st, dt(ht), st+1)
]
,

where T π is defined in (3).
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Proof: Let U, V ∈ V. Fix s ∈ S, and assume that LU(s) ≥ LV (s). Fix ε > 0 and choose d ∈ D such that

for all s ∈ S,
inf

p∈P(s,d(s))
Ep
[
r(s, d(s), s′) + λU(s′)

]
≥ LDU(s)− ε.

Choose a conditional probability measure ps ∈ P(s, d(s)), s ∈ S, such that

Eps
[
r(s, d(s), s′) + λV (s′)

]
≤ inf

p∈P(s,d(s))
Ep
[
r(s, d(s), s′) + λV (s′)

]
+ ε.

Then

0 ≤ LU(s)− LV (s) ≤
(

inf
p∈P(s,d(s))

Ep
[
r(s, d(s), s′) + λU(s′)

]
+ ε
)
−
(

inf
p∈P(s,d(s))

Ep
[
r(s, d(s), s′) + λV (s′)

])
,

≤
(
Eps

[
r(s, d(s), s′) + λU(s′)

]
+ ε
)
−
(
Eps

[
r(s, d(s), s′) + λV (s′)

]
− ε
)
,

= λEps [U − V ] + 2ε,

≤ λEps |U − V |+ 2ε,

≤ λ‖U − V ‖+ 2ε.

Repeating the argument for the case LU(s) ≤ LV (s) implies that

|LU(s)− LV (s)| ≤ λ‖U − V ‖+ 2ε, ∀s ∈ S,

i.e. ‖LU − LV ‖ ≤ λ‖U − V ‖+ 2ε. Since ε was arbitrary, this establishes part (a) of the Theorem.

Since LD is a contraction operator on a Banach space, the Banach fixed point theorem implies that the

operator equation LDV = V has a unique solution V ∈ V.

Fix π such that dπt ∈ D, for all t ≥ 0. Then

V (s) = LDV (s),

≥ inf
p0∈P(s,dπ0 (s))

Ep0
[
r(s, dπ0 (s), s1) + λV (s1)

]
, (24)

≥ inf
p0∈P(s,dπ0 (s))

Ep0

[
r(s, dπ0 (s), s1) + λ inf

p1∈P(s1,dπ1 (s1))
Ep1

[
r(s1, d

π
1 (s1), s2) + λV (s2)

]]
, (25)

= inf
P∈T π

EP
[ 1∑

t=0

r(st, d
π
t (st), st+1) + λ2V (st+1)

]
, (26)

where (24) follows from the fact that choosing a particular action dπ0 (s) can only lower the value of the right

hand side, (25) follows by iterating the same argument once more, and (26) follows from the Rectangularity

assumption. Thus, for all n ≥ 0,

V (s) ≥ inf
P∈T π

EP
[ n∑

t=0

r(st, d
π
t (st), st+1) + λn+1V (st+1)

]
,

= inf
P∈T π

EP
[ ∞∑

t=0

r(st, d
π
t (st), st+1) + λn+1V (st+1)−

∞∑

t=n+1

λtr(st, d
π
t (st), st+1)

]
,

≥ V π(s)− λn+1 ‖V ‖ − λn+1R

1− λ ,

where R = sups,s′∈S,a∈A(s){r(s, a, s′)} <∞. Since n is arbitrary, it follows that

V (s) ≥ sup
{π:dπt ∈D,∀t}

{
V π(s)

}
. (27)
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The Robust Value Iteration Algorithm:

Input: V ∈ V, ε > 0

Output: Ṽ such that ‖Ṽ − V ∗‖ ≤ e
2

For each s ∈ S, set Ṽ (s) = supa∈A(s)

{
infp∈P(s,a) E

p
[
r(r, a, s′) + λV (s′)

]}
.

while
(
‖Ṽ − V ‖ ≥ (1−λ)

4λ · ε
)

do

V = Ṽ

∀s ∈ S, set Ṽ (s) = supa∈A(s)

{
infp∈P(s,a) E

p
[
r(r, a, s′) + λV (s′)

]}
.

end while

return Ṽ

Figure 1: Robust value iteration algorithm

Fix ε > 0 and choose a deterministic decision rule d ∈ D such that for all s ∈ S

V (s) = LDV (s) ≤ inf
p∈P(s,d(s))

Ep
[
r(s, d(s), s′) + λV (s′)

]
+ ε.

Consider the policy π = (d, d, . . .). An argument similar to the one above establishes that for all n ≥ 0

V (s) ≤ V π(s) + λn ‖V ‖+ ε

1− λ. (28)

Since ε and n are arbitrary, it follows from (27) and (28) that V (s) = sup{π:dπt ∈D,∀t}
{
V π(s)

}
.

Corollary 2 The properties of the operator LD imply the following:

(a) Let d be any deterministic decision rule. Then the value V π
λ of the stationary policy π = (d, d, . . .) is

the unique solution of the operator equation

V (s) = inf
p∈P(s,d(s))

Ep
[
r(s, d(s), s′) + λV (s′)

]
, s ∈ S. (29)

(b) The value function V ∗λ is the unique solution of the operator equation

V (s) = sup
a∈A(s)

inf
p∈P(s,a)

Ep
[
r(s, a, s′) + λV (s′)

]
, s ∈ S. (30)

Moreover, for all ε > 0, there exists an ε-optimal stationary policy, i.e. there exists πε = (dε, dε, . . .)

such that V πε

λ ≥ V ∗λ − ε.

Proof: The results follow by setting D = {d} and D =
∏

s∈S A(s) respectively.
Theorem 4 and part (b) of Corollary 2 for the special case of finite state and action spaces appears in Satia

(1968) with an additional assumption that the set of conditional measures P(s, a) is convex. (Their proof,

in fact, extends to non-convex P(s, a).) Also, they do not explicitly prove that the solution of (30) is indeed

the robust value function. Theorem 5 for general D, and in particular for D = {d}, is new. The special case

D = {d} is crucial for establishing the policy improvement algorithm.

From Theorem 5, Corollary 2 and convergence results for contraction operators on Banach spaces, it

follows that the robust value iteration algorithm displayed in Figure 1 computes an ε-optimal policy. This

algorithm is the robust analog of the value iteration algorithm for non-robust DPs (see Section 6.3.2 in

Puterman, 1994, for details). The following Lemma establishes this approximation result for the robust

value iteration algorithm.
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Lemma 1 Let Ṽ be the output of the robust value iteration algorithm shown in Figure 1. Then

‖Ṽ − V ∗λ ‖ ≤
ε

4
,

where V ∗λ is the optimal value defined in (20). Let d be the decision rule

inf
p∈P(s,d(s))

Ep
[
r(s, d(s), s′) + λṼ (s′)

]
≥ sup

a∈A(s)

{
inf

p∈P(s,a)
Ep
[
r(s, a, s′) + λṼ (s′)

]}
− ε

2
.

Then, the policy π = (d, d, . . .) is ε-optimal.

Proof: Since Lemma 5 establishes that LD is a contraction operator, this result is a simple extension of

Theorem 6.3.1 in Puterman (1994). The details are left to the reader.

Suppose the action set A(s) is finite. Then robust value iteration reduces to

Ṽ (s) = max
a∈A(s)

{
inf

p∈Pn(s,a)
Ep
[
r(s, a, s′) + Vn+1(s

′)
]}
.

For this iteration to be efficient one must be able to efficiently solve the optimization problem infp∈P(s,a) E
p[v]

for a specified s ∈ S, a ∈ A(s) and v ∈ R|S|. These optimization problems are identical to those solved

in finite state problems. In Section 4 we show that for suitable choices for the set P(s, a) of conditional

measures the complexity of solving such problems is only modestly larger than evaluating Ep[v] for a fixed p.

We next present a policy iteration approach for computing V ∗λ . As a first step, Lemma 2 below establishes

that policy evaluation is a robust optimization problem.

Lemma 2 (Policy evaluation) Let d be a deterministic decision rule and π = (d, d, . . .) be the correspond-

ing stationary policy. Then V π is the optimal solution of the robust optimization problem

maximize
∑

s∈S α(s)V (s),

subject to V (s) ≤ Ep[rs + λV ], ∀p ∈ P(s, d(s)), s ∈ S, (31)

where α(s) > 0, s ∈ S, and rs ∈ R|S| with rs(s′) = r(s, d(s), s′), s′ ∈ S.

Proof: The constraint in (31) can be restated as V ≤ LdV , where Ld = LD with D = {d}. Corollary 2

implies that V π = LdV π, i.e. V π is feasible for (31). Therefore, the optimal value of (31) is at least∑
s∈S α(s)V

π(s).

For every s ∈ S, choose ps ∈ P(s, d(s)) such that

V π(s) = LdV π(s) ≥ Eps [r(s, d(s), s′) + λV π(s′)]− ε.

Then for any V feasible for (31)

V (s)− V π(s) ≤ Eps [r(s, d(s), s′) + λV (s′)]−
(
Eps [r(s, d(s), s′) + λV π(s′)]− ε

)
,

= λEps
[
V (s′)− V π(s′)

]
+ ε.

Iterating this argument for n time steps, we get the bound

V (s)− V π(s) ≤ λn‖V − V π‖+ ε

1− λ.

Since n and ε are arbitrary, all V feasible for (31) satisfy V ≤ V π. Since α(s) > 0, s ∈ S, it follows that the
value of (31) is at most

∑
s∈S α(s)V

π(s). This establishes the result.
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The Robust Policy Iteration Algorithm:

Input: decision rule d0, ε > 0

Output: ε-optimal decision rule d∗

Set n = 0 and πn = (dn, dn, . . .). Solve (31) to compute V πn . Set Ṽ ← LDV πn , D =
∏

s∈S A(s)

For each s ∈ S, choose

dn+1(s) ∈
{
a ∈ A(s) : inf

p∈P(s,a)
Ep
[
r(s, a, s′) + λV (s′)

]
≥ Ṽ (s)− ε

}
;

setting dn+1(s) = dn(s) if possible.

while
(
dn+1 6= dn

)
do

n = n+ 1; Solve (31) to computer V πn . Set Ṽ ← LDV πn , D =
∏

s∈S A(s)
For each s ∈ S, choose

dn+1(s) ∈
{
a ∈ A(s) : inf

p∈P(s,a)
Ep
[
r(s, a, s′) + λV (s′)

]
≥ Ṽ (s)− ε

}
;

setting dn+1(s) = dn(s) if possible.

end while

return dn+1

Figure 2: Robust policy iteration algorithm

Since Ep[rs+λV ] is a linear function of p, (31) is a convex optimization problem. Typically, (31) can be solved

efficiently only if S is finite and the robust constraint can be reformulated as a small collection of deterministic

constraints. In Section 4 we introduce some natural candidates for the set P(s, a) of conditional measures.

Dualizing the constraints in (31) leads to a compact representation for some of these sets. However, for most

practical applications, the policy evaluation step is computationally expensive and is usually replaced by a

m-step look-ahead value iteration (Puterman, 1994).

Lemma 1 leads to the robust policy iteration algorithm displayed in Figure 2. Suppose (31) is efficiently

solvable; then finite convergence of this algorithm for the special case of finite state and action spaces follows

from Theorem 6.4.2 in Puterman (1994). A rudimentary version of robust policy iteration algorithm for this

special case appears in Satia and Lave (1973) (see also Satia, 1968). They compute the value of a policy

π = (d, d, . . .), i.e. solve the robust optimization problem (31), via the following iterative procedure:

(a) For every s ∈ S, fix ps ∈ P(s, d(s). Solve the set of equations

V (s) = Eps [r(s, d(s), s′) + λV (s′)], s ∈ S.

Since λ < 1, these set of equations has a unique solution (see Theorem 6.1.1 in Puterman, 1994).

(b) Fix V , and solve

p̃(s)← argmin
p∈P(s,d(s))

{
Ep[r(s, d(s), s′) + λV (s′)]

}
, s ∈ S.

If V (s) = Ep̃s [r(s, d(s), s′) + λV (s′)], for all s ∈ S, stop; otherwise, p(s)← p̃(s), s ∈ S, return to (a).

However, it is not clear, and Satia and Lave (1973) do not show, that this iterative procedure converges.
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Given the relative ease with which value iteration and policy iteration translate to the robust setting, one

might attempt to solve the robust DP by the following natural analog of the linear programming method

for DP (Puterman, 1994):

maximize
∑

s∈S α(s)V (s),

subject to V (s) ≥ infp∈P(s,a) E
p[r(s, a, s′) + λV (s′)], a ∈ A(s), s ∈ S. (32)

Unfortunately, (32) is not a convex optimization problem. Hence, the LP method does not appear to have

a tractable analog in the robust setting.

Recall that in the beginning of this section we had proposed two models for the adversary. The first was

a dynamic model where the measures T π consistent with a policy π satisfies Rectangularity. So far we have

assumed that this model prevails. In the second, static model, the adversary was restricted to employing

a fixed psa ∈ P(s, a) whenever the state-action pair (s, a) is encountered. The last result in this section

establishes that if the decision maker is restricted to stationary policies the implications of the static and

dynamic models are, in fact, identical.

Lemma 3 (Dynamic vs Static adversary) Let d be any decision rule and let π = (d, d, . . .) be the corre-

sponding stationary policy. Let V π
λ and V̂ π

λ be the value of the π in the dynamic and static model respectively.

Then V̂ π
λ = V π

λ .

Proof: We prove the result for deterministic decision rules. The same technique extends to randomized

policies but the notation becomes complicated.

Clearly V̂ π
λ ≥ V π

λ . Thus, we only need to establish that V̂ π
λ ≤ V π

λ . Fix ε > 0 and choose p̄ : S 7→ M(S)
such that p̄s ∈ P(s, d(s)), for all s ∈ S, and V π

λ (s) ≥ Ep̄s [r(s, d(s), s′) + λV π
λ (s′)] − ε. Let V π

λp̄ denote the

non-robust value of the policy π corresponding to the fixed conditional measure p̄. Clearly V π
λp̄ ≥ V̂ π

λ . Thus,

the result will follow if we show that V π
λp̄ ≤ V π

λ .

From results for non-robust DP we have that V π
λp̄ = Ep̄s [r(s, d(s), s′) + λV π

λp̄(s
′)]. Therefore,

V π
λp̄ − V π

λ (s) ≤
(
Eps [r(s, a, s′) + λV π

λp̄(s
′)]
)
−
(
Eps [r(s, d(s), s′) + λV π

λ (s′)]− ε
)
,

= λEps
[
V̂ π
λ (s′)− V π

λ (s′)] + ε.

Iterating this bound for n time steps, we get

V π
λp̄(s)− V π

λ (s) ≤ λn‖V̂ π
λp̄ − V π

λ ‖+
ε

1− λ.

Since n and ε are arbitrary, it follows that V π
λp̄ ≤ V π

λ .

In the proof of the result we have implicitly established that the “best-response” of dynamic adversary

when the decision maker employs a stationary policy is, in fact, static, i.e. the adversary chooses the same

psa ∈ P(s, a) every time the pair (s, a) is encountered. Consequently, the optimal stationary policy in a

static model can be computed by solving (30). Bagnell et al. (2001) establish that when the set P(s, a) of

conditional measures is convex and the decision maker is restricted to stationary policies the optimal policies

for the decision maker and the adversary is the same in both the static and dynamic models. We extend this

result to non-convex sets. In addition we show that the value of any stationary policy, optimal or otherwise,

is the same in both models. While solving (30) is, in general, NP-complete (Littman, 1994), the problem is

tractable provided the sets are P(s, a) are “nice” convex sets. In particular, the problem is tractable for the

families of sets discussed in Section 4.

Lemma 3 highlights an interesting asymmetry between the decision maker and the adversary that is a

consequence of the fact that the adversary plays second. While it is optimal for a dynamic adversary to play
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static (stationary) policies when the decision maker is restricted to stationary policies, it is not optimal for

the decision maker to play stationary policies against a static adversary. The optimal policy for the decision

maker in the static model are the so-called universal policy (Cover, 1991).

4 Tractable sets of conditional measures

Section 2 and Section 3 were devoted to extending results from non-robust DP theory. In this and the next

section we focus on computational issues. Since computations are only possible when state and action spaces

are finite (or are suitably truncated versions of infinite sets), we restrict ourselves to this special case. The

results in this section are not new and are included for completeness. They were first obtained by El Ghaoui

and Nilim Nilim and El Ghaoui (2002).

In the absence of any ambiguity, the value of an action a ∈ A(s) in state s ∈ S is given by Ep[v] = pT v,

where p is the conditional measure and v is a random variable that takes value v(s′) = r(s, a, s′) + V (s′)

in state s′ ∈ S. Thus, the complexity of evaluating the value of a state-action pair is O(|S|). When the

conditional measure is ambiguous, the value of the state-action pair is (s, a) is given by infp∈P(s,a) E
p[v].

In this section, we introduce three families of sets of conditional measures P(s, a) which only result in a

modest increase in complexity, typically logarithmic in |S|. These families of sets are constructed from

approximations of the confidence regions associated with density estimation. Two of these families are also

discussed in Nilim and El Ghaoui (2002). We distinguish our contribution in the relevant sections.

Note that since supp∈P(s,a) E
p[v] = − infp∈P(s,a) E

p[−v], it follows that the recursion (18) for the opti-

mistic value function can also be computed efficiently for these families of sets.

4.1 Sets based on relative entropy

As mentioned in the introduction, the motivation for the robust methodology was to systematically correct

for the statistical errors associated with estimating the transition probabilities using historical data. Thus, a

natural choice for the sets P(s, a) of conditional measures are the confidence regions associated with density

estimation. In this section, we show how to construct such sets for any desired confidence level ω ∈ (0, 1).

We also show that the optimization problem infp∈P(s,a) E
p[v] can be efficiently solved for this class of sets.

Suppose the underlying controlled Markov chain is stationary. Suppose also that we have historical data

consisting of triples
{
(sj , aj , s

′
j) : j ≥ 1

}
, with the interpretation that state s′j was observed in period t+ 1

when the action aj was employed in state sj in period t. Then the maximum likelihood estimate p̂sa of the

conditional measure corresponding to the state-action pair (s, a) is given by

p̂sa = argmax
p∈M(S)

{∑

s′∈S

n(s′|s, a) log(p(s′))
}
, (33)

where

n(s′|a, s) =
∑

j

1
(
(s, a, s′) = (sj , aj , s

′
j)
)
,

is the number of samples of the triple (s, a, s′). Let q ∈M(S) be defined as

q(s′) =
n(s′|s, a)∑
u∈S n(u|s, a)

, s′ ∈ S.

Then, (33) is equivalent to

p̂sa = argmin
p∈M(S)

D(q‖p), (34)
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where D(p1‖p2) is the Kullback-Leibler or the relative entropy distance (see Chapter 2 in Cover and Thomas,

1991) between two measures p1, p2 ∈M(S) and is defined as follows:

D(p1‖p2) =
∑

s∈S

p1(s) log
(p1(s)
p2(s)

)
. (35)

The function D(p1‖p2) ≥ 0 with equality if and only if p1 = p2 (however, D(p1‖p2) 6= D(p2‖p1)). Thus, we
have that the maximum likelihood estimate of the conditional measure is given by

p̂sa(s
′) = q(s′) =

n(s′|s, a)∑
u∈S n(u|s, a)

, s′, s ∈ S, a ∈ A(s). (36)

More generally, let gj : S 7→ R, j = 1, . . . , k be k functions defined on the state space S (typically, gj(s) = sj ,

i.e. j-th moment) and

ḡjsa =
1

nsa

∑

s∈S

n(s′|s, a)gj(s′), j = 1, . . . , k,

be the sample averages of the moments corresponding to the state-action pair (s, a). Let p0sa ∈M(S) be the
prior distribution on S conditioned on the state-action pair (s, a). Then the maximum likelihood solution

p̂sa is given by

p̂sa = argmin
{p∈M(S):Ep[gj ]=ḡjsa,j=1,...,k}

D(p‖p0) (37)

provided the set
{
p ∈M(S) : Ep[gj ] = ḡjsa, j = 1, . . . , k

}
6= ∅.

Let psa, a ∈ A(s), s ∈ S denote the unknown true state transition of the stationary Markov chain. Then

a standard result in statistical information theory (see Cover and Thomas, 1991, for details) implies the

following convergence in probability:

nsaD(psa‖p̂sa) =⇒
1

2
χ2|S|−1, (38)

where nsa =
∑

s′∈S n(s
′|s, a) is the number of samples of the state-action pair (s, a) and χ2|S|−1 denotes a χ2

random variable with |S| − 1 degrees of freedom (note that the maximum likelihood estimate p̂sa is, itself, a

function of the sample size nsa). Therefore,

P
{
p : D(p‖p̂sa) ≤ t

}
≈ P

{
χ2|S|−1 ≤ 2nsat

}
,

= F|S|−1(2nsat).

Let ω ∈ (0, 1) and tω = F−1|S|−1(ω)/(2nsa). Then

P =

{
p ∈M(S) : D(p‖p̂sa) ≤ tω

}
, (39)

is the ω-confidence set for the true transition probability psa. Since D(p‖q) is a convex function of the pair

(p, q) (Cover and Thomas, 1991), P is convex for all t ≥ 0.

The following results establish that an ε-approximate solution for the robust problem corresponding to

the set P in (39) can be computed efficiently.

Lemma 4 The value of optimization problem :

minimize Ep[v]

subject to p ∈ P =
{
p ∈M(S) : D(p‖q) ≤ t, q ∈M(S)

}
,

(40)
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where t > 0, is equal to

−min
γ≥0

{
tγ + γ log

(
Eq
[
exp

(
− v

γ

)])}
. (41)

The complexity of computing an ε-optimal solution for (41) is O
(
|S|
⌈
log2

∆vmax{t,|t+log(qmin)|}
2εt

⌉)
, where

∆v = maxs∈S{v(s)} −mins∈S{v(s)} and qmin = P(v(s) = min{v}).

Proof: The Lagrangian L for the optimization problem (40) is given by

L =
∑

s∈S

p(s)v(s)− γ
(
t−

∑

s∈S

p(s) log
(p(s)
q(s)

))
− µ

(∑

s∈S

p(s)− 1
)
, (42)

where γ ≥ 0 and µ ∈ R. Taking the derivative of L with respect to p(s) and setting it to zero, we get

v(s) + γ
(
log
(p(s)
q(s)

)
+ 1

)
− µ = 0, s ∈ S,

i.e.

γ log
(p(s)
q(s)

)
+ v(s) = µ− γ. (43)

From (43) it follows that

p(s) = q(s)exp
(
− 1 +

µ− v(s)
γ

)
, s ∈ S. (44)

Thus, the non-negative constraints p(s) ≥ 0 are never active. Since p is constrained to be a probability, i.e.∑
s∈S p(s) = 1, (43) implies that the Lagrangian

L = µ− γ − γt.

Also, (44) together with the fact that p ∈M(S) implies that

µ− γ = −γ log
(∑

s∈S

q(s)e
v(s)
γ

)

Thus, the Lagrangian L(γ) = −tγ − γ log
(
Eq
[
exp

(
v
γ

)])
. For t > 0 the set P in (40) has a strictly feasible

point; therefore, the value of (40) is equal to maxγ≥0 L(γ).
Suppose v(s) = v for all s ∈ S. Then, the value of (40) is trivially v. Next assume that there exist

s, s′ ∈ S such that v(s) 6= v(s′). In this case, by suitably shifting and scaling the vector v, one can assume

that v(s) ∈ [0, 1], mins∈S{v(s)} = 0 and maxs∈S{v(s)} = 1. Note that this shifting and scaling is an O(|S|)
operation.

Let f(γ) = γt+ γ log
(∑

s∈S q(s)e
−
v(s)
γ

)
denote the objective function of (41). Then f(γ) is convex and

f ′(γ) = t+ log
(∑

s∈S

q(s)e−
v(s)
γ

)
+

1

γ

∑
s∈S q(s)v(s)e

−
v(s)
γ

∑
s∈S q(s)e

−
v(s)
γ

.

Since f(γ) is convex, it follows that f ′(γ) is non-decreasing. It is easy to verify that f ′(0) = limγ→0 f
′(γ) =

t+ log(qmin), where qmin = Prob(v = 0), f ′( 1t ) > 0 and |f ′(γ)| ≤ max
{
t, |t+ log(qmin)|

}
.

Clearly, γ = 0 is optimum if f ′(0) ≥ 0. Otherwise, the optimum value lies in the interval [0, 1t ], and after

N iterations of a bisection algorithm the optimum value γ∗ is guaranteed to lie in an interval [γ1, γ2] with

γ2 − γ1 ≤ 1
t 2
−N . Let γ̄ = 1

2 (γ1 + γ2). Then

f(γ∗)− f(γ̄) ≥ − ε
2
|f ′(γ̄)| ,

≥ − ε
2
max

{
t, |t+ log(qmin)|

}
. (45)
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Thus, it follows that an ε-optimal solution of minγ f(γ) can be computed in dlog2 max{t,|t+log(qmin)|}
2εt e bisec-

tions. The result follows by recognizing that each evaluation of f ′(γ) is an O(|S|) operation.
As mentioned above, relative entropy-based sets of conditional measures of the form (39) were first introduced

in Nilim and El Ghaoui (2002). Our analysis is different but essentially equivalent to their approach.

4.2 Sets based on L2 approximations for the relative entropy

In this section we consider conservative approximations for the relative entropy sets. For this family of sets

the optimization infp∈P Ep[v] can solved to optimality in O(|S| log(|S|)) time.

Since log(1 + x) ≤ x for all x ∈ R, it follows that

D(p‖q) =
∑

s∈S

p(s) log
(p(s)
q(s)

)
≤
∑

s∈cS

(
p(s) · p(s)− q(s)

q(s)

)
=
∑

s∈S

(p(s)− q(s))2
q(s)

.

Thus, a conservative approximation for the uncertainty set defined in (39) is given by

P =
{
p ∈M(S) :

∑

s∈S

(p(s)− q(s))2
q(s)

≤ t
}
. (46)

Lemma 5 The value of optimization problem :

minimize Ep[v]

subject to p ∈ P =
{
p ∈M(S) :∑s∈S

(p(s)−q(s))2

q(s) ≤ t
}
,

(47)

is equal to

max
µ≥0

{
Eq[v − µ]−

√
tVarq[v − µ]

}
, (48)

and the complexity of (48) is O(|S| log(|S|)).

Proof: Let y = p − q. Then p ∈ P if and only if
∑

s
y2(s)
q(s) ≤ t,

∑
s y(s) = 0 and y ≥ −q. Thus, the value

of (47) is equal to

Eq[v] + minimize
∑

s y(s)v(s),

subject to
∑

s
y2(s)
q(s) ≤ t,

∑
s y(s) = 0,

y ≥ −q.

(49)

Lagrangian duality implies that the value of (49) is equal to

Eq[v] + max
µ≥0,γ≥0

min{
y:

∑
s
y2(s)
q(s)

≤t
}
{
−
∑

s∈S

µ(s)q(s) +
∑

s∈S

y(s)
(
v(s)− γ − µ(s)

)}

= max
µ≥0,γ≥0

{
Eq[v − µ]−

√
t
∑

s∈S

q(s)(v(s)− µ(s)− γ)2
}
, (50)

= max
µ≥0

{
Eq[v − µ]−

√
tVarq[v − µ]

}
. (51)

This establishes that the value of (47) is equal to that of (48).

The optimum value of the inner minimization in (50) is attained at

y∗(s) = −
√
tq(s)z(s)

‖z‖ , s ∈ S,
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where z(s) =
√
q(s)

(
v(s) − µ(s) − Eq[v − µ]

)
, s ∈ S. Let B =

{
s ∈ S : µ(s) > 0

}
. Then complementary

slackness conditions imply that y∗(s) = −q(s), for all s ∈ B, or equivalently,

v(s)− µ(s) = ‖z‖√
t
+ Eq[v − µ] = α, ∀s ∈ B, (52)

i.e. v(s)− µ(s) is a constant for all s ∈ B. Since the optimal value of (47) is at least vmin = mins∈S{v(s)},
it follows that α ≥ vmin.

Suppose α is known. Then the optimal µ∗ is given by

µ∗(s) =

{
v(s)− α, v(s) ≥ α,

0, otherwise.
(53)

Thus, dual optimization problem (48) reduces to solving for the optimal α. To this end, let {v̂(k) : 1 ≤
k ≤ |S|} denote the values {v(s) : s ∈ S} arranged in increasing order – an O(|S| log(|S|)) operation. Let q̂
denote the sorted values of the measure q.

Suppose α ∈ [v̂n, v̂n+1). Then

Eq[v − µ] = an + bnα, Varq[v − µ] = cn + bnα
2 + (an + bnα)

2,

where an =
∑

k≤n q̂(k)v̂(k), bn =
∑

k>n q̂(k) and cn =
∑

k≤n q̂(k)v̂
2(k). Note that, once the sorting is done,

computing {(an, bn, cn) : 1 ≤ n ≤ |S|} is O(|S|).
The dual objective f(α) as a function of α is

f(α) = Eq[v − µ]−
√
tVarq[v − µ],

= an + bnα−
√
t(cn + bnα2 − (an + bnα)2).

If α is optimal, it must be that f ′(α) = 0, i.e. α is root of the quadratic equation

b2n
(
cn + bnα

2 − (an + bnα)
2
)
= t
(
bn(1− bn)α− an

)2
(54)

Thus, the optimal α can be computed by sequentially checking whether a root of (54) lies in [vn, vn+1),

n = 1, . . . , |S|. Since this is an O(|S|) operation, we have that the overall complexity of computing a solution

of (48) is O(|S| log(|S|)).
Sets of conditional measures of the form (46) have also been investigated in Nilim and El Ghaoui (2002).

However, they do not identify these sets as inner, i.e. conservative, approximations of relative entropy sets.

Moreover, they are not able to solve the problem (47) – their algorithm is only able to solve (47) when the

set (46) is expanded to {p : 1T p = 1,
∑

s∈S
(p(s)−q(s))2

q(s) ≤ t}, i.e when the constraint p ≥ 0 is dropped.

4.3 Sets based on L1 approximation to relative entropy

From Lemma 12.6.1 in Cover and Thomas (1991), we have that

D(p‖q) ≥ 1

2 ln(2)
‖p− q‖21 ,

where ‖p− q‖1 is the L1-distance between the measures p, q ∈M(S). Thus, the set

P =
{
p : ‖p− q‖1 ≤

√
2 ln(2)t

}
, (55)

is an outer approximation, i.e. relaxation, of the relative entropy uncertainty set (39). To the best of our

knowledge, this family of sets has not been previously analyzed.
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Lemma 6 The value of optimization problem :

minimize Ep[v]

subject to p ∈ P =
{
p : ‖p− q‖1 ≤

√
2 ln(2)t

}
,

(56)

is equal to

Eq[v]− 1

2

(√
2 ln(2)t

)
min
µ≥0

{(
max
s
{v(s)− µ(s)} −min

s
{v(s)− µ(s)}

)}
, (57)

and the complexity of (57) is O(|S| log(|S|)).

Proof: Let y(s) = (p(s) − q(s)), s ∈ S. Then p ∈ P if and only if ‖y‖1 ≤
√

2 ln(2)t,
∑

s∈S y(s) = 0 and

y ≥ −q. Therefore, the value of (56) is equal to

Eq[v] + minimize
∑

s∈S y(s)v(s)

subject to ‖y‖1 ≤
√

2 ln(2)t,∑
s∈S y(s) = 0,

y ≥ −q.

From Lagrangian duality we have that the value of this optimization problem is equal to

Eq[v] + max
µ≥0,γ∈R

min
y:‖y‖1≤

√
2 ln(2)t

{
−
∑

s∈S

µ(s)q(s) +
∑

s∈S

y(s)(v(s)− µ(s)− γ)
}

= Eq[v] + max
µ≥0,γ∈R

{
−
∑

s∈S

µ(s)q(s)−
√

2 ln(2)t‖v − µ− γ1‖∞
}
,

= max
µ≥0

{
Eq[v − µ]− 1

2

√
2 ln(2)t

(
max
s
{v(s)− µ(s)} −min

s
{v(s)− µ(s)}

)}
.

Let µ∗ be the optimal dual solution and let α = maxs∈S{v(s)− µ∗(s)}. It is easy to see that

µ∗(s) =

{
v(s)− α, v(s) > α,

0, otherwise.

Thus, dual optimization problem (48) reduces to solving for the optimal α. To this end, let {v̂(k) : 1 ≤
k ≤ |S|} denote the values {v(s) : s ∈ S} arranged in increasing order – an O(|S| log(|S|)) operation. Let q̂
denote the sorted values of the measure q.

Suppose α ∈ [v̂n, v̂n+1). Then, the dual function f(α) is given by

f(α) = Eq[v − µ]− 1

2

√
2 ln(2)t

(
max
s
{v(s)− µ(s)} −min

s
{v(s)− µ(s)}

)
,

=
∑

k≤n

q̂(k)v̂(k) +
1

2

√
2t ln(2)v̂1 +

(∑

k>n

q̂(k)−
√

2 ln(2)t
)
α.

Since f(α) is linear, the optimal is always obtained at the end points. Thus, the optimal value of α is given

by

α = min
{
v̂(n) :

∑

k>n

q̂(k) <
√

2 ln(2)t
}
,

i.e. α can be computed in O(|S|) time.

See Nilim and El Ghaoui (2002) for other families of sets, in particular sets based on L∞ and L2 norms.

Although these families are popular in modeling, they do not have any basis in statistical theory. Conse-

quently, parameterizing these sets are nearly impossible. We, therefore, do not recommend using these sets

to model ambiguity in the transition probability.
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Figure 3: Robust stopping problem (|S| = 100, N = 10, m = 40)

5 Computational results

5.1 Robust finite horizon optimal stopping problems

Suppose the state transition matrix A of a Markov chain where known. Clearly, the non-robust policy

designed for A will then be superior to a robust policy designed for any set P containing A. The rationale

behind the robust formulation was that if there was an error in estimating A then the performance of the

policy designed for A will be significantly worse than a robust policy. In this section we investigate this

claim in the context of finite horizon optimal stopping problems.

In an optimal stopping problem the state evolves according to uncontrollable stationary Markov chain

M on a finite state space S. At each decision epoch t and each state s ∈ S, the decision maker has two

actions available: stop or continue. If the decision maker stops in state s at time t, the reward received is

gt(s), and if the action is to continue, the cost incurred is ft(s); and the state st+1 evolves according to M.

The problem has a finite time horizon N and, if the decision maker does not stop before N , the reward at

time N is h(s). Once stopped, the state remains in the stopped state, yielding no reward thereafter. The

objective is to choose a policy to maximize the total expected reward.

The experimental setup was as follows. Once the time horizon N and the size of the state space S was

selected, a transition matrix A was randomly generated. In order to keep the problem tractable we assumed

a bound on the number m of 1-step neighbors and ensured that A induced an irreducible Markov chain.

The rewards gt(s), the cost ft(s) and the terminal reward h(s) were all randomly generated.

A single sample path of length 100 |S|2 was generated according to the above (randomly selected) Markov

chain. This sample path was used to compute the maximum likelihood estimate Aml of the transition matrix.

We will call Aml the nominal Markov chain. The non-robust DP assumed that the underlying Markov chain

is governed by Aml. Let V
nr
0 denote the non-robust value function. The ambiguity in the transition matrix

was modeled by the relative entropy sets defined in (39). The ambiguity structure was applied independently

to each row of the transition matrix. For each ω ∈ {0.05, 0.01, . . . , 0.95} we computed the robust stopping

policy using the robust Bellman recursion (11). Let V r,ω
0 denote the robust value function corresponding to

the confidence level ω.

The first performance measure we consider is the loss associated with employing robust policies on the

nominal Markov chain. Clearly the non-robust value function V nr
0 is optimal value of the optimal stopping

problem defined on the nominal chain. Let V r,ω
0,ml denote the reward generated by robust policy corresponding
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Figure 4: Robust stopping problem (|S| = 100, N = 10, m = 80)
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Figure 5: Robust stopping problem (|S| = 200, N = 20, m = 80)

to the confidence level ω in the nominal chain. Clearly V nr
0 ≥ V r,ω

0,ml. We will call the ratio

M(ω) =

∑
s∈S V

r,ω
0,ml(s)∑

s∈S V
nr
0 (s)

,

the relative nominal performance of the robust policy. The ratio M(ω) measures the loss associated with

using a robust policy designed for a confidence level ω. ClearlyM(ω) ≤ 1 and we expect the ratio to decrease

as ω increases.

The second performance measure we consider is the worst case performance of the non-robust policy.

Define V nr
N,w = h. For t = 0, . . . , N − 1, define

V nr
t,w(s) = max

{
gt(s), ft(s) + inf

p∈P(s,ω)
Ep[V nr

t+1,w]
}
,

where P(s, ω) is the set of conditional measures for state s ∈ S corresponding to a confidence level ω. Thus,

V nr
0,w denotes the worst case value of the non-robust policy. We will call the ratio

R(ω) =

∑
s∈S V

r,ω
0 (s)∑

s∈S V
nr
0,w(s)

,

the relative worst-case performance of the robust policy. Since the robust policy optimizes the worst case
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value, R(ω) ≥ 1 and we expect the ratio to increase as ω increases. The ratio R(ω) measures the relative

gain associated with using the robust policy when the transition probabilities are ambiguous.

Figures 3-5 plot the relative nominal and worst case performance for three different simulation runs.

The plots show that the relative loss in nominal performance of the robust policy even at ω = 0.95 is

approximately 15%. On the other hand the worst case performance improves with ω and is greater than

250% at ω = 0.95. This behavior may be explained by the fact the robust and non-robust optimal policies

differ only on a few states in the entire trellis. Thus, the robust policy appears to be able to track the mean

behavior while at the same time improve the worst case behavior by altering the action in a small number of

critical states. The relative nominal performance appears to be fairly stable as a function of the time horizon

N , the size of the state space |S| and the number of 1-step neighbors m. These numerical experiments are

clearly quite preliminary. We are currently conducting experiments to further understand the relative merits

of the robust approach.

5.2 Robust infinite horizon dynamic programs

In this section we contrast the computational effort required to solve discounted infinite horizon robust and

non-robust DPs. This comparison is done by averaging the CPU time and the number of iterations required

to solve randomly generated problems. The details of the experiments are given below. All computations

were done in the MATLAB6.1 R12 computing environment and, therefore, only the relative values of the

run times are significant.

The first set of experiments compared the required computational effort as a function of the uncertainty

level. For this set of experiments, the size |S| of the state space was set to |S| = 500, the number of

actions |A(s)| was |A(s)| = 10, and the discount rate λ = 0.9. The rewards r(s, a, s′) were assumed to

be independent of the future state s′ and distributed uniformly over [0, 10]. The state transition was also

randomly generated. The ambiguity in the transition structure was assumed to be given by L2 approximation

to the relative entropy sets (see (46)).

For each value of ω = (0.05, 0.1, . . . , 0.95) the results were averages over N = 10 random instances. The

random instances were solved using both value iteration and policy iteration. The robust value iteration

followed the algorithm described in Figure 1 and was terminated once the difference between successive

iterates was less than τ = 10−6. However, the robust policy iteration did not entirely follow the algorithm

in Figure 2 – instead of solving (31), the value function of the policy πn was computed by iteratively solving

the operator equation (29).

The results for this set of experiments are shown in Table 1. The columns labeled iter display the number

of iterations and the columns marked time display the run time in seconds. From these results it is clear

that both the run times and the number of iterations is insensitive to ω. Both the non-robust and robust

DP require approximately the same number of iterations to solve the problem. However, the run time per

robust value iteration is close to twice that of the run time per non-robust value iteration.

The second set of experiments compared the run time as a function of size |S| of the state space. In

this set of experiments, the uncertainty level ε = 0.95 and the discount rate λ = 0.9. For each value of

|S| = 200, 400, . . . , 1000, the results were averaged over N = 10 random instances. Each random instance

was generated just as in the first set of experiments. As before, each instance was solved using both value

iteration and policy iteration.

The results for this set of experiments in shown in Table 2. From the results in the table, it appears that

the number of iterations is insensitive to the size |S|. Moreover, the robust and non-robust DP algorithms

require approximately the same number of iterations. Therefore, based on Lemma 5, we expect that the
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Value iteration Policy iteration

Non-robust Robust Non-robust Robust

ε iter time (sec) iter time (sec) iter time (sec) iter time (sec)

0.05 153.7 4.73 152.9 8.23 3.9 4.29 3.0 6.67

0.10 153.6 4.66 152.7 8.48 3.9 4.31 3.0 6.87

0.15 153.9 4.69 152.6 8.60 3.6 4.36 2.9 6.79

0.20 153.8 4.61 152.2 8.64 3.5 4.21 2.8 6.60

0.25 154.0 4.80 152.1 8.50 3.9 4.32 2.8 6.54

0.30 154.2 4.72 151.9 8.73 3.8 4.21 2.8 6.73

0.35 153.7 4.68 151.8 8.71 3.6 4.28 2.9 6.88

0.40 154.1 4.70 151.8 8.79 3.8 4.26 2.8 6.72

0.45 153.4 4.67 151.8 8.84 3.7 4.37 2.8 6.76

0.50 154.2 4.69 151.8 8.69 3.3 4.20 2.8 6.70

0.55 153.5 4.65 151.6 8.84 3.3 4.35 2.8 6.74

0.60 153.5 4.72 151.5 8.84 3.3 4.39 2.8 6.76

0.65 154.1 4.75 151.5 8.88 3.5 4.40 2.9 6.96

0.70 153.9 4.71 151.5 8.83 3.7 4.36 2.9 6.90

0.75 153.3 4.73 151.4 8.80 3.3 4.29 2.9 6.90

0.80 153.2 4.64 151.1 8.86 3.8 4.30 3.0 7.14

0.85 154.1 4.68 151.0 8.83 3.6 4.24 3.0 7.10

0.90 153.4 4.76 150.8 8.79 3.4 4.33 3.0 7.10

0.95 153.5 4.74 150.7 8.84 3.7 4.26 3.0 7.12

Table 1: Robust DP vs ε
(
|S| = 500, |A(s)| = 10, λ = 0.9

)

run time of robust DP is at most a logarithmic factor higher than the run time of the non-robust version.

Regressing the run time tv of the non-robust value iteration on the sample size |S|, we get

log(tv) ≈ 2.1832 log(|S|)− 11.6401

Regressing the run time tp of the non-robust policy iteration on the sample size |S|, we get that

log(tp) ≈ 2.0626 log(|S|)− 11.7612

The regression results are plotted in Figure 6. The upper plot corresponds to value iteration and the bottom

plot corresponds to policy iteration. The dotted line in both plots is the best fit line obtained by regression

and the solid line is the observed run times. Clearly the regression approximation fits the observed run times

very well.

In the upper plot of Figure 7, the solid line corresponds to log(trv), where trv is the observed run time

of robust value iteration, and the dotted line corresponds to the upper bound log(t̄rv) expected on the basis

of Lemma 5, i.e.

log(t̄rv) = log log(|S|) + log(tv),

= log log(|S|) + 2.1832 log(|S|)− 11.6401

Clearly, the expected upper bound dominates over the observed run times, i.e trv << tv log(|S|). In the

second plot of Figure 7 we plot log(trp), where trp is the run time of robust policy iteration, and the

corresponding expected upper bound log(t̄rp). Once again, the upper bound clearly dominates.
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Value iteration Policy iteration

Non-robust Robust Non-robust Robust

ε iter time (sec) iter time (sec) iter time (sec) iter time (sec)

200 154.2 1.000 153.6 0.710 3.4 0.480 3.5 0.329

400 154.3 3.840 153.7 5.350 3.3 1.720 3.4 2.421

600 153.6 9.420 153.4 17.654 3.1 3.960 3.4 7.939

800 154.8 19.180 153.6 42.129 3.2 7.320 3.6 19.939

1000 154.9 33.320 153.5 83.986 3.2 11.460 3.2 36.368

1200 153.8 49.480 153.2 143.217 3.5 17.860 3.7 68.953

1400 155.2 66.300 153.2 223.425 3.1 22.020 3.5 104.234

1600 154.2 87.040 153.6 337.874 3.6 33.680 3.5 157.546

1800 153.8 112.160 153.4 483.529 3.2 40.600 3.3 214.227

2000 154.2 136.360 153.7 649.510 3.5 55.340 3.8 322.526

Table 2: Robust DP vs |S|
(
|A(s)| = 10, ε = 0.95, λ = 0.9

)

These computational results are still preliminary and there are many unresolved issues. For example,

although the bounds dominate the run times of robust DP, the two lines appear to converge leading one to

believe that the bound may not hold for larger state spaces. However, recall that the bounds are constructed

using linear regression and, therefore, there is the possibility that the bound will shift upward when larger

state spaces are considered. The codes for both non-robust and robust DP needs to be optimized before one

can completely trust the run times and iterations.

6 Conclusion

In this paper we propose a robust formulation for the discrete time DP. This formulation attempts to mitigate

the impact of errors in estimating the transition probabilities by choosing a maximin optimal policy, where

the minimization is over a set of transition probabilities. This set summarizes the limited knowledge that

the decision maker has around the transition probabilities of the underlying Markov chain. A natural

family of sets describing the knowledge of the decision maker are the confidence regions about the maximum

likelihood estimates of the transition probability. This family of sets was first introduced in Nilim and El

Ghaoui (2002). Since these confidence regions are described in terms of the relative entropy or the Kullback-

Liebler distance, we are led to the sets described in Section 4.1. The family of relative entropy based sets

can be easily parameterized by setting the desired confidence level. We also introduce two other families of

sets that are approximations of the relative entropy based sets.

Since the transition probabilities are ambiguous, every policy now has a set of measures associated with it.

We prove that when this set of measures satisfies a certain Rectangularity property most of important results

in DP theory, such as the Bellman recursion, the optimality of deterministic Markov policies, the contraction

property of the value iteration operator, etc., extend to natural robust counterparts. On the computational

front, we show that the the computational effort required to solve the robust DP corresponding to sets of

conditional measures based on confidence regions is only modestly higher than that required to solve the

non-robust DP. Our preliminary computational results appear to confirm this experimentally. While parts

of the theory presented in this paper have been addressed by other authors, we provide a unifying framework

for the theory of robust DP.
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Figure 6: Regression results for non-robust DP run times

The robust value function V ∗ provides a lower bound on the achievable performance; one can also define

an optimistic value function V̄ ∗ that provides an upper bound on the achievable performance. All the results

in this paper imply corresponding results for the optimistic value function, i.e. in particular there is value

iteration and a policy iteration algorithm that efficiently characterizes the optimistic value function.

Some unresolved issues that remain are as follows. The computational results presented in this paper are

very preliminary. While the initial results are promising, more experiments need to be performed in order

to better understand the performance of robust DP on practical examples. As indicated in the introduction,

we restricted our attention to problems where the non-robust DP is tractable. In most of the interesting

applications of DP, this is not the case and one has to resort to approximate DP. One would, therefore,

be interested in developing the robust counterpart of approximate DP. Such an approach might be able to

prevent instabilities observed in approximate DP (Bertsekas and Tsitsiklis, 1996).
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A Consequences of Rectangularity

We will begin with an example that illustrates the inappropriateness of the Rectangularity in a finite horizon

setting. This example is a dynamic version of the Ellsberg Urn problem (Ellsberg, 1961) discussed in Epstein

and Schneider (2001).

Suppose an urn contains 30 red balls and 60 balls that are either blue or green. At time 0 a ball is drawn

from the urn and the the color of the ball is revealed at time t = 2. At the intermediate time t = 1 the

decision maker is told whether the drawn ball is green. Thus, the state transition structure is as shown in

Figure 8 where pb = P{ball is blue}.
Suppose pb ∈ [p, p] ⊆ [0, 2/3] is ambiguous. Consider the robust optimal stopping problem where the
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Figure 7: Run times of robust DP and corresponding bounds
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state transition is given by Figure 8. In each state s ∈ St at time t = 0, 1 there are are two actions {s, c}
available, where c denotes continue and s denotes stop. Let π̄ = (d̄0, d̄1) denote the policy that chooses the

deterministic action c in every state s ∈ St, t = 0.1. Then the state-transition structure in Figure 8 implies

that the conditional measures consistent with the decision rules d̄i, i = 0, 1 are given by

T d̄0 =
{(
p(s11 | s01), p(s12 | s01)

)
= (1/3 + α, 2/3− α) : α ∈ [p, p]

}
,

T d̄1 =

{(
p(s21 | s11), p(s22 | s11)

)
=

(
1/3

1/3 + α
,

α

1/3 + α

)
, p(s22 | s12) = 1 : α ∈ [p, p]

}
.

Thus,

T d̄0 × T d̄1 =

{ (
p(s11 | s01), p(s12 | s01)

)
= (1/3 + α, 2/3− α) ,

(
p(s21 | s11), p(s22 | s11)

)
=
(

1/3
1/3+α′ ,

α′

1/3+α′

)
, p(s22 | s12) = 1

: α, α′ ∈ [p, p]

}
,
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where α and α′ need not be equal. However, the set of measures T π̄ consistent with the policy π̄ satisfies

T π̄ =

{ (
p(s11 | s01), p(s12 | s01)

)
= (1/3 + α, 2/3− α) ,(

p(s21 | s11), p(s22 | s11)
)
=
(

1/3
1/3+α ,

α
1/3+α

)
, p(s22 | s12) = 1

: α ∈ [p, p]

}
,

6= T d̄0 × T d̄1 .

The problem arises because the information structure in Figure 8 assumes that there is a single urn that

decides that conditional measures at both epochs t = 0, 1; whereas, Rectangularity demands that the con-

ditional measures at epochs t = 0, 1 be independent, i.e. in this case, they should be determined by an

independent copy of the urn used at t = 0.

Assuming that Rectangularity holds in this setting is equivalent to assuming that apriori distribution on

the composition of the urn is given by

(pr, pb, pg) ∈ P =

{
1

3

(
1/3 + α

1/3 + α′

)
, α′

(
1/3 + α

1/3 + α′

)
,
2

3
− α

}
.

A very counterintuitive prior indeed ! This example clearly shows that Rectangularity may not always be an

appropriate property to impose on an AMDP. Inspite of the counterexample above, Rectangularity is often

appropriate for finite horizon AMDPs because the sources of the ambiguity in different periods are typically

independent of each other.

Rectangularity implies that the adversary is able to choose a different conditional measure every time a

state-action pair (s, a) is encountered. This adversary model should not raise an alarm in a finite horizon

setting where a state-action pair is never revisited. However, the situation is very different in a infinite horizon

setting where a state-action can be revisited. In this setting the Rectangularity may not be appropriate

situations where there is ambiguity but the transition probabilities are not dynamically changing. Deciding

whether Rectangularity is appropriate can often be a function of the time scale of events. Suppose one is

interested in a robust analysis of network routing algorithms where the action in each node is the choice

of the outgoing edge and the ambiguity is with respect to the delay on the network edges. For a traffic

network the Rectangularity assumption might be appropriate because the time elapsed in returning to a

node is sufficiently long so that the parameters could have shifted. On the other hand, for data networks

that operate at much higher speeds the ambiguity might be evolve on a slower time scale, and therefore,

Rectangularity might not be appropriate. On a positive note, Lemma 3 shows that the problems with

Rectangularity disappear if one restricts the decision maker to stationary policies.
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