
OPERATIONS RESEARCH
Vol. 54, No. 1, January–February 2006, pp. 55–72
issn 0030-364X �eissn 1526-5463 �06 �5401 �0055

informs ®

doi 10.1287/opre.1050.0264
©2006 INFORMS

A Stochastic Programming Approach to
Power Portfolio Optimization

Suvrajeet Sen, Lihua Yu, Talat Genc
SIE Department, MORE Institute, University of Arizona, Tucson, Arizona 85721

{sen@sie.arizona.edu, lyu@pplweb.com, tgenc@uoguelph.ca}

We consider a power portfolio optimization model that is intended as a decision aid for scheduling and hedging (DASH) in
the wholesale power market. Our multiscale model integrates the unit commitment model with financial decision making
by including the forwards and spot market activity within the scheduling decision model. The methodology is based on
a multiscale stochastic programming model that selects portfolio positions that perform well on a variety of scenarios
generated through statistical modeling and optimization. When compared with several commonly used fixed-mix policies,
our experiments demonstrate that the DASH model provides significant advantages.
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1. Introduction
Deregulation is an evolving process. In many states (includ-
ing Arizona), the major electricity producers have the
responsibility of meeting a certain “native load” that con-
stitutes the regulated portion of the business. Beyond this
regulated native load, a power producer may buy or sell
power in the wholesale electricity market in a manner that
the producer finds profitable. Prior to the emergence of
electricity markets, profitability was determined simply by
the ability of a power producer to convert fuel into elec-
tricity in a least-cost manner. Hence, minimization of gen-
eration costs provided the appropriate strategy. With the
emergence of wholesale electricity markets, a utility can
manage its power production and revenue potential by trad-
ing within this market. A forward (contract) for power is
a financial instrument that allows a power producer to buy
or sell power for delivery on a future (maturity) date at a
price that is agreed upon several months earlier. As weather
patterns, economic activity, and market prices evolve, these
power portfolios can be rebalanced so as to maximize
expected profitability, while appropriately balancing risk
exposure. In this environment, judicious decision making
can mean the difference between survival and demise of a
power company.
The DASH model for power portfolio optimization pro-

vides a tool that helps decision makers coordinate produc-
tion decisions with opportunities in the wholesale power
market. Before providing the technical details of our
approach, we provide a brief outline of some of the major
determinants of profitability in electricity markets. Follow-
ing this description, we describe statistical models that
are used for developing scenarios used within the stochas-
tic programming model. The latter model consists of a

financial submodel and a generation submodel that are used
to determine the profitability of any portfolio position. We
also describe an alternative investment strategy based on
a certain type of fixed-mix policy that is commonly used
by electricity traders. This strategy provides a “base case”
against which we compare the results of a stochastic pro-
gramming model. Our results are based on data obtained
from Pinnacle West Capital, which is a holding company
for Arizona Public Service (APS), the largest investor-
owned electric utility in Arizona. To maintain confidential-
ity of their data, our results will be presented in terms of
percentage gain. The backtesting experiment, which covers
a five-month operating period from January 2001 through
May 2001, shows a monthly advantage of approximately
7% in favor of the stochastic programming approach. The
DASH model has also been tested against a variety of syn-
thetic scenarios. These experiments reveal the robustness of
the forward decisions recommended by DASH.

1.1. Contributions of This Paper

Portfolio optimization models have been investigated using
stochastic programming in many recent papers (e.g., Carino
and Ziemba 1998, Wu and Sen 2000), and the volume
edited by Ziemba and Mulvey (1998) provides extensive
coverage of asset/liability modeling. By the same token,
the electric utility industry has also applied stochastic pro-
gramming for hydroelectric generation scheduling (Jacobs
et al. 1995) and unit commitment under uncertainty (e.g.,
Carpentier et al. 1996, Escudero et al. 1996, Takriti et al.
2000, Nowak and Roemisch 2000, Bacaud et al. 2001,
Growe-Kuska et al. 2002). Fleten et al. (2002b) have
discussed a model that combines hydroelectric systems
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scheduling as well as investments in electricity markets.
Our paper is in the spirit of their work, although our model-
ing approach has several differences that we outline below.
First, we provide a comprehensive approach in which sta-
tistical models of the markets and decision models of the
producer are integrated, and the methodology is evaluated
through extensive simulation experiments. Moreover, we
propose spot market and power generation models that
operate on a fine enough time scale to allow for model-
ing on-peak as well as off-peak electricity products and
electricity generation. In addition, we allow a variety of
generators within a fine time-scale unit commitment model.
On the financial side we allow contracts to be modeled on
a larger time scale (i.e., monthly), and moreover include
both electricity and gas markets. Because gas is often the
marginal fuel used by power producers facing peak load,
modeling the gas market provides much more realistic esti-
mates of future marginal cost of electricity. Our model
captures the impact of generation costs (which are typi-
cally obtained from short-term unit commitment models)
on investments in electricity commodities (typically on a
monthly time scale). This multiscale approach allows much
greater fidelity than has been attempted to date. Naturally,
the resulting model is far too complex for solutions using
off-the-shelf MILP solvers. It turns out that the challenge of
incorporating multiple scales, both in modeling uncertainty,
and in the decision-making process, leads to the main con-
tributions of this paper.
We design a new nested column generation approach

that decomposes the model into smaller subproblems that
are coordinated within the new algorithm. In addition to
providing an algorithmically tractable approach, this new
algorithm maintains modularity by solving a fine time
scale (electricity generation) model and a coarse time scale
(financial investment) model separately. Another impor-
tant advantage of the new algorithm is that it is rela-
tively straightforward to study a sequence of instances, with
alternative probability estimates for the scenarios. This is
because the method is based on column generation, and
a change in probability distribution only shows up in the
objective function of the model. Thus, the new algorithm is
amenable for day-to-day implementations in which proba-
bility estimates may evolve, and new instances may have
to be resolved.
Finally, this paper also describes our statistical model-

ing effort for scenario generation in the decision phase,
as well as the evaluation phase. The scenarios generated
for the decision phase are used within the stochastic pro-
gramming model, whereas scenarios used in the evaluation
phase are meant to test the robustness of decisions provided
by the stochastic programming (DASH) model. Thus, our
paper provides a comprehensive treatment including statis-
tical modeling, optimization, and simulation.

2. Scope of the DASH Model
To begin with, we outline the manner in which we expect
the decision process to unfold. At the start of each month,

financial analysts/traders for the producer wish to reevalu-
ate/rebalance their power portfolio. At this point, they may
invoke some decision model (e.g., DASH) that recommends
the mix of power products that the producer ought to hold.
While the decision model itself may be dynamic (as in
DASH), the trader only commits to a recommendation for
the current month. After the appropriate rebalancing trades
are executed, the traders wait and observe the market until
the end of the month, at which point they update the deci-
sion model by “rolling the horizon” forward, and providing
up-to-date information to the decision model, which then
provides an updated recommendation for the next month.
While it is possible to use the DASH model at decision
epochs that are less than a month long, the portfolios within
DASH are represented at monthly intervals.
Market modeling is another feature incorporated within

DASH. In some cases, power producers trade electricity
in multiple markets. For example, a California utility may
trade in Palo Verde (AZ) and the California-Oregon Bor-
der (COB). For the sake of this model, however, we will
consider only one market for electricity. In addition to elec-
tricity, the model also allows interactions with one natural
gas market. On the generation side, the unit commitment
decisions are made on a monthly basis, and allow us to
incorporate heat rates, start-up costs, minimum downtimes,
etc. The current model does not accommodate hydrogen-
eration, although this extension is currently under consid-
eration. Finally, we also set aside modeling market power,
as such an extension would involve a game-theoretic set-
ting, a particular version of which is explored in Genc et al.
(2003).

2.1. Electricity Demand

In a completely deregulated market, the traditional notion
of load takes a backseat to demand curves relating prices
and quantities. However the extent of deregulation is in
a state of flux in most states in the United States. For
instance, in Arizona retail tariffs are regulated by the state
Corporation Commission and are held constant over long
periods of time. Electric utilities are required to serve the
“native load” that arises from their customers at regulated
retail rates. There are several different demand models that
have been studied in conjunction with the current DASH
model, including time series that use temperature as one of
the main factors. Retail prices, as they are fixed, are not
considered.

2.2. The Wholesale Electricity Market

The model allows both electricity forward contracts and
spot market activity. While the model does not accommo-
date options, these can be included without adding to the
computational burden. While prices in the electricity mar-
ket (especially the spot market) vary on an hourly basis,
we have discretized time according to a 16-hour on-peak
period, and an 8-hour off-peak period for each day.
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2.2.1. Forward Contracts for Power. For the pur-
poses of our model, forward contracts will be assumed to
be “monthly,” so that planning for period t refers to some
month t in the future. A power forward contract can be
either a financial contract or physical contract. If a for-
ward contract is settled before its maturity date, it is a
financial forward contract because no physical transactions
are necessary; otherwise, it is a physical forward contract
for which the electricity is delivered physically. A physi-
cal forward contract can be settled by taking a position in
financial forwards and letting the financial contract mature
on the delivery date. Note that the megawatts committed
(bought or sold) to the market in period j influences the
total electricity generated during period t, t > j . To facil-
itate profit making, trading decisions must consider future
load projections and generation capacity, both of which
are subject to uncertainty. If the decisions for the delivery
month �t� could be treated independently of other months,
then one could develop a model that could treat each deliv-
ery month independently. However, such an assumption
might expose the firm to a greater risk level than might be
acceptable. This is because the (financial) risk exposure of
a firm depends on the mix of instruments in its portfolio
at any point in time. Hence, it is not sufficient to simply
consider profitability for a delivery month; the collection
of forwards held at any point in time is an important deter-
minant of risk exposure.
The current price of any forward contract is usually

assumed to be known. However, forward prices for each
delivery month will evolve over time until the delivery
month. As one might expect, this evolution is uncertain
on the decision-making date. In the current version of the
DASH model, we use a nonparametric approach in which
historical data is used to create a vision for the future (e.g.,
the next six months). This vision is based on creating a
number of scenarios of “returns” (percentage change in
prices), which may be revealed in the future. The actual
process of developing these scenarios is discussed in §3.

2.2.2. Spot Market for Power. As with forward con-
tracts, on-peak and off-peak power have different price tra-
jectories, and are modeled separately. However, there are
two important observations in modeling the spot market.
The time scale for spot prices can be hourly. In the inter-
est of computational tractability, we treat the spot market
on a daily basis, and allow it to fluctuate according to the
16-hour on-peak and 8-hour off-peak periods. Also, the
spot prices for each day �d� during the month �t� must
be correlated to the forward prices associated with the sce-
nario �s� that unfolds.

2.3. Unit Commitment

The technological constraints of this sociotechnical model
arise in the unit commitment problem. Traditionally, unit
commitment models are used to determine a short-term
(weekly) power generation schedule. While they have also

been used to estimate annual production costs, the deter-
ministic nature of the original models (e.g., Bertsekas et al.
1983) do not lend themselves to mid- and long-term anal-
ysis. More recently, these models have been extended to
accommodate uncertainty in load forecasts, fuel prices, etc.
(Takriti et al. 1996, 2000; Nowak and Roemisch 2000).
Recent advances in unit commitment models are summa-
rized in Hobbs et al. (2001). Escudero and Pereira (2000)
provide an introduction to the impact of electricity mar-
kets on unit commitment. The models mentioned above are
typically focused on a short-term scheduling issue (a week
or two at most). Due to the medium-term nature (i.e., one
year) of many financial instruments, it is difficult to mea-
sure their impact using short-term models. Our multiscale
approach integrates the unit commitment model with finan-
cial decision making by including the forwards and spot
market activity within the scheduling decision model.

3. Statistical Input Models
With the exception of the unit commitment model, all
features discussed in the previous section are represented
by statistical models. The main purpose of these statis-
tical models is to help generate a finite number of sce-
narios that are represented in the form of a scenario tree.
A scenario models the evolution of information during the
decision process (Birge and Louveaux 1997). It is impor-
tant to emphasize that our scenario generation procedure
is intended to work in concert with the model proposed
in §4, which in turn must be amenable to algorithmic treat-
ment. Thus, no single module should create bottlenecks for
another. The notation used in this section is summarized in
Appendix A.
We begin with an overview of the scenario generation

process that will provide inputs into a large-scale stochas-
tic programming decision model. As we shall see in §4,
forward decisions are modeled as “here-and-now” deci-
sions, and must therefore satisfy nonanticipativity require-
ments of stochastic decision processes. On the other hand,
spot market and generation decisions are handled through
“wait-and-see” models, and as a result they adapt to a sam-
ple path. The difference between “here-and-now” decisions
versus “wait-and-see” decisions call for different mecha-
nisms for scenario generation, depending on the type of
decision. Accordingly, there are two types of scenario gen-
eration processes; a coarse time-scale discretization for the
forward (here-and-now) decisions, and fine time-scale mod-
els for generation and spot market (wait-and-see) deci-
sions. The coarse time-scale discretization will be based
on “matching” medians of forward returns data, similar
in spirit to the idea of matching moments or other prop-
erties suggested by Hoyland and Wallace (2001). On the
other hand, we use detailed econometric models for load
and spot-price trajectories. The latter approach is similar
to models used by Growe-Kuska et al. (2002) in which
load trajectories are incorporated within a stochastic unit
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Figure 1. Scenario tree structure.

• • • • •

commitment model. To be concrete, we illustrate a scenario
tree in Figure 1.
The columns in Figure 1 represent the vector of for-

ward prices for on-peak power, off-peak power, and gas,
in each subsequent month. That is, for a scenario tree that
covers a 6-month period, nodes in the first month require
18 forward prices, those in the second month require 15,
and so on. A forward scenario is one path through the tree,
as shown in Figure 1. Along each scenario (path), spot
prices (on-peak and off-peak) as well as loads (on-peak
and off-peak) will form a sample path (trajectory). Asso-
ciated with each forward scenario, we will sample several
spot prices, and load trajectories from econometric mod-
els developed below. This two-pronged approach maintains
simplicity of the forward scenario tree and the resulting
stochastic programming model, whereas the details of the
spot prices (and loads) provide a better approximation of
daily processes. Together the statistical input models and
the stochastic programming decision model provide a com-
putationally tractable approach to the forward decision-
making issue. To verify whether this approach does indeed
suffice, we perform an experiment to study the quality
of the decisions when they are used under scenarios that
are generated using more complicated econometric models
in §6.3.4. We should also mention that scenario generation
for stochastic programming is currently an area of active
research, and readers may refer to Hoyland et al. (2003) as
well as Heitsch and Roemisch (2003) for recent approaches
to scenario generation.
The sequence of models presented below are provided in

subsections that parallel those in §2.

3.1. Modeling Electricity Demand

Our load data represents an 11-year period (1990–2000) of
hourly loads in an APS service area. Because each day is
modeled by “on-peak” and “off-peak” segments, we begin
by transforming the hourly data into averages for each seg-
ment. The hours 6 a.m. to 10 p.m. are considered on-peak,

Figure 2. On-peak load data for three years.
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and the remaining hours are considered off-peak. To give
the reader a sense of the load data, Figure 2 provides a
three-year sequence of on-peak loads. The off-peak loads
also portray similar cyclical and seasonal trends, and these
are confirmed by the Kendal-Tau and Turning Point tests
(see Kendall et al. 1983).
Based on seasonality of loads depicted in Figure 2, we

partition the data for a year into four groups, each repre-
senting a season. The first has a decreasing trend, the next
an increasing trend, and so on. For each group/partition,
we use d to denote a day, and L̃d denotes the load. Assum-
ing an annual growth rate of g, we propose the following
model:

L̃d = Ld�1+ g�
 where

Ld = �0+�1d+ �d


�d =
7∑

i=1
�i�d−i +�d +�8�d−1
 �d ∼N�0
1��

To create load scenarios from such a model, we generate
pseudorandom �d.
For the data set we investigated, the de-trended

load (for both on-peak and off-peak segments) follows
ARIMA�7
0
1� for each partition. This is consistent with
the study of Dupacova et al. (2000), who examined hourly
loads (which can be viewed as high-frequency data) and
concluded that SARIMA�7
0
9�× �0
1
0� was an appro-
priate model for hourly loads. Following Box and Jenkins
(1976), we also performed several tests to investigate the
quality of the model. These include plots of the remain-
ing residuals, the autocorrelation function, partial auto-
correlation function, p-values of Ljung-Box statistics, and
qq-normal plot of residuals. These results can be obtained
from the authors upon request. The diagnostic tests vali-
dated the sufficiency of the demand model.

3.2. Modeling Electricity Forward Prices

This forms the core of the DASH scenario generation pro-
cedures. The inputs we use are the forward prices for the
preceding year, together with recent trends in the market.
Let us first focus on the forward prices for the preceding
year. These are available as hourly quotes that we trans-
form into on-peak and off-peak average prices. We have
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the following format for the prices: ���e, where � is the
price, and � , �, and e denote the contract week, delivery
week, and segment, respectively. Here, the ranges of indices
are � = 1
2
 � � � 
52, �= �1
2
 � � � 
N �, and e ∈ �on
off �,
N denoting the last week in which delivery will happen.
For example, �1
8
 on is the price ($/MWh) on January 7
(i.e., end of week 1) for on-peak power delivered starting
on March 1 (for the entire month of March). However, we
use “returns” to predict prices; that is, r�
�
 e = ���+4
 �
 e −
��
�
 e�/��
�
 e. Because the index � reflects an index for
weeks, the subscript � + 4 denotes a period that is four
weeks removed from period � . Assuming that there are
four weeks in a month, the return r�
�
 e denotes the relative
change in price during the month starting in week � .
There are two important reasons behind our choice to

model returns rather than prices. First, this approach allows
us to treat different power contracts (associated with differ-
ent months) with the same scenario tree, thus reducing the
complexity of modeling the evolution of prices associated
with each type of contract. We have empirically verified
that it is the interval of time between contract and delivery
that is important for modeling returns, and not the actual
contract. Hence, the same scenario tree remains a valid
representation of returns for alternative contracts. Second,
the econometrics literature recommends that “returns” are
better for predictive purposes because empirical evidence
suggests that they appear to have better properties (e.g.,
stationarity) from a computational point of view (Taylor
1986).
A discrete scenario tree may now be formed by group-

ing returns into subsets for each period (i.e., month), and
modeling the return process as one that allows probabilistic
transitions from one subset to another over time. To main-
tain computational tractability, we consider only two sub-
sets in each period: “High” and “Low” return states. Thus,
the resulting scenario tree can be represented by a binary
tree in which the returns can assume “High” or “Low” val-
ues over the course of the decision process.
To assign “High” and “Low” values for the return states,

we adopt a sampling-based procedure that is guided by
recent observations of the return series. The nominal value
that we assign to each state (“High” or “Low”) is the
median of the corresponding group for that period. How-
ever, without accommodating extreme values, the scenario
tree (and consequently the decisions themselves) overlooks
extreme events, thus opening up the possibility for catas-
trophic losses. We will, of course, include some loss con-
straints within the decision model, but in the absence of
extreme scenarios, such constraints can only have limited
impact. Accordingly, we use a combination of medians
and extreme values (“Min” and “Max”) to assign values
to the “High” and “Low” states. The precise manner in
which we choose one or the other depends on a heuristic
guided by market conditions prior to running the model.
Finally, the formation of the scenario tree requires a spec-
ification of transition probabilities between nodes repre-
senting information states. Recall that our scenario tree is

binary, and hence there are only two probabilities that need
to be specified. In the event that our heuristic produced two
nodes that are represented by medians (“High” and “Low,”
respectively), then we simply use equal conditional proba-
bilities for these two transitions. On the other hand, if the
heuristic produces an extreme value for one path, and a
median for the other, then we associate a conditional prob-
ability of 1/4 for the extreme value, and 3/4 for the median
value. These conditional probabilities reflect approximately
the number of times the return either exceeded the high
median or fell below the low median within the data set.
Our heuristic does not produce two extreme values from
any node, and hence this possibility is not considered.
The above process creates a binary scenario tree for the

return series, which is then used to create price scenarios
used by the stochastic programming model described in the
next section.

3.3. Modeling Gas Forward Prices

The process used to model gas forward prices is similar to
the process described in the previous subsection (on elec-
tricity forward prices). We will also assume that the returns
for gas and electricity are perfectly correlated so that a
scenario obtained from the electricity forward return tree
generates a similar scenario from the gas forward return
tree (for justification, see §6.3.3.2).

3.4. Modeling Electricity Spot Prices

Recall that the forward price process is discretized on a
monthly basis. However, spot prices must be modeled on
a different time scale. As discussed earlier, on-peak and
off-peak spot prices will be modeled on a daily basis,
with the understanding that they will be correlated with an
appropriate forward price scenario. As with the forwards,
we resort to modeling the return series of spot prices,
and make the assumption that forward prices reflect the
expected spot prices. This assumption avoids creating a
“money machine.”
The spot prices during a delivery month are generated

from the following formulation (of spot returns): rpe
d
 �
� =
r
f
e
 t
� +  e
 tzd
 t
�, where � is the node number of the for-
ward scenario tree;  e
 t is the standard deviation of spot
returns, which changes from delivery month to delivery
month; and r

f
e
 t
� is the daily equivalent of the forward

return �rt
 t+1
 e� on node � for month t. The quantity z rep-
resents a standard normal random variate. Here,  e
 t may
be interpreted as the volatility associated with on-peak and
off-peak returns during month t and are estimated using a
Generalized Auto Regressive Conditional Heteroskedastic-
ity (GARCH) model (Bollerslev 1986). Because the expec-
tation of spot market prices may be assumed to equal the
expected forward prices (Hull 1997), the above relationship
between spot and forward returns captures both the first as
well as second moments of the spot-price process. Assum-
ing that forward return �rfe
 t
�� is given and volatility of spot
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returns � e
 t� is computed, we draw as many outcomes of
the standard normal variate z as there are days �d� in a
period �t�. This process yields a sample path of spot returns.

4. The Decision Model
The DASH model may be classified as a multistage
stochastic integer program that recommends forward deci-
sions on a here-and-now basis, whereas the operational
decisions (generation, spot market activity, etc.) are used
to evaluate the viability of the portfolio. In this sense,
the generation and spot market decisions are adaptive (i.e.,
wait-and-see), and allow us to compute medium term (six
months to a year) decisions without being mired in daily
(here-and-now) details.
In formulating the stochastic program, all decision vari-

ables and many independent parameters depend on the sce-
nario. However, in the interest of simplifying the notation
we have suppressed this dependence below. We remind the
reader that all forward variables will be required to satisfy
the nonanticipativity requirements of stochastic program-
ming (Birge and Louveaux 1997). The formulation is pre-
sented in two parts: the financial problem and generation
costing problem.

4.1. The Financial Problem

In the following formulation, all power decision variables
are in megawatts (MW).

Scenario-Independent Parameters
� Max liquidity limit coefficient;
T Number of periods;
P Regulated power price;
Jt Number of segments in period t; in a month con-

sisting of 28 days, there are 56 segments;
� �on-peak
off-peak�;
He Hours of one on/off-peak segment, He = 16 h for

e= on-peak, and 8 h for e= off-peak;
p�j� Peak status (on/off) of segment j;
YL0te Power forward in long position for delivery

period t, peak e held initially;
YS0te Power forward in short position for delivery

period t, peak e held initially;
YG0t Gas forward for delivery period t held initially;
PTt Profit target for period t.

Scenario-Dependent Parameters
PP�te Price of energy forward (MWh) for delivery

period t, peak e (on/off peak) at contract period � ;
PG�t Price of gas forward for delivery period t, at con-

tract period � ;
PStj Price of energy in spot market in period t, seg-

ment j;
Dtj Electricity demand in period t, segment j .

Scenario-Dependent Decision Variables
FP�te Power forward for delivery period t, peak e (on/off

peak), signed at contract period � (positive for long
position, negative for short position);

FP+
�te
 FP

−
�te Power forward in long and short position,

respectively, for delivery period t, peak e (on/off
peak), signed at contract period � , an upper bound
is imposed on this variable;

FG�t Gas forward in long position for delivery period t,
signed at contract period � ;

YP�te Total power forward for delivery period t, peak e
held at contract period � (positive for long position,
negative for short position);

YP+
�te
 YP

−
�te Total power forward in long and short posi-

tion, respectively, for delivery period t, peak e, held
at contract period � , an upper bound is imposed on
this variable;

YG�t Total gas forward for delivery period t held at con-
tract period � ;

SPtj Power exchanged with spot market in period t, seg-
ment j (positive for purchase, negative for sale);

ZPte Total power forward cost for delivery period t,
peak e;

ZGt Total gas forward cost for delivery period t;
Ctj Total generation cost in period t, segment j .

Scenario-Dependent Constraints

FP�te = FP+
�te − FP−

�te


� ∈ �1
 � � � 
 T �
 t ∈ ��
 � � � 
 T �
 e ∈ �
 (1)

YP�te = YP+
�te − YP−

�te


� ∈ �1
 � � � 
 T �
 t ∈ ��
 � � � 
 T �
 e ∈ �
 (2)

YP+
�te = YP+

��−1�te + FP+
�te


� ∈ �1
 � � � 
 T �
 t ∈ ��
 � � � 
 T �
 e ∈ � (3)

(Power forward balance in long position at period �);

YP−
�te = YP−

��−1�te + FP−
�te


� ∈ �1
 � � � 
 T �
 t ∈ ��
 � � � 
 T �
 e ∈ � (4)

(Power forward balance in short position at period �);

YG�t = YG��−1�t + FG�t


� ∈ �1
 � � � 
 T �
 t ∈ ��
 � � � 
 T �
 e ∈ � (5)

(Gas forward balance at period �);

∑

t∈-�
T .
FP+

�te��
∑

t∈-�
T .
YP+

��−1�te
 � ∈�1
���
T �
 e∈� (6)

(Max liquidity limit for long position);

∑

t∈-�
T .
FP−

�te��
∑

t∈-�
T .
YP−

��−1�te
 � ∈�1
���
T �
 e∈� (7)

(Max liquidity limit for short position);
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ZPte =
Jt
2

∑

�∈-1
 t.
PP�teFP�teHe
 t ∈ �1
 � � � 
 T �
 e ∈ � (8)

(Total power forward cost for delivery period t, peak e�;

ZGt =
∑

�∈-1
 t.
PG�tFG�t
 t ∈ �1
 � � � 
 T � (9)

(Total gas cost for period t�;

∑

j∈-1
 Jt .
-�DtjP − SPtjPStj�Hp�j�−Ctj .−

∑

e∈�
ZPte � PTt


t ∈ �1
 � � � 
 T � (10)

(Monthly profit target control).
Constraints (1)–(5) constitute balance constraints

(dynamics). Constraints (6)–(7) provide a way to control
the extent to which a portfolio is allowed to change from
one period to the next period. These constraints help avoid
speculation, thus limiting risk exposure. The lower the
value of � (not necessarily less than 1), the tighter the con-
trol is on the forward trajectory allowed by the model. In
addition to the above liquidity constraints, we also include
an upper limit on forward positions that is described in the
variable definition. The costs associated with the forward
decisions are captured in (8)–(9). By constraint (10), the
monthly profit target control is enforced. However, if this
constraint cannot be satisfied, we include this target within
the objective function via a penalty term. Finally, there
are two important factors required to specify the financial
problem.
• Nonanticipativity constraints require that scenarios

that share the same history until period t should be associ-
ated with decisions that have the same values until period t.
These linear constraints couple decisions from different
scenarios, thus allowing a well-hedged plan.
• The objective function for the financial problem maxi-

mizes expected profits associated with the portfolio. In cal-
culating the profits, we accommodate the generation cost,
which is computed via the model discussed next.

4.2. The Generation Problem

The electricity products model includes on-peak and off-
peak power, during 16- and 8-hour segments of a day,
respectively. Because of the nonstorability of electricity,
the utilization of generation assets and the associated costs
must be captured during these on-peak and off-peak peri-
ods. Hence, it is necessary for production-costing models to
accommodate this time scale. With each scenario we asso-
ciate a series of generation problems, and each generation
problem models a period of power production. Thus, for
any scenario, there will be the same number of generation
problems as there are periods in the financial model. In
this formulation, the generation and spot market variables
are allowed to be adaptive. Although gas generators are
included with the generation model, we do not model gas

storage capacity, so that gas inventory from day to day is
not included in this model. In essence, this is equivalent to
assuming that there is infinite capacity for gas storage and
its inventory cost is negligible. This assumption, together
with the assumption that the forward price of a path and
expected spot price are equal, implies that decisions in the
spot market can be subsumed by decisions in the forward
market.
We now proceed to a description of the generation

model. As before, the notation suppresses the dependence
on scenarios.

Scenario-Independent Parameters
I Set of generators;
d Index of days;

j�d� Indices of the two segments associated with day d;
t�d� Period associated with day d;
ML Maximum acceptable daily loss;
Gas Set of gas generators;
Coal Set of coal generators;
Nuc Set of nuclear generators;
CPt Coal price for period t;
NPt Nuclear fuel price for period t;
Qi Maximum generation capacity of generator i;
qi Minimum generation capacity of generator i;
Li Minimum up-time requirement for generator i;
li Minimum down-time requirement for generator i;

Fi�x� Consumption function of fuel for generation of x
due to generator i (Fi�x�= ai+bix, where ai and bi
are parameters).

Scenario-Dependent Parameters
Witj Scheduled outage (Witj = 0 if outage is scheduled in

period t, segment j for generator i; 1, otherwise);
6itj Forced outage (6itj = 0 if outage is forced in

period t, segment j for generator i; 1, otherwise).

Scenario-Dependent Decision Variables
TGtj Total generated power in period t, segment j;
Gitj Power generated by generator i in period t, seg-

ment j;
Uitj Operation decisions for generator i in period t, seg-

ment j (Binary decision variable; Uitj = 1 if gen-
erator i is on in period t, segment j; Uitj = 0,
otherwise);

SGtj Consumption of gas in period t, segment j;
SCtj Consumption of coal in period t, segment j;
SNtj Consumption of nuclear fuel in period t, segment j .

Scenario-Dependent Constraints

YPtte + SPtj + TGtj =Dtj


t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt�
 e= p�j� (11)

(Demand-generation-forward-spot relationship);

YGtt =
∑

j∈-1
 Jt .
SGtj 
 t ∈ �1
 � � � 
 T � (12)

(Total gas consumption for period t�;
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SGtj=
∑

i∈Gas
Fi�Gitj �
 t∈�1
���
T �
 j ∈�1
���
Jt� (13)

(Gas consumption for period t, segment j�;

SCtj=
∑

i∈Coal
Fi�Gitj �
 t∈�1
���
T �
 j ∈�1
���
Jt� (14)

(Coal consumption for period t, segment j�;

SNtj=
∑

i∈Nuc
Fi�Gitj �
 t∈�1
���
T �
 j ∈�1
���
Jt� (15)

(Nuclear fuel consumption for period t, segment j);

Ctj =
ZGt

Jt
+NPtSNtj +CPtSCtj 


t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt� (16)

(Generation cost for period t, segment j);

TGtj =
∑

i∈I
Gitj 
 t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt� (17)

(Total generated power at period t, segment j);

qiUitj�Gitj�QiUitj 
 i∈ I
 t∈�1
���
T �
 j ∈�1
���
Jt�
(18)

(Operating range for each generator);

Uitj −Uit
 j−1 �Uit� 


i ∈ I
 t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt�

� ∈ �j + 1
 � � � 
min�j +Li − 1
 Jt�� (19)

(Minimum up-time requirement);

Uit
 j−1−Uitj � 1−Uit� 


i ∈ I
 t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt�

� ∈ �j + 1
 � � � 
min�j + li − 1
 Jt�� (20)

(Minimum down-time requirement);

Uitj �Witj 
 i ∈ I
 t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt� (21)

(Scheduled outage);

Uitj �6itj 
 i ∈ I
 t ∈ �1
 � � � 
 T �
 j ∈ �1
 � � � 
 Jt� (22)

(Forced outage);

∑

j∈j�d�
-�DtjP − SPtjPStj�Hp�j�−Ctj .−

∑
e∈� ZPte
Jt/2

+ML� 0

∀d
 t = t�d� (23)

(Maximum daily loss constraint).

The alternative time indexes used in the model result
in a multiscale model with the financial decisions being
made on a monthly time index, and the generation decisions
being indexed by segments that are either 8 or 16 hours
long.
In constraint (11), the forward contract position YPtte

involves an exchange of electricity (i.e., the net physical
amount of electricity exchanged) in month t. The max-
daily loss constraint is imposed to provide a measure of
risk control on the decisions. Note that we have two risk
constraints: a daily “loss” constraint in the generation prob-
lem (23) and a monthly profit target constraint in the finan-
cial problem (10). These constraints are based on profit
targets, and failure to meet these targets determines the
extent of “loss.” Such targets are commonly set by manage-
ment, and adopted by traders for the purposes of hedging.
The price of gas used in the model includes the cost

of delivery from the gas market. Moreover, the estimated
cost of gas forwards is prorated according to the number
of segments in the period/month (see (16)). There are more
accurate ways to allocate the cost of gas forwards to each
segment, but variables introducing usage-based allocation
for each segment result in many more coupling variables
between the financial and generation problems, and that
would limit the ease with which these submodels may be
decomposed within an algorithm. Accordingly, we have
adopted the formulation of (16) and (23). Although (23) is
a financial constraint, it is included within the generation
model. Because spot market prices and demands are mod-
eled on a daily basis, it is best to incorporate risk control
on a daily basis, and hence this constraint appears in the
generation model. However, the model may become infea-
sible in instances in which the target ML is unattainable. In
such instances it may be recommended that the user include
such a measure within a penalized objective function for
the generation problem.
Finally, we discuss the objective function for the genera-

tion problem. Because many of the decision variables have
been expressed without explicitly indicating dependence
on the scenario, we begin by stating a scenario-dependent
objective function as follows.

Max
∑

t
 j

-�DtjP − SPtjPStj�Hp�j�−Ctj .−
∑

t
 e

ZPte� (24)

This expression is a scenario-dependent objective func-
tion that reflects the profit/loss of spot market activity, as
well as the cost of power generation under one scenario.
The complete objective function maximizes the expected
profit obtained by accumulating a weighted average in
which the scenario objectives (24) are weighted by their
respective probabilities. In the absence of monthly and
daily targets as specified in (10) and (23), and liquidity
((6), (7)), such an objective may be interpreted as a risk-
neutral preference. However, the inclusion of (10) and (23)
provides downside risk control and should be viewed as
a mechanism for monthly and daily hedging. In addition,
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(6) and (7) accommodate the user’s perception on liq-
uidity in the market. Collectively, these constraints incor-
porate dynamic piecewise-linear risk measures within the
DASH model. Moreover, in contrast to most other hedg-
ing schemes (see Eydeland and Wolyniec 2003), where
decisions are evaluated using a terminal goal, the DASH
model incorporates “path-dependent” goals. This extension,
however, requires a new algorithmic strategy, which we
describe next.

5. A Nested Column Generation
Decomposition Strategy

The stochastic programming model presented in the pre-
vious section is a very large-scale optimization problem.
Fortunately, the model is amenable to solutions using
decomposition techniques. This discussion is best moti-
vated by studying the structure of the DASH model.

5.1. Here-and-Now Problem Embedded with
Wait-and-See Problems

In §4, the DASH model was presented in terms of its
two main submodels: the financial model and the genera-
tion model. The financial decisions in this model are made
monthly. In each decision period, forward positions are
chosen for each of the future delivery months. As the mar-
ket evolves, these positions will be rebalanced to react to
changes in the market. Because the forward decisions are
made before forward prices are realized, they should be
treated as here-and-now decisions. Thus, forward scenarios
will provide monthly evolution of prices, and the here-and-
now (financial) decisions will be required to be nonantic-
ipative with respect to the forward prices scenario tree.
We should reiterate that the forward prices refer to multi-
ple stochastic processes including on-peak/off-peak power
and gas.
Note that the focus of the DASH model is forward deci-

sions, with generation costs merely providing the basis for
economic decisions. Unlike the financial decisions, the gen-
eration decisions are assumed to be made on a segment-
by-segment basis (i.e., 16 hours on-peak, and 8 hours
off-peak). That is, for each forward scenario, generation
decisions follow the evolution of load and spot prices dur-
ing each month of a given scenario. This suggests a wait-
and-see (adaptive) approach for the generation decisions.
Nevertheless, it should be noted that if there are two sce-
narios that have the same monthly data history (i.e., loads,
forwards, and spot prices) until month t, then the genera-
tion history associated with these scenarios should also be
the same until month t. We refer to this property as nonan-
ticipativity with respect to the monthly data process.

Proposition. Suppose that the forward decisions are
nonanticipative (with respect to the monthly data process).
Assume that any tie-breaking rule for alternative optima in
the generation problem is applied in such a manner as to

ensure that generators are dispatched in the same order,
given the same history of circumstances (among scenarios
sharing the same partial data path). Then, the generation
decisions also satisfy nonanticipativity with respect to the
monthly data process.

Proof. Constraints (19) and (20) in the generation problem
restrict the range of the segment index � to the range � ∈
�j+1
 � � � 
min�j+Li−1
 Jt��. Hence, generation decisions
of one month are decoupled from generation decisions of
any other, except as required by the forward decisions.
Because the forward decisions in (11) are nonanticipative
with respect to the monthly data process, and any two sce-
narios having the same monthly data history have the same
loads and spot prices, consistency of the dispatching order
ensures that generation decisions for one scenario are also
optimal for the other (in the respective generation prob-
lems). Hence, the generation decisions are nonanticipative
with respect to the monthly data process, and this com-
pletes the proof.
The resulting structure is therefore one that involves

a multistage here-and-now stochastic program that has a
sequence of large wait-and-see mixed-integer linear pro-
grams (MILPs) embedded within it. This structure turns
out to be amenable to decomposition because the unit com-
mitment model, an MILP, is much easier when treated as
a wait-and-see problem than as a here-and-now problem
(Takriti et al. 2000, Nowak and Roemisch 2000).
To give the reader a sense of the magnitude of each sce-

nario problem, the financial decisions involve T �T − 1�/2
for each of the following types of forwards: on-peak elec-
tricity, off-peak electricity, and gas. This certainly seems
manageable for reasonable values of T (e.g., T = 6 or 12).
For the generation problem, each day corresponds to two
segments (on-peak and off-peak), each served by �I � gen-
erators. Hence, a month-long unit commitment model
involves 56 segments, and thus 56�I � binary variables. By
aggregating some of the generators, it is possible to solve
such problems with reasonable computational effort. How-
ever, if the number of generators is large, then it may be
more convenient to solve a weekly unit commitment prob-
lem instead.

5.2. Nested Column Generation Decomposition
Strategy

Our approach decomposes the stochastic program into three
interrelated optimization problems that are motivated by a
nested column generation (i.e., Dantzig-Wolfe) decomposi-
tion strategy. The algorithm is best motivated by studying
the structure of the model. Figure 3 illustrates the origi-
nal DASH model, which consists of nonanticipativity con-
straints (see Appendix B in the Online Companion at http://
or.pubs.informs.org/Pages/collect.html) and all scenario
subproblems. In order to model the nonanticipativity con-
straints, we introduce the notation n�s
 t� to denote the
node of the scenario tree associated with scenario s in
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Figure 3. Original problem structure.

Nonanticipativity
constraints

Financial variables
Node

variables

Scenario 1
subproblem

Scenario n
subproblem

Original problem

period t. The gas and power forward variables are referred
to as node variables and designated as FGn�s
 t�

�t and FPn�s
 t�
�te .

Nonanticipativity constraints are enforced by requiring that
all scenario decisions for gas and power forwards equal the
appropriate node variables as shown in Figure 3.
Figure 4 summarizes the structure of each scenario prob-

lem, which consists of complete forward dynamics and all
generation problems. The forward positions that are ulti-
mately realized (on a delivery date) appear in the genera-
tion model as shown in Figure 4. Given that both Figures 3
and 4 depict block-angular matrices, it is natural to con-
sider an algorithm in which column generation is carried
out in a nested manner; that is, we develop a nonanticipa-
tivity master problem (see Figure 5) whose responsibility
is to seek nonanticipative forward decisions by choosing
convex combinations of columns that represent each sce-
nario. Similarly, Figure 6 depicts a master program for any
scenario, and the columns generated here represent forward
positions for the scenario. These positions are proposed by
the generation problem. Thus, the nested column genera-
tion approach adopted here involves interactions between
three problems described below (refer to Figures 4–6). The
precise formulations are provided in Appendix B.
1. We use a nonanticipativity master problem to enforce

nonanticipativity restrictions. Each scenario is represented
by a collection of columns in this problem, and its goal is to
find a convex combination of columns of each scenario that
also satisfy nonanticipativity restrictions. Initially, a Phase 1

Figure 4. Scenario subproblem structure.

Generation
problem 1

Generation
problem m

Delivery date forwards position

Complete forwards
dynamics

Scenario subproblem

Figure 5. Nonanticipativity master structure.

Nonanticipativity
constraints

Columns from
scenario 1

Columns from
scenario n

State vector formulation

Convexity
constraints

problem is solved to obtain a feasible solution to this prob-
lem. We note that the objective function coefficient for each
column in this problem represents the total profit under a
particular scenario of forward prices, spot prices, and elec-
tricity demand.
2. Given the price for achieving nonanticipativity from

the master problem described above, a mid-level coordi-
nating problem (scenario master problem) is formulated to
make the best forward decisions for each scenario. This
is essentially the same formulation as the financial prob-
lem described in §4.1. However, the summation of for-
ward decisions for a certain delivery period is once again
represented via a convex combination of forward columns
that are generated by the corresponding generation prob-
lem where the summation of forward decisions appear in
the demand constraint (11). Here, we decompose the whole
embedded generation problem (wait-and-see) into several
generation problems, one for each delivery period (month).
3. Finally, the lowest-level problem (generation prob-

lem), which generates the aggregation (i.e., summation) of
forward columns for the higher levels, consists of a series
of unit commitment problems. As with the second-level
coordinator, this problem assumes that the scenario is given
and a series of deterministic instances of the unit commit-
ment problem are solved. The prices of forwards in this
problem are modified by the dual prices from forward bal-
ance constraints in the mid-level coordinator (scenario mas-
ter problem).
The use of Dantzig-Wolfe decomposition for bound-

ing within a branch-and-bound method for specially struc-
tured integer programs is sometimes referred to as a

Figure 6. Scenario master structure.

Columns for delivery
date forwards position

Convexity
constraints

Forwards dynamics
in contract months

(nondelivery months)

Forwards dynamics
at delivery month

Forwards variables
(state and decisions)

Scenario master
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branch-and-price algorithm (Barnhart et al. 1998). In these
methods, columns are generated for each node (of a branch-
and-bound tree) at which a linear programming relaxation
is solved. Within the context of stochastic programming,
Lulli and Sen (2004) have shown how stochastic integer
programs can be solved using branch-and-price algorithms.
For our specific application, we find that solving the root
node of this branch-and-bound tree provides a very reason-
able approximation because the difference between upper
and lower bounds are within a small fraction of a percent-
age. Here, the upper bound is calculated by using the for-
ward decisions recommended by DASH, and then running
each scenario problem using binary variables (not a con-
vex combination). Of course, the lower bound is provided
by the DASH model. For the data sets reported in §6, the
percentage difference between the upper and lower bounds
was about 0.15%. Consequently, there was not much to
be gained by going beyond the root node relaxation (i.e.,
branch-and-price was deemed unnecessary here).
A few more remarks regarding the advantages of our

algorithm are in order. First, the nested approach allows
us to maintain modularity, so that generation costing and
financial decision are performed by coordinated, yet inde-
pendent models. Moreover, such modularity promotes the
ability to use a distributed computing environment, which
has its own advantages (scalability, reliability, etc.). Finally,
we observe that in cases where a problem instance is the
result of changes in a previously solved data set (e.g., due to
changes in the probability measure, or having a new plant
come on line), the nonanticipativity master problem can
be warm-started using previously generated columns, thus
allowing efficient re-solves. Indeed, this is the feature that
makes it possible to provide decision support to analysts
who gain insights from answers to “what-if” questions.
To solve a DASH problem with the above decomposi-

tion strategy, we apply CPLEX 7.0 to implement the nested
column generation decomposition algorithm. The CPLEX
Barrier Optimizer is used to solve the nonanticipativity
master problem, and the Simplex Optimizer to solve the
scenario master problem. It is well known (see Carpenter
et al. 1991) that interior-point methods are superior to the
Simplex method for stochastic programs with the split-
variable formulation, as in our case. These are very large,
sparse problems. The generation problem is a mixed-integer
program, and we use CPLEX Mixed-Integer Optimizer to
solve it.

6. Experimental Results
This section is subdivided into several subsections. In the
first of these subsections (6.1), we provide a brief sum-
mary of the data sets we use for testing the structure and
performance of the model. In §6.2, we study the behav-
ior of the model; in particular, we study whether the
inclusion of integer variables and hedging constraints are
necessary. Section 6.3 is devoted to several experiments,

which are intended to test the performance of the new
model against a benchmark. We also investigate the perfor-
mance of the model against “out-of-sample” scenarios (see
§§6.3.2, 6.3.3, and 6.3.4) that may be generated in a variety
of ways. Finally, §6.4 provides a summary of experienced
computational times.

6.1. Summary of the Data Set

The experiments reported in the following subsections are
based on data obtained from Pinnacle West Capital, the
largest investor-owned utility in Arizona. Before present-
ing the experimental results in detail, we briefly summarize
the data set. For all runs reported here, we used an ini-
tial position of forwards amounting to 15% of the averaged
electricity load for a certain period. The electricity mar-
ket data for our study reflects prices at Palo Verde, AZ,
whereas the gas market prices reflect data from Henry Hub,
LA plus the cost of delivery. For the sake of this study,
transaction costs were not included, although such calcu-
lations are easily accommodated within a simulation. To
obtain results within reasonable computational resources,
we aggregated plants into groups based on the type of fuel
used by the plant. This reduced the number of generation
types to three: nuclear, coal, and gas. The DASH deci-
sions that we are using for the simulation experiments are
made once a month, starting from January 2001 through
May 2001. These months reflect a period of turmoil in the
California energy markets, although the worst part of the
crisis preceded that period. Finally, we note that although
the decision model aggregates the generation plants into
groups based on fuel type, the entire set of generators (say
50 plants) can be incorporated within the simulation.

6.2. Analysis of Model Structure

In developing the DASH model, we have made several
choices regarding its structure. In making these choices we
have tried to balance the realism underlying model formu-
lation and its algorithmic tractability. In this subsection, we
study the behavior of the forward decisions as a function
of alternative model structures. There are two complicat-
ing factors that arise within the DASH model: One arises
from the inclusion of integer variables, and the other arises
from the inclusion of profit/loss control and max liquidity
limit constraints. The complications due to the inclusion of
integer variables are well known in the operations research
literature. The other complication is more specific to power
portfolio optimization, and calls for a brief discussion. It is
noted that the DASH model would be a lot simpler without
the profit/loss control and max liquidity limit constraints.
If there are no such constraints, the model can be decom-
posed into many simpler separable submodels, each cor-
responding to a future delivery month. We investigate the
impact of model structure on decisions resulting from sim-
pler models that do not accommodate the features incorpo-
rated in DASH. To investigate the impact of such features,
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Figure 7. Influence of integer variables in the genera-
tion model.
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we made January 2001 runs based on a scenario tree with
200 scenarios. We first discuss the impact of the integer
variables (operation decision variables) in the generation
model. Then, we discuss the influence of the profit/loss
control ((10), (23)) and max liquidity limit constraints ((6)
and (7)).
To investigate the influence of the integer variables, we

executed the model under two alternative assumptions: one
that includes integer variables, and another that relaxes
them. To maintain confidentiality of the data, we report the
percentage change in decisions instead of the real decisions
(percentage = (forward decision with integer variables −
forward decision without integer variables) ∗ 100/decision
without integer variables). From Figure 7, we observe that
incorporation of the integer variables significantly changes
the forward decisions.
Note that the difference in gas forward decisions is not

particularly significant. This may be attributed to the fact
that the start-up constraints for gas turbines are not signifi-
cant. However, significant differences arise with the power
forward decisions. The latter may be attributed to the fact
that other generation technologies, such as nuclear power
plants, have significant start-up constraints.
Next, we investigate the impact of the profit/loss control

((10), (23)) and max liquidity limit constraints ((6), (7)).
As before, we report only the percentage change in deci-
sions (percentage= (forward decision with constraints (6),
(7), (10), and (23)− decision without these constraints) ∗
100/decision without these constraints). Once again, the
gas forward decisions are not significantly different, but
the difference in power forward decisions continues to be
significant, as shown in Figure 8. This suggests that for-
ward decisions (for hedging) are less dependent on the most

Figure 8. Influence of profit/loss control and max liq-
uidity limits.
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expensive fuel (i.e., last dispatched technology), and more
dependent on the remaining technologies. Moreover, the
fact that most of the differences are positive implies that
the magnitude of power forward decisions are greater in
the presence of the hedging constraints than the magnitude
resulting from models that do not have these constraints.

6.3. Results of Simulation Experiments

The experiments reported here are intended to investigate
the quality of decisions provided by the DASH model. To
do so, we study the performance of DASH decisions in
three settings: (a) a backtesting exercise in which the deci-
sions are evaluated with respect to the data observed during
the first half of 2001, (b) a simulation exercise in which
the DASH decisions were evaluated when scenarios were
generated from an extended scenario tree that involved four
branches (instead of two) at each node, and (c) a simu-
lation exercise in which the price models are completely
independent of the scenario tree models used by DASH.
These price models are described subsequently in this sec-
tion. Our intent is to test the performance of DASH under
various “stresses” so that weaknesses can be identified.
For each monthly DASH run, we generated a scenario

tree with 200 scenarios, and new trees were generated for
successive monthly decisions. For comparative purposes,
our tests will be carried out against a benchmark known
as the fixed-mix policy, which is relatively common in this
industry. In the portfolio optimization, fixed-mix refers to
a rebalancing strategy in which a constant mix of hold-
ings is maintained, depending on the fluctuations in the
market. Fleten et al. (2002) compare the fixed-mix strategy
for the financial portfolio optimization with corresponding
stochastic linear programming models. We perform similar
experiments to compare a fixed-mix approach to the one
proposed in this paper. However, in addition to the obvious
difference between the models, there are two distinctions
between our experiments, and those reported in Fleten et al.
(2002). First, we compare the decisions from DASH with
those of the best fixed-mix strategy (among a finite set);
and second, our simulations are performed to emulate a
succession of decisions on a rolling horizon basis. Hence,
the comparisons we report are dynamic and based on real-
istic data.
The fixed-mix strategy for power portfolio optimization

may be described as follows.

On any contract date, an appropriate hedging position for
a future delivery date (month) is one that is determined
according to the following strategy. Make a prediction of
expected demand and expected capacity for the delivery
month. If expected demand exceeds expected capacity, then
assume a long position for forwards in that delivery month,
and the quantity of this transaction should be a fraction “f”
of the difference. On the other hand, if expected capacity
exceeds expected demand, then one should assume a short
position for forwards in the delivery month being consid-
ered. Once again, the quantity associated with this transac-
tion should be a fraction “f” of the difference.
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One can devise several variations on this scheme. For
instance, instead of using expected demands and capacities,
one may use scenarios to determine scenario-dependent
strategies, and then use some weighted average to deter-
mine the exact mix. For our experiments, we only tested
the basic scheme outlined in the previous paragraph. How-
ever, we ran our simulations using several values of the
fixed-mix fraction f , including 0, 0.1, 0.2, 0.3, and 0.4. We
should also note that the simulations used here incorpo-
rate greater details on generation capacities than that used
within the DASH decision model. Moreover, each compari-
son experiment between DASH policy and fixed-mix policy
was made based on the same set of scenarios, although we
did generate different sets of scenarios for each comparison
simulation experiment.

6.3.1. The Backtesting Experiment. As outlined in
the introduction, this experiment covers a five-month oper-
ating period from January 2001 through May 2001, with
hedging decisions being made once each month. The deci-
sions at the beginning of each month are, of course, made
prior to observing the markets. Once the transactions are
carried out, no portfolio changes are allowed for the rest of
the month. During this period, we run a generation costing
simulation based on weekly unit commitment and calculate
the actual weekly profit. There are two steps for this pro-
cedure. In the first step, we forecast power demands and
spot prices for the coming week, and run a weekly gener-
ation problem based on forward decisions for the current
period. In Step 2, we calculate the actual profit based on
the scheduled generation, actual demands, and spot prices.
Following this procedure, we can simulate the actual prof-
its week by week during the current month. At the start
of the next month, we once again use the fixed-mix pol-
icy to obtain the newly rebalanced positions, and the pro-
cess resumes again. Moreover, because all rules carry out
the same number of transactions, the difference in transac-
tions costs between the different policies can be ignored.
Finally, costs/revenues are calculated using the unit com-
mitment (generation) model, which includes spot market
and forward activity. Thus, revenues are accounted for in a
delivery month only.
To maintain confidentiality, we will report performance

in terms of fractions, with the profit of the best policy
assuming the value of 1. Figure 9 is based on outputs
that showed that using f = 0�1 provided the most prof-
itable fixed-mix strategy. Note that although some other
fractions appear to be competitive during certain months,
using f = 0�1 provides the overall winner among the fixed-
mix strategies.
Next, we proceed to experiments with the stochastic pro-

gramming approach. These experiments were run with the
same data as above, except that the fixed-mix hedging rule
was replaced by decisions from the DASH model. During
each month (January 2001 through May 2001), we ran the
stochastic programming model once. As before, decisions

Figure 9. Comparisons between fixed-mix strategies.
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are made before observing market prices at Palo Verde,
AZ and Henry Hub, LA. The planning period used within
the decision model was five months long (i.e., T = 5).
Hence, as in the previous experiments, delivery dates of six
months in the future were permitted in the model. Thus,
the experimental setup and data are exactly the same as in
the fixed-mix study, and this permits comparisons between
hedging decisions from stochastic programming and the
fixed-mix rule.
In Figure 10, we use the best fixed-mix strategy �f =

0�1� as the basis for our comparisons. We made two series
of runs with the DASH decisions: one using �= 0�3 (i.e.,
30% change allowed in the portfolio from one month to
the next), and another series of runs using � = 0�5 (i.e.,
50% change allowed from month to month). Both series
of DASH runs perform significantly better than the best
fixed-mix strategy. It turns out that the series of revenues
for �= 0�5 exceeds that for the best fixed-mix strategy by
approximately 7% per month, on average. This is a signif-
icant advantage in favor of the DASH model.
Before closing this subsection, we should comment on

a certain initialization bias that results from restrictions
imposed by the initial portfolio. Recall that when we allow
a 50% change allowed in the portfolio from month to
month ��= 0�5�, it takes about two months for the effect of
the initial portfolio to wear off. It is therefore appropriate
to focus our attention on the performance of DASH (with
�= 0�5) for months 3, 4, and 5. Similarly, when �= 0�3,
the output for months 4 and 5 are critical.

6.3.2. Results of Experiments with Synthetic Sce-
narios from an Extended Scenario Tree. To test the

Figure 10. Comparing DASH with fixed-mix strategy.
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robustness of the decisions provided by the DASH model,
we created synthetic scenarios and tested the decisions pro-
vided by the model against these scenarios. In conducting
this phase of our experiments, we did not reoptimize to
allow DASH to adapt to the observed (synthetic) scenario;
instead, we used the decisions obtained from the backtest-
ing experiment and applied those to the synthetic scenar-
ios. Hence, the gains reported here are lower bounds on
potential improvements. In these experiments, we follow
the same simulation procedure as the one in the backtesting
experiment.
The synthetic scenarios of this section were created in

two steps. First, we create a series of forward prices from
a discrete-time stochastic process, with each time step
reflecting the passage of a month. During each month, we
draw a random number representing a particular outcome
of forward prices. We allow four such outcomes in any
month: {Max, High-Median, Low-Median, Min}. The val-
ues for these quantities are obtained from historical data,
as described in §3.2, and the probability of these outcomes
is assumed to be {1/8, 3/8, 3/8, 1/8}. Note that over a five-
month period, we can create a total of 1,024 scenarios. For
the purposes of our tests, we generate 30 scenarios against
which the model is tested. For each of these scenarios, we
also generate spot market prices and loads. The latter are
created in the same manner as described in §3.
Due to the initialization bias in the first two months (see

§6.3.1), the comparison we report pertains to months 3, 4,
and 5. This comparison involves the DASH model �� =
0�5� and the fixed-mix strategy using f = 0�1. Figure 11
depicts the fraction of differences (i.e., (DASH − Fixed-
Mix)/Fixed-Mix) over all 30 scenarios for months 3, 4,
and 5. Upon examining this figure, it is clear that DASH is
the winner over most scenarios, with the magnitude of wins
being significantly higher than the magnitude of losses.
A summary of Figure 11 in terms of win-loss statistics is
provided in Table 1.
The win-loss advantages in favor of DASH are unmistak-

able. Moreover, these results may underestimate the gains
because the DASH model was not reoptimized based on
observations of the evolving (synthetic) scenario.

6.3.3. Generating Synthetic Scenarios Using Alter-
nate Price Models. While the results of the previous

Figure 11. Comparing DASH ��= 0�5� with fixed-mix
strategy �f = 0�1�.
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Table 1. Win-Loss statistics with scenarios from an
extended tree.

Wins-Losses Average size Average size
Month\Statistic for DASH of wins (%) of losses (%)

3 22-8 3�29 4�70
4 19-11 11�19 6�82
5 19-11 21�68 12�91

subsection are encouraging, it remains to be seen how
the model might perform under scenarios that are based
entirely on more detailed econometric models. To do so,
we modeled the price processes (gas, electricity forwards,
and spot) directly rather than modeling “returns” as in for-
mulating the scenario tree (see §3). These price models are
similar in spirit to studies by Eydeland and Geman (1999),
but as one might expect, our prices create scenarios. The
details are discussed below, and are significantly different
from previous work.

6�3�3�1� Gas Spot Pricing. Because gas generators are
usually the last ones to be dispatched for merit-ordered
electricity generation, the marginal cost of electricity
reflects gas prices. Hence, it is natural to first model gas
spot prices, followed by gas spot-price scenarios, and then
electricity spot-price scenarios. The reader may recall that
the DASH model does not allow activities in the gas spot
market, and the entire reason for studying gas spot prices
is to help generate electricity spot prices. This process of
generating gas spot prices is based on the following simple
algorithm.
Step 0. Calculate trend �9� and standard deviation � �

using the first m days of gas spot prices.
Step 1. Calculate n sample paths for the remaining days.

For i = 1
 � � � 
M (samples), we generate price trajectories
for d=m+1
 � � � 
D as follows: ;i
d−;i
d−1 =9+ �i
d.
This process simulates a discrete Brownian motion, pro-

vided that the trend and volatility remain constant. How-
ever, if the forecasting interval (i.e., D) is long, then it may
be worth considering time-dependent trend and volatility
(e.g., Taylor 1986, Engle 1982). This can be accomplished
by dividing the forecasting interval into shorter segments,
and then estimating the associated trend and volatility
parameters. Our experimental studies were performed for
only a five-month interval, and for such a small interval,
the estimated parameters were stable over the interval.

6�3�3�2� Spot Pricing of Electricity. In the course of this
study, we have observed high correlation between Henry
Hub gas spot prices and Palo Verde electricity spot prices.
For instance, in the year 2000 the correlation coefficient
between on-peak electricity and gas spot prices is 0.58.
The same figure (i.e., correlation coefficient for 2000) for
off-peak electricity and gas prices is 0.84. In year 2001,
these correlations are 0.62 and 0.7, respectively. As indi-
cated earlier, the reason for this high correlation is that the
marginal fuel in the Southwest is gas. Hence, electricity
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spot prices are very sensitive to gas spot prices in these
wholesale markets. Using this information, we propose the
following relation:

�PS�ed = <0+<1�PS�
e
d−1+<2;d=

e
d�

Here, e ∈ �on
off � identifies on-peak and off-peak elec-
tricity and the notation �PS�ed, ;d denotes the spot prices
for electricity and gas, respectively, for day d; moreover,
=ed represents a random variable whose distribution we infer
from the data. The motivation for this model is as follows.
Because electricity spot prices are persistent, the model
includes the lagged spot price, and moreover, any change in
gas spot prices has a nonlinear effect on the electricity spot
price due to the inclusion of the third term in the above
equation. Note that while on-peak and off-peak electricity
spot prices are correlated, we believe that this correlation
is due to their dependence on gas prices, which is reflected
in the model stated above. From historical data we have
determined the distribution of the error term in the model.
For <0 = 0 and <1 = <2 = 1, we used the “best fit” function
of Arena (http://www.software.rockwell.com) to determine
the distribution for the error term. For the on-peak prices,
the distribution turned out to be normal, with mean 0.1 and
5.5 standard deviation; for off-peak, corresponding distribu-
tion was normal with parameters 0.04 and 2. Given initial
electricity spot price and gas spot prices generated as in the
previous section, we generate electricity spot-price trajec-
tories by sampling randomly from the above distributions.
Likewise, given other gas spot-price trajectories, we obtain
M on-peak and off-peak spot-price scenarios.

6�3�3�3� Gas Forward Pricing. We formulate gas forward
prices in two steps. First, given initial forward prices for
five months from now, we determine the trend and standard
deviation. Then, we use Brownian motion with drift process
to generate scenarios. In the following, the unit of time is
one month. Specifically,

GF�
 t −GF�
 t−1 =9+ �t
 �t ∼N�0
1�

for t = 1
2
 � � � 
5 and � � t


where GF�
 t denotes the gas forward price at time �
delivered at period t, 9 and  are the drift (trend) term
and standard deviation, respectively. We initialize GF0
0
as gas spot price at time 0. Given � = 1, we perform
M independent samples of the random variable, �t , for t =
1
2
 � � � 
5. Then, we increment � and for t = �
 � � � 
5, use
M independent samples of the random variable GF�
 t�1+
>�rand-−l
 l.�� to obtain prices in period � ; here, rand is
a uniform random number between −l and +l; and l is the
standard deviation of the price data collected in period �−1
for all future prices (subsequent to period �−1�. Here, > is
the scaling parameter of the random noise rand-−l
 l.. One
can estimate this scaling parameter based on observed price
series.

6�3�3�4� Electricity Forward Pricing. It is known that
some special characteristics of electricity such as nonstora-
bility, weather conditions, unscheduled outages, and trans-
mission disruptions make this market different from all
other commodity markets. Eydeland and Geman (1999)
note that the market for power derivatives is not complete
because hedging portfolios do not exist, or are at least very
difficult to identify. This incompleteness implies the nonex-
istence of a unique derivative price; hence, the wide bid-ask
spread observed on certain contracts. Vehvilainen (2002)
concludes that no analytical connection has been estab-
lished even between the spot price and electricity forward
prices, and that standard financial models may not neces-
sarily apply in electricity markets. Consequently, Eydeland
and Geman (1999) propose to approximate power forward
prices as PF�
 t = p0 +?�w�
 t
L�
 t�, where p0, w�
 t , L�
 t ,
and ? designate base load price, forward price of marginal
fuel (gas, oil, etc.), expected load (or demand) for date t
conditioned on the information available at time � , and a
“power stack” function (see Eydeland and Geman 1999),
which can either be actual or implied from option prices.
Analogous to their formulation, we propose on- and off-
peak forward prices as

PF e
�
 t =GF�
 t exp�a

eLe�
 t + be�
 (25)

where e ∈ �on
off � and ae, be are coefficients. Note that
this form of ? is rather complex, because load �Le�
 t�
is modeled by either ARIMA or GARCH models, and
moreover, the gas forward prices �GF�
 t� are modeled as
Brownian motion with some volatility term structure. Note
that the standard option-pricing models would arise if one
were to assume that the load is normally distributed and
gas forward prices follow geometric Brownian motion.
To implement (25), we follow a sequential procedure

that is similar to the one used for gas forwards. Because
forward prices are monthly, we first convert daily load into
average monthly load. Using this load and gas forward
prices, we estimate coefficients ae, be by using nonlinear
least squares. Given � = 1, we use M previously generated
values of GF�
 t and Le�
 t (see §§6.3.3.3 and 3.1, respec-
tively) to obtainM values of PF e

�
 t for t = 1
2
 � � � 
5. Then,
we increment � , and for t = �
 � � � 
5 use M independent
samples of the random variable PF e

�
 t��1+>�rand-−h
h.��
to obtain prices in period � ; here, rand is a uniform random
number between −h and +h, in which h is the standard
deviation of the price data collected in period � − 1 for all
future prices (subsequent to period � − 1�. > is the scaling
parameter.

6.3.4. Results of Experiments with Synthetic Sce-
narios from Alternate Scenario Models. As with the
experimental results reported in §6.3.2, we consider the
performance of the DASH model relative to fixed-mix mod-
els for months 3, 4, and 5. With the scenarios obtained in
§6.3.3, the fixed-mix strategy using f = 0�4 was the most
profitable among all fixed-mix strategies that were tried.
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Figure 12. Comparing DASH ��= 0�5� with fixed-mix
strategy �f = 0�4�.
% Difference: DASH50 and Fix40

–0.2

–0.4

0

0.2

0.4

0.6

0.8

3 4 5

Scenarios for months 3, 4, and 5

Hence, we compare this strategy with the DASH model
��= 0�5�. Figure 12 depicts the fraction of differences (i.e.,
(DASH−Fixed-Mix)/Fixed-Mix) over all 30 (i.e., M = 30)
scenarios for months 3, 4, and 5. Upon examining this fig-
ure, it is once again clear that DASH is the winner over
most scenarios, with the magnitude of wins being signif-
icantly higher than the magnitude of losses. A summary
of Figure 12 in terms of win-loss statistics is provided in
Table 2. As in Table 1, the win-loss advantages in favor of
DASH are unmistakable.

6.4. Computational Performance

In this subsection, we report the computational perfor-
mance associated with the DASH problem and the nested
column generation algorithm. For a DASH problem with
200 scenarios, the deterministic equivalent linear program
(LP) contains over 1�5×106 constraints and 7�5×105 vari-
ables. We used CPLEX7.0 (http://www.ilog.com/products/
cplex) as the LP engine to solve the problem, and our
experiments were conducted on a workstation SUN Ultra80
with two processors and 1 GB RAM.
As noted in §5.2, we used the CPLEX Dual Simplex

Optimizer and Mixed-Integer Optimizer to solve the sce-
nario master problems and generation subproblems, respec-
tively. However, we chose CPLEX Barrier Optimizer to
solve the nonanticipativity master problem. This choice was
made after our initial experimentation revealed that the Bar-
rier Optimizer performed much better than the Primal Sim-
plex option. In Table 3, we report the associated CPU times
from DASH runs for each of the five periods.
Considering the huge size of realistic instances such

as those solved in this paper, the above computational

Table 2. Win-Loss statistics from alternative synthetic
scenarios.

Wins-Losses Average size Average size
Month\Statistic for DASH of wins (%) of losses (%)

3 19-11 9�4 5�0
4 19-11 13�4 4�8
5 22-8 28�0 12�1

Table 3. Computational CPU times
(minutes).

Month CPU time

1 533.75
2 527.73
3 507.78
4 529.25
5 509.72
Average 521.65

performance is reasonable. However, we should reiterate
that there are two main advantages of our solution method:
(a) it allows efficient warm-starts, and (b) it is amenable for
distributed computation. Both have the potential to speed
up the method considerably. For instance, we created a data
set in which the prices were perturbed by 5% from the orig-
inal data set. We executed this program using a warm-start
option in which columns from a previous run are used to
initialize the master problems. For such a run, the program
stopped in about 30 minutes, which is certainly acceptable.
Our results using a distributed computing framework will
be reported in a subsequent paper.

7. Conclusions
In this paper, we described a large-scale modeling effort
that demonstrates the viability of stochastic programming
as a modeling paradigm for decision making under uncer-
tainty. We described our input-modeling effort, the DASH
decision model, the DASH algorithm, and several experi-
mental tests to study the robustness of the approach. Our
experimental evidence suggests that the stochastic program-
ming approach provides a powerful and robust tool for
scheduling and hedging in wholesale electricity markets.
There are several additional features (e.g., options, swaps,
forced outages, hydroelectric generators, etc.) that are being
incorporated into the DASH model, and future papers will
report on these extensions. The integration of market and
production data with statistical models, optimization mod-
els, and simulation within one software framework requires
fairly heavy investments in modeling and simulation tech-
nology. However, as demonstrated by our experiments, such
an investment is very likely to bear fruit.
In terms of future work, we envision several avenues,

some that will enhance the DASH model and others that
will enhance the algorithmic implementation. In the for-
mer category, we suggest the inclusion of game-theoretic
approaches that will allow us to model both the strate-
gic and tactical market power. Another extension includes
the possibility of accommodating gas inventory within the
model. While such models will be more realistic, they will
create computing challenges that may call for the intro-
duction of supercomputing into this arena. This, of course,
leads to the second category of algorithmic enhancements
that will be required in the future.
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Appendix A. List of Symbols Within
Statistical Models
y, t, � , d, s Index for year, month, week, day, and sce-

nario, respectively.
L̃d Load on the day d.
Ld Load estimate on the day d.
g Annual growth rate in load.

�, � Normally distributed variables.
�i, �j Coefficients.
� , � Contract week and delivery week, where � =

1
2
 � � � 
52 and �= �1
2
 � � � 
N �.
e Type of load segment, where e ∈ �on
off �.
� Node number.
z Standard normal random variate.

���e Forward price with contract week � , delivery
week �, and segment e.

r�
�
 e Rate of change in price during the month
starting in week � .

 e
 t Standard deviation of spot returns in segment
e in month t.

r
f
e
 t
� Daily equivalent of the forward return on

node � for month t.
r
p
e
d
 �
� Daily equivalent of the spot return on node �

for month t.
9,  Trend and standard deviation, respectively.
;i
d Gas spot price on day d from sample i.
D Forecasting interval.
M Replication number.

�PS�ed Power spot price.
=ed Random variable.
<i Coefficients.

GF�
 t Gas forward price.
rand Uniform random number generator.

> Scaling parameter.
p0 Base load price.

w�
 t Forward price of marginal fuel (gas, oil, etc.).
L�
 t Expected load for date t conditioned on the

information available at time � .
? “Power stack” function.

ae, be Coefficients.
l, h Estimated standard deviation of prices.
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