
A stochastic programming approach for

supply chain network design under uncertainty

Tjendera Santoso, Shabbir Ahmed∗, Marc Goetschalckx, Alexander Shapiro

School of Industrial & Systems Engineering,
Georgia Institute of Technology, 765 Ferst Drive, Atlanta, GA 30332.

June 16, 2003

Abstract

This paper proposes a stochastic programming model and solution algorithm for solving sup-
ply chain network design problems of a realistic scale. Existing approaches for these problems are
either restricted to deterministic environments or can only address a modest number of scenarios
for the uncertain problem parameters. Our solution methodology integrates a recently proposed
sampling strategy, the Sample Average Approximation scheme, with an accelerated Benders de-
composition algorithm to quickly compute high quality solutions to large-scale stochastic supply
chain design problems with a huge (potentially infinite) number of scenarios. A computational
study involving two real supply chain networks are presented to highlight the significance of the
stochastic model as well as the efficiency of the proposed solution strategy.

Keywords: Facilities planning and design; Supply chain network design; Stochastic program-
ming; Decomposition methods; Sampling.

1 Introduction

A crucial component of the planning activities of a manufacturing firm is the efficient design and
operation of its supply chain. A supply chain is a network of suppliers, manufacturing plants,
warehouses, and distribution channels organized to acquire raw materials, convert these raw mate-
rials to finished products, and distribute these products to customers. Strategic level supply chain
planning involves deciding the configuration of the network, i.e., the number, location, capacity,
and technology of the facilities. The tactical level planning of supply chain operations involves
deciding the aggregate quantities and material flows for purchasing, processing, and distribution
of products. The strategic configuration of the supply chain is a key factor influencing efficient
tactical operations, and therefore has a long lasting impact on the firm. Furthermore, the fact that
the supply chain configuration involves the commitment of substantial capital resources over long
periods of time makes the supply chain network design problem an extremely important one.

Beginning with the seminal work of Geoffrion and Graves [8] on multi-commodity distribution
system design, a large number of optimization-based approaches have been proposed for the design

∗Corresponding author. E-mail: sahmed@isye.gatech.edu, Phone: 404-894-2320, Fax: 404-894-2301.

1

of supply chain networks (see for example [1, 9, 31]). However, the majority of this research assumes
that the operational characteristics of, and hence the design parameters for, the supply chain are
deterministic. Unfortunately, critical parameters such as customer demands, prices, and resource
capacity are quite uncertain. Moreover, the arrival of regional economic alliances, for instance the
Asian Pacific Economic Alliance and the European Union, have prompted many corporations to
move more and more towards global supply chains, and therefore to become exposed to risky factors
such as exchange rates, reliability of transportation channels, and transfer prices [32]. Unless the
supply chain is designed to be robust with respect to the uncertain operating conditions, the impact
of operational inefficiencies such as delays and disruptions will be larger than necessary. A recent
study [12] found that after a company announces a supply chain disruption, such as a production
or shipment delay, its stock price can decrease significantly, with an average decrease of 8.6% on
the day of the announcement, and is often followed by further decreases, as much as 20% over the
next six months.

The significance of uncertainty has prompted a number of researchers to address stochastic
parameters in tactical level supply chain planning involving distribution of raw materials and prod-
ucts (see for example [6, 17, 33]). At the strategic level, there is a great deal of research in the
facility location component of supply chain network design under uncertainty (see for example [24]).
However, research addressing comprehensive design of supply chain networks under uncertainty is
significantly smaller in number. Gutierrez et al. [10] proposed a robust optimization framework
for network design under uncertainty. This approach seeks network configurations that are good
(nearly optimal) for a variety of scenarios of the design parameters at the expense of being sub-
optimal for any one scenario. The authors proposed a modification of the Benders decomposition
algorithm [3], commonly used for deterministic network design problems [8], to generate robust
designs. Computational testing of the algorithm using randomly generated test problems with
networks comprised of up to 33 nodes, 100 arcs, 64 commodities, and 11 scenarios was carried out.
Mirhassani et al. [22] considered a two-stage model for multi-period capacity planning of supply
chain networks. Here the first stage decisions, comprised of openings and closings of the plants and
distribution centers and setting their capacity levels, are to be decided prior to the realization of
future demands. Then, based upon the particular demand scenario realized, the production and
distribution decisions are to be decided optimally. The overall objective is to minimize the cost of
the first-stage strategic decisions and the expected production and distribution costs over the uncer-
tain demand scenarios. The authors used Benders decomposition to solve the resulting stochastic
integer program, and presented computational results on supply chain networks involving up to 8
plant sites, 15 distribution centers, 30 customer locations, and with 100 scenarios. Tsiakis et al. [28]
also considered a two-stage stochastic programming model for supply chain network design under
demand uncertainty. The authors developed a large-scale mixed-integer linear programming model
for this problem, and presented a case study using a European supply chain network involving 14
products, 18 customer locations, 6 distribution center locations, and 3 demand scenarios. Alonso-
Ayuso et al. [2] proposed a branch-and-fix heuristic for solving two-stage stochastic supply chain
design problems. Computational results on networks involving 6 plants, 12 products, 24 markets,
and 23 scenarios were presented.

As evident from the above discussion, the existing stochastic programming approaches for sup-
ply chain design under uncertainty are suited for a very small number of scenarios. Consider a
distribution network with just 50 facilities, each with an uncertain operating level. Assume that
the operating level for a facility can be one of only three possibilities and are independent across

2

facilities. Then there are a total of 350 ≈ 7 × 1023 scenarios for the joint realization of the uncer-
tainties! This is far more than any of the existing stochastic programming approaches for supply
chain design can handle. In this paper, we integrate a recently proposed sampling strategy, the
Sample Average Approximation scheme, with an accelerated Benders decomposition algorithm to
solve supply chain design problems with continuous distributions for the uncertain parameters,
and hence an infinite number of scenarios. The proposed algorithmic technique is immediately
applicable to problems with finite but an extremely large number of scenarios. Our computational
results involving two real supply chain networks indicate that the proposed methodology can serve
as a viable strategic planning tool, allowing planners to investigate a multitude of possibilities, and
investigate a variety of solutions.

The remainder of this paper is organized as follows. In the next section we describe a two-stage
model for supply chain design under uncertainty and identify some of the challenges involved in
developing a solution strategy. In Section 3, we develop the proposed solution methodology. We
explain the Sample Average Approximation technique, its integration with Benders decomposition,
and develop techniques for accelerating Benders decomposition. In Section 4, we present a com-
putational study involving two real supply chain networks to illustrate the proposed methodology.
Finally, we offer some concluding remarks in Section 5.

2 Problem Description

Let us first describe a deterministic mathematical formulation for the supply chain design problem
considered in this paper. Consider a supply chain network G = (N ,A) where N is the set of nodes
and A is the set of arcs. The set N consists of the set of suppliers S, the set of processing facilities
P and the set of customers C, i.e., N = S ∪ P ∪ C. The processing facilities include manufacturing
centers M, finishing facilities F and warehouses W, i.e., P = M∪F∪W . Further, a manufacturing
center i ∈ M or a finishing facility i ∈ F consists of a set of manufacturing or finishing machines
Ni. Thus the set P includes the processing centers as well as the machines in these centers. Let K
be the set of products flowing through the supply chain.

The supply chain configuration decisions consist of deciding which of the processing centers
to build (major configuration decisions) and which processing and finishing machines to procure
(minor configuration decisions). We associate a binary variable yi to these decisions: yi = 1 if a
processing facility i is built or machine i is procured, and 0 otherwise. The operational decisions
consist of routing the flow of product k ∈ K from the supplier to the customers. We let xk

ij denote
the flow of product k from a node i to a node j of the network where (ij) ∈ A. We are now ready
to state a deterministic mathematical model for our supply chain design problem.

3

min
∑
i∈P

ciyi +
∑
k∈K

∑
(ij)∈A

qk
ijx

k
ij (2.1)

s.t. y ∈ Y ⊆ {0, 1}|P| (2.2)∑
i∈N

xk
ij −

∑
l∈N

xk
jl = 0 ∀ j ∈ P, ∀ k ∈ K (2.3)∑

i∈N
xk

ij ≥ dk
j ∀ j ∈ C, ∀ k ∈ K (2.4)∑

j∈N
xk

ij ≤ sk
i ∀ i ∈ S, ∀ k ∈ K (2.5)

∑
k∈K

rk
j

(∑
i∈N

xk
ij

)
≤ mjyj ∀ j ∈ P (2.6)

x ∈ R|A|×|K|
+ (2.7)

In the above mode ci denotes the investment cost for building facility i or procuring machine i, and
qk
ij denotes the per-unit cost of processing product k at facility i and/or transporting product k on

arc (ij). All cost components are assumed to be on an annualized basis. The objective function
(2.1) consists of minimizing total investment and operational costs. Constraint (2.2) includes the
set Y of logical dependencies and restrictions, such as yi ≤ yj for all i ∈ Nj and j ∈ P or F , i.e.,
machine i ∈ Nj should only be procured if facility j is built. This constraint also enforces the binary
nature of the configuration decisions for the processing facilities. Constraint (2.3) enforces the flow
conservation of product k across each processing node j. Constraint (2.4) requires that the total
flow of product k to a customer node j, should exceed the demand dk

j at that node. Constraint (2.5)
requires that the total flow of product k from a supplier node j, should be less than the supply sk

j at
that node. Constraint (2.6) enforces capacity constraints of the processing nodes. Here rk

j denotes
per-unit processing requirement for product k at node j. The capacity constraint then requires
that the total processing requirement of all products flowing into a processing node j should be
smaller than the capacity mj of facility j if it is built (yj = 1). If facility j is not built (yj = 0) the
constraint will force all flow variables xk

ij = 0 for all i ∈ N . Finally, constraint (2.7) enforces the
non-negativity of the flow variables corresponding to an arc (ij) ∈ A and product k ∈ K.

It will be convenient to work with the following compact notation for model (2.1)-(2.7).

min cT y + qT x (2.8)
s.t. y ∈ Y ⊆ {0, 1}|P| (2.9)

Nx = 0 (2.10)
Dx ≥ d (2.11)
Sx ≤ s (2.12)
Rx ≤ My (2.13)

x ∈ R|A|×|K|
+ (2.14)

Above the vectors c, q, d, and s correspond to investment costs, processing/transportation costs,
demands, and supplies respectively. The matrices N , D and S are appropriate matrices correspond-

4

ing to the summations on the left-hand-side of the expressions (2.3),(2.4) and (2.5), respectively.
The notation R corresponds to a matrix of rk

j , and the notation M corresponds to a matrix with
mj along the diagonal.

To extend the above model to a stochastic setting, we assume that processing/transportation
costs, demands, supplies, and capacities are stochastic parameters with known joint distribution.
We use bold face to denote random variables (random vectors) in order to distinguish them from
their particular realizations. In particular, ξ = (q,d, s,M) represents the random data vector
while ξ = (q, d, s, M) stands for its particular realization. The design objective is to minimize the
sum of current investment costs and expected future processing and transportation costs. Given
that it may be impossible to meet demand for certain realizations of the uncertain parameters, we
include an additional cost term to penalize shortfall. The resulting formulation is as follows

min
y

{
f(y) := cT y + E[Q(y, ξ)]

}
(2.15)

s.t. y ∈ Y ⊆ {0, 1}|P|, (2.16)

where Q(y, ξ) is the optimal value of the following problem

minx,z qT x + hT z (2.17)
s.t. Nx = 0 (2.18)

Dx + z ≥ d (2.19)
Sx ≤ s (2.20)
Rx ≤ My (2.21)

x ∈ R|A|×|K|
+ (2.22)

Note again that ξ in (2.15) is a random vector corresponding to the uncertain processing/transportation
costs, demands, supplies, and capacities, and the optimal value Q(y, ξ) of the second stage problem
(2.17)–(2.22) is a function of the first stage decision variable y and a realization (or a scenario)
ξ = (q, d, s, M) of the uncertain parameters. The expectation in (2.15) is taken with respect to the
probability distribution of ξ which is supposed to be known. The variable z in constraint (2.19) and
the cost component hT z in (2.17) corresponds to the penalty incurred for failing to meet demand.

Model (2.15)-(2.22) is a two-stage stochastic program. The first-stage consists of the deciding
the configuration decisions y, and the second-stage consists of processing and transporting products
from suppliers to customers in an optimal fashion based upon the configuration and the realized
uncertain scenario. The objective is to minimize current investment costs cT y and expected future
operating costs E[Q(y, ξ)]. The demand-shortage penalty hT z guarantees that Q(y, ξ) < ∞ for all
y and ξ. Furthermore, we assume that possible realizations of the processing and transportation
costs q, and the penalty costs h are sufficiently high such that Q(y, ξ) > −∞ for all y and ξ,
and hence Q(y, ξ) is finite valued for all y ∈ Y and possible realizations of the random data. We
assume further that the expected value E[Q(y, ξ)] is well defined and finite valued for the considered
distribution of ξ. Consequently problem (2.15)-(2.16) has a well-defined objective function f(y)
and, since the set Y is nonempty and finite, possesses an optimal solution.

There are two potential sources of difficulty in solving problem (2.15)-(2.16). First, an evaluation
of the objective function f(y) for a given configuration y, involves computing the expected value of

5

the linear programming value function Q(y, ξ). For continuous distributions, exact computation of
this expectation involves taking multiple integrals and is quite impossible. For discrete distributions,
computing the expectation might involve solving a prohibitively huge number of linear programs
(2.17)-(2.22), one for each scenario of the uncertain problem parameter realizations. Second, even if
the expectation in (2.15) can be computed exactly, optimization of this function presents significant
difficulties. It is well-known that E[Q(y, ξ)] is a convex nonlinear (often non-smooth) function of
y (see, e.g., [4]). However this function is not available in a closed analytical form and is only
implicitly defined. Thus problem (2.15)-(2.16) involves minimizing an implicitly defined non-linear
function with respect to binary variables, and can be quite difficult.

3 Algorithmic Strategy

In this section, we detail an algorithmic strategy for solving the stochastic supply chain network
design problem (2.15)-(2.16). Our method integrates a sampling strategy with an accelerated
Benders decomposition scheme.

3.1 Sample Average Approximation

As mentioned earlier, a key difficulty in solving the stochastic program (2.15)-(2.16) is in eval-
uating the expectation in the objective. We deal with this problem using the Sample Average
Approximation (SAA) scheme (cf., [16, 21, 27]).

In the SAA scheme, a random sample ξ1, . . . , ξN of N realizations (scenarios) of the random
vector ξ is generated, and the expectation E[Q(y, ξ)] is approximated by the sample average func-
tion N−1

∑N
n=1 Q(y, ξn). Consequently, the “true” problem (2.15)-(2.16) is approximated by the

problem

min
y∈Y

{
f̂N (y) := cT y + 1

N

∑N
n=1 Q(y, ξn)

}
. (3.1)

Let vN and ŷN be the optimal value and an optimal solution vector, respectively, of the SAA problem
(3.1). Note that vN and ŷN are random in the sense that they are functions of the corresponding
random sample. However, for a particular realization ξ1, . . . , ξN of the random sample, the problem
(3.1) is deterministic and can be solved by appropriate optimization techniques.

It is possible to show that under mild regularity conditions, as the sample size N increases, vN

and ŷN converge with probability one to their true counterparts, and moreover ŷN converges to
an optimal solution of the true problem with probability approaching one exponentially fast [16].
This convergence analysis suggests that a fairly good approximate solution to the true problem
(2.15)-(2.16) can be obtained by solving an SAA problem (3.1) with a modest sample size. In
particular, suppose that the SAA problem is solved to an absolute optimality tolerance of δ ≥ 0
and let ε > δ and α ∈ (0, 1). Then a sample size of

N ≥ 3σ2
max

(ε− δ)2
log
(
|Y |
α

)
(3.2)

guarantees that the SAA solution ŷN is an ε-optimal solution (i.e., a solution with an absolute
optimality gap of ε) to the true problem with a probability of at least 1− α. Here σ2

max is a max-
imal variance of certain function differences (see [16] for details of the estimate (3.2)). Note that

6

|Y | ≤ 2|P|, and hence log |Y | ≤ (log 2)|P|. Even though the above estimate (3.2) is too conservative
for practical applications, it suggests that the required sample size is at most linear in the number
of processing facilities |P|. In practice, the SAA scheme involves repeated solutions of the SAA
problem (3.1) with independent samples. Statistical confidence intervals are then derived on the
quality of the approximate solutions. This procedure is described next.

The SAA algorithm:

Step 1. Generate M independent samples each of size N , i.e., (ξ1
j , . . . , ξN

j) for j = 1, . . . ,M . For
each sample solve the corresponding SAA problem

min
y∈Y

cT y +
1
N

N∑
n=1

Q(y, ξn
j).

Let vj
N and ŷj

N , j = 1, . . . ,M , be the corresponding optimal objective value and an optimal solu-
tion, respectively.

Step 2. Compute

v̄N,M :=
1
M

M∑
j=1

vj
N and σ2

v̄N,M
:=

1
(M − 1)M

M∑
j=1

(vj
N − v̄N,M)2. (3.3)

It is well known that the expected value of vN is less than or equal to the optimal value v∗ of the
true problem (see, e.g., [23, 21]). Since v̄N,M is an unbiased estimator of E[vN], we obtain that
E[v̄N,M] ≤ v∗. Thus v̄N,M provides a lower statistical bound for the optimal value v∗ of the true
problem, and σ2

v̄N,M
is an estimate of the variance of this estimator.

Step 3. Choose a feasible solution ȳ ∈ Y of the true problem, for example, use one of the computed
solutions ŷj

N . Estimate the true objective function value f(ȳ) as follows:

f̃N ′(ȳ) := cT ȳ +
1

N ′

N ′∑
n=1

Q(ȳ, ξn). (3.4)

Here ξ1, . . . , ξN ′
is a sample of size N ′ generated independently of the sample used to obtain ȳ.

Typically one can take N ′ much bigger than the sample size N used in solving the SAA problems.
This step involves solution of N ′ independent second-stage subproblems (2.17)-(2.22). Note that
f̃N ′(ȳ) is an unbiased estimator of f(ȳ). Since ȳ is a feasible solution to the true problem, we have
f(ȳ) ≥ v∗. Thus f̃N ′(ȳ) is an estimate of an upper bound on v∗. If the sample ξ1, . . . , ξN ′

is iid
(independent identically distributed), then the variance of this estimate can be estimated as

σ2
N ′(ȳ) :=

1
(N ′ − 1)N ′

N ′∑
n=1

(
cT ȳ + Q(ȳ, ξn)− f̃N ′(ȳ)

)2
. (3.5)

Step 4. Compute an estimate of the optimality gap of the solution ȳ using the lower bound estimate
and the objective function value estimate from Steps 2 and 3 respectively, as follows:

gapN,M,N ′(ȳ) := f̃N ′(ȳ)− v̄N,M . (3.6)

7

The estimated variance of the above gap estimator is then given by

σ2
gap = σ2

N ′(ȳ) + σ2
v̄N,M

. (3.7)

It is natural to choose ȳ as one of the calculated estimates ŷj
N with the smallest estimated

objective value f̃N ′(ȳ). Let us emphasize again that in order to estimate the corresponding true
objective function value f(ȳ) one needs to generate a sample independent of the samples used in
calculation of ŷj

N . The above SAA procedure involving statistical evaluation of candidate solutions
was suggested in Norkin et al. [23] and further developed in Mak et al. [21]. Theoretical analysis
of the SAA algorithm for solving stochastic programs with discrete first-stage variables was carried
out in Kleywegt et al. [16]. Computational studies using the SAA method for solving stochastic
linear programs is presented in Linderoth et al. [18], and for solving stochastic routing problems in
Verweij et al. [30].

3.2 Accelerated Benders Decomposition

Step 1 of the SAA method outlined in the previous section calls for repeated solutions of the sample
average approximating problem (3.1). This problem is itself a two-stage stochastic program, albeit
with a much fewer number of scenarios than the true problem (2.15)-(2.16). Recall that the func-
tion Q(y, ξn) in (3.1) is the value function of a linear program (2.17)-(2.22) and is piece-wise linear
and convex in y. Consequently the SAA problem (3.1) involves minimizing the sum of a fairly large
number, N , of piece-wise linear convex functions (plus the first stage linear cost function cT y) over
0− 1 variables. Moreover since the functions Q(y, ξn) are not available in closed form, the problem
is quite difficult. Cutting plane algorithms such as Benders decomposition [3] (also known as the
L-shaped decomposition method in the stochastic programming literature [29]) is quite suitable for
this class of problems. We briefly state the general Benders decomposition algorithm as it applies
to problem (3.1).

Benders decomposition algorithm:

Initialization step: Set lower and upper bounds lb = −∞ and ub = +∞ respectively. Set the
iteration counter i = 0. Let ŷ denote the incumbent solution.

Step 1: Solve the master problem

lb = miny,θ cT y + θ

s.t. y ∈ Y

θ ≥ aT
k y + bk k = 1, . . . , i.

Let yi be an optimal solution of the master problem.

Step 2: For n = 1, . . . , N , solve the subproblems (2.17)-(2.22) corresponding to yi and ξn =

8

(qn, dn, sn,Mn). We re-state this problem for convenience:

Q(yi, ξn) = min (qn)T x + hT z

s.t. Nx = 0 (µ)
Dx + z ≥ dn (ν)
Sx ≤ sn (π)
Rx ≤ (Mn)yi (ρ)

x ∈ R|A|×|K|
+ ,

where the Greek terms in parenthesis next to the constraints denote to the corresponding dual
variables. Using the subproblem objective values, compute the objective function value

f̂N (yi) = cT yi +
1
N

N∑
n=1

Q(yi, ξn)

corresponding to the current feasible solution yi. If ub < f̂N (yi), update the upper bound
ub = f̂N (yi) and the incumbent solution ŷ = yi.

Step 3: If ub − lb < δ, where δ ≥ 0 is pre-specified tolerance, stop and return ŷ as the optimal
solution and ub as the optimal objective value; otherwise proceed to Step 4.

Step 4: For each n = 1, . . . , N , let (µn
i , νn

i , πn
i , ρn

i) be the optimal dual solutions for the subproblem
corresponding to yi and ξn solved in Step 2. Compute the cut coefficients

aT
i+1 =

1
N

N∑
n=1

(ρn
i)T Mn, and bi+1 =

1
N

N∑
n=1

(
(νn

i)T dn + (πn
i)T sn

)
.

Update i = i + 1 and go to Step 1.

In Benders decomposition, the master problem solved in Step 1 involves a lower approximation
of the nonlinear function N−1

∑N
n=1 Q(y, ξn) through the θ variables and the cuts θ ≥ aT

k y + bk.
This problem is a mixed-integer linear program involving |P| binary variables and one continuous
variable. The optimal objective value and the optimal solution obtained from the master problem
correspond to a lower bound to the optimal objective value and a feasible solution for the SAA
problem (3.1), respectively. The objective value corresponding to this feasible solution is evaluated
by solving the subproblems in Step 2. These N linear programs can be solved independent of
each other, allowing for a computationally convenient decomposition. Since the current solution
is feasible, this yields an upper bound information. If the lower and upper bounds are sufficiently
close together we conclude optimality. Otherwise, dual information from the subproblems is used
to compute an optimality cut which is added to the master problem. The new optimality cut serves
to improve the approximation of N−1

∑N
n=1 Q(y, ξn) in the master problem, which is then resolved

and the process iterates.
By duality it follows that the optimality cut added at the end of the i-th iteration is “exact”

at yi, i.e.,

aT
i+1y

i + bi+1 = N−1
N∑

n=1

Q(yi, ξn),

9

and is a lower approximate at all other solutions. Using this fact together with the finiteness of the
solution set it is easy to show that the algorithm terminates in a finite number of iterations with
an δ-optimal solution to the SAA problem (3.1).

While the Benders decomposition algorithm is a finite scheme, the number of iterations required
may be too large in practice. To improve the convergence behavior of the generic Benders decom-
position algorithm outlined above, we use a number of acceleration techniques. These strategies
are described next.

Trust Region:
An undesirable feature of cutting plane algorithms such as Benders decomposition is that in the
early iterations, the solutions tend to oscillate wildly from one region of the feasible set to another,
thereby slowing convergence [13]. For continuous problems, this drawback is effectively controlled
either by adding a regularizing term to the objective of the master problem that penalizes the `2-
distance of the master problem solution from the previous solution [13, 25]; or by adding constraints
that bound the `∞ distance of master problem variables from the previous solution to within a trust
region [19]. These extensions prevent the master problem solution from moving too far from the
previous iterate. The cutting plane algorithm is modified to allow for increasing or decreasing
the regularizing penalty or trust region size based upon the progress. By proper control of these,
convergence of the modified algorithm can be ensured [19, 25].

In our supply chain network design problem, the first-stage variables are binary. In this case,
adding a `2 regularizing term would lead to a mixed-integer quadratic master problem. On the
other hand, if a `∞ trust region is used, then since the feasible master problem solutions are all
extreme points of the [0, 1]|P| hypercube, a trust region with size greater than or equal to one
would include all binary solutions, and a trust region with size less than one would include only the
previous feasible solution. Consequently, such a scheme is not meaningful. In our implementation,
we use a trust region that bounds the Hamming distance [11] of the next master problem solution
from the previous solution. Suppose yi is the master problem solution obtained in the i-th iteration
and let Y i := {j : yi

j = 1}. We impose the following trust region constraint in the master problem
of iteration i + 1: ∑

j∈Y i

(1− yj) +
∑
j 6∈Y i

yj ≤ ∆i,

where ∆i+1 < |P| is the trust region size at iteration i+1. The trust region size can be constant or
dependent on the iteration. Unfortunately, unlike in case of continuous first-stage variables, conver-
gence of the algorithm cannot be ensured if a non-redundant trust region is maintained throughout
the algorithm. Since the initial iterations exhibit poor convergence behavior, we impose the trust
region in the initial iterations, and drop it once the iterates have stabilized.

Knapsack Inequalities:
Let θ ≥ aT

i y + bi be the optimality cut derived at the end of the i-th iteration, and let ub be the
current best known upper bound. Since ub ≥ cT y + θ, we have the following valid inequality for
the master problem in iteration i + 1:

b(c + ai)T cy ≤ bub− bic,

where bac is the component-wise floor of a. If a good upper bound ub is available, then adding the
above knapsack inequality along with the optimality cut can have a significant impact in generating

10

a good quality solution from the master problem in iteration i+1. A state-of-the-art solver such as
CPLEX can derive a variety of valid inequalities from the above knapsack inequality, and expedite
convergence.

Upper Bounding Heuristic:
The upper bound and incumbent solution identified in Step 2 of the Benders decomposition algo-
rithm corresponds to the solution yi of the master problem. This solution may be quite far from
the optimal solution, and may cause the algorithm to explore inferior parts of the feasible region.
If a good solution is available through some heuristic, we can replace yi by this solution in Step 2
and proceed from there. Our implementation makes use of a particular heuristic strategy for this
purpose which is described next.

In our implementation of the generic Benders decomposition algorithm, we observed that after
the optimality gap becomes quite small, the upper bound exhibits a tailing off behavior as the
iterations progresses. This is due to the fact, that in these iterations, the incumbent solutions
all have identical or very similar major configuration decisions (corresponding to the processing
centers) solutions, and the only changes are due to the minor configuration decisions (correspond-
ing to the machines). Since the minor configuration decisions have relatively small implication
on the objective, the upper bound changes very little. To avoid this behavior, we call the follow-
ing heuristic strategy in Step 2 if the upper bound has not improved in several successive iterations.

Step 1: Fix all the major configuration decisions to those in the incumbent solution.

Step 2: Consider a subset of the sampled scenarios, and solve the corresponding deterministic
equivalent problem to solve for the minor configuration decisions.

Step 3: Evaluate the objective function corresponding to the solution (major and minor configu-
ration) obtained above by solving all the subproblems as in Step 2. If the solution is better than
yi (the current master problem solution), replace yi by this solution. Update upper bound and
incumbent solution if necessary and proceed as before.

Cut Strengthening:
Note that the subproblem (2.17)-(2.22) has a network substructure. Typically such problems have
multiple dual optimal solutions. Consequently, there may be a number of alternatives for the
optimality cut computed in Step 3. While all of these alternative cuts are valid, and exact at the
current solution yi, one cut may be dominated by another in the vicinity of the optimal solution.
For example, let (á, b́) and (à, b̀) be two alternative optimality cut coefficients at yi corresponding
to alternative sets of dual optimal solutions, then

áT yi + b́ = àT yi + b̀.

Suppose y∗ is the optimal solution, then cut (á, b́) dominates cut (à, b̀) if

áT y∗ + b́ > àT y∗ + b̀.

Clearly cut (á, b́) is preferable in iteration i since it will typically lead to better lower bounds and
expedite convergence. Unfortunately, since the optimal solution y∗ is not known a priori it is

11

difficult to identify dominating cuts. Magnanti and Wong [20] considered a core point, i.e., a point
in the relative interior of the convex hull of feasible region, as a proxy for the optimal solution
y∗. They proved that if a cut is selected such that it attains the maximum value at a core point
amongst the set of all alternative cuts, then such a cut is not dominated by other cuts at any
feasible solution. Such a cut is termed pareto-optimal. We follow this strategy to identify good
dual solutions and hence pareto-optimal cuts. Typically, a core point is not easy to identify. In
our implementation, we choose a fractional optimal solution from the LP relaxation of the master
problem y0 as a candidate core point. Although, such a solution is not guaranteed to be a core
point, it is often in the neighborhood of the integer optima. Furthermore, after some cuts are added
to the master problem, the LP relaxation solution will typically be in the interior of the convex
hull of Y , and hence satisfy the requirement of being a core point. After solving the subproblem
(2.17)-(2.22) to compute Q(yi, ξn) in Step 2, we solve the following linear program to identify good
dual solutions.

max
µ,ν,π,ρ

(ρT Mn)y0 + νT dn + πT sn

s.t. NT µ + DT ν + ST π + RT ρ ≤ qn

ν ≤ h

µ unrestricted, ν ≥ 0, π ≤ 0, ρ ≤ 0
(ρT Mn)yi + νT dn + πT sn = Q(yi, ξn).

The first three constraints of the above linear program enforces the dual feasible region of the sub-
problem (2.17)-(2.22) corresponding to yi and ξn, and the fourth constraint restricts the feasible
dual solutions to the set of alterative dual optima. The objective function corresponds to maxi-
mizing the cut value at y0. Note that, the above scheme for identifying alternative dual solutions
does not prevent the Benders decomposition algorithm to converge even when y0 is not a core point.

Logistics Constraints:
In the early iterations, the master problem solved in Step 1 of the Benders decomposition algorithm
includes only the logical constraints Y and a few cuts. Consequently, the configurations produced
consist of very few open facilities and therefore correspond to a small objective function value
(lower bound). On the other hand, for such sparse configurations, little demand can be met in
the scenario subproblems, thereby resulting high shortage penalties. Therefore the resulting upper
bound is very high. To avoid such bad master problem solutions, it is important to add some
subproblem information into the master. However adding additional constraints and variables into
the master may impede solution efficiency. Therefore, a trade-off between the master problem
size and the quality of the solution generated needs to reached. Next, we derive a simple set of
constraints that we found to be quite useful in improving the master problem solution.

Consider the subproblem corresponding to ξn, and a customer node j ∈ C. Expanding the
demand constraint (2.19) for this customer node, we have∑

i∈P(j)

xn,k
ij + zn,k

j ≥ dn,k
j , (3.8)

where P(j) is the set of processing centers directly supplying to customer node j. Note that we have
indexed the x and z variables also by n ∈ {1, ..., N} since these variables are local to the current

12

subproblem only. Now consider a processing node i ∈ P(j). Expanding the capacity constraint
(2.21), we have ∑

k∈K
rk
i

(∑
l∈N

xn,k
il

)
≤ mn

i yi.

Since ri
k > 0, and j ∈ N , the above implies, for a given k ∈ K, xn,k

ij ≤ mn
i

ri
k

yi. Summing over all

i ∈ P(j), we have ∑
i∈P(j)

xn,k
ij ≤

∑
i∈P(j)

mn
i

ri
k

yi. (3.9)

Combining inequalities (3.8) and (3.9), we have the following valid inequality∑
i∈P(j)

mn
i

ri
k

yi + zn,k
j ≥ dn,k

j ∀j ∈ C, k ∈ K, n = 1, . . . , N.

Taking the probability weighted sum of the above inequalities, and substituting a new variables z̄
as the average of all the zn variables, we have∑

i∈P(j)

m̄i

ri
k

yi + z̄k
j ≥ d̄k

j ∀j ∈ C, k ∈ K, (3.10)

where d̄ and m̄i are the average demand of product k for customer j, and capacity of facility i,
respectively. We can add the above deterministic constraint to the master problem, along with
the new variable z̄k

j which captures the shortfall from meeting the average demand. The penalty
of shortage also needs to be added to the master problem, i.e., the objective of the master should
include

∑
k∈K

∑
j∈C hk

j z̄
k
j . However, since the shortage penalties are quite high, and we would want

a configuration that is capable of satisfying at least the average demands, we drop the penalty
variables z̄k

j , and modify the original master problem, by adding the inequalities∑
i∈P(j)

m̄i

ri
k

yi ≥ d̄k
j ∀j ∈ C, k ∈ K. (3.11)

Cut disaggregation:
Recall that in the proposed Benders decomposition algorithm, one optimality cut is added in each
iteration. The cut approximates the sample average of the second-stage value function at the
current solution. Instead one could add N cuts to approximate the individual second-stage value
functions corresponding to each of the N sampled scenarios. In this case the master problem solved
in Step 1 of the i-th iteration takes the form

miny,θ cT y +
1
N

N∑
n=1

θn

s.t. y ∈ Y

θn ≥ (an
k)T y + bn

k k = 1, . . . , i, n = 1, . . . , N.

The cut coefficients an
i and bn

i are computed as

(an
i)T = (ρn

i−1)
T Mn, and bn

i = (νn
i−1)

T dn + (πn
i−1)

T sn,

13

where (νn
i−1, π

n
i−1, ρ

n
i−1) are the optimal dual solutions for the subproblem corresponding to yi−1

and ξn solved in Step 2 of iteration (i − 1). The disaggregation of the optimality cut can provide
a better approximation of the sample average of the second-stage value functions, and thereby
improve convergence, at the expense of a larger master problem. The trade-off lies in between
the fewer number of outer iterations of Benders decomposition and the more computational time
required to solve the master problem in each iteration. For problems where N is not too large, this
approach may be viable. This variant of Benders decomposition algorithm is often referred to as
the multi-cut version [5]. A similar cut disaggregation approach has been shown to be very effective
in Benders decomposition methods for solving deterministic supply chain design problems in [7].

4 Computational Results

In this section we describe numerical experiments using the proposed methodology for solving two
realistic supply chain design problems. We first describe the characteristics of the test problems
and some implementation details, then demonstrate the computational efficiencies afforded by our
method, and finally comment on the quality of the stochastic programming solution in comparison
to those obtained using a deterministic approach.

4.1 Data and Implementation

Our first test problem is that of the design of a domestic supply chain network for a U.S. com-
pany that supplies cardboard packages to breweries and soft-drink manufacturers. The problem is
adapted from [7]. Henceforth this problem is referred to as the “domestic” problem.

Our second test problem is a global supply chain network design problem described in [32]. The
chain encompasses the U.S. and seven Latin American countries. This problem is referred to as the
“global” problem in the remainder of this paper. The global problem is slightly different from the
cost-minimization formulation (2.15)-(2.22). This problem involves maximizing the expected net
cash flow (NCF) after subtracting the first-stage design costs from the expected after-tax profits
(revenues minus the processing and transportation costs) of the second-stage operational decisions.
The second-stage problem involves maximizing after tax profits. The model formulation is

max
y

{
f(y) := −cT y + E[Q(y, ξ)]

}
s.t. y ∈ Y ⊆ {0, 1}|P|,

where Q(y, ξ) is the optimal value of the following problem

maxx qT x

s.t. Nx = 0
Dx ≤ d

Sx ≤ s

Rx ≤ My

x ∈ R|A|×|K|
+ .

Here the parameters q denote per unit after-tax profits. These parameters are computed after taking
into account the import and export taxes and currency exchange rates across different countries of

14

the supply chain network. Note that it is not required that all demand be satisfied, and hence no
shortage penalties are imposed. It should be clear that conceptually the above model is no different
from the cost minimization formulation (2.15)-(2.22).

The supply chain topology with all possible center locations and transportation channels for the
domestic and global problem are presented in Figures 1 and 2, respectively. The main characteristics
of these two networks are presented in Table 1.

Domestic Global

Product types 13 29
Total facilities 142 87
Internal suppliers 2 6
Manufacturing plants 8 8
Machines 28 10
Finishing facilities 9 10
Final process machines 93 36
Warehouses 2 17
Customers 238 17
Transportation channels 1,559 239
Country 1 7

Table 1: Supply chain network characteristics

We used the same data for the deterministic parameter values as in [7] (for the domestic problem)
and [32] (for the global problem). To obtain stochastic instances of the problems, we assumed that
the product demands and facility capacities are uncertain. We used log-normal distributions for
these uncertain parameters. The non-negativity of the parameter values are preserved by using log-
normal distributions. Furthermore, recently Kamath and Pakkala [15] provided evidence that log-
normal distributions are well-suited for modelling economic stochastic variables such as demands.
We used the values for the demand and capacity parameters used in the deterministic models
of [7] and [32] as the mean values for the random parameters. The standard deviations for the
distributions were chosen as certain fractions of the mean values.

15

Figure 1: Supply chain network for the domestic problem

Figure 2: Supply chain network for the global problem

16

Recall from Section 3.1 that the SAA method calls for the solution of M instances of the
approximating stochastic program (3.1), each involving N sampled scenarios. Statistical validation
of a candidate solution is then carried out by evaluating the objective function using N ′ sampled
scenarios. In our implementation, we used N = 20, 30, 40 and 60; M = 20; and N ′ = 1000. As
will be evident in our numerical results, these parameters were sufficient to obtain good quality
solutions with high confidence levels. To illustrate the complexity of solving (3.1) within the SAA
scheme, we present the sizes of the deterministic equivalents of the SAA problems corresponding
to the different values of N in Table 2.

Domestic Global

Constraints Variables Constraints Variables
N Equality Inequality Continuous Binary Equality Inequality Continuous Binary

1 3,498 4,324 20,912 140 1,065 402 6,824 70
20 69,960 86,480 418,240 140 21,300 8,040 136,480 70
40 139,920 172,960 836,480 140 42,600 16,080 272,960 70
60 209,880 259,440 1,254,860 140 63,900 24,120 409,440 70

Table 2: Size of the deterministic equivalent of the SAA problem

The proposed algorithmic scheme was implemented in C++ with CPLEX 7.0 [14] callable
library routines for solving linear and mixed-integer programming sub-problems. All computations
were carried out on a Pentium II 400 MHz PC running Windows NT.

4.2 Performance of Acceleration Techniques

Recall that, since the SAA method calls for repeated solutions of the SAA problems, computational
efficiency of the solution procedure is of great significance. Here we discuss the performance of the
accelerated Benders decomposition algorithm for solving the SAA problems.

Figures 3 and 4 chart the growth of the computational time with the sample size N . For each
of the two problems, we compare the CPU seconds required for solving an SAA problem instance
as a monolithic deterministic equivalent problem using the CPLEX MIP solver, the standard Ben-
ders decomposition algorithm, and the accelerated Benders decomposition algorithm proposed in
Section 3.2. The efficacy of the proposed acceleration strategies is clearly observed.

Table 3 compares the performance of various combinations of the acceleration schemes described
in Section 3.2 for solving SAA instances of 20 scenarios. The acceleration schemes are denoted as
follows: LC (Logistics constraints); TR (Trust region); CD (cut disaggregation); KI (Knapsack
inequalities); UH (Upper-bounding heuristic); and CS (Cut strengthening). Each row of the ta-
ble presents computational performance measures for various combinations of these acceleration
schemes. The trust region scheme was not effective for the global problem and the cut disaggre-
gation scheme was not tested for the domestic problem. Hence, the notation ‘TR/CD’ in the rows
of Table 3 refers to the trust region scheme for the domestic problem and the cut disaggregation
scheme for the global problem. The row marked ‘Standard’ corresponds to the standard Benders
decomposition algorithm, and the row marked ‘All’ corresponds to all five acceleration schemes
(LC, TR, KI, UH, and CS for the domestic problem, and LC, CD, KI, UH and CS for the global
problem) used together. For the domestic problem, we compare the relative optimality gap after
the first iteration (1st Gap), the relative optimality gap after the tenth iteration (10th Gap), the

17

total CPU seconds, and the total number of iterations. The same performance are used for global
problem, except we use the relative optimality gap after the fiftieth iteration (50th Gap) instead of
10th Gap.

Figure 3: CPU seconds versus sample size for the domestic problem

Figure 4: CPU seconds versus sample size for the global problem

18

Acceleration Domestic Global

scheme 1st Gap 10th Gap CPUs Iter. 1st Gap 50th Gap CPUs Iter.

Standard > 100% 60% > 4000 > 30 > 100% 41% > 13000 > 60
LC 31% 8% > 4000 > 30 > 100% 27% > 13000 > 60
TR/CD > 100% 40% > 4000 > 30 > 100% 18% > 13000 > 60
KI 60% 5% > 4000 > 30 > 100% 21% > 13000 > 60
UH > 100% 60% > 4000 > 30 > 100% 41% > 13000 > 60
CS > 100% 9% > 4000 > 30 > 100% 29% > 13000 > 60
LC+TR/CD 31% 0.7% > 4000 > 30 > 100% 22% 11900 56
LC+KI 31% 0.1% 3860 26 > 100% 12% > 13000 > 60
LC+UH 31% 0.08% 2180 12 > 100% 27% > 13000 > 60
LC+CS 31% 0.5% > 4000 > 30 > 100% 19% 12300 58
TR/CD+KI 60% 3% > 4000 > 30 > 100% 5% > 13000 > 60
LC+TR/CD+KI 31% 0.2% 3600 23 > 100% 3% 10300 51
LC+KI+UH 31% 0.01% 1500 8 > 100% 12% > 13000 > 60
LC+TR/CD+KI+UH 31% 0.01% 1380 7 > 100% 4% 10300 51
LC+TR/CD+KI+CS 31% 0.06% 3050 19 > 100% < 1% 9800 45
All 31% 0.01% 1890 7 > 100% < 1% 9800 45

Table 3: Comparison of acceleration schemes (N = 20)

From Table 3 it can be observed that, although the acceleration schemes improves the con-
vergence behavior over standard Benders decomposition, no one acceleration technique is a clear
winner. Rather, the schemes are most effective in concert. In particular, for the domestic problem,
the best performance could be achieved by combining LC, TR, KI, and UH. While, for the global
problem, the best combination is LC, CD, KI, and CS. Although, the results in Table 3 correspond
to SAA instances of sample size 20, similar behavior has been observed for problems with different
sample sizes (see [26] for detailed computational results).

4.3 Quality of Stochastic Solutions

In this section we compare the solutions of the stochastic programming model to that of a de-
terministic optimization problem involving the mean values of the uncertain problem parameters
(known as the mean-value problem). Recall that the SAA method produces a number of candi-
date solutions (at most M unique solutions). In Table 4, we compare statistics of the (uncertain)
total cost for the domestic problem corresponding to the mean-value problem solution (denoted by
yMV P) to that of three candidate solutions (denoted by y1, y2, and y3 respectively) identified by
solving M(= 20) SAA problem instances with N = 20. The candidate solutions were chosen as the
three “best” solutions based upon their objective function value and optimality gap estimates as
provided by the SAA method. As before, the total cost statistics for each solution are computed
using a sample size of N ′ = 1000. The last two rows of Table 4 displays the estimated optimality
gap and the standard deviation of the gap estimate (computed using (3.6) and (3.7) respectively)
for the mean-value problem solution and each of the three best SAA solutions. Even for a sample
size of just N = 20 the SAA problem solutions are very close to being optimal for the true stochastic
supply chain design problem.

Table 5 compares the solution the mean-value solution to the SAA solution for the global
problem. Once again a sample size of N = 20 was used. In this case, the SAA method identified
a single “best” candidate solution (denoted by y1). The estimated optimality gaps clearly indicate

19

the superiority of the SAA solution.

Cost (million $) y
MV P

y1 y2 y3

Average 116.77 111.03 111.03 111.05
Std. Dev. 0.34 0.11 0.11 0.11
Min. 99.02 100.38 100.14 100.10
Max. 173.30 122.57 122.08 122.11

gapN,M,N′ 5.91 0.16 0.17 0.18
σgap 0.79 0.04 0.04 0.04

Table 4: Costs statistics for candidate solutions to the domestic problem

NCF (million $) y
MV P

y1

Average 51.03 54.002
Std. Dev. 0.126 0.124
Min. 35.243 43.149
Max. 64.290 69.403

gapN,M,N′ 3.18 0.21
σgap 0.54 0.05

Table 5: NCF statistics for candidate solutions to the global problem

Tables 4 and 5 reveal that the solutions to the stochastic programming model are not only
superior to the mean-value problem solution in terms of the optimality gap corresponding to the
expected cost/NCF objective, but these solutions also lead to comparatively smaller variability of
the cost/NCF objective.

In Tables 6 and 7, we present the optimality gap estimates of the “best” solution identified by
the SAA method for different sample sizes N . It is clear that the SAA method with only a modest
number of sampled scenarios can provide very high quality solutions to the true stochastic supply
chain design problem involving potentially infinite number of scenarios.

N gapN,M,N′ σgap

20 0.16 0.04
30 0.11 0.03
40 0.08 0.02
60 0.07 0.02

Table 6: Optimality gap estimates for the domestic problem

N gapN,M,N′ σgap

5 1.24 0.22
20 0.21 0.05
60 0.09 0.02

Table 7: Optimality gap estimates for the global problem

20

Finally, to observe the effect of the variability of the uncertain problem parameters, we consid-
ered three different levels of the variability of the uncertain problem parameters. For each level, we
considered the best candidate solution obtained from solving SAA problems of a given sample size
N . In Figures 5 and 6, the ranges for the cost and NCF corresponding to these candidate solutions
are compared against those of the corresponding mean-value problem solution. As before these
statistics are computed using a sample size of N ′ = 1000. As mentioned earlier, the stochastic so-
lutions have significantly smaller ranges than the mean-value problem solution. Furthermore, with
the increase in the variability of the uncertain parameters, the cost/NCF variability (range) for the
stochastic solutions increases at a slower rate than that of the mean-value problem solution. In
Figures 7 and 8, the worst-case cost and NCF corresponding to the candidate stochastic solutions
are compared against those of the corresponding mean-value problem solution. Once again, it is
clear that the stochastic solution is more resilient to the variability of the problem parameters. For
the global problem, the resiliency is improved by including more scenarios in the SAA problem.

5 Concluding Remarks

In this paper, we have developed a practical methodology for large-scale supply chain network design
problems under uncertainty. The method integrates an accelerated decomposition scheme along
with the recently developed sample average approximation method. The proposed methodology
provides an efficient framework for identifying and statistically testing a variety of candidate design
solutions. We have provided empirical results for the design two realistic supply chain networks.
Our results reveal the computational efficacy of the proposed method. Furthermore, we have
demonstrated that the candidate solutions identified by the proposed method are not only superior
to traditional mean-value problem solutions in an expectation sense, but also result in significantly
smaller cost/cash flow variability, and this reduction is more pronounced in case of higher variability
in the uncertain environment.

Acknowledgements

This work has been funded in part by a grant from the Sloan Foundation to the Center for Paper
Business and Industry Studies (CPBIS) at the Institute of Paper Science and Technology (IPST),
and by the National Science Foundation under grants DMI-0099726 and DMI-0133943.

21

Figure 5: Effect of variability on the cost range for the domestic problem

Figure 6: Effect of variability on the NCF range for the global problem

22

Figure 7: Effect of variability on the worst-case cost for the domestic problem

Figure 8: Effect of variability on the worst-case NCF for the global problem

23

References

[1] C.H. Aikens. Facility location models for distribution planning. European Journal of Opera-
tional Research, 22(3):263–279, 1985.

[2] A. Alonso-Ayuso, L.F. Escudero, A. Garin, M.T. Ortuno, and G. Perez. An approach for strate-
gic supply chain planning under uncertainty based on stochastic 0-1 programming. Technical
report, Universidad Rey Juan Carlos, Madrid, Spain, 2002.

[3] J. F. Benders. Partitioning procedures for solving mixed variables programming problems.
Numersiche Mathematik, 4:238–252, 1962.

[4] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York,
NY, 1997.

[5] J. R. Birge and F. V. Louveaux. A multicut algorithm for two-stage stochastic linear programs.
European Journal of Operational Research, 34(3):384–392, 1988.

[6] R. K-M. Cheung and W.B. Powell. Models and algorithms for distribution problems with
uncertain demands. Transportation Science, 30:43–59, 1996.

[7] K. Dogan and M. Goetschalckx. A primal decomposition method for the integrated design of
multi-period production-distribution systems. IIE Transactions, 31:1027–1036, 1999.

[8] A. M. Geoffrion and G.W. Graves. Multi-commodity distribution system design by Benders
decomposition. Management Science, 20:822–844, 1974.

[9] A. M. Geoffrion and R. F. Powers. Twenty years of strategic distribution system design: An
evolutionary perspective. Interfaces, 25:105–128, 1995.

[10] G. J. Gutierrez, P. Kouvelis, and A. A. Kurawala. A robustness approach to uncapacitated
network design problems. European Journal of Operations Research, 94:362–376, 1996.

[11] R. W. Hamming. Error detecting and error correcting codes. Bell System Tech Journal,
9:147–160, 1950.

[12] M. Hicks. When the chain snaps. eWeek <http://www.eweek.com/article2/0,3959,19768,00.asp>,
2002.

[13] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms II.
Springer-Verlag, Berlin Heidelberg, 1996.

[14] ILOG Inc. CPLEX 7.0 User’s Manual. ILOG CPLEX Division, Incline Village, NV, 2000.

[15] K. R. Kamath and T.P.M. Pakkala. A Bayesian approach to a dynamic inventory model under
an unknown demand distribution. Computers & Operations Research, 29:403–422, 2002.

[16] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approximation
method for stochastic discrete optimization. SIAM Journal of Optimization, 12:479–502, 2001.

24

[17] H. Van Landeghem and H. Vanmaele. Robust planning: A new paradigm for demand chain
planning. Journal of Operations Management, 20:769–783, 2002.

[18] J. T. Linderoth, A. Shapiro, and S. J. Wright. The empirical behavior of sampling meth-
ods for stochastic programming. Optimization Technical Report 02-01, Computer Sciences
Department, University of Wisconsin-Madison, 2002.

[19] Jeffrey T. Linderoth and Stephen J. Wright. Implementing a decomposition algorithm for
stochastic programming on a computational grid. Computational Optimization and Applica-
tions, 24:207–250, 2003.

[20] T. L. Magnanti and R. T. Wong. Accelerating benders decomposition: Algorithmic enhance-
ment and model selection criteria. Operations Research, 29:464–484, 1981.

[21] W. K. Mak, D. P. Morton, and R. K. Wood. Monte Carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters, 24:47–56, 1999.

[22] S. A. MirHassani, C. Lucas, G. Mitra, E. Messina, and C. A. Poojari. Computational solution
of capacity planning models under uncertainty. Parallel Computing, 26:511–538, 2000.

[23] V. I. Norkin, G. Ch. Pflug, and A. Ruszczyński. A branch and bound method for stochastic
global optimization. Mathematical Programming, 83:425–450, 1998.

[24] S. H. Owen and M. S. Daskin. Strategic facility location: A review. European Journal of
Operational Research, 111:423–447, 1998.

[25] A. Ruszczyński. A regularized decomposition method for minimizing a sum of polyhedral
functions. Mathematical Programming, 35:309–333, 1986.

[26] T. Santoso. A comprehensive model and efficient solution algorithm for the design of global
supply chains under uncertainty. PhD thesis, School of Industrial & Systems Engineering,
Georgia Institute of Technology, 2002.

[27] A. Shapiro and T. Homem de Mello. A simulation-based approach to stochastic programming
with recourse. Mathematical Programming, 81:301–325, 1998.

[28] P. Tsiakis, N. Shah, and C. C. Pantelides. Design of multi-echelon supply chain networks under
demand uncertainty. Industrial & Engineering Chemistry Research, 40:3585–3604, 2001.

[29] R. Van Slyke and R. J.-B. Wets. L-Shaped linear programs with applications to optimal control
and stochastic programming. SIAM Journal on Applied Mathematics, 17:638–663, 1969.

[30] B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample aver-
age approximation method applied to stochastic routing problems: a computational study.
Computational Optimization and Applications, 24:289–333, 2003.

[31] C. Vidal and M. Goetschalckx. Strategic production-distribution models: A critical review
with emphasis on global supply chain models. European Journal of Operational Research,
98:1–18, 1997.

25

[32] C. Vidal and M. Goetschalckx. A global supply chain model with transfer pricing and trans-
portation cost allocation. European Journal Of Operational Research, 129:134–158, 2001.

[33] C-S. Yu and H-L. Li. A robust optimization model for stochastic logistic problems. Interna-
tional Journal of Production Economics, 64:385–397, 2000.

26

