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Classical formulations of the portfolio optimization problem, such as mean-variance or Value-at-Risk (VaR) approaches, can result in a
portfolio extremely sensitive to errors in the data, such as mean and covariance matrix of the returns. In this paper we propose a way to
alleviate this problem in a tractable manner. We assume that the distribution of returns is partially known, in the sense that only bounds
on the mean and covariance matrix are available. We define the worst-case Value-at-Risk as the largest VaR attainable, given the partial
information on the returns’ distribution. We consider the problem of computing and optimizing the worst-case VaR, and we show that these
problems can be cast as semidefinite programs. We extend our approach to various other partial information on the distribution, including
uncertainty in factor models, support constraints, and relative entropy information.
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1. INTRODUCTION

We consider a one-period portfolio optimization problem.
Over the period, the percentage return of asset i is equal
to xi, with x modeled as a random n-vector. For a given
allocation vector w, the total return of the portfolio is the
random variable

r�w�x�=
n∑
i=1

wixi = wTx	

The investment policies are constrained. We denote by �
the set of admissible portfolio allocation vectors. We assume
that � is a bounded polytope that does not contain 0.
The basic optimal investment problem is to choose

w ∈� to make the return high while keeping the associ-
ated risk low. Depending on how we define the risk, we
come up with different optimization problems.

1.1. Some Classical Measures of Risk

In the Markowitz approach (see Markowitz 1952,
Luenberger 1999), it is assumed that the mean x̂ and covari-
ance matrix 
 of the return vector are both known, and risk
is defined as the variance of the return. Minimizing the risk
subject to a lower bound on the mean return leads to the
familiar problem

minimize wT
w subject to x̂Tw��� w∈� � (1)

where � is a pre-defined lower bound on the mean return.

The Value-at-Risk (VaR) framework (see, for example,
Linsmeier and Pearson 1996) instead looks at the proba-
bility of losses. The VaR is defined as the minimal level
� such that the probability that the portfolio loss −r�w�x�
exceeds � is below 
:

V �w�=min� subject to Prob�� �−r�w�x��� 
�

where 
 ∈ �0�1� is given (say, 
 � 2%). In contrast to the
Markowitz framework, which requires the knowledge of
the first and second moments of the distribution of returns
only, the VaR above assumes that the entire distribution is
perfectly known. When this distribution is Gaussian, with
given mean x̂ and covariance matrix 
 , the VaR can be
expressed as

V �w�= ��
�
√
wT
w− x̂Tw� (2)

where ��
�=−�−1�
�.
In practice, the distribution of returns is not Gaussian.

One then can use the Chebyshev bound to find an upper
bound on the probability that the portfolio loss −r�w�x�
exceeds �. This bound is based on the sole knowledge of
the first two moments of the distribution, and results in the
formula (2), where now ��
� = 1/

√

. In fact, the classi-

cal Chebyshev bound is not exact, meaning that the upper
bound is not attained; we can replace it by its exact ver-
sion, as given by Bertsimas and Popescu (2000) by simply
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setting ��
� = √
�1− 
�/
 (we will also obtain this result

in §2.1).
In all the above cases, the problem of minimizing the

VaR over admissible portfolios adopts the following form:

minimize �
√
wT
w− x̂Tw subject to w ∈� � (3)

where � is an appropriate “risk factor,” which depends
on the prior assumptions on the distribution of returns
(Gaussian, arbitrary with given moments, etc.). When �� 0
(which in the Gaussian case is true if and only if 
 ∈ �0� 12 �),
V �w� is a convex function of w, and the above problem
can easily be solved globally using, for example, interior-
point techniques for convex, second-order cone program-
ming (SOCP; see, e.g., Lobo et al. 1998).
The classical frameworks may not be appropriate for

several reasons. Clearly, the variance is not an appropriate
measure of risk when the distribution of returns exhibits
“fat” tails. On the other hand, the exact computation of
VaR requires a complete knowledge of the distribution.
Even with that knowledge in hand, the computation of
VaR amounts to a numerical integration in a possibly high
dimensional space, which is computationally cumbersome.
Furthermore, numerical techniques such as Monte-Carlo
simulation (Linsmeier and Pearson 1996) are not easily
extended to portfolio design.

1.2. The Problem of Data Uncertainty

Despite their shortcomings, the above frameworks do pro-
vide elegant solutions to risk analysis and portfolio design.
However, they suffer from an important drawback, which is
perhaps not so well recognized: These approaches require
a perfect knowledge of the data, in our case the mean and
covariance matrix. In practice, the data are often prone
to errors. Portfolio optimization based on inaccurate point
estimates may be highly misleading—meaning, for exam-
ple, that the true VaR may be widely worse than the opti-
mal computed VaR. This problem is discussed extensively
by Black and Litterman (1992), who propose a method to
combine the classical Markowitz approach with a priori
information or “investor’s views” on the market, and by
Pearson and Ju (1999).
Errors in the mean and covariance data may have several

origins. It may be difficult to obtain statistically meaningful
estimates from available historical data; this is often true
for the means of stock returns (Black and Litterman 1992).
These possibly large estimation errors contribute to a hid-
den, “numerical” risk not taken into account in the above
risk measures. Note that most statistical procedures pro-
duce bounds of confidence for the mean vector and covari-
ance matrix; the frameworks above do not use this crucial
information.
Another source of data errors comes from modelling

itself. To use the variance-covariance approach for com-
plex portfolios, one has to make a number of simplifica-
tions, a process referred to as “risk mapping” in Linsmeier
and Pearson’s (1996) paper. Thus, possibly large modelling

errors are almost always present in complex portfolios. We
discuss these errors in more detail in §3.
Yet another source of data perturbations could be the user

of the Value-at-Risk system. In practice, it is of interest to
“stress test” Value-at-Risk estimates, to analyze the impact
of different factors and scenarios on these values (Pritsker
1997). It is possible, of course, to come up with a (finite)
number of different scenarios and compute the correspond-
ing VaR. (We will return to this problem in §2.3.) However,
in many cases, one is interested in analyzing the worst-case
impact of possibly continuous changes in the correlation
structure, corresponding to an infinite number of scenarios.
Such an endeavour becomes quickly intractable using the
(finite number of) scenarios approach.

1.3. The Worst-Case VaR

In this paper, our goal is to address some of the issues
outlined above in a numerically tractable way. To this end
we introduce the notion of worst-case VaR.
Our approach is to assume that the true distribution of

returns is only partially known. We denote by � the set
of allowable distributions. For example, � could consist of
the set of Gaussian distributions with mean x̂ and covari-
ance matrix 
 , where x̂ and 
 are only known up to given
componentwise bounds.
For a given loss probability level 
 ∈ �0�1�, and a given

portfolio w ∈ � , we define the worst-case Value-at-Risk
with respect to the set of probability distributions � as

V��w� �=min� subject to

supProb�� �−r�w�x��� 
� (4)

where the sup in the above expression is taken with respect
to all probability distributions in �. The corresponding
robust portfolio optimization problem is to solve

V
opt
� �=minV��w� subject to w ∈� 	 (5)

The VaR based on the (exact) Chebyshev bound is a special
case of the above, with � the set of probability distributions
with given mean and covariance.

1.4. Main Results and Paper Outline

Our main result is that, for a large class of allowable prob-
ability distribution sets �, the problem of computing and
optimizing the worst-case VaR can be solved exactly by
solving a semidefinite programming problem (SDP). SDPs
are convex, finite dimensional problems for which very effi-
cient, polynomial-time interior-point methods, as well as
bundle methods for large-scale (sparse) problems, became
available recently. For a review of SDP see, for example,
Nesterov and Nemirovsky (1994), Vandenberghe and Boyd
(1996), or Saigal et al. (2000).
When the mean and covariance matrix are uncertain but

bounded, our solution produces not only the worst-case
VaR of an optimal portfolio, but at the same time computes
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a positive semidefinite covariance matrix and a mean vector
that satisfy the bounds and that are optimal for our problem.
Thus, we select the covariance matrix and the mean vector
that is the most prudent for the purpose of computing or
optimizing the VaR.
Some of the probability distribution sets � we consider,

specifically those involving support information, lead to
seemingly untractable (NP-hard) problems. We show how
to compute upper bounds on these problems via SDP.
Lobo and Boyd (1999) were the first to address the

issue of worst-case analysis and robustness with respect
to second-order moment uncertainty, in the context of the
Markowitz framework. They examine the problem of min-
imizing the worst-case variance with (componentwise or
ellipsoidal) bounds on moments. They show that the com-
putation of the worst-case variance is a semidefinite pro-
gram, and produce an alternative projections algorithm ade-
quate for solving the corresponding portfolio allocation
problem. Similarly, the paper by Halldórsson and Tütüncü
(2000) discusses a robust formulation of Marikowitz’s
problem with componentwise bounds on mean and covari-
ance matrix and presents a polynomial time interior-point
algorithm for solving it. Our paper extends these results
to the context of VaR, with various partial information on
the probability distribution. After our first draft was com-
pleted, we learned of several more works in the area of
robust portfolio optimization. Costa and Paiva (2001) con-
sider the problem of robust portfolio selection for tracking
error with the polytopic uncertainty in the mean and covari-
ance matrix of asset returns. They formulate the problem
as an SDP, although as we show in §2.3, it is possible to do
it using SOCP. In their recent paper, Goldfarb and Iyengar
(2001) develop a robust factor model for the asset returns,
similarly to our approach in §3. For the uncertainty struc-
tures they consider, they’re able to formulate several robust
portfolio selection problems as SOCPs.
In our approach, we were greatly inspired by the recent

work of Bertsimas and Popescu (2000), who also use SDP
to find (bounds for) probabilities under partial probability
distribution information and apply this approach to option
pricing problems (see Berstimas and Popescu 1999). To
our knowledge, these papers are the first to make and
exploit explicit connections between option pricing and
SDP optimization.
The paper is organized as follows. In §2, we consider the

problem of worst-case VaR when the mean and covariance
matrix are both exactly known, then extend our analysis to
cases when the mean and covariance (or second-moment)
matrix are known only within a given convex set. We then
specialize our results to two kinds of bounds: polytopic and
componentwise. In §3, we examine uncertainty structures
arising from factor models. We show that uncertainty on
the factor’s covariance data, as well as on the sensitivity
matrix, can be analyzed via SDP, via an upper bound on the
worst-case VaR. Section 4 is devoted to several variations
on the problems examined in §2: exploiting support infor-
mation, ruling out discrete probability distributions via rela-

tive entropy constraints, handling multiple VaR constraints.
We provide a numerical illustration in §5.

2. WORST-CASE VAR WITH MOMENT
UNCERTAINTY

In this section, we address the problem of worst-case VaR
in the case when the moments of the returns’ probability
distribution are only known to belong to a given set, and
the probability distribution is otherwise arbitrary.

2.1. Known Moments

To lay the ground work for our future developments, we
begin with the assumption that the mean vector x̂ and
covariance matrix 
 of the distribution of returns are known
exactly. For two n×n symmetric matrices A�B ∈�n, A�B
(resp. A 	 B) means A−B is positive semidefinite (resp.
definite). We assume that 
 	 0, although the results can be
extended to rank-deficient covariance matrices. We denote
by � the second-moment matrix:

��=E

[
x

1

][
x

1

]T
=
[
S x̂

x̂T 1

]
� where S �=
+ x̂x̂T	 (6)

From the assumption 
 	 0, we have �	 0.
The following theorem provides several equivalent repre-

sentations of the worst-case VaR when moments are known
exactly. Each one will be useful later for various cases of
moment uncertainty. For symmetric matrices of the same
size, �A�B� = Tr�AB� denotes the standard scalar product
in the space of symmetric matrices.

Theorem 1. Let � be the set of probability distribu-
tions with mean x̂ and covariance matrix 
 	 0. Let 
 ∈
�0�1� and � ∈ R be given. The following propositions are
equivalent.
1. The worst-case VaR with level 
 is less than �, that is,

supProb�� �−r�w�x��� 
�

where the sup is taken with respect to all probability dis-
tributions in �.
2. We have

��
�

 1/2w
2− x̂Tw � �� (7)

where

��
� �=
√
1− 




	 (8)

3. There exist a symmetric matrix M ∈ �n+1 and � ∈ R
such that

�M���� �
� M � 0� � � 0�

M +
[
0 w

wT −�+2�

]
� 0� (9)

where � is the second-moment matrix defined in
Equation (6).
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4. For every x ∈ Rn such that[

 x− x̂

�x− x̂�T ��
�2

]
� 0� (10)

we have −xTw � �.
5. There exist � ∈�n and v ∈ R such that

���
�+��
�2v− x̂Tw � ��

[
� w/2

wT/2 v

]
� 0	 (11)

Let us comment on the above theorem. The equivalence
between Propositions 1 and 2 will be proved below, but
can also be obtained as an application of the (exact) multi-
variate Chebyshev bound given in Bertsimas and Popescu
(2000). This implies that the problem of optimizing the
VaR over w ∈� is equivalent to

minimize ��
�
√
wT
w− x̂Tw subject to w∈� 	 (12)

As noted in the introduction, this problem can be cast
as a second-order cone programming problem. SOCPs are
special forms of SDPs that can be solved with efficiency
close to that of linear programming (see, e.g., Lobo et al.
1998).
The equivalence between Propositions 1 and 3 in the

above theorem is a consequence of duality (in an appropri-
ate sense; see proof below).
Note that proposition 4 implies that the worst-case VaR

can be computed via the SDP in variable x

V��w�=max −xTw� subject to Condition �10�	

The above provides a deterministic, or “game-theoretic,”
interpretation of theVaR. Indeed, since 
 	 0, Condition (10)
is equivalent to x ∈ �, where � is the ellipsoid

� = �x � �x− x̂�T
−1�x− x̂�� ��
�2�	

Therefore, the worst-case VaR can be interpreted as the
maximal loss −xTw when the returns are deterministic,
known to belong to �, and are otherwise unknown.
Expression (11) for the worst-case VaR allows us to opti-

mize it by making w a variable. This is a SDP solution to
the worst-case VaR optimization problem, which of course
is not competitive, in the case of known moments, with
the SOCP formulation (12). However, this SDP formula-
tion will prove useful because it can be extended to the
more general cases seen in §2.2, while the SOCP approach
generally cannot.

Proof of Theorem 1. We first prove the equivalence
between Propositions 1 and 3, then show that the latter is
equivalent to 2. Proposition 4 is straightforwardly equiv-
alent to the analytical formulation given in Proposition 2.
Finally, the equivalence between Propositions 4 and 5 fol-
lows from simple SDP duality.
Computing the worst-case probability. We begin with

the problem of computing the worst-case probability for a

fixed loss level �. We introduce the Lagrange functional
for �p�M� ∈��Rn�×�n+1

��p�M�=
∫
Rn
�� �x�p�x�dx

+
〈
M��−

∫
Rn

[
x
1

][
x
1

]T
p�x�dx

〉
�

where �A�B� = Tr�AB� denotes the scalar product in the
space of symmetric matrices, M =MT is a Lagrange mul-
tiplier matrix, and �� is the indicator function of the set

� = �x � � �−xTw�	 (13)

Because �	 0, strong duality holds (Smith 1995, Bonnans
and Shapiro 2000). Thus, the original problem is equivalent
to its dual. Hence, the worst-case probability is

!wc = inf
M=MT

!�M�� (14)

where !�M� is the dual function

!�M�= sup
p∈��Rn�

��p�M�

= �M���+ sup
p

∫
Rn
��� �x�− l�x��p�x�dx�

and l�x� is the quadratic function

l�x�= #xT 1�M#xT 1�T	 (15)

We have

!�M�= sup
p

��p�M�

=
{
�M��� if �� �x�� l�x� for every x�

+� otherwise.

The dual function is finite if and only if
C.1: l�x�� 0 for every x ∈ Rn;
C.2: l�x�� 1 for every x ∈ Rn such that �+xTw � 0.
Condition C.1 is equivalent to the semidefinite pos-

itiveness of the quadratic form: M � 0. In addition,
Condition C.2 holds if there exist a scalar � � 0 such
that, for every x, l�x� � 1− 2��� + xTw�. Indeed, with
condition C.1 in force, an application of the classical strong
duality result for convex programs under the Slater assump-
tion (Hiriart-Urruty and Lemaréchal 1993) shows that the
above condition is sufficient, provided there exist a x0 such
that �+ xT0w < 0, which is the case here because w ∈ �
and � does not contain 0. We obtain that conditions C.1,
C.2 are equivalent to:

There exist a ��0 such that: M�0�

M+
[
0 �w

�wT −1+2��

]
�0	
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Thus the worst-case probability (14) is the solution to the
SDP in variables M�� :

inf�M��� subject to � � 0� M � 0�

M +
[
0 �w

�wT −1+2��

]
� 0	

Computing the worst-case VaR as an SDP. We obtain
that the worst-case VaR can be computed as

V��w�= inf �

subject to �M���� 
� � � 0� M � 0�

M +
[
0 �w

�wT −1+2��

]
� 0	 (16)

It can be shown (see El Ghaoui et al. 2000) that the
�-components of optimal solutions (whenever they exist)
of Equation (16) are uniformly bounded from below by
a positive number. This allows us to divide by � in the
matrix inequality above, replace 1/� by � , and M/� , w/�
by M�w, and obtain the SDP in variables ��M��:

V��w�= inf ��

subject to �M���� �
� � � 0� M � 0�

M +
[
0 w

wT −�+2�

]
� 0	 (17)

Analytical formula for the worst-case VaR. Finally, we
show that the SDP (17) yields the analytical formula (7).
We first find the dual, in the sense of SDP duality, of the
SDP (17). Define the Lagrangian

��M�����%���X�Y �= �−%��
−�M����
−��−�X�M�

−
〈
Y �M +

[
0 w

wT −�+2�

]〉
�

so that

V��w�= inf
M=MT� ���

sup
%�0���0�X�0� Y�0

��M�����%���X�Y �	

Partition the dual variable Y as follows:

Y =
[
Z m

mT *

]
	

We obtain the dual problem in variables X�Z�m�*�%:

sup−2mTw�

subject to * = 1/2� %
+�−* = 0� %� 0�

�� 0� %�= X+Y � X � 0�

Y =
[

Z m

mT *

]
� 0	

The above dual problem is strictly feasible and the feasi-
ble set is bounded. Therefore, strong duality holds and both
primal and dual values are attained. Eliminating the vari-
ables ��*�X yields

V��w�=max −2mTw�

subject to 0� %�
1
2

� %�� Y =

[
Z m

mT 1/2

]
� 0	

Note that the constraint on Y imply % � 1/2 > 0.
Therefore, we make the change of variables �Z�m�%�→
�V � v� y� with V = Z/%, v = m/%, y = 1/2% ∈ #
�1�. We
obtain

V��w�=max −
vTw

y
�

subject to ��
[
V v
vT y

]
� 0� 
 � y � 1	 (18)

If y = 1, we have v= x̂ and the objective of the problem is
−x̂Tw. Assume now that y < 1. In view of our partition of
� given in Equation (6), the matrix inequality constraints
in Problem (18) are equivalent to

S− 1
1−y

�x̂−v��x̂−v�T � V � 1
y
vvT	

The above constraint holds for some V � 0 if and only if

S � 1
1−y

�x̂−v��x̂−v�T+ 1
y
vvT� (19)

or, equivalently,


 = S− x̂x̂T � 1
y�1−y�

�v−yx̂��v−yx̂�T	 (20)

The dual problem now becomes

V��w�=max
v�y

−vTw

y
�

subject to S− x̂x̂T� 1
y�1−y�

�v−yx̂��v−yx̂�T�

y∈ #
�1�	
Denote by -�y� the objective of the problem with y < 1
fixed. We have for y < 1

-�y�=
√
1−y

y


 1/2w
2− x̂Tw	

The above expression is valid for y= 1. Maximizing over y

max

�y�1

-�y�=
√
1− 






 1/2w
2− x̂Tw	

We thus have y= 
 at the optimum. This proves expression
(7) for the worst-case VaR. �
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2.2. Convex Moment Uncertainty

We now turn to the case when �
� x̂� are only known
to belong to a given convex subset � of �n ×Rn, and
the probability distribution is otherwise arbitrary. � could
describe, for example, upper and lower bounds on the
components of x̂ and 
 . We assume that there is a point
�
� x̂� in � such that 
 	 0. (Checking this assumption
can be done easily, as seen later.) We denote by �+ the
set ��
� x̂� ∈ � � 
 	 0�. Finally, we assume that �+ is
bounded. We denote as before by � the corresponding set
of probability distributions.
In view of the equivalence between Propositions 1 and 3

of Theorem 1, we obtain that the worst-case VaR is less
than � if and only if, for every x ∈ Rn and �
� x̂� ∈ �+
such that Condition (10) holds, we have −xTw � �. It thus
suffices to make 
 and x̂ variables in the above conditions,
to compute the worst-case VaR:

V��w�= sup−xTw subject to �
� x̂� ∈�+� �10�	

Because 
 � 0 is implied by Condition (10), and the “sup”
over a set (here, �+) is the same as the “sup” over its
closure, we can replace �+ by � in the above, and the
“sup” then becomes a “max” because � is bounded. We
thus have the following result.

Theorem 2. When the distribution of returns is only
known to have a mean x̂ and a covariance matrix 
 belong
to a set � (�x̂� 
� ∈ �), and is otherwise arbitrary, the
worst-case Value-at-Risk is the solution of the optimization
problem in variables 
� x̂� x:

max −xTw subject to �
� x̂� ∈��[

 x− x̂

�x− x̂�T ��
�2

]
� 0� (21)

where ��
� is given in Equation (8).

Solving Problem (21) yields a choice of mean vector x̂
and covariance matrix 
 that corresponds to the worst-case
choice consistent with the prior information �
� x̂� ∈ �.
This choice is therefore the most prudent when the mean
and covariance matrix are only known to belong to �, and
the probability distribution is otherwise arbitrary.
To optimize over the allocation vector w, we consider

the problem

V
opt
� =min

w∈�
max
x�x̂�


−xTw

subject to �x̂�
�∈��
[


 x− x̂

�x− x̂�T ��
�2

]
�0	 (22)

We obtain an alternative expression of the worst-case
VaR, using the formulation (11). A given � is an upper
bound on the worst-case VaR if and only if for every
�
� x̂� ∈� with 
 	 0, there exist ��v such that Formula-
tion (11) holds. Thus, the worst-case VaR is given by the

max-min problem

max

� x̂

min
��v

���
�+��
�2v− x̂Tw

subject to

[
� w/2

wT/2 v

]
� 0�

�x̂� 
� ∈�� 
 � 0	 (23)

The feasible set in the above problem is compact and con-
vex, and the objective is linear in 
� x̂ for fixed ��v (and
conversely). It follows that we can exchange the “min” and
“max” and optimize (over w) the worst-case VaR by solv-
ing the min-max problem

min
��v�w

max

� x̂

���
�+��
�2v− x̂Tw

subject to

[
� w/2

wT/2 v

]
� 0�

�x̂� 
� ∈�� 
 � 0� w ∈� 	 (24)

The above problem can be interpreted as a game, where the
variables ��v seek to decrease the VaR while the variables

� x̂ oppose to it. Note that in the case when � is not
convex, the above is an upper bound on the worst-case VaR
given by Equation (23).

Theorem 3. When the distribution of returns is only
known have a mean x̂ and a covariance matrix 
 such that
�x̂� 
� ∈�, where � is convex and bounded and the prob-
ability distribution is otherwise arbitrary, the worst-case
Value-at-Risk can be optimized by solving the optimization
problem in variables 
� x̂� x (22). Alternatively, we can
solve the “min-max” Problem (24).

The tractability of Problem (22) depends on the structure
of sets � and � . When both sets are described by linear
matrix inequalities in x̂, 
 and w, the resulting problem
can be expressed explicitely as an SDP. The “min-max”
formulation is useful when we are able to explicitely solve
the inner maximization problem, as will be the case in the
next sections.

2.3. Polytopic Uncertainty

As a first example of application of the convex uncertainty
model, we discuss the case when the moment pair �x̂� 
�
is only known to belong to a given polytope, described by
its vertices. Precisely, we assume that �x̂� 
� ∈�, where �
is the convex hull of the vertices �x̂1� 
1�� 	 	 	 � �x̂l� 
l�

�= Co��x̂1� 
1�� 	 	 	 � �x̂l� 
l��� (25)

where the vertices �x̂i� 
i� are given. Again, let � denote
the set of probability distributions that have a mean-
covariance matrix pair �x̂� 
� ∈ �, and are otherwise
arbitrary.
We can compute the worst-case VaR in this case, and

optimize it, as a simple application of the general results of
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§2.2. The matrix-vector pair �x̂� 
� is made a variable in the
analysis Problem (21) or the portfolio optimization Problem
(22). Denoting by . the vector containing the independent
elements of x̂ and 
 , we can express . as

. =
l∑

i=1
/i.i�

l∑
i=1

/i = 1� /� 0�

where .i corresponds to the vertex pair �x̂i� 
i�. The result-
ing optimization Problem (21) or (22) is a semidefinite pro-
gramming problem involving the vector variable /.
It is interesting to examine the case when the mean

and covariance matrix are subject to independent polytopic
uncertainty. Precisely, we assume that the polytope � is the
direct product of two polytopes: �=�x×�
 , where

�x �=Co�x̂1�			 �x̂l�⊆Rn� �
 �=Co�
1�			 �
l�⊆�n	

(We have assumed for simplicity that the number of ver-
tices of each polytope is the same.) Assuming that 
i � 0,
i = 1� 	 	 	 � l, the worst-case VaR is attained at the vertices.
Precisely,

V��w�= ��
�
√
max

∈�


wT
w−min
x̂∈�x

x̂Tw

= max
1�i�l

��
�

 1/2i w
2− min
1�i�l

x̂Ti w	

Thus, the polytopic model yields the same worst-case VaR
as in the case when the uncertainty in the mean and covari-
ance matrix consists in a finite number of scenarios.
With the previous polytopic model, the computation

of V� is straightforward. Moreover, its optimization with
respect to the portfolio allocation vector w is also very effi-
cient. The optimization problem

min
w∈�

V��w�

can be formulated as the second-order cone program in
variables w�%�0:

min
w∈�

%−0 subject to ��
�

 1/2i w
2 � %�

0� x̂Ti w� i = 1� 	 	 	 � l	
As discussed in Lobo et al. (2000), this problem can
be solved in a number of iterations (almost) indepen-
dent of problem size, and each iteration has a complex-
ity O�ln3�. Thus, the complexity of the problem grows
(almost) linearly with the number of scenarios.
The previous result is useful when the number of differ-

ent scenarios is moderate; however, the problem becomes
quickly intractable if the number of scenarios grows expo-
nentially with the number of assets. This would be the case
if we were interested in a covariance matrix whose entries
are known only within upper and lower values. In this case,
it is more interesting to describe the polytope � by its
facets rather than its vertices, as is done next.

2.4. Componentwise Bounds on Mean and
Covariance Matrix

We now specialize the results of §2.2 to the case when 
� x̂
are only known within componentwise bounds:

x−� x̂ �=Ex�x+� 
−�
 �=E�x− x̂��x− x̂�T�
+� (26)

where x+� x− and 
+� 
− are given vectors and matri-
ces, respectively, and the inequalities are understood
componentwise.
The interval matrix #
−� 
+� is not necessarily included

in the cone of positive semidefinite matrices: Not all of its
members may correspond to an actual covariance matrix.
We will, however, assume that there exist at least one
nondegenerate probability distribution such that the above
moment bounds hold; that is, there exist a matrix 
 	 0
such that 
− � 
 � 
+. (Checking if this condition holds,
and if so, exhibiting an appropriate 
 , can be solved very
efficiently, as seen below.) The problem of computing the
worst-case VaR reduces to

maximize −xTw
subject to x− � x̂ � x+� 
− � 
 � 
+�[


 x− x̂

�x− x̂�T ��
�2

]
� 0� (27)

Note that the SDP (27) is strictly feasible if and only if
there exist 
 	 0 such that Equation (26) holds. In prac-
tice, it may not be necessary to check this strict feasibility
condition prior to solving the problem. SDP codes such as
SeDuMi (Sturm 1998) produce, in a single phase, either an
optimal solution or a certificate of infeasibility (in our case,
a proof that no 
 	 0 exists within the given component-
wise bounds).
Alternatively, the worst-case VaR is the solution of the

min-max problem

min
��v

max

� x̂

���
�+��
�2v− x̂Tw

subject to

[
� w/2

wT/2 v

]
� 0� x− � x̂ � x+�


− � 
 � 
+� 
 � 0	 (28)

For fixed ��v, the inner maximization Problem (28) is a
(particularly simple) SDP in x̂� 
 . We can write this prob-
lem in the dual form of a minimization problem. In fact,

max
x−�x̂�x+

−wTx̂ = min
/±�0�w=/−−/+

/T+x+−/T−x−�

and a similar result for the term involving 
 :

max

−�
�
+� 
�0

���
� = min
�±�0����+−�−

��+� 
+�−��−� 
−��

where we are using that property that both the maximiza-
tion and minimization problems are strictly feasible, which
guarantees that their optimal values are equal.
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We obtain that the worst-case VaR is given by the SDP
in variables /±��±� v:

V��w� = min��+�
+�−��−�
−�
+��
�2v+/T+x+−/T−x−

subject to /+�0� /−�0� �+�0� �−�0�[
�+−�− w/2

wT/2 v

]
�0� w=/−−/+	 (29)

As noted before, the above formulation allows us to opti-
mize the portfolio over w ∈ � : It suffices to let w be a
variable. Because � is a polytope, the problem falls in the
SDP class.
In the case when the moments are exactly known, that is,


+ = 
− = 
 and x̂+ = x̂− = x̂, the above problem reduces
to Problem (3) as expected (with the correct value of � of
course). To see this, note that only the variables v, � �=
�+−�− and /−−/+�=w� play a role. The optimal value
of � is easily determined to be wwT/4v, and optimizing
over v > 0 yields the result.
We should also mention that the worst-case VaR can

be similarly computed and optimized when we have com-
ponentwise bounds on the mean x̂ and second-moment
matrix S, specifically,

x− � x̂ �= Ex � x+� S− � S �= ExxT � S+� (30)

where x+� x− and S+� S− are given vectors and matrices,
respectively, and the inequalities are understood componen-
twise. A derivation similar to above shows that in this case
the worst-case VaR can be optimized via the SDP in vari-
ables M+�M−, /+�/− and w:

V
opt
� =min�M+�
+�−�M−�
−�+��
�2v+/T+x+−/T−x−

subject to /+�0� /−�0� M+�0�

M−�0� M+−M−+
[

0 w/2

wT/2 v

]
�0�

w=/−−/+∈� 	 (31)

3. FACTOR MODELS

Factor models arise when modelling the returns in terms
of a reduced number of random factors. A factor model
expresses the n-vector of returns x as follows:

x = Af +u� (32)

where f is a m-vector of (random) factors, u contains resid-
uals, and A is a n×m matrix containing the sensitivities
of the returns x with respect to the various factors. If S
(resp. f̂ ) is the covariance matrix (resp. mean vector) of the
factors, and u is modeled as a zero-mean random variable
with diagonal covariance matrix D, uncorrelated with f ,
then the covariance matrix (resp. mean vector) of the return
vector is 
 =D+ASAT (resp. x̂ = Af̂ ).

Such models thus impose a structure on the mean and
covariance, which in turn imposes structure on the corre-
sponding uncertainty models. In this section, we examine
how the impact of uncertainties in factor models can be
analyzed (and optimized) via SDP.

3.1. Uncertainty in the Factor’s Mean and
Covariance Matrix

The simplest case is when we consider errors in the mean-
covariances of the factors. Based on a factor model, we may
be interested in “stress testing,” which amounts to analyz-
ing the impact of simultaneous changes in the correlation
structure of the factors, on the VaR. In our model, we will
assume (say, componentwise) uncertainty on the factor data
S and f̂ . For a fixed value of the sensitivity matrix A, and
of the diagonal marix D, we obtain that the corresponding
worst-case VaR can be computed exactly via the SDP

maximize −xTw
subject to x̂=Af̂ � 
=D+ASAT� f−� f̂ �f+�

S−�S�S+�

[

 x− x̂

�x− x̂�T ��
�2

]
�0�

where f± and S± are componentwise upper and lower
bounds on the mean and covariance of factors. A simi-
lar analysis can be performed with respect to simultaneous
changes in D, S and f̂ . Likewise, portfolio optimization
results are similar to the ones obtained before.

3.2. Uncertainty in the Sensitivity Matrix

One may also be looking at the impact of errors in the sen-
sitivity matrix A, on the VaR. As pointed out by Linsmeier
and Pearson (1996), the mean-variance approach to Value-
at-Risk can be used to analyze the risk of portfolios con-
taining possibly very complex instruments such as futures
contracts, exotic options, etc. This can be done using an
approximation called risk mapping, which is a crucial step
in any practical implementation of the method.
In general, one can express the return vector of a portfo-

lio containing different instruments as a function of “market
factors,” such as currency exchange rates, interest rates,
underlying asset prices, and so on. Those are quantities for
which historical data are available and for which we might
have a reasonable confidence in mean and covariance data.
In contrast, most complex instruments cannot be directly
analyzed in terms of mean and covariance.
The process of risk mapping amounts to approximating

the return vector via the decomposition (32). In essence,
the factor model is a linearized approximation to the actual
return function, which allows use of mean-variance analysis
for complex, nonlinear financial instruments.
Because the factor model is a linearized approximation

of the reality, it may be useful to keep track of linearization
errors via uncertainty in the matrix of sensitivities A. In
fact, instead of fitting one linear approximation to the return



El Ghaoui, Oks, and Oustry / 551

vector, one may deliberately choose to fit linear approxi-
mations that serve as upper and lower bounds on the return
vector. The risk analysis then proceeds by analyzing both
upper and lower bounds, for all the instruments considered.
Thus, it is of interest (both for numerical reasons and for
more accurate modelling) to take into account uncertainty
in the matrix A.
We assume that the statistical data S, D, and f̂ are per-

fectly known, with S � 0 and D 	 0, and that the errors
in A are modeled by A∈�, where the given set � describes
the possible values for A. We are interested in computing
(or finding bounds on) and optimizing with respect to the
portfolio weight vector w the worst-case VaR

Vwc�w� �=max
A∈�

��
�

∥∥∥∥∥
[
S1/2AT

D1/2

]
w

∥∥∥∥∥
2

−wTAf̂ 	 (33)

Ellipsoidal uncertainty. We first consider the case when
A is subject to ellipsoidal uncertainty:

�=
{
A0+

l∑
i=1

uiAi

∣∣∣∣∣u ∈ Rl� 
u
2 � 1
}
� (34)

where the given matrices Ai ∈Rn×m, i= 0� 	 	 	 � l, determine
an ellipsoid in the space of n×m matrices.
The worst-case VaR then expresses as −wTA0f̂ +-�w�,

where

-�w� �= max

u
2�1

��
�
C�w�u+d�w�
2+ e�w�Tu� (35)

for an appropriate matrix C�w� and vectors d�w�, e�w�,
linear functions of w that are defined in Theorem 4 below.
Our approach hinges on the following lemma, whose proof
can be found in El Ghaoui et al. (2000).

Lemma 1. Let C ∈ RN×l, d ∈ RN , e ∈ Rl and 8 � 0 be
given. An upper bound on the quantity

- �= max

u
2�8


Cu+d
2+ eTu�

can be computed via the following SDP:

2-�min/1+82/2+/3 �



/1IN C d

CT /2Il e

dT eT /3


� 0	

The following theorem is a direct consequence of the
above lemma, in the case 8 = 1. It shows that we can
not only compute but also optimize an upper bound on
the worst-case VaR under our current assumptions on the
distribution of returns.

Theorem 4. When the distribution of returns obeys to the
factor model (32) and the sensitivity matrix is only known
to belong to the set � given by (34), an upper bound on

the worst-case VaR given in Equation (33) can be com-
puted (optimized) via the following SDP in variables /
(and w ∈� ):

min
��
�

2
�/1+/2+/3�−wTA0f̂ �

subject to



/1In+m C�w� d�w�

C�w�T /2Il e�w�

d�w�T e�w�T /3


� 0� (36)

where

C�w�=[
M1w ··· Mlw

]
� with Mi=

[
S1/2ATi

0

]
� 1� i� l�

d�w�=
[
S1/2AT0

D1/2

]
w� ei�w�=−wTAif̂

��
�
� 1� i� l	

Norm-bound uncertainty. We now consider the case
when

�= �A+L;R � ; ∈ Rl×r � 
;
� 1�� (37)

where A ∈ Rn×m, L ∈ Rn×l, and R ∈ Rr×m are given and ;
is an uncertain matrix that is bounded by one in maximum
singular value norm. The above kind of uncertainty is use-
ful to model “unstructured” uncertainties in some blocks
of A, with the matrices L, R specifying which blocks in
A are uncertain. For details on unstructured uncertainty in
matrices, see Boyd et al. (1994). A specific example obtains
by setting L = R = I , which corresponds to an additive
perturbation of A that is bounded in norm but otherwise
unknown. The following result follows quite straightfor-
wardly from Lemma 1.

Theorem 5. When the distribution of returns obeys to the
factor model (32) and the sensitivity matrix is only known
to belong to the set � given by Equation (37), an upper
bound on the worst-case VaR given in Equation (33) can be
computed (optimized) via the following SDP in variables /
(and w ∈� ):

min
��
�

2
�/1+ t+/3�−wTAf̂

subject to

[
/1In+m d�w�

d�w�T /3

]
� �

[
C

eT

][
C

eT

]T
�

[
t wTL

LTw �Il

]
� 0� (38)

where

d�w�=
[
S1/2AT

D1/2

]
w� C =

[
S1/2RT

0

]
� e = −Rf̂

��
�
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Proof of Theorem 5. Defining

d�w�=
[
S1/2AT

D1/2

]
w� C =

[
S1/2RT

0

]
�

e = −Rf̂
��
�

� r�w�= LTw�

we may express the worst-case VaR as −wTAf̂ +-�w�,
where

-�w�= ��
� max

;
�1


C;Tr�w�+d�w�
2+ eT;Tr�w�

= ��
� max

u
2�
r�w�
2


Cu+d�w�
2+ eTu

�min
��
�

2
�/1+
r�w�
22/2+/3� �



/1In+m C d�w�

CT /2Ir e

d�w�T eT /3


� 0�

where the last inequality is derived from Lemma 1, with
8 = 
r�w�
2. Using Schur complements we may rewrite
the linear matrix inequality in the last line as[
/1In+m d�w�

d�w�T /3

]
� �

[
C

eT

][
C

eT

]T
�

where � = 1//2. Introducing a slack variable t � /2·

r�w�
22 = 
r�w�
22/�, we can rewrite the objective as
/1+ t+/3, where t is such that t � 
r�w�
22/�. The latter
inequality can be written as the linear matrix inequality in
the theorem. (We note that this constraint is a second-order
cone constraint and its structure should be exploited in a
numerical implementation of the theorem.) �

Note: Goldfarb and Iyengar (2001) consider uncertainty
structures in which the uncertainty in the mean is inde-
pendent of the uncertainty in the covariance matrix of the
returns. This assumption leads to the terms e�w� in (35) and
e in (38) being equal to zero. As a result, the expressions in
Lemma 1 and Theorems 4 and 5 become exact, for exam-
ple, the worst-case VaR can be computed and optimized
exactly in this case. Moreover, for the specific uncertainty
structures Goldberg and Iyengar consider, they are able to
formulate these problems as SOCPs.

4. EXTENSIONS AND VARIATIONS

In this section, we examine extensions and variations on
the problem. We assume throughout that x̂ and 
 are
given, with 
 	 0. The extension to moment uncertainty is
straightforward.

4.1. Including Support Information

We now restrict the allowable probability distributions to
be of given support >⊆ Rn and seek to refine Theorem 1
accordingly.

Hypercube support. First consider the case when the
support is the hypercube > �= #xl xu�, where xl� xu are
given vectors, with xl < x̂ < xu. Theorem 1 is extended as
follows.

Theorem 6. When the probability distribution of returns
has known mean x̂ and covariance matrix 
 , its support is
included in the hypercube > �= #xl xu�, and is otherwise
arbitrary, we can compute an upper bound on the worst-
case Value-at-Risk by solving the semidefinite programming
problem in variable x:

maximize −xTw

subject to

[

 x− x̂

�x− x̂�T ��
�2

]
�0�

��
�2xl� x̂−x���
�2xu� xl�x�xu� (39)

where ��
� is given in (8).

We will not present the proof of Theorem 6 here because
it is similar to the proof of Theorem 1. Interested readers
may refer to El Ghaoui et al. (2000) for details. If we let
xl =−� and xu =+�, the last inequalities in (39) become
void, and the problem reduces to the one obtained in the
case of no support constraints. Thus, the above result allows
us to refine the condition obtained by simply no taking into
account the support constraints. Contrarily to what hap-
pens with no support constraints, there is no “closed-form”
solution to the VaR, which seems to be hard to compute
exactly; but computing an upper bound is easy via SDP.
In fact, Problem (39) can be expressed as an SOCP,

which makes it amenable to even faster algorithms. Again,
we stress that while this approach is the best in the case of
known moments, or with independent polytopic uncertainty
(as in §2.3), the SDP formulation obtained above is more
useful with general convex uncertainty on the moments.
When 
 	 0, the SOCP formulation is
maximize −xTw�
subject to 

−1/2�x− x̂�
2���
�2�

��
�2xl� x̂−x���
�2xu� xl�x�xu	 (40)

Let us now examine the problem of optimizing the VaR
with hypercube support information. We consider the prob-
lem of optimizing the upper bound on the worst-case VaR
obtained previously:

�V opt
� �=min

w∈�
max
x

−xTw

subject to

[

 x− x̂

�x− x̂�T ��
�2

]
� 0�

��
�2xl � x̂−x � ��
�2xu� xl � x � xu	

We can express the inner maximization problem in a dual
form (in SDP sense), as a minimization problem. This leads
to the following result.
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Theorem 7. When the distribution of returns has known
mean x̂ and covariance matrix 
 , its support is
included in the hypercube > �= #xl xu�, and is other-
wise arbitrary, we can optimize an upper bound on the
worst-case Value-at-Risk by solving the SDP in variables
w� t���u� v�/u� l� *u� l:

�V opt
� = min���
�+��
�2v− x̂Tw+��
�2

(
xTu/u−xTl /l

)
+*Tu �xu− x̂�−*Tl �xl− x̂�

subject to[
� �w+/l−/u+*u−*l�/2

�w+/l−/u+*u−*l�
T/2 v

]

�0	 (41)

In the above, when some of the components of xu (resp. xl)
are +� (resp. −�), we set the corresponding components
of /u� *u (resp. /l� *l) to zero.

Again, if we set /u =/l = *u = *l = 0 in (41), we recover
the expression of the VaR given in (11), which corresponds
to the exact conditions when first and second moments are
known, and no support information is used.
Ellipsoidal support. In many statistical approaches, such

as maximum-likelihood, the bounds of confidence on the
estimates of the mean and covariance matrix take the form
of ellipsoids. This motivates us to study the case when the
support > is an ellipsoid in Rn:

> �= �x � �x−xc�
TP−1�x−xc�� 1��

where xc is the center and P 	 0 determines the shape
of the ellipsoid. Following the steps taken in the proof of
Theorem 1, we obtain the following result.

Theorem 8. When the distribution of returns has known
mean x̂ and covariance matrix 
 , and its support is included
in the ellipsoid > �= �x � �x−xc�

TP−1�x−xc�� 1�, we
can compute an upper bound on the worst-case Value-at-
Risk by solving the semidefinite programming problem in
variables x�X� t:

maximize −xTw�

subject to




 − 
X x− x̂ x

�x− x̂�T ��
�2 0

xT 0 1


� 0�

t/
 = 1−TrP−1X+2xTc P−1x−xTc P
−1xc � 0�[

1− t−TrP−1
 x̂−xc

�x̂−xc�
T P

]
� 0� (42)

where ��
� is given in Equation (8).

4.2. Entropy-Constrained VaR

The worst-case probability distribution arising in
Theorem 6, with or without support constraints, is in gen-
eral discrete (Bertsimas and Popescu 2000). It may be

argued that such a worst-case scenario is unrealistic. In this
section, we seek to enforce that the worst-case probability
distribution has some degree of smoothness. The easiest
way to do so is to impose a relative entropy constraint
with respect to a given “reference” probability distribution.
We will assume that the probability distribution of

returns satisfies the following assumption, and is other-
wise arbitrary. We assume that the distribution of returns,
while not a Gaussian, is not “too far” from one. Precisely,
we assume that the Kullback-Leibler divergence (negative
relative entropy) satisfies

KL�P�P0� �=
∫
log

dP

dP0
dP � d� (43)

where d � 0 is given, P is the probability distribution of
returns, and P0 is a nondegenerate Gaussian reference dis-
tribution, that has given mean x̂ and covariance matrix

 	 0. (Note that a finite d enforces that the distribution
of returns P is absolutely continuous with respect to the
Gaussian distribution P0.)
We prove the following theorem.

Theorem 9. When the probability distribution of returns is
only known to satisfy the relative entropy constraint (43),
and the mean x̂ and covariance matrix 
 of the refer-
ence Gaussian distribution P0 are known, the entropy-
constrained Value-at-Risk is given by

V��w�= ��
�d�

 1/2w
2− x̂Tw� (44)

where ��
�d� is given by

��
�d� �=−�−1�f �
�d���

f �
�d� �= sup
/>0

e
//−d−1
e1//−1 = sup

v>0

e−d�v+1�
−1
v

� (45)

where � is the cumulative distribution function of the stan-
dard normal distribution.

The above theorem shows that, by a suitable modifica-
tion of the “risk factor” ��
� appearing in Theorem 1, we
can handle entropy constraints (however, we do not know
how to use support information in this case). For d = 0,
we obtain ��
�0� = −�−1�
�, as expected, because we
are then imposing that the distribution of returns is the
Gaussian P0 = 	 �x̂� 
�. The risk factor ��
�d� increases
with d. This is to be expected: As the set of allowable dis-
tributions “grows,” the worst-case VaR becomes worse, and
increases.

Proof of Theorem 9. As before, we begin with the prob-
lem of computing the worst-case probability. We address
the following problem:

maximize
∫
Rn
�� �x�p�x�dx

subject to KL�p�p0�� d�
∫
Rn
p�x�dx = 1� (46)
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where p and p0 denote the densities of distributions P
and P0. For a given distribution with density p such that
KL�p�p0� is finite, and for given scalars /0 � 0, /, we
introduce the Lagrangian

L�p�/0�/�=
∫
Rn
�� �x�p�x�dx+/0

(
1−

∫
Rn
p�x�dx

)

+/

(
d−

∫
Rn
log

p�x�

p0�x�
p�x�dx

)
�

where �� is the indicator function of the set � defined in
Equation (13). The dual function is

!�/0�/�= sup
p∈��Rn�

L�p�/0�/�= /0+/d

+ sup
p

∫
Rn

(
�� �x�−/0−/ log

p�x�

p0�x�

)
p�x�dx�

and the dual problem is

inf
�/�/0�∈R+ ×R

!�/0�/�	

From the assumption that 
 	 0, strong duality holds
(Smith 1995). For any pair �/�/0�, with / > 0, the distri-
bution that achieves the optimum in the “sup” appearing in
the expression for B above has a density

p�x�= p0�x� exp
(
�� �x�−/0

/
−1

)
� (47)

and the dual function becomes

!�/0�/�= /0+/d+/
∫
p0�x� exp

(
�� �x�−/0

/
−1

)
dx

= /0+/d+/
(
e��1−/0�//�−1 Prob�� �−xTw�
+ e−�/0//�−1 Prob�� �−xTw�)

= /0+/d+/e−�/0//�−1
(
�e1//−1�-���+1)�

where the probabilities above are taken with respect to p0,
and

-��� �= Prob�� �−xTw�= 1−�

(
�+wTx̂√
wT
w

)
	

Taking the infimum over /0 yields

inf
/0∈R

!�/0�/�= /d+/ log��e1//−1�-���+1�	 (48)

The worst-case probability is obtained by taking the infi-
mum of the above convex function over / > 0.
The constraint !opt � 
 is equivalent to the existence of

/ > 0 such that

/d+/ log��e1//−1�-���+1�� 
�

that is,

� � ��
�d�
√
wT
w−wTx̂�

where ��
�d� is defined in the Theorem. �

4.3. Multiple VaR Constraints

The framework we used allows us to find a portfolio that
satisfies a given level � of worst-case VaR, for a given
probability threshold 
:

supProb�� �−r�w�x��� 
	

We may consider multiple VaR constraints

supProb��i �−r�w�x��� 
i� i = 1� 	 	 	 �m�
where 
1 < · · · < 
m are given probability thresholds, and
�1 < · · · < �m are the corresponding acceptable values of
loss. The set of values ��i� 
i� therefore determines a “risk
profile” chosen by the user.
It is a simple matter to derive SDP conditions, under the

assumptions used in this paper, that ensure that the multiple
VaR constraints hold robustly with respect to the distribu-
tion of returns. For example, in the context of the assump-
tions of Theorem 2, we have Theorem 10.

Theorem 10. When the distribution of returns is known
only via its first two moments and is otherwise arbitrary, the
multiple worst-case Value-at-Risk constraints hold if and
only if there exist variables 
� x̂� x1� 	 	 	 � xm such that

xTi w �−�i�
[


 xi− x̂

�xi− x̂�T ��
i�
2

]
� 0� i = 1� 	 	 	 �m	

The above theorem allows us to optimize the risk pro-
file by proper choice of the portfolio weights, in sev-
eral ways: We may minimize an average of the potential
losses �1+· · ·+�m, for example, or the largest value of
the losses, maxi �i. Such problems fall in the SDP class.

5. NUMERICAL EXAMPLE

In this example we have considered a portfolio involving
n= 13 assets. Our portfolio weights are restricted to lie in
the set

� =
{
w

∣∣∣∣∣w � 0�
n∑
i=1

wi = 1
}
	

This kind of set does not usually result in very diversified
portfolios. In practice, one can (and should) impose addi-
tional linear inequality constraints on w to obtain diversi-
fied portfolios; such constraints are discussed in Lobo et al.
(2000). In a similar vein, we have not accounted for trans-
action costs. Our purpose in this paper is not diversification
nor transaction costs, but robustness to data uncertainty.
Using historical one-day returns over a period of 261

trading days (from November, 1999 through October,
2000), we have computed the sample mean and covariance
matrix of the returns, x̂nom and 
 nom. With these nominal
values and given a risk level 
, we can compute a portfolio,
using Theorem 3, with 
+ = 
− = 
 nom and x̂+ = x̂− = x̂nom.
We refer to this portfolio—one resulting from the assump-
tion that the data are error-free—as the “nominal” portfolio,
against which we can compare a robust portfolio.
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We assume that the data (including our mean and covari-
ance estimates) are prone to errors. We denote by 8 a
parameter that measures the relative uncertainty on the
covariance matrix, understood in the sense of a component-
wise, uniform variation. Thus, the uncertainty in the covari-
ance matrix 
 is described by

�
�i� j�−
 nom�i� j��� 8�
 nom�i� j��� 1� i� j � n	

In practice, the mean is harder to estimate than the covari-
ance matrix, so we have put the relative uncertainty on the
mean to be ten times that of the covariance matrix, i.e.,

�x̂− x̂nom�i��� 108�x̂nom�i��� 1� i � n	

We have then examined the worst-case behavior of the
nominal portfolio as the uncertainty on the point estimates
x̂nom and 
 nom increase. This worst-case analysis is done
via Theorem 2. We have compared the worst-case VaR of
the nominal portfolio with that of an optimally robust port-
folio, which is computed via Theorem 3. Our results were
obtained using the general-purpose semidefinite program-
ming code SP (Vandenberghe and Boyd 1999).
These results are illustrated in Figure 1. The x-axis is

the relative uncertainty on the covariance matrix, 8. The
y-axis is the VaR, given as a percentage of the original
portfolio value. Figure 2 shows the relative deviation of the
worst-case VaR with respect to the nominal VaR, which is
obtained by setting 8 = 0. For example, for 8 = 10% the
worst-case VaR of the nominal portfolio could be as much
as 270% of the nominal VaR, while the VaR of the robust
portfolio is about 200% of the nominal VaR.
We see that if we choose the nominal portfolio, data

errors can have a dramatic impact on the VaR. Taking into
account the uncertainty by solving a robust portfolio allo-
cation problem dampens greatly this potential catastrophic

Figure 1. Worst-case VaR of the nominal and robust
portfolios, as a function of the size of data
uncertainty, 8.
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Figure 2. Relative (to the nominal VaR) worst-case
VaR of the nominal and robust portfolios, as
a function of the size of data uncertainty, 8.
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effect. This is even more so as the uncertainty level 8
increases.
In Figure 3, we illustrate the behavior of our portfolios

when the probability level 
 varies. We compare the VaR
in three situations: One is the VaR of the optimal nominal
portfolio (that is, obtained without taking into account data
uncertainty), shown in the lowest curve. The upper curve
corresponds to the worst-case analysis of the nominal port-
folio. The middle curve shows the worst-case VaR of the
robust portfolio. Again, we see a dramatic improvement
brought about by the robust portfolio. The latter is less
efficient than the nominal portfolio if there were no uncer-
tainty; the presence of data uncertainty makes the nominal
portfolio a poor choice over the robust one.

Figure 3. Worst-case VaR of the nominal and robust
portfolios, as a function of the probability
level 
.
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6. CONCLUDING REMARKS

Our results can be summarized as follows. The problem of
computing the worst-case VaR, or optimizing it, takes the
general form

minimize -� �x�

subject to �x� x̂� 
� ∈ 
 �

[

 x− x̂

�x− x̂�T �2

]
� 0�

where -� is the support function of a convex set, that
describes the set of admissible portfolio allocation vectors;
the set 
 reflects the partial information (moments bounds
and support) we have on the distribution of returns, and
the risk factor � depends on the chosen optimization model
(entropy-constrained or moment-constrained).
The optimal variables 
� x̂ in the above problem are

selected to be the most prudent when facing data uncer-
tainty. The duality between the portfolio weights and the
worst-case probability distribution information (x̂� 
 ) is
reminiscent of the duality in option pricing problems,
between the optimal hedging strategy (for replicating the
price of an option) and the risk-neutral probability measure
(Musiela and Rutkowski 1997).
As noted in §2.1, the above formulation has a determin-

istic interpretation, in which the returns are only known to
belong to a union of ellipsoids of the form

�x � ��
�2
 � �x− x̂��x− x̂�T�

where the shape matrix 
 and center x̂ are unknown-
but-bounded, and the problem is to allocate resources in
a “min-max,” or game-theoretic, manner. Our SDP solu-
tion illustrates a kind of “certainty equivalent principle”
by which a problem involving probabilistic uncertainty has
an interpretation, and an efficient numerical solution, as a
deterministic game.
Thenumerical tractability of the aboveproblemdependson

the structure of the sets� ,
 . We have identified some prac-
tically interesting cases when these sets result in a tractable,
semidefinite programming problem, namely componentwise
and ellipsoidal bounds. In the case of support constraints
on the distribution of returns the problem does not seem to
be tractable, but we have shown how to compute an upper
bound on the worst-case VaR via semidefinite programming.
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