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Abstract. The vast size of real world stochastic programming instances requires sampling to make them
practically solvable. In this paper we extend the understanding of how sampling affects the solution quality
of multistage stochastic programming problems. We present a new heuristic for determining good feasible
solutions for a multistage decision problem. For power and log-utility functions we address the question of
how tree structures, number of stages, number of outcomes and number of assets affect the solution quality.
We also present a new method for evaluating the quality of first stage decisions.
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1. Introduction

To fully model the complex nature of decision problems, optimization models should
in principle contain stochastic components. Extensive research have been done within
the field of stochastic programming to design solvers that can handle problems where
the uncertainty is described in a tree structure. Birge and Louveaux [3] and Rusczyński
[16] give a good overview of different solution methods. More recent work includes,
for example, [5–7, 19] where primal and primal-dual interior point methods have been
developed that can solve problems with more than 2 stages and non-linear objectives.

The asset allocation problem is a frequently used stochastic programming model. For
an introduction of the model see, e.g., [12]. An excellent overview of relevant research,
where the model have been applied, can be found in [13], and more recent work can
be found, e.g., in [8, 9, 2]. The model usually comes in two flavors, with and without
transaction costs (the latter is a special case of the former). There may be also some
other particularities, however, we only study the basic model.

We address several important aspects which are inherent in stochastic program-
ming by studying the asset allocation model. We also test the practical applicability of
determining upper and lower bounds for multistage problems. For power and log-utility
functions, with and without transaction costs, and also for piecewise linear and expo-
nential utility functions, we address how tree structures, number of stages, number of
outcomes and number of assets affect the solution quality.
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2. Model

We consider an investment problem with set A of assets. For time periods t = 1, . . . , T ,
the investor would like to determine the optimal amount of units ua

t of each asset a ∈ A
to buy/sell. The total units xa

t , of asset a at time t , are governed by the recursive equations
xa
t = xa

t−1 + ua
t−1, t = 2, . . . , T , where ua

t−1 can be positive or negative depending on
buying or selling asset a. By xc

t and ca
t we denote the amount in cash and the price of

asset a, respectively, at time t , and by R = 1 + r where r is the interest rate. Note that
ca
t ≥ 0. We assume that ct = (ca

t )a∈A forms a random process with a known probability
distribution. For the sake of simplicity we assume that the interest rate r recived in each
time stage is fixed.

Given the initial units of assets a ∈ A, the initial amount in cash, and utility function
U(·), the objective is to maximize the expected utility of wealth, at the final time stage
T . Neither short selling assets nor borrowing is allowed. This can be formulated as the
following optimization problem

Max E

[
U

(
xc
T +

∑
a∈A

ca
T xa

T

)]
(1)

s.t. xa
t = xa

t−1 + ua
t−1, t = 2, . . . , T , a ∈ A, (2)

xc
t =

(
xc
t−1 −

∑
a∈A

ca
t−1u

a
t−1

)
R, t = 2, . . . , T , (3)

xa
t ≥ 0, t = 2, . . . , T , a ∈ A, (4)

xc
t ≥ 0, t = 2, . . . , T . (5)

Note that constraints (4) and (5) correspond to “not short selling assets” and “not
borrowing” policies, respectively, and ensure nonnegative wealth. This will be especially
important later on when sampled versions of (1–5) will be considered. If these constraints
were left out, then the optimal solution to a sample version of (1–5) might be infeasible
in the original problem. We assume that the utility function U : R → R ∪ {−∞} is a
continuous concave increasing function.

To allow for transaction costs in the model the buy/sell decision, ua
t , have to be split

into two variables; one for the buy decision, uab
t , and one for the sell decision uas

t . The
proportional transaction cost is denoted τ . Thus the income from selling an asset is now
(1−τ)ca

t and the cost of buying is (1+τ)ca
t for some τ ∈ (0, 1). This gives the modified

constraint (8) in the following formulation of the corresponding optimization problem

Max E

[
U

(
xc
T +

∑
a∈A

ca
T xa

T

)]
(6)

s.t. xa
t = xa

t−1 + uab
t−1 − uas

t−1, t = 2, . . . , T , a ∈ A, (7)

xc
t =

(
xc
t−1 +

∑
a∈A

(
τ sca

t−1u
as
t−1 − τbca

t−1u
ab
t−1

))
R, t = 2, . . . , T , (8)

xa
t ≥ 0, t = 2, . . . , T , a ∈ A, (9)

xc
t ≥ 0, t = 2, . . . , T , (10)
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uab
t , uas

t ≥ 0, t = 1, . . . , T − 1, a ∈ A, (11)

where τ s := 1 − τ and τb := 1 + τ .
Consider the asset investment model with transaction costs. By bold script, like ca

t ,
we denote random variables, while ca

t denotes a particular realization of the correspond-
ing random variable. For the sake of simplicity we assume that the random process
ct = (ca

t )a∈A, t = 2, . . . , T , is Markovian. We also assume that xt = (xc
t , x

a
t )a∈A

satisfy linear constraints �i(xt ) ≥ 0, i ∈ I, where I is a finite index set and

�i(xt ) := αc
i x

c
t +

∑
a∈A

αa
i xa

t , i ∈ I.

For example, we can set �a(xt ) := xa
t and �c(xt ) := xc

t , with I := A ∪ {c}, which
introduce constraints (9) and (10) into the problem.

Let us define the following cost-to-go functions. At the period T − 1 the corre-
sponding cost-to-go function QT −1(xT −1, cT −1) is given by the optimal value of the
problem

Max
uT −1,xT

E

[
U

(
xc
T +

∑
a∈A

ca
T xa

T

) ∣∣∣∣∣cT −1 = cT −1

]

subject to xa
T = xa

T −1 + uab
T −1 − uas

T −1, a ∈ A,

xc
T =

(
xc
T −1 +

∑
a∈A

(
τ sca

T −1u
as
T −1 − τbca

T −1u
ab
T −1

))
R,

uab
T −1 ≥ 0, uas

T −1 ≥ 0, a ∈ A,

�i(xT ) ≥ 0, i ∈ I.

(12)

Here E
[ · ∣∣ct = ct

]
denotes the conditional expectation given ct = ct .

For t = T − 2, . . . , 1, the corresponding cost-to-go function Qt(xt , ct ) is defined as
the optimal value of the problem

Max
ut ,xt+1

E
[
Qt+1(xt+1, ct+1)

∣∣ct = ct

]
subject to xa

t+1 = xa
t + uab

t − uas
t , a ∈ A,

xc
t+1 =

(
xc
t +

∑
a∈A

(
τ sca

t uas
t − τbca

t uab
t

))
R,

uab
t ≥ 0, uas

t ≥ 0, a ∈ A,

�i(xt+1) ≥ 0, i ∈ I.

(13)

The optimal decision vector u1 = (uab
1 , uas

1 )a∈A is obtained by solving the problem

Max
u1,x2

E [Q2(x2, c2)]

subject to xa
2 = xa

1 + uab
1 − uas

1 , a ∈ A,

xc
2 =

(
xc

1 +
∑
a∈A

(
τ sca

1uas
1 − τbca

1uab
1

))
R,

uab
1 ≥ 0, uas

1 ≥ 0, a ∈ A,

�i(x2) ≥ 0, i ∈ I.

(14)

Note that at the first stage, vector x1 is given and (ca
1)a∈A are known.
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In the numerical experiments we assume that the asset prices ca
t follow a geometric

Brownian motion. That is,

ln ca
t = ln ca

t−1 + µa�t + σa(�t)1/2ζ a
t t = 2, . . . , T , a ∈ A, (15)

where random vectors ζ t = (ζ a
t )a∈A, t = 2, . . . , T , have normal distribution N(0, �)

with Var(ζ a
t ) = 1, a ∈ A, and correlations ra1a2 = E[ζ a1

t ζ
a2
t ], and the random process

ζ t is between stages independent (i.e., random vectors ζ t , t = 2, . . . , T , are mutually
independent). Note that it follows from (15) and the between stages independence of ζ t ,
that the process ξa

t := (ca
t /c

a
t−1)a∈A is also between stages independent.

3. Myopic policies

In practical applications quantities of interest usually are optimal values of first stage
decision variables only. In some situations, in order to obtain optimal values of first
stage decision variables, one does not really need to solve the corresponding multi-stage
problem (see, e.g., [10, 1]). This is what we investigate in this section for this particular
stochastic programming application.

Suppose that τ s = τb = 1, i.e., that there are no transaction costs. In that case we
can use control variables ua

t := uab
t − uas

t and write the dynamic equations of (13) in
the form

ua
t = xa

t+1 − xa
t and R−1xc

t+1 +
∑
a∈A

ca
t xa

t+1 = Wt,

where Wt := xc
t +∑a∈A ca

t xa
t is the wealth at stage t . Let us make the following change

of variables:

ya
t+1 := ca

t xa
t+1, yc

t+1 := R−1xc
t+1 and ξa

t+1 := ca
t+1/c

a
t .

Note that this change of variables transforms the functions �i(xt+1) into the functions

li (yt+1, ct ) = (
Rαc

i

)
yc
t+1 +

∑
a∈A

(
αa

i /ca
t

)
ya
t+1, i ∈ I,

which are linear in yt+1. We then can formulate problem (12) in the form

Max
yT

E

[
U

(
Ryc

T +
∑
a∈A

ξa
T ya

T

) ∣∣∣∣∣ξT −1 = ξT −1

]

subject to yc
T +

∑
a∈A

ya
T = WT −1,

li (yT , cT −1) ≥ 0, i ∈ I.

(1)

Let us denote by Q̃T −1(WT −1, ξT −1) the optimal value of problem (1). Note that

QT −1 (xT −1, cT −1) = Q̃T −1

(
xc
T −1 +

∑
a∈A

ca
T −1x

a
T −1, ξT −1

)
. (2)
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By continuing this process backward in time, for t = T − 2, . . . , 1, we obtain that

Qt (xt , ct ) = Q̃t

(
xc
t +

∑
a∈A

ca
t xa

t , ξt

)
, (3)

where Q̃t (Wt , ξt ) is the optimal value of the problem

Max
yt+1

E

[
Q̃t+1

(
Ryc

t+1 +
∑
a∈A

ξa
t+1y

a
t+1, ξ t+1

) ∣∣∣∣∣ξ t = ξt

]
(4)

s.t. yc
t+1 +

∑
a∈A

ya
t+1 = Wt, (5)

li (yt+1, ct ) ≥ 0, i ∈ I. (6)

Note that at the first stage the wealth W1 := xc
1 +∑

a∈A ca
1xa

1 and asset prices ca
1 are

known.
Consider the set of vectors yt+1 satisfying constraints (5)–(6):

Ut (Wt , ξt ) :=
{

yt+1 : yc
t+1 +

∑
a∈A

ya
t+1 = Wt, li(yt+1, ct ) ≥ 0, i ∈ I

}
. (7)

Let us note that, since the constraints (5)–(6) are linear, the set Ut (Wt , ξt ), t = T −
1, . . . , 1, is positively homogeneous with respect to Wt , i.e.,

Ut (αWt , ξt ) = α Ut (Wt , ξt ) for any α > 0. (8)

Note also that the feasible set of problem (4)–(6) should satisfy the implicit constraint

E

[
Q̃t+1

(
Ryc

t+1 +
∑
a∈A

ξa
t+1y

a
t+1, ξ t+1

) ∣∣∣∣∣ξ t = ξt

]
> −∞. (9)

Consider now the log-utility function U(z) := log z if z > 0 and U(z) := −∞ if
z ≤ 0. We then have that

U(αz) = log α + U(z) (10)

for any α > 0 and z > 0. Since UT −1(WT −1, ξT −1) is positively homogeneous with
respect to WT −1 and because of (10), it follows that the set ST −1(WT −1, ξT −1) of
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optimal solutions of (1) is also positively homogeneous with respect to WT −1, and for
any WT −1 > 0,

Q̃T −1(WT −1, ξT −1) = Q̃T −1(1, ξT −1) + log WT −1. (11)

Consequently,

Q̃T −2(WT −2, ξT −2) = E
[
Q̃T −1(1, ξT −1)

∣∣ξT −2 = ξT −2
]

+QT −2(WT −2, ξT −2), (12)

where QT −2(WT −2, ξT −2) is the optimal value of the problem

Max
yT −1

E

[
log

(
Ryc

T −1 +
∑
a∈A

ξa
T −1y

a
T −1

) ∣∣∣∣∣ξT −2 = ξT −2

]

subject to yc
T −1 +

∑
a∈A

ya
T −1 = WT −2,

li(yT −1, cT −2) ≥ 0, i ∈ I.

(13)

Again we have that

QT −2(WT −2, ξT −2) = QT −2(1, ξT −2) + log WT −2. (14)

And so forth, for Wt > 0,

Q̃t (Wt , ξt ) =
T −1∑
τ=t

E
[Qτ (1, ξ τ )

∣∣ξ t = ξt

]+ log Wt, (15)

where QT −1(WT −1, ξT −1) = Q̃T −1(WT −1, ξT −1), and Qt (Wt , ξt ) is the optimal value
of

Max
yt+1

E

[
log

(
Ryc

t+1 +
∑
a∈A

ξa
t+1y

a
t+1

) ∣∣∣∣∣ξ t = ξt

]

subject to yc
t+1 +

∑
a∈A

ya
t+1 = Wt,

li(yt+1, ct ) ≥ 0, i ∈ I,

(16)

for t = T − 2, . . . , 1. Note that if random vectors ξ t and ξ t+1 are independent, then
Qt (Wt , ξt ) does not depend on ξt .

It follows that the optimal value v∗ of the corresponding (true) multistage problem
is given by (recall that ξ1 = c1 and is not random)

v∗ = log W1 +
T −1∑
t=1

E
[Qt (1, ξ t )

]
, (17)
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and first stage optimal solutions are obtained by solving the problem

Max
y2

E

[
log

(
Ryc

2 +
∑
a∈A

ξa
2ya

2

)]

subject to yc
2 +

∑
a∈A

ya
2 = W1,

li(y2, c1) ≥ 0, i ∈ I.

(18)

We obtain the following result.

Proposition 1. Suppose that there are no transaction costs and let U(·) be the log-utility
function. Then: (i) the optimal value v∗, of the multistage problem, is given by formula
(17), (ii) the set of optimal solutions of the first stage problem (14) depends only on the
distribution of c2 (and is independent of realizations of the random data at the following
stages t = 3, . . . , T ), and can be obtained by solving problem (18).

Proof. If ȳ2 = (ȳc
2, ȳ

a
2 )a∈A is an optimal solution of problem (18), then

ūa
1 := (ca

1)−1ȳ2
a − x1

a , a ∈ A, (19)

gives the corresponding optimal solution of the first stage problem (14). Clearly the set
of optimal solutions of (18) does not depend on the distribution of c3, . . . , cT . �	

Remark 1. As it was mentioned above, if the process ξ t is between stages independent,
then the optimal value Qt (Wt , ξt ), of problem (16), does not depend on ξt and will be
denoted Qt (Wt ). In that case formula (17) becomes

v∗ = log W1 +
T −1∑
t=1

Qt (1). (20)

Consider now the power utility function U(z) ≡ zγ /γ , with γ ≤ 1, γ �= 0 (in that
case U(z) := −∞ for z ≤ 0 if γ < 0, and U(z) := −∞ for z < 0 if 0 < γ < 1).
Suppose that for WT −1 = 1 problem (1) has an optimal solution ȳT . (The following
equation (22) can be proved without this assumption by considering an ε-optimal solu-
tion, we assumed existence of the optimal solution in order to simplify the presentation.)
Because of the positive homogeneity of UT −1(·, ξT −1) and since U(αz) = αγ U(z) for
α > 0, we then have that WT −1ȳT is an optimal solution of (1) for any WT −1 > 0. Then

Q̃T −1 (WT −1, ξT −1) = E

[
U

(
WT −1

(
Rȳc

T +
∑
a∈A

ξa
T ȳa

T

)) ∣∣∣∣∣ξT −1 = ξT −1

]

= W
γ

T −1E

[
U

(
Rȳc

T +
∑
a∈A

ξa
T ȳa

T

) ∣∣∣∣∣ξT −1 = ξT −1

]

= W
γ

T −1Q̃T −1 (1, ξT −1) . (21)
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Suppose, further, that the random process ξ t is between stages independent. Then,
because of the independence of ξT and ξT −1, we have that the conditional expecta-
tion in (1) is independent of ξT −1, and hence Q̃T −1(1, ξT −1) does not depend on ξT −1.
Consequently, we obtain by (21) that for any WT −1 > 0,

Q̃T −1 (WT −1, ξT −1) = W
γ

T −1Q̃T −1(1), (22)

where Q̃T −1(1) is the optimal value of (1) for WT −1 = 1. And so forth for t = T −
2, . . . , 1 and Wt > 0,

Q̃t (Wt , ξt ) = W
γ
t Q̃t (1). (23)

Consider problems

Max
yt+1

E

[
U

(
Ryc

t+1 +
∑
a∈A

ξa
t+1y

a
t+1

)]

subject to yc
t+1 +

∑
a∈A

ya
t+1 = Wt,

li(yt+1, ct ) ≥ 0, i ∈ I.

(24)

We obtain the following results.

Proposition 2. Suppose that there are no transaction costs and the random process
(ξa

t = ca
t /c

a
t−1)a∈A, t = 2, . . . , T , is between stages independent, and let U(·) be the

power utility function for some γ ≤ 1, γ �= 0. Then the set of optimal solutions of the
first stage problem (14) depends only on the distribution of ξ2 (and is independent of
realizations of ξ3, . . . , ξT ) and can be obtained by solving problem (24) for t = 1, and

v∗ = W
γ
1

T −1∏
t=1

Qt (1), (25)

where Qt (Wt ) is the optimal value of the problem (24).

Remark 2. Formula (25) shows a ‘multiplicative’ behavior of the optimal value when
a power utility function is used. This can be compared with an ‘additive’ behavior (see
(17) and (20)) for the log-utility function. Let us also remark that the assumption of the
between stages independence of the process ξ t is essential in the above Proposition 2.
It is possible to give examples where the myopic properties of optimal solutions do not
hold for the power utility functions (even for γ = 1) for stage dependent processes ξ t .
This is in contrast with the log-utility function where the between stages independence
of ξ t is not needed. Let us also note that the assumption of “no transaction costs” is
essential for the above myopic properties to hold.
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4. Solving MSP by Monte Carlo sampling

We use the following approach of conditional Monte Carlo sampling (cf., [17]). Let
N = {N1, . . . , NT −1} be a sequence of positive integers. At the first stage, N1 rep-
lications of the random vector c2 are generated. These replications do not need to be
(stochastically) independent, it is only required that each replication has the same prob-
ability distribution as c2. Then conditional on every generated realization of c2, N2
replications of c3 are generated, and so forth for the following stages. In that way a
scenario tree is generated with the total number of scenarios N = ∏T −1

t=1 Nt . Once such
scenario tree is generated, we can view this scenario tree as a random process with N

possible realizations (sample paths), each with equal probability 1/N . Consequently,
we can associate with a generated scenario tree the optimization problem (6–11). We
refer to the obtained problem, associated with a generated sample, as the (multi-stage)
sample average approximation (SAA) problem.

Provided that the sample size N is not too large, the generated SAA problem can be
solved to optimality. The optimal value, denoted v̂N , and first stage optimal solutions
of the generated SAA problem give approximations for their counterparts of the “true”
problem (6–11). (By “true” we mean the corresponding problem with the originally
specified distribution of the random data). Note that the optimal value v̂N and optimal
solutions of the SAA problem depend on the generated random sample, and therefore
are random. It is possible to show that, under mild regularity conditions, the SAA esti-
mators are consistent in the sense that they converge with probability one to their true
counterparts as the sample sizes Nt, t = 1, . . . , T − 1, tend to infinity (cf., [17]).

4.1. Upper statistical bounds

It is well known that

v∗ ≤ E[v̂N ], (1)

where v∗ denotes the optimal value of the true problem (recall that here we solve a
maximization rather than a minimization problem). This gives a possibility of calculat-
ing an upper statistical bound for the true optimal value v∗. This idea was suggested in
Norkin, Pflug and Ruszczyński [14], and developed in Mak, Morton and Wood [11] for
two-stage stochastic programming.

That is, SAA problems are solved (to optimality) M times for independently gener-
ated samples each of size N = {N1, . . . , NT −1}. Let v̂1

N , . . . , v̂M
N be calculated optimal

values of the generated SAA problems. We then have that

v̄N ,M := M−1
M∑

j=1

v̂
j

N (2)

is an unbiased estimator of E[v̂N ], and hence v∗ ≤ E[v̄N ,M ]. The sample variance of
v̄N ,M is

σ̂ 2
N ,M := 1

M(M − 1)

M∑
j=1

(
v̂

j

N − v̄N ,M

)2
. (3)
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This leads to the following (approximate) 100(1 − α)% confidence upper bound on
E[v̂N ], and hence (because of (1)) for v∗:

v̄N ,M + tα,ν σ̂N ,M, (4)

where ν = M −1. It should be noted that there is no reason to believe that random num-
bers v̂

j

N have a normal (or even symmetric) distribution, even approximately, for large
values of the sample size N . Of course, by the Central limit Theorem, the distribution
of the average v̄N ,M approaches normal as M tends to infinity. Since the sample size
M in the following experiments is not large, we use in (4) more conservative critical
values from Student’s t , rather than standard normal, distribution. One can even take
slightly larger critical values in (4) to make a correction for possibly nonsymmetrical
distribution of v̂

j

N .
Suppose now that for a given (feasible) first stage decision vector ū1, and the cor-

responding vector x̄2 satisfying the equations of problem (14), we want to evaluate the
value E[Q2(x̄2, c2)] of the true problem. By using the developed methodology we can
calculate an upper statistical bound for E[Q2(x̄2, c2)] in two somewhat different ways.
One, rather simple, approach is to add the constraint x2 = x̄2 to the corresponding
optimization problem and to use the above methodology.

Another approach can be described as follows. First, generate random sample c1
2, . . . ,

c
N1
2 , of size N1, of the random vector c2. For x̄2 and each c

j
2 , j = 1, . . . , N1, approximate

the corresponding (T − 1)-stage problem by independently generated, conditionally on
c2 = c

j
2 , (with a chosen sample size (N2, . . . , NT −1)) SAA problems M times. Let v̂j,m,

j = 1, . . . , N1, m = 1, . . . , M , be the optimal values of these SAA problems, and

¯̄vN1,M := 1

MN1

N1∑
j=1

M∑
m=1

v̂j,m. (5)

We have that

Q2(x̄2, c
j
2) ≤ E

[
v̂j,m

∣∣c2 = c
j
2

]
, j = 1, . . . , N1, m = 1, . . . , M, (6)

and hence (viewing c
j
2 as random variables)

E[Q2(x̄2, c2)] = N−1
1

N1∑
j=1

E

[
Q2(x̄2, c

j
2)

]
≤ E[ ¯̄vN1,M ]. (7)

We can estimate the variance of ¯̄vN1,M as follows. Recall that if X and Y are random
variables, then

Var(Y ) = E[Var(Y |X)] + Var[E(Y |X)], (8)

where Var(Y |X) = E[(Y − E(Y |X))2|X]. By applying this formula we can write

Var(v̂j,m) = E

[
Var(v̂j,m|cj

2)
]

+ Var
[
E(v̂j,m|cj

2)
]
. (9)
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Consequently, we can estimate the variance of ¯̄vN1,M by

σ̂ 2
N1,M

: = 1

N1M(M − 1)

N1∑
j=1

M∑
m=1

(
v̂j,m − ¯̂vj

)2

+ 1

N1(N1 − 1)

N1∑
j=1

( ¯̂vj − ¯̄vN1,M

)2
, (10)

where ¯̂vj
:= M−1∑M

m=1 v̂j,m.
This leads to the following (approximate) 100(1 − α)% confidence upper bound on

E[Q2(x̄2, c2)]:

¯̄vN1,M + zασ̂N1,M. (11)

Note that here we use the critical value zα from standard normal, rather than t , distribution
since the total number N1M of used variables is large.

At the first glance it seems that the second approach could be advantageous since
there we need to solve (T − 1)-stage problems as compared with solving T -stage prob-
lems in the first approach. It turned out, however, in our numerical experiments that the
second approach involved too large variances to be practically useful.

4.2. First stage solutions

Consider the model without transaction costs and with log-utility function. In that case
the problem is myopic, and optimal first stage decision variables ūa

1 are given by ūa
1 =

x̄a
2 − x̄a

1 and x̄a
2 = ȳa

2 /ca
1 , a ∈ A, where ȳa

2 are optimal solutions of the problem (18).
Therefore, if one is interested only in optimal first stage decisions, the corresponding
multistage problem effectively is reduced to a two-stage problem. Consequently the
accuracy (rate of convergence) of the SAA estimates of optimal first stage decision
variables depends on the sample size N1 while is independent of the following sample
sizes N2, . . . , NT −1. Similar conclusions hold in the case of a power utility function and
between stages independence of the process ξ t .

4.3. Statistical properties of the upper bounds

In this section we discuss statistical properties of the upper bounds introduced in section
4.1. By (1) we have that v̂N is a biased upwards estimator of the optimal value v∗ of
the true problem. In particular, we investigate how the corresponding bias behaves for
different sample sizes and number of stages.

Let us consider the case without transaction costs and with log-utility function.
Recall that conditional on a sample point ξt , at stage t , we generate a random sam-
ple ξ

j
t+1 = (ξ

a,j
t+1)a∈A, j = 1, . . . , Nt , of size Nt , of ξ t+1. We have then that, for
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Wt = 1, the optimal value Qt (1, ξt ), of problem (16) is approximated by the optimal
value Q̂t,Nt (1, ξt ) of the problem

Max
yt+1

1

Nt

Nt∑
j=1

U

(
Ryc

t+1 +
∑
a∈A

ξ
a,j
t+1y

a
t+1

)

subject to yc
t+1 +

∑
a∈A

ya
t+1 = 1,

li(yt+1, ct ) ≥ 0, i ∈ I,

(12)

with U(z) ≡ log z. The difference

Bt,Nt (ξt ) := E

[
Q̂t,Nt (1, ξt )

]
− Qt (1, ξt ) (13)

represents the bias of this sample estimate conditional on ξ t = ξt . We have that

E

[
Q̂t,Nt (1, ξt )

]
≥ Qt (1, ξt ), (14)

and hence Bt,Nt (ξt ) ≥ 0.

At stage t there are Nt = ∏t
τ=1 Nτ realizations of ξ t , denoted ξ

j
t , j ∈ Jt , with

|Jt | = Nt . We then have (compare with (17)) that

v̂N = W1 +
T −1∑
t=1


 1

Nt

∑
j∈Jt

Q̂t,Nt (1, ξ
j
t )


 . (15)

The bias of v̄N ,M is equal to the bias of v̂N and is given by

E[v̄N ,M ] − v∗ =
T −1∑
t=1


 1

Nt

∑
j∈Jt

Bt,Nt (1, ξ
j
t )


 . (16)

The situation simplifies further if we assume that the process ξ t is between stages inde-
pendent. Then the optimal values Qt (1, ξt ) do not depend on ξt , t = 1, . . . , T − 1, and
hence Bt,Nt (ξt ) = Bt,Nt also do not depend on ξt . Consequently in such case

E[v̄N ,M ] − v∗ =
T −1∑
t=1

Bt,Nt . (17)

It follows that under the above assumptions and for constant sample sizes Nt , the bias
E[v̄N ,M ] − v∗ grows linearly with the number of stages.

Also because of the additive structure of the bias, given by the right hand side of
(17), it is possible (in the considered case) to study asymptotic behavior of the bias by
investigating asymptotics of each component Bt,Nt with increase of the sample size Nt .
This reduces such analysis to a two-stage situation. We may refer to [18] for a discussion
of asymptotics of statistical estimators in two-stage stochastic programming.

The variance of v̄N ,M depends on a way how conditional samples are generated.
Suppose that the process ξ t is between stages independent. Under this assumption, we
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can use the following two strategies. We can use the same sample ξ
j
t+1, j = 1, . . . , Nt ,

for every sample point ξt at stage t . Alternatively, we can generate independent sam-
ples conditional on sample points at stage t . In both cases the bias E[v̂N ] − v∗ is the
same, and is equal to the right hand side of (17). Because of the between stages inde-

pendence assumption, the variances Var
(
Q̂t,Nt (1, ξ

j
t )
)

do not depend on j ∈ Jt , and

will be denoted Var
[
Q̂t,Nt

]
. For independently generated samples, we have that all

Q̂t,Nt

(
1, ξ

j
t

)
, j ∈ Jt , are mutually independent and hence

Var
(
v̂N
) =

T −1∑
t=1


Var

[
Q̂t,Nt

]
Nt


 . (18)

On the other hand for conditional samples which are generated the same, we have

Var
(
v̂N
) =

T −1∑
t=1

Var
[
Q̂t,Nt

]
. (19)

Consider now the power utility function U(z) ≡ zγ /γ , with γ ≤ 1, γ �= 0. Assume
the “no transaction costs” model and the between stages independence condition. By
Proposition 2 we have that

v̂N = W
γ
1

T −1∏
t=1

(
1

Nt

Q̂t,Nt (1, ξ
j
t )

)
, (20)

where Q̂t,Nt (1, ξ
j
t ) is the optimal value of problem (12) for the considered utility func-

tion. Also because of the between stages independence condition we have that

E
[
v̂N
] = W

γ
1

T −1∏
t=1

E

[
1

Nt

Q̂t,Nt

(
1, ξ

j
t

)]
= W

γ
1

T −1∏
t=1

(Qt (1) + Bt,Nt

)
, (21)

where Bt,Nt is defined the same way as in the above. It follows that

E
[
v̄N ,M

]− v∗ = W
γ
1

T −1∏
t=1

(Qt (1) + Bt,Nt

)− W
γ
1

T −1∏
t=1

Qt (1)

= v∗
T −1∏
t=1

(
1 + Bt,Nt

Qt (1)

)
. (22)

For the power utility function, the above formula suggests a ‘multiplicative’ behavior
of the bias with growth of the number of stages. Of course, for ‘small’ Bt,Nt /Qt (1) and
‘not too’ large T , we can use the approximation

T −1∏
t=1

(
1 + Bt,Nt

Qt (1)

)
≈ 1 +

T −1∑
t=1

Bt,Nt

Qt (1)
,

which suggests an approximately additive behavior of the bias for a small number of
stages T .
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4.4. Lower statistical bounds

In order to compute a valid lower statistical bound one needs to construct an implement-
able and feasible policy. Given a policy of feasible decisions yielding the wealth WT ,
we have that

E [U (WT )] ≤ v∗. (23)

(Note that the expectation in the left hand side of (23) is taken with respect to the con-
sidered policy. We suppress this in the notation for the sake of notational simplicity.) By
using Monte Carlo simulations, it is straightforward to construct an unbiased estimator
of E [U (WT )]. That is, a random sample of N ′ realizations of the considered random
process is generated and E [U (WT )] is estimated by the corresponding average

vN ′ := 1

N ′

N ′∑
j=1

U
(
W

j
T

)
(24)

(cf., [18, p. 403]). Since E
[
vN ′

] = E [U (WT )], we have that vN ′ gives a valid lower
statistical bound for v∗. Of course, quality of this lower bound depends on the quality
of the corresponding feasible policy. The sample variance of vN ′ is

σ 2
N ′ = 1

N ′(N ′ − 1)

N ′∑
j=1

[
U
(
W

j
T

)
− vN ′

]2
. (25)

This leads to the following (approximate) 100(1 − α)% confidence lower bound on
E [U (WT )]:

vN ′ − zασN ′ . (26)

The sample size N ′ used in numerical experiments is large, therefore we use the critical
value zα from the standard normal distribution.

We will now study two different approaches to determine feasible decisions. The
SAA counterpart of the “true” optimization problem (6–11) can be formulated as

Max
∑
i∈I

Ui(xi, ui) (27)

s.t. xi = Aixi− + Biui− + bi (28)

Cixi + Diui = di (29)

Eixi + Fiui ≥ ei . (30)

Denote {x∗
i , u∗

i }i∈I as the optimal solution, and let It denote the nodes that correspond
to stage t . In node i the state of the stochastic parameters is ξt ∈ R

|A|. We want to find
a feasible decision, uj , to node j �∈I with the state xj , ξj .
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It is difficult to find a decision uj that is both good and feasible. We therefore divide
the heuristics into two steps. First, we determine a target solution that is assumed to be
good ut

j , then a feasible solution, uj , is determined by solving

Min
uj

1
2 ‖ut

j − uj‖2 (31)

s.t. xl
j+ ≤ Ajxj + Bjuj + bj ≤ xu

j+ (32)

Cjxj + Djuj = dj (33)

Ejxj + Fjuj ≥ ej , (34)

where xl
j+ and xu

j+ is the lower and upper bound for the state in the next stage and ‖ · ‖
denotes the Euclidean norm. We will next describe two heuristics for determining the
target decision.

A common idea in stochastic programming is to reduce a scenario tree by merging
nodes with similar states of the stochastic parameters (an approach to such scenario
reduction in a certain optimal way is discussed in [4], for example), thus giving the same
decision in these merged nodes. In a similar fashion we will use a decision from a similar
node in the new node. To get a good decision we will however also have to consider the
state of the variables, xj . Define a distance between nodes in the optimal tree and the
new node as ci = ‖x∗

i − xj‖2 +‖ξi − ξj‖2. The closest decision is now ut
j = u∗

k , where
k = arg mini∈It

{ci}. We denote this as the closest state.
By only using the closest node to determine the decision, much of the information in

the optimal decisions is lost. There usually exist many nodes that are on approximately
the same distance. The quality of the decision in each node can also be very bad, since
nodes in later stages usually have relatively few successors. Considering these two prop-
erties we will determine the target decision as an affine combination of the decisions in
the other nodes in the same time period t, uj = ∑

i∈It
λiu

∗
i . λ is determined by solving,

Min
λi

∑
i∈It

ciλ
2
i (35)

s.t.
∑
i∈It

λiξi = ξj , (36)

∑
i∈It

λix
∗
i = xj , (37)

∑
i∈It

λi = 1, (38)

where ci = ‖x∗
i − xj‖2 + ‖ξi − ξj‖2. This problem can be reformulated as

Min
λ

1
2λT Cλ (39)

s.t. Aλ = b, (40)
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where C is a diagonal matrix. The optimal solution λ∗ = C−1AT (AT C−1A)−1b can be
determined with O(nm2+m3) operations, where n = |It | and m = mξ +mx+1. The tar-
get decision is defined as ut

j = ∑
i∈It

λ∗
i u

∗
i . This method is denoted affine interpolation.

5. Numerical results

We will study three different types of utility functions namely the logarithmic, piecewise
linear and the exponential, Figure 1. Solving multistage optimization problems where
the logarithmic utility function is used gives us the possibility to study the results in a
setting where the true optimum can be estimated by solving a two-stage model (section
3). The multistage problems are solved with the primal interior point solver developed
in [6].

To generate outcomes for one particular node, ξ̄ a
t is sampled with Latin Hypercube

sampling. With the cholesky factorization of the correlation matrix C = LLT , the cor-
related stochastic parameter can be determined as ξt = Lξ̄t , where ξ̄t = (

ξ̄ a
t

)
a∈A and

ξt = (
ξa
t

)
a∈A. Given ξa

t and initial asset prices ca
i , asset prices ca

i+ are computed with
(15). The scenario tree is generated by applying this approach to generate asset prices
recursively, starting from the root node.

In the numerical experiments it has been assumed that all assets are uncorrelated, and
that they have the same expected return, µa = 0.1, and standard deviation, σa = 0.2. To
justify that this assumption does not have any major impact on the results, we conclude
the tests with an experiment where the expected return, volatility, and correlation are
random. The yearly interest rate is 2% and each time period is 6 months (�t = 0.5).
The settings for the different tests are summarized in the following table:

problem assets stages outcomes scenarios
tree structure 10 3 (10,300)–(300,10) 3000
stages 10 2–5 20 20–160000
outcomes 10 3 40-100 1600–10000
assets 1-20 3 80 6400

The second column contains the number of assets excluding the risk free asset. In the
fourth column (10,300) represents 10 outcomes in the first stage and 300 in the second
stage. For all the tests we solve the multistage stochastic programming problem 20 times
to estimate the upper bound and use 10000 Monte Carlo simulations to determine the
lower bound.

5.1. Choice of heuristic and tree structure

To numerically study how the tree structure affect the ability to solve a stochastic pro-
gramming problem we have used a 3-staged problem instance with 10 assets and fixed
the number of scenarios to 3000. The possible combinations that we have used range
from 10 outcomes in the first stage and 300 in the second stage to 300 in the first stage
and 10 in the second stage. For the power utility functions, and in particular the loga-
rithmic, following the results in section (4.3), it is well understood how the scenario tree
should be structured to give good upper bounds. We know from (17) that the bias for
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Fig. 1. Objective functions used in numerical results

a logarithmic utility function when the process is between stages independent depends
additively on the bias for each stage. The minimal bias is achieved when we have the
same number of outcomes in each stage. This result is verified from numerical experi-
ments as is shown in Figure (2) where the expected upper bound (ubd) have a minimal
value when we have an equal number of outcomes in both the first and second stage.
This holds not only for the case of the myopic logarithmic utility function, but also for
the other optimization problems. We also know from (18) that in order to get a good
statistical upper bound more scenarios should be allocated to the first stage to reduce
the variance. Figure (3) confirm this finding for all optimization problems. To minimize
the variance we should have up to ten times more outcomes in the first period compared
to the second. When both these effects are taken into account (the 95% ubd in Figure 2)
it can be seen that the effect of the bias dominates that of the variance. Thus we should
have approximately the same number outcomes in stage one and two in order to get a
good statistical upper bound.

Concerning the heuristics it shows that the affine heuristic produce the best lower
bounds (Figure 2). As can be seen in the myopic case, where we know the optimal
objective function value v∗, the lower bound lies very close to v∗ when there are 10
times more outcomes in the first stage compared to the second. To get a good first stage
decision it is important to allocate as many as 10 times more scenarios to the first stage
compared to the second. A good quality in the second stage decisions can be achieved
by averaging close decisions of lower quality. In the following simulations the affine
heuristic is used to estimate the lower bound.

5.2. Number of stages

To test how the number of stages impact the quality of the optimal solution, the number
of assets (10) and outcomes in each stage (20) was kept constant. The number of stages
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varied from 2–5, giving scenario trees with up to 160.000 scenarios. The upper left dia-
gram in Figure (4) can be understood fairly well from the theory. The ratio between the
average value of the upper bound and the optimal objective function value is essentially
on the same level, since both the objective function value and the bias grow linearly with
the number of stages (section 4.3). Considering that the contribution to the variance of
the upper bound is equally weighted between the number of stages the large variance
from the first stage will have decreasing impact when the number of stages increase, thus
increasing the quality of the upper bound. A similar mechanism also improves the lower
bound. The quality of the first stage decision is bad (there are only 20 outcomes), but
the relative importance to the total objective function value decrease with an increase in
the number of stages. With this limited scenario tree one can solve a 5-staged problem
and get a policy that is 3% from the optimal policy, and with a total duality gap of 9%.
Figure (5) shows that the gap decrease with the number of stages for the logarithmic util-
ity function both with and without transaction costs. For the case with transaction costs
we use the closest policy to generate the feasible decisions in the lbd heuristic. Creating
an affine combination of decisions lead to decisions with to high transaction costs, since
in the interpolated solution both the buy and sell decisions are usually nonzero.

Overall it does not seem that the number of stages decrease the quality of the mul-
tistage stochastic programming problem too much for this model, and that reasonable
solutions can be found for problems with up to 5 stages when the number of outcomes
is increased.

5.3. Number of outcomes

To increase the quality of the decisions the number of outcomes in each stage have to
be increased. As is shown in this section, the asset investment problem can be solved to
a relatively good precision, even though the samples are sparse in the 10-dimensional
space of the stochastic parameters. First we investigate the behavior when solving the
3-staged problem with logarithmic utility function (Figure 6). Both the average upper
bound and the variance are decreasing as the number of outcomes increase (see the
discussion of section 4.3). At 100 outcomes in each stage, the upper bound is only 0.5%
from the optimal objective function value, and the quality of the lower bound is even
better. The rate of improvement for the other utility functions behave similarly, and the
quality of the bounds also behave similarly (Figure 7). Each optimization problem has
been solved to a relative precision less then 1%, using only 100 outcomes in each stage.

5.4. Number of assets

When the number of assets increase, the samples will become more and more sparse,
indicating that the quality of the optimal decisions and the upper bound will decrease
significantly. As Figures (8) and (9) show, this is not the case. Since the number of
outcomes (80) in each stage is always the same, it is expected that the gap between the
upper and lower bound will increase. The increase in both absolute and relative (Figure
9) value is however limited.
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Fig. 7. Left: Gap between 95% upper bound and 95% lower bound for varying number of outcomes. Right:
Same as left but scaled

5.5. Stability of results

In all the previous tests the expected return and volatility of the assets have been equal
for all assets. With this setting many problems have been solved to a precision of a
few percent. To further validate our findings the stability of the quality of solutions
will be studied by randomly generating the parameters. The expected return and the
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Fig. 9. Left: Gap between 95% upper bound and 95% lower bound for varying number of assets. Right: Same
as left but scaled

volatility for each asset will be sampled from a rectangular probability distribution,
µa ∼ Rect (0.05, 0.25) and σa ∼ Rect (0.1, 0.4). The correlation for all assets is the
same, it is sampled from a rectangular distribution, c ∼ Rect (0, 0.9). For each param-
eter setting a 3-staged optimization problem is solved with 10 random assets and 100
outcomes in each stage. This procedure is repeated 100 times, using the logarithmic
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utility function. For all these optimization problems, the quality of the solution seems to
be very stable (Figure 10). The gap between the upper and lower bound is never above
1%, and the for most of the problems the gap is close to 0.7% or smaller. With the original
parameters the gap was 0.6% (Figure 7). Considering this it seems reasonable to believe
that the choice of parameter values has not had any major effect on the results, and that
the results can be assumed to hold for any asset investment problem with reasonable
parameter values.

6. Evaluating the quality of first stage decisions

Suppose that we want to evaluate the quality of a given first stage decision, x̄2, in a
T -staged decision problem. The quality of the decision can be measured by determining
the objective function value for a T -staged optimization problem with the additional
constraint x2 = x̄2 (see Section 4.1). To determine a statistical upper bound, sampled
problem instances have to be solved. The additional constraint fix the first stage decision
thus decomposing each problem instance into N1 times (T − 1)-staged subproblems.
To determine a statistical lower bound several estimates are made of the total objective
function value. For each estimate c2 is sampled N1 times. Each resulting (T −1)-staged
problem is solved and the outcomes contribution to the total objective function value is
determined by simulation and affine interpolation of the decisions.

We have evaluated decisions for a 3-staged investment problem with 10 risky assets.
The upper bound has been determined by 20 estimates of the objective function value and
N1 = 100, N2 = 100. To estimate the lower bound, again, 20 estimates and N1 = 100
are used. In each second stage node a 2-staged problem with N2 = 100 is solved and
1000 simulations are made to determine the second stage objective function value. As
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Figure 11 shows, the quality of the first stage decision can be determined to a very high
precision. Each decision can be ordered in relation to the others in terms of quality.

7. Conclusions

For the multistage asset investment problem it is necessary to solve multistage stochastic
programming problems whenever at least one of the following properties does not hold:

– the returns are independent
– the transaction costs are zero
– the utility function is of the type U(w) = wγ /γ .

For up to 5–6 stages, the multistage asset investment problem can be successfully solved
by estimating upper and lower bounds for the objective function value. This conclusion
is based on a number of observations. The behavior of the upper bound for power utility
functions, in terms of average value and variance, is theoretically analyzed and gives a
good understanding of how multistage scenario trees should be structured to provide a
good upper bound. Based on the numerical experiments, it is reasonable to extend these
characteristics also to the other utility functions used (exponential, piecewise linear, and
logarithmic with transaction costs). By using a new heuristic to transform the decisions
in a multistage stochastic programming tree to a policy, high quality lower bounds can
be estimated. This new heuristic performs better than choosing the decision from the
“closest” node.

Based on the results for generating upper and lower bounds extensive tests are made
to test how well an optimization problem with continuous random variables can be solved
with multistage stochastic programming techniques. From the tests it can be concluded
that neither the number of stages nor the number of assets have a serious impact on the
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quality of the solution. It can also be concluded that the number of necessary outcomes
in each time stage is rather small, in many instances a precision of 0.5% was achieved by
using only 100 outcomes in each stage. The results also seems to be stable with respect
to parameter choices. The major drawback with multistage stochastic programming is
however still present, the exponential growth of scenarios. Thus limiting the number of
stages to may be 5 or 6. These are encouraging results for users who solve multistage asset
investment problems by stochastic programming. The stochastic programming solution
will be reasonably close to the optimal solution, even though the number of scenarios
are relatively small.
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