
Scenarios and Policy Aggregation in Optimization under Uncertainty
Author(s): R. T. Rockafellar and Roger J.-B. Wets
Source: Mathematics of Operations Research, Vol. 16, No. 1 (Feb., 1991), pp. 119-147
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/3689852
Accessed: 06/05/2010 00:47

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=informs.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Mathematics of Operations
Research.

http://www.jstor.org

http://www.jstor.org/stable/3689852?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=informs


MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 16, No. 1, February 1991 
Printed in U.S.A. 

SCENARIOS AND POLICY AGGREGATION IN 
OPTIMIZATION UNDER UNCERTAINTY * 

R. T. ROCKAFELLAR AND ROGER J.-B. WETS' 

A common approach in coping with multiperiod optimization problems under uncertainty 
where statistical information is not really enough to support a stochastic programming model, 
has been to set up and analyze a number of scenarios. The aim then is to identify trends and 
essential features on which a robust decision policy can be based. This paper develops for the 
first time a rigorous algorithmic procedure for determining such a policy in response to any 
weighting of the scenarios. The scenarios are bundled at various levels to reflect the 
availability of information, and iterative adjustments are made to the decision policy to adapt 
to this structure and remove the dependence on hindsight. 

1. Introduction. Most systems that need to be controlled or analyzed involve 
some level of uncertainty about the value to be assigned to various parameters or the 
actual layout of some of the system's components. Not much is lost by simply 
assigning "reasonable" values to the unknown elements, as long as their role is 
relatively insignificant. But in many situations the model builder cannot do this 
without running the risk of invalidating all the implications that are supposed to be 
drawn from the analysis. 

When a probabilistic description of the unknown elements is at hand, either 
because a substantial statistical base is available or because a probabilistic law can be 
derived from conceptual considerations (measurement error, life and death processes, 
etc.), one is naturally led to consider stochastic models. When only partial informa- 
tion, or no information at all, is available, however, there is understandably a 
reluctance to rely on such models. In presuming that probability distributions exist 
they seem inherently misdirected. Besides, the problems of stochastic optimization 
that they lead to can be notoriously hard to solve. 

A common approach in practice is to rely on scenario analysis. The uncertainty 
about parameters or components of the system is modeled by a small number of 
versions of subproblems derived from an underlying optimization problem. These 
correspond to different "scenarios" a word that is used to suggest some kind of 
limited representation of information on the uncertain elements or how such infor- 
mation may evolve. The idea is that by studying the different subproblems and their 
optimal solutions one may be able to discover similarities and trends and eventually 
come up with a "well hedged" solution to the underlying problem, something which 
can be expected to perform rather well under all scenarios, relative to some weighting 
of scenarios. As examples, see [1] and [2]. 
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To give this a mathematical formulation, let us write the scenario subproblems as 

(_") 9minimize fs(x) over all x E Cs c Rn 

where the index s ranges over a relatively modest, finite set S: the set of scenarios. It 
is not our intention to address in this paper the question of how the scenario 
subproblems might be chosen or constructed. We take them for granted and suppose 
that we know how to solve them individually for each choice of a scenario s. The 
question we do raise is that of how to work with the different s-dependent solution 
vectors so obtained and consolidate them into an overall decision or decision policy. 
The essential difficulty obviously lies in the fact that actions in the real world must be 
taken without the hindsight that goes into solving the problems (s). In multistage 
models the actions could, however, respond in time to increasing degrees of informa- 
tion that becomes available about the particular scenario being followed. The expres- 
sion of such information structure must be an important part of the formulation. 

Let us suppose we are dealing with time periods t = 1,..., T and write 

(1.1) X =(X1 ..., XT) e Inl X .. X nT, 

where n1 + ... +nT = n. The component xt represents the decision that must be 
made at time t. More generally let X denote a function or mapping that assigns to 
each s E S a vector 

(1.2) X(s) = (X1(s),..., X(s)), 

where Xt(s) denotes the decision to be made at time t if the scenario happens to be 
s. It is such a mapping-let us call it a policy-that we are really looking for, but it 
has to satisfy the crucial constraint that if two different scenarios s and s' are 

indistinguishable at time t on the basis of information available about them at time t, 
then Xt(s) = Xt(s'). A policy, if it is to make sense, cannot require different courses 
of action at time t relative to scenarios s and s' if there is no way to tell at time t 
which of the two scenarios one happens to be following. 

A good way of modeling this constraint is to introduce an information structure by 
scenario bundling, i.e., by partitioning the scenario set S at each time t into finitely 
many disjoint subsets, which can be termed scenario bundles. The scenarios in any 
one bundle are regarded as observationally indistinguishable at time t. Denoting the 
collection of all scenario bundles at time t by Qt, we impose the requirement that 

Xt(s) must be constant relative to s E A for each A E vt. Thus from the space of all 

mappings X: S -> Rn with components Xt: S -* Rnt as in (1.2), a space we denote by 
S, we single out the subspace 

(1.3) XJ:= (X E &IXt is constant on each bundle A E St for t = 1,..., T 

as specifying the policies that meet our fundamental constraint of not being based on 
hindsight. The policies X belonging to A will be called implementable policies. We 
make a distinction here between implementable policies and admissible policies, 
which belong to the set 

(1.4) &:= (X E \lXt(s) E Cs for all s E S}. 

For most purposes it would be reasonable to suppose that the partition Qlt+l is a 
refinement of the partition t in the sense that each bundle A E t is a union of 
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bundles in V +. One could then think equivalently of a branching of possibilities at 
a tree, with each time t and therefore of a representation of the information 
structure in terms of a tree, with each scenario corresponding to a path from the root 
of the tree out to a leaf. This would be consistent with the idea that information 
increases in time and is never lost. None of what we say in this paper actually 
depends on such an assumption, though. Information about the scenario being 
followed could be allowed to vary quite generally. 

The central question of scenario analysis can now be stated. Given the collection of 
scenario subproblems (<s) and a license perhaps to modify them (perturb their 
objectives) so as to assist in adapting to the information structure, we have the means 
of generating various policies X e E that may be called contingent policies: X(s) is 
obtained by solving a possibly perturbed version of the scenario subproblem (<s) for 
each s E S. How can we use these means to determine an implementable policy 
X* E that in some sense is good for the underlying problem of optimization 
under uncertainty? 

Note that a contingent policy is at least always admissible: X E W. But this 
condition is not built into our use of the term "implementable". Obviously a policy 
that is both admissible and implementable is what we really want-this is what we 
shall mean by a feasible policy. But implementability is a logically inescapable require- 
ment, whereas admissibility might be waived by the modeler in some situations that 
only risk the violation of X(s) E Cs for a few extreme or unlikely scenarios, or entail 
mild transgressions of certain nonkey constraints in more ordinary scenarios. 

The simplest case of a one-stage model (T = 1) helps to illustrate these ideas. In 
this case we only know the present. We know nothing that would pin down a 
particular scenario or subclass of scenarios, but are forced to make a decision "here 
and now". A policy X, with just one time component, is implementable if for all 
s e S one has X(s) = x for some (fixed) vector x. In other words, the space X/ 
consists of just the constant mappings from S to Rn, in contrast to the space 6', which 
consists of all possible mappings from S to R". (The partition Vl in this example is 
the "trivial partition" consisting of the set S by itself, no scenario being regarded as 
distinguishable from any other at the time the single decision has to be taken. All of 
S is a single bundle.) In this setting, the question is one of proceeding from a 
mapping X that is not constant to a mapping that is constant by some method 
making use of the insights gained by solving the individual scenario subproblems in 
various forms. 

An attractive way of passing from a general policy X to a policy that is imple- 
mentable is to assign to each scenario s e S weight p, that reflects its relative 
importance in the uncertain environment, with 

(1.5) Ps > for all s S, and Ps= 1. 
seS 

These weights are used in blending the response X(s) of X so as to meet the 
requirement of not allowing the decision at time t to distinguish among the scenarios 
in a bundle A E Vt. Specifically one calculates for every time t and for every A E jt 
the vector 

(1.6) X(A) =E p X(s)/ E Ps, 
seA / seA 

which represents a "weighted average" of all the responses Xt(s) for scenarios in the 
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bundle A. Then one defines a new policy by taking 

(1.7) Xt(s) = X(A) for all s e A. 

Clearly X is implementable: X E A. (In the one-stage model, X would simply be 
the constant mapping whose value is the vector Es E sX(s).) The transformation 

(1.8) J: X - X defined by (1.6)-(1.7) 

is obviously linear and satisfies J2 = J. It is a projection from S onto A/ which 
depends only on the weights p,. We call it the aggregation operator relative to the 
given information structure and weights. It aggregates the possibly different refer- 
ences that a policy might make for the scenarios in any bundle into a single 
compromise response to that bundle. 

If we were to start from a contingent policy X? in which X?(s) is for each s an 
optimal solution to the unmodified scenario subproblem (<s), which is the typical 
beginning for all scenario analysis, the corresponding implementable policy X? = JX? 
might be contemplated as a kind of solution to the underlying problem. There is no 
guarantee, however, that X? will inherit from X? the property of admissibility. Even 
if X0 is admissible as well as implementable, therefore feasible, the sense in which it 
might be regarded as "optimal" needs to be clarified. As a matter of fact, X? is an 
optimal solution to a certain "projected" problem, which will be described presently, 
but this is not at all the problem that one is interested in. 

If instead of introducing the weights Ps in an a posteriori manner we were to do so 
at the outset, we would be led in our search for a well-hedged decision policy to the 
functional 

(1.9) F(X) := E Psf(X(s)) 
seS 

and the problem 

(1.10) minimize F(X) over all X E hn A. 

An optimal solution X* to this problem would indeed be admissible and imple- 
mentable. Among all admissible, implementable policies it would do the best job, in a 
certain specific sense, of responding to the relative importance of the scenarios as 
assessed through the weights ps. It would provide a sound method of hedging against 
the unknowns. 

The weights need not be regarded as "hard data" for this interpretation to be 
valid. The road is always open at another level to play with the values of the weights 
and see how sensitively the problem is affected by them, although we do not take that 
issue up here. 

The trouble is that problem (1.10) may be much larger and therefore much harder 
to solve than the individual scenario subproblems (`s), so that it cannot be tackled 
directly. There is little prospect, either, that the desired policy X * is approximated at 
all closely by the policy X? already described. This is seen from the elementary fact 
that X? actually solves 

(1.11) minimize F(V) over all Y E -, 

where i = {Y E JX13X E e with JX = Y} and F(Y) = min{F(X)IX E e, JX = Y}. 
The projected problem (1.11) is utterly different from (1.10). 
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Nonetheless there turns out to be a relationship that can be exploited to trace a 
path from X? to X* by solving a sequence of projected problems in which the 
scenario subproblems are not the original ones but modified by the incorporation of 
tentative "information prices" and penalties. At iteration v we take a contingent 
policy Xv obtained by solving modified scenario subproblems (av) and aggregate it 
into an implementable policy X" whose robustness in the face of all eventualities is 
increasingly demanded. An advantage of this approach is that even if we do not 
pursue the search until Xv converges to X*, we always have at hand a solution 
estimate that is better than just X? or any other policy that could reliably be gleaned 
from scenario analysis as practiced until now. The word "better" is given specific 
meaning by our convergence theory. The very process of blending decision compo- 
nents iteratively in the manner we suggest is likely moreover to identify fairly early 
the trends and activities that will lead to the final solution. 

The general principle that allows us to proceed in this manner in generating 
improving sequences of policies is what we call the principle of progressive hedging in 
optimization under uncertainty. It enables us by simple means to insist more and 
more on having our subproblems reflect the ultimate requirement that a policy, to be 
implementable, cannot distinguish between scenarios that at a particular time are 
regarded as indistinguishable from each other on the basis of information so far 
available. The realization of the principle that we give here is based mathematically 
on the theory of the proximal point algorithm in nonlinear programming, as devel- 
oped in Rockafellar [3] and applied to problem decomposition and "splitting" in 
Spingarn [4]. It does not depend on convexity in its statement, although convexity 
provides a big boost in its analysis. 

A notable by-product of our hedging algorithm is the generation of information 
prices relative to the chosen weights p,. Potentially these might be used in some 
larger scheme for adjusting the weights or judiciously supplying more detail to the set 
of scenarios. In the limit the information prices solve a dual problem, which however 
is likely to have dimension at least as high as that of the primal problem. Because of 
this high dimensionality, approaches like Dantzig-Wolfe generalized programming 
(which in effect applies a cutting-plane method to the dual) are not suitable. On the 
other hand, augmented Lagrangian methods in their usual formulation are unable to 
maintain the crucial decomposability. The approach we take is not blocked by the 
dual dimensionality and yet does allow the separate scenario subproblems in each 
iteration to be solved in parallel, if desired. 

2. General framework. There is no harm in interpreting the weights p, mathe- 
matically as probabilities. They may indeed represent "subjective probabilities," but 
the reader should not conclude from the probabilistic language which follows that we 
necessarily regard them so. In passing to a probability framework we merely take 
advantage of the fact that it provides a convenient scheme for organizing ideas that 
mathematically fall into the same patterns as are found in dealing with probability. 
Much the same could be said about the use of geometric language in a nongeometric 
situation. 

From now on, sums with the weights p, will be written as expectations in the 
traditional notation: 

p,sX(s) = E{X(s)}, 
seS 

for instance. Then in (1.6) we have 

X,(A) = E{X(s)lA}, 
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the conditional expectation of Xt(s) given that s eA, and we can interpret the 
projection J: X - X quite simply as the conditional expectation operator relative to 
the given information structure and values p. 

The information structure can itself be furnished with a traditional interpretation 
in terms of fields of sets: t is for each t the collection of all subsets expressible as 
unions of the (disjoint) sets in st. Then Xt is the conditional expectation of Xt 
relative to tT. Such terminology, bringing to mind all the subleties of measure theory, 
is not in any way needed, however, in the present context where S is just a finite set. 
It could just get in the way of a "user-friendly" explanation of ideas that are really 
quite elementary, so for the purposes at hand we avoid it. 

An inner product on the vector space 
' of all mappings from S to R" is defined by 

(2.2) (X,Y) = E{X(s) ? Y(s)} = E pX(s) Y(s). 
seS 

We think of & as a Euclidean space in this sense, the norm being 

(2.3) IXiI = [E{IX(s) 2}]1/2, 

where I * is the ordinary Euclidean norm on Rn. The aggregation operator J is then 
actually the orthogonal projection on the subspace P, as is well known. The operator 

(2.4) K=I-J (KX = X-X) 

is the orthogonal projection on the subspace of & complementary to IV, which we 
denote by X/: 

(2.5) ,a = {W E flJW= } 

= {W E IEE Wt(s)lA} = 0 for all A E t, t = 1,...,T}. 

Clearly 

(2.6) XY= {Xe 6 KX = 0} = {X e X = X}. 

Thus a policy X is implementable if and only if it satisfies the linear constraint 
equation KX = 0. 

The functional F in (1.9) can be written now as 

(2.7) F(X) = E{f5(X(s)) . 

The problem we wish to solve then has the formulation 

(?9) minimize F(X) subject to X E e, KX = 0. 

An optimal solution X* to this problem is what we take to be the best response we 
can offer to the uncertain environment, relative to the given weighting of the 
scenarios. The challenge for us, in adopting this point of view as a practical 
expedient, is that of demonstrating how such an X * can be determined without going 
beyond the tools that are available. 

We see our capabilities as extending in two directions. First we can readily 
calculate for any X the corresponding X == JX and therefore also X - X = KX. The 

projections J and K are thus computable and appropriate to use in the context of an 
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algorithm. Second, we can solve, at least approximately to any desired degree, the 
scenario subproblems (Ys) and a certain class of modified versions of these subprob- 
lems. The specific form of modified scenario subproblem that we work with in this 
paper is 

(As(x,w, r)) minimize f5(x) + x . w + 'rlx - x2 over all x E Cs. 

The vector x will stand for an estimate of x from which we do not want to stray too 
far; w E Rln will be a price vector and r > 0 a penalty parameter. 

Motivation comes in part from Lagrangian representations for problem (s). The 
ordinary Lagrangian for this problem could be defined as the expression 

F(X) + (KX,Y) forXe ,YE ', 

with multiplier Y, but since K is an orthogonal projection one has 

(2.8) (KX,Y) = (X,KY) = (KX,KY). 

Only the component W = KY E X can really matter. We therefore find it convenient 
to define 

(2.9) L(X, W) = F(X) + (X, W) for X e, We e', 

as the Lagrangian. The multiplier element W will be called an information price 
system because of its role relative to the implementability constraint KX = 0. More 
will be said about this later. 

The ordinary Lagrangian (2.9), important as it can be for instance in stating 
optimality conditions, is limited in its numerical usefulness. More powerful in many 
ways if one can work with it, and not limited to the problems where convexity is 
present, is the corresponding augmented Lagrangian 

(2.10) Lr(X, W) = F(X) + (X, W) + rIIJKXII 

=F(X) + (X, W) + rllX- XI2 

for x E , W ', r > 0. 

There is no room here for a general discussion of augmented Lagrangians, except 
to say that they combine features of multipliers and penalties. Through a good choice 
of W E X and r > 0 one can expect that the subproblem 

(2.11) minimize Lr(X, W) over X E e 

can be used as a close representation of (p), in the sense that its nearly optimal 
solutions will be good approximates to an optimal solution X* of (?). This is true 
without any assumption of convexity and does not necessarily entail r getting too 
large for comfort; much of the work can be done by W. Even in the convex case the 
augmented Lagrangian can be advantageous by providing greater stability to solution 
methods. We refer the reader to Bertsekas [5] and Rockafellar [6] for more on this 
topic. 

Unfortunately, the augmented Lagrangian (2.10) cannot serve directly in our 
scheme. To use it we would have to be able to solve subproblems of the form (2.11), 
which do not meet our prescription. The difficulty lies in the fact that the term 
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IIKX12 is not decomposable into separate terms for each scenario. Nonetheless we 
are able to take an approach which looks quite similar and does achieve the required 
decomposition. 

The approach can be described quite broadly in terms of the following algorithmic 
scheme. We shall subsequently make it more specific, in order to have results on 
convergence. A fixed parameter value r > 0 is considered throughout this paper for 
simplicity. In practice one might wish to make adjustments in the value of r. This is 
an issue for which the theoretical backing is incomplete, although some elucidation 
will be provided in Proposition 5.3 and the comment that follows it. 

PROGRESSIVE HEDGING ALGORITHM. In iteration v (where v = 0, 1, ...) one has 
an admissible but not necessarily implementable policy X'v E and a price system 
WV E '. (Initially one can take X? to be the policy obtained by letting X?(s) be for 
each scenario s E S an optimal solution to the given scenario subproblem (?ss). One can 
take W? = 0.) 

Step 1. Calculate the policy xv = JXv, which is implementable but not necessarily 
admissible. (If ever one wishes to stop, this policy Xv is to be offered as the best 
substitute yet available for a solution to 9.) 

Step 2. Calculate as X+l an (approximately) optimal solution to the subproblem 

(~9v) minimize F(X) + (X, WV) + rl\IX - XVi12 over allX E e. 

This decomposes into solving (approximately) for each scenario s E v the subproblem 

(~V) minimize fs(x) + x W"(s) + rlIx - X(s)2 over all x C 

in order to get X +l(s). The policy X+l1 will again be admissible but not necessarily 
implementable. 

Step 3. Update from Wv to W"+1 by the rule W+' = W" + rKX^+ . The price 
system W +1 will again be in X'. Return to Step 1 with v replaced by v + 1. 

Left open in this statement is the sense in which the modified scenario subprob- 
lems in Step 2 need only be solved "approximately". These subproblems fit the 
general form mentioned earlier: 

( ) = (( V( s), WV(s), r)). 

In many applications they will turn out to be quadratic programming problems of 
reasonable dimension. Then one could well imagine solving them "exactly." The 
question of a stopping criterion for approximate solution is therefore not a sine qua 
non. A substantial answer will nevertheless be presented in ?5. 

The updating rule for the price system in Step 3 could in principle be replaced by 
something else without destroying the truly critical property of decomposability in 
Step 2. This rule is strongly motivated, though, by augmented Lagrangian theory (cf. 
[6]). It is essential not merely to the proofs of the convergence theorems but the very 
nature of the reformulation of the algorithm on which these proofs rely. 

An obvious strength of the proposed procedure is that it involves at every iteration 
an admissible policy X" and an implementable policy XV. The distance expression 

(2.12) IIXV - xVll = IIKX 112 

can readily be computed and taken as a measure of how far one is from satisfying all 
the constraints. Note that (2.12) is a kind of conditional variance relative to the 
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weights p,. In our convergence theorems for the convex case, at least, this quantity 
wiil tend to 0. At the same time, the price systems Wv will tend to an optimal 
solution to the Lagrangian dual of problem (9). 

The progressive hedging algorithm can be viewed as a particular instance of a 
method of Spingarn for minimizing a function over a subspace [4] (Algorithm 2), 
which in turn is a specialization via Spingarn [7] of the proximal point algorithm in 
Rockafellar [3] and derives its convergence theory from the latter. It can be placed 
more broadly in the context of splitting algorithms like those of Lions and Mercier [8] 
(covering the convex optimization methods of Gabay and Mercier [9] and Fortin and 
Glowinski [10], among others), which likewise are a specialization of the proximal 
point algorithm in [3], as demonstrated by Eckstein [11]. Recently in this vein also is 
the decomposition method of Han [12]. In our main convergence theorems in ?5 we 
directly work with the theory in [3], however, in part for the purpose of bringing out 
more clearly the connection with augmented Lagrangian methods by portraying the 
hedging algorithm as a proximal step taken on a certain saddle function relative to 
the "variance" norm (2.3). 

Some rudimentary analysis of the nonconvex case is provided in ?6. We have much 
less to say about it at the present stage of development and try only to indicate a 
potential in this direction. 

Our immediate task, in ?3 and ?4, is to lay the foundations for the rigorous 
handling of the scenario subproblems and the characterization of the dual ele- 
ments W. 

3. Basic assumption and properties. It will be assumed throughout the rest of 
this paper that for each s E S the feasible set Cs in the scenario subproblem (<) is 
nonempty and closed, and the objective function fs is locally Lipschitz continuous on 
IR with all level sets of the form 

(3.1) {x E Cslfs(x) < a}, a E R, 

bounded. This last condition is trivially satisfied, of course, if Cs itself is bounded. 
The closedness of Cs presumably comes from the constraint structure used to define 
Cs, but such explicit structure will not play any role here. The local Lipschitz 
continuity of fs is present if fs is smooth (i.e., of class e' on IRn) or, on the other 
hand, if f, is convex. 

We shall speak of the convex case of our problem (i) when for every s E S the 
function fs is convex and the set Cs is convex. The linear-quadratic case will refer to 
the more special situation where fs is quadratic (convex) and Cs is polyhedral 
(convex). We regard linear and affine functions as included under the heading of 
"quadratic." 

We proceed with some of the elementary consequences of these conditions. The 
first topic is their effect on the given scenario subproblems (Ys), whose solution is 
called for at the outset of our proposed algorithm. 

PROPOSITION 3.1. Each of the scenario subproblems (Ys) has finite optimal value 
and at least one optimal solution. Furthermore, the value 

a = minF(X), 
Xei 
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exists and is given by 

(3.3) a = E{acs}, where as = min(t)s). 

It is a lower bound for the optimal value in (?). 

PROOF. For the first part the argument is the standard one. The sets (3.1) for 
a > inf(9s) are nonempty and compact under our assumptions, and since they are 
nested they must have a nonempty intersection. This intersection consists of the 
optimal solutions to (5s). The existence of an optimal solution implies of course that 
the optimal value in (<s) is finite. The second part of the proposition merely records 
that because of decomposability we are actually minimizing F over { when solving 
each of the problems (<9s). Indeed, { is just the direct product of the set 4s and F is 
by (2.7) separable, with components p5f5. The minimum value for p5f5 over Cs is 
Psas, and the sum of all these quantities psas is therefore a. This sum is E{as} in our 
probabilistic notation. Problem (9) requires the minimization of F over C n /, not 
just e, so a is merely a lower bound for the optimal value in (9). o 

Next we provide background for the solution of the subproblems (^9v) in our 
algorithm, which decompose into the modified scenario subproblems (1v) = 

((Xv(s), W(s), r)). 

PROPOSITION 3.2. Every modified scenario subproblem of the form (9(x, w, r)) 
(where r > 0) has finite optimal value and at least one optimal solution. In the convex 
case, this optimal solution is unique. 

PROOF. Let fs denote the objective function in (4(x, w, r)), 

(3.4) fs(x) = f5(x) + x ' w + rlx - x2 

In the convex case, this is of course a strictly convex function on Cs and therefore has 
at most one minimizing point relative to Cs. To reach the desired conclusions it will 
suffice (in view of the existence argument used for the preceding proposition) to 
demonstrate that all level sets of the form {x E Csls(x) < a}, a e ER, are closed and 
bounded. They are obviously closed, since Cs is closed and fs is continuous. That 
they are bounded can be seen from the inequality 

f(x) > as + x ' w + rix - x2 for all x C,, 

where as is the optimal value in (Js) as in Proposition 2.2. This yields 

{x E C,sfs(x) < a} c {x E R x rx - w2 < a - a,s 

where the right side is a certain ball in R". O 
In the convex case, (s(x,w, r)) is a convex programming problem. Thus, in 

executing our algorithm the critical step of solving all the modified subproblems (s^) 
is open to the methods of convex programming. In the linear-quadratic case, these 
problems fall into the category of quadratic (convex) programming: a quadratic 
function with positive definite Hessian is minimized over a polyhedron. Special 
techniques such as pivoting algorithms can then produce an "exact" optimal solution 
to (9s^) as long as the dimension n and the number of linear constraints used in 
defining Cs are not too large. 

In the important case where f5 is linear, i.e., where the original scenario subprob- 
lems (s) arise from a linear programming model, the nature of (s(x, w, r)) and 
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(,sv) is even more special. Although the proximal term in Ix- x12 requires a 
quadratic programming technique rather than the simplex method, say, in solving 
such a subproblem the Hessian matrix is just rI. It is possible then by elementary 
algebra to reduce the subproblem to special one of finding the point of C, nearest to 
a certain point in Rn, namely in the case of (9v) the point XV(s) - r-lW^(s). 

Another thing that should be noted about the modified scenario subproblems 
solved in our algorithm is the quite simple way they can be updated from one 
iteration to the next. In iteration v we must (approximately) solve 

(sv/) minimize f5(x) + (x, Wv(s)) + 'rlx - Xv(s)12 over C,, 

but in the preceding iteration we already solved 

(,5v -1) minimize fs(x) + (x, WV-(s)) + ?rlx - X^-1(s)2 over C, 

in order to get Xv(s), and we then set 

WV(s) = WV-(s) + r[XV(s) - X(s)] 

By expanding the objectives in these two subproblems around the initial X?(s) (as a 
suitable reference point), we can express the objective in (,9-1) as 

f5(x) -as + rlx - X(s)12 + xr (W ) - r[lx(s) - XO(s)]) + const. 

where a, = min(J), and the objective in (xv) is 

f,(x) - as + rlx- X(s)12 + (W s) - [r[ (s) -?(s)]) + const. 

The value a5 has been introduced in these expressions because the common portion 
before the inner product is then nonnegative and vanishes when x = X?(s). The 
important observation, since constant terms in an objective have no effect on the 
calculation of an optimal solution, is that the objectives in ( s^-1) and (~") differ 
only in a linear term. As a matter of fact, the linear terms in the objectives differ in 
coefficient only by 

(W"(s) - r[Xv(s) - X?(s)]) - (W- '(s) - r[X- 1(s) -X(s)]) 

= r([X(s) - XV(s)] - [X(s) - Xv-l(s)]). 

In passing from (G)f-1) to ("v) we therefore need only add to the objective a linear 
term with this vector as its coefficient vector, in order to move toward calculating the 
new elements Xv+l(s). 

The reason this observation can be useful is that it allows parametric techniques to 
come into play, particularly in the linear-quadratic case, in solving the modified 
scenario subproblems. The work involved can thereby be reduced very significantly. 
Other possibilities for reducing effort could lie in the information structure at hand. 
If scenarios s and s' are almost the same, for instance if they are indistinguishable to 
the decision maker until final time periods, then (9sv) and (',) ought to have strong 
similarities. One might be able to take advantage of an overlap in form to increase 
efficiency in solving the two problems, or a "bunch" of such problems. This is an idea 
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that can only be developed in terms of greater detail about the scenario subproblems 
than we are ready to explore in the present paper. 

Let us now look at problem (i) itself. 

PROPOSITION 3.3. In problem (G) the feasible set { is nonempty and closed, the 
objective F is locally Lipschitz continuous on 6, and all level sets of the form 

(3.5) {x elIF(x) <a}, a ER, 

are compact. 

PROOF. The assertions about - and F are obvious from the corresponding 
assumptions about C, and f5 for each s E S. They imply the closedness of the sets 
(3.5). The boundedness is verified by using the constant a in Proposition 3.1 to 
express the inequality F(X) < a as 

a-a > F(X) - a= E p[ f(X(s)) - a]. 
SES 

This inequality implies f5(X(s)) < as + [a - &]/Ps for each s E S. Any set (3.5) is 
therefore included in a set of the form 

HI {x E Csif,(x) < as + [a - a]/p},, 
seS 

where by one of our basic assumptions each factor is bounded. It follows that any set 
(3.5) is compact. All sets of the form {X E en I \F(X) < a} for a E R are then 
compact too. In (G) we minimize F over e n JX, so this compactness leads by the 
standard existence argument in the proof of Proposition 3.1 to the assurance that, 
when en /l 0, problem (i) has an optimal solution and consequently finite 

optimal value. o 
A further observation about the nature of (9) will complete this section. 

PROPOSITION 3.4. In the convex case (0) is a (large-scale) problem of convex 
programming: the feasible set - is convex and the objective F is convex. In the 
linear-quadratic case (i?) is a (large-scale) problem of linear or quadratic program- 
ming: { is a polyhedron in f6 and F is linear or (convex) quadratic. 

PROOF. In the first case -e is a product of convex sets and F is a sum of convex 
functions. In the second case e is a product of polyhedral sets, hence polyhedral, and 
F is a sum of functions that are at most quadratic, hence itself is at most quadratic. 

0 

The large-scale nature of (,9), mentioned in Proposition 3.4, stems partly from the 
very introduction of scenarios in the mathematical model. As soon as one attempts to 
cover a variety of occurrences that could influence the decision process, one almost 
inevitably becomes interested in a scenario set S as large as technically can be 
managed in the calculation of solutions. Then in addition there is the presence of 
multiple time periods. This could itself lead to large-scale structure. Each of the 
scenario subproblems (?s,) might itself be a challenge. The fact that we shall be able 
to decompose (A) into solving modified versions (~5) of such subproblems may in 
that situation seem to have only a muted effect, even if parallel processing or the like 
is available for the subproblems. However, the principle developed in this paper need 
only cover an outer layer. The problems (s,), with their multiple time periods but 
fixed (not "uncertain") structure, could themselves be decomposed by other tech- 
niques. In particular we have in mind here the idea of algorithms based on the 
separable saddle point representations we have developed recently in [13]. 
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4. Optimality and duality. The question of what conditions can be used to 
characterize optimal solutions to (G/) has to be addressed for its own reasons, but it 
is critical also in the formulation of a notion of "approximate" solution that can be 
used in implementing our algorithm. The interpretation of the multiplier elements 
WV in the algorithm is involved with this matter as well. 

To cover with adequate generality the diverse instances of the scenario subprob- 
lems (-?s) that interest us, where f, might be a smooth function but on the other 
hand might be convex and only piecewise smooth, due to the introduction of penalty 
terms, we use the notation of nonsmooth analysis. The symbol daf(x) will denote the 
set of generalized subgradients of f, at x, as defined by Clarke [14] for arbitrary 
Lipschitz continuous functions. The reader does not need to understand fully what 
this means in order to appreciate our results. The main facts are simply that if fs 
happens to be smooth (continuously differentiable) the set af(x) consists of the 
single vector Vf(x), whereas if f, is convex df,(x) is the usual subgradient set in 
convexity theory [16]. In all cases dfs(x) is a nonempty compact convex set that 
depends on x. 

Similarly the symbol Nc(x) will denote the generalized normal cone to Cs at x, as 
defined for any closed set C, [14]. If Cs is convex, this is the normal cone of convex 
analysis [16]. Whether convex or not, if C, is defined by a system of smooth 
constraints such that the Mangasarian-Fromovitz constraint qualification is satisfied 
at x, then Nc(x) is the polyhedral cone generated by the gradients of the active 
constraints at x. (Nonnegative coefficients are used for the gradients of the active 
inequality constraints, of course, and arbitrary coefficients for the equality constraints.) 
The set Nc(x) is always a closed convex cone containing the zero vector, and it 
reduces solely to the zero vector if and only if x is an interior point of C,. 

This notation and its interpretations can be carried over to { and F in problem 
(`) as well. Many formulas for determining subgradient sets and normal cones in 
particular situations can be found in [14], [15] and [16]. 

THEOREM 4.1. Let X * be a feasible solution to (.9 ): one has X* c E-I and 
X* e -, i.e. 

(4.1) X*(s) E Cs foralls E S. 

Suppose that X * is locally optimal and satisfies the following constraint qualification: 

(4.2) the only W E i satisfying -W(s) E Nc( X * (s)) for all s S is W = O. 

Then there exists W * ef satisfying 

(4.3) - W* d F(X*) + NA(X*), 

and this is equivalent to 

(4.4) - W*(s) e df(X*(s)) + Nc(X*(s)) foralls e S. 

In the convex case, the existence of such an element W * implies conversely that X* is 
an optimal solution to (oA) (in the global sense). 

PROOF. The overall character of this result is not surprising, but its formulation in 
terms of conditions in (4.1), (4.2) and (4.4) that concern CS and f, for each s E S 
needs to be checked for correctness. The two crucial formulas which yield this 
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formulation are 

(4.5) dF(X) = {Y E lIY(s) E (afs(X(s)) for all s E S}, 

(4.6) adN(X) = (Y E lY(s) E Nc(X(s)) for all s E S}. 

These are perhaps more subtle than may first appear, because subgradients and 
normal vectors depend by definition on the particular inner product being used in the 
Euclidean space in question, and our inner product (2.2), given by an expectation, is a 
specially adapted one. 

We can think of the Euclidean space e as the direct product of Euclidean space s 
for s E S, where 6 is Rn under the rescaled inner product 

(4.7) (x, y) = Ps[X y]. 

Correspondingly F can be viewed in the separable form 

(4.8) F(X) = 1 FJ(X(s)) with Fs = =psf on s, 
seS 

and e can be viewed of course as the product of the sets Cs in the space es. 
According to a general formula of nonsmooth analysis proved in Rockafellar [16] 
(Proposition 2.5 and Corollary 2.5.1), one then has 

(4.9) dF(X)= n= s(X(s)), 
seS 

(4.10) Ne(X) = l Ns(X(s)), 
seS 

where the tilde ~ is introduced to indicate that the subgradient set and normal cone 
are to be taken relative to the inner product (4.7) rather than the canonical one. In the 
case of the normal cones this modification makes no difference at all, because the 
nature of a cone is not affected by a positive rescaling. Thus (4.10) is equivalent to 
(4.6). On the other hand 

JF,(X(s)) = {(p lz zE aF,(X(s))), dFs(X(s)) = {syly e fs(X(s))}, 

so in the end we have 9Fs(X(s)) = dfs(X(s)). Formula (4.9) therefore reduces to 
(4.5). 

Armed with (4.5) and (4.6) we can apply the general theory of necessary conditions 
in nonsmooth analysis to problem (?). Viewing (5) in terms of minimizing F (which 
is Lipschitz continuous by Proposition 3.3) over en A, we first invoke the basic 
result (Corollary 2.4.1 of [16]) to conclude that if X* gives a local minimum then 

(4.11) 0 E AF(X*) + Nen(X*). 

Next we recall from convex analysis (cf. Corollary 8.1.2 of [16]) that 

N,(n(X*) NA(X*) + N,(X*) 
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as long as there does not exist 

(4.13) WE N4(X*) with - W E N(X*), W 4 O. 

Formula (4.6) gives us N,(X*), and since X is a subspace of 6, the normal cone 
Nv(X*) is just the subspace orthogonally complementary to X/ (with respect to the 
specified inner product for 6), namely /. The nonexistence of a vector W having 
the properties in (4.13) is thus the condition we have set up in (4.2) as the constraint 
qualification for (p). The combination of (4.11) and (4.12) now comes down to the 
assertion that 

(4.14) - W* E F(X*) + N(X*) for some W * E , 

where the subgradient condition reduces by (4.5) and (4.6) to the relations claimed in 
(4.4). 

In the convex case, of course, all these subgradient calculations can be carried out 
in the less demanding context of convex analysis rather than general nonsmooth 
analysis. The asserted conditions for optimality, which are equivalent to (4.14), are 
then sufficient because of the stronger meaning assigned to subgradients and normal 
vectors in that context. Specifically, (4.14) says that for some Y E aF(X*), which 
means 

(4.15) F(X) > F(X*) + (X - X*,Y) for all X E 6, 

the vector - W - Y belongs to N,(X*), which means 

(4.16) (X-X*,- W* - Y) < for all X E W. 

Taking arbitrary X e ~ n X and using the fact that (X, W * ) = 0 and X *, W) = 0 
(because W E Xd and X_l /) we see in (4.15) that (4.16) implies (X - X*, Y) > 0 
and therefore F(X) > F(X*). Thus X * is globally optimal for (3) in this case. o 

THEOREM 4.2. In the convex case, the decomposed conditions (4.1) and (4.4) on a 
pair (X*, W*) e Ix d are equivalent to (X*, W*) being a saddle point of the 
ordinary Lagrangian L(X, W) = F(X) + (X, W) relative to minimizing over X E e 
and maximizing over W E /. 

PROOF. This is just a small extension of the argument with which we concluded 
the preceding proof. It fits the standard patterns of convex analysis, so we omit it. o 

THEOREM 4.3. In the linear quadratic case, the constraint qualification in Theorem 
4.1 is superfluous. The condition given for optimality is always both necessary and 
sufficient. 

PROOF. In this case (G9) is just a linear or quadratic programming problem, albeit 
of large size; cf. Proposition 3.4. In particular e is a polyhedron and F is smooth, so 
no constraint qualification is needed for the general optimality condition (4.3) to be 
necessary. o 

As support for our algorithm we must develop optimality conditions for the 
subproblems (9") and (9sv) = (,s(X^(s), WV(s), r)) as well. Fortunately the cir- 
cumstances in these problems are closely parallel to the one already treated, so there 
is no call for going through the arguments in detail. We simply state the results 
without writing out the proofs. 
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PROPOSITION 4.4. If a policy XV~ + is locally optimal for the subproblem 

(9V) minimize F(X) + (X, WV) + rllX - X2 over e, 

it satisfies 

(4.17) X+1 E e and -W - r[X+'l - X] E F(X1+) + N(XV+I), 

and this is equivalent to 

(4.18) X V+(s) E Cs foralls e S, 

(4.19) - W(s) - r[XV+1(s) - XV(s)] E af,(XV+l(s)) + Nc(XV+?(s)) 

for alls E S. 

In the convex case, this property of X^+1 implies conversely that X"+l is the unique 
(globally) optimal solution to (^V). Conditions (4.18) and (4.19) in fact characterize in 
the same pattern the optimality of XV+l(s) for the subproblem (5sV). 

The main point here is that problem (5V) decomposes into the individual prob- 
lems (s^)). The conditions in Proposition 4.4 are the ones obtained for each (sV). 
No constraint qualification is needed, because the subspace _y is not involved. 

Finally, the connection with duality in the convex case must be noted. The problem 
dual to (5) with respect to the ordinary Lagrangian L is 

( ) maximize G(W) over all W E 9 n , 

where 

(4.20) G(W) = inf L(X,W) = inf {F(X) + (X,W)}, 

(4.21) 9= {WlG(W) > -oo}. 

The working out of the formula for the dual objective is not really relevant for our 
purposes. Instead we are interested in the relationship between (9) and (5) insofar 
as it reflects on the character and interpretation of the multipliers W. The facts can 
be derived from the general duality theory for convex programming problems in [16]. 
They focus most significantly on the function 

(4.22) ((U) = min{F(X)IX e , KX= U) for U e X. 

This expresses the optimal value in a perturbed form of (59), where the imple- 
mentability constraint KX = 0 is relaxed to KX = U. Note that the minimum in the 
formula is indeed attained as long as there does exist an X E { satisfying KX = U. 
This is clear from the compactness in Proposition 3.3. When there xdoes exist such an 
X, ?((U) is regarded as oo. Thus , is extended-real-valued but nowhere takes on -oo 
(because of the attainment of the minimum). Its domain of finiteness is the nonempty 
set Ke, the projection of e on /. 
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PROPOSITION 4.5. The functional (P on X' is lower semicontinuous, in fact its level 
sets (U E .'I((U) < a} for a E 1R are all compact. Furthermore 

((0) = min(53) 

(where min(a) is the optimal value in (9a) and is interpreted as oo if (9) has no 
feasible solution, i.e., if e Nl #= 0), and 

min c(U) = a, 

where a is the value in Proposition 2.1. In the convex case, P is convex on X. 

PROOF. The level set (U E Il P(U) < a} is simply the image under the projection 
K of the level set {X E -IF(X) < a). The latter is compact by Proposition 3.3., so 
the former is compact as well. This point of view also makes obvious the fact that the 
minimum value of ( on / is the same as the minimum value of F on (, which is a 
by Proposition 3.1. The epigraph of (> is seen in the same way to be the image of the 
epigraph of F + Sc (with Sc the indicator of C) under the extended projection 
(X,a) ?- (KX, a) from 9 x R onto / x R. In the convex case the epigraph of 
F + 8c is a convex set, hence so is the epigraph of (P. Thus (c is a convex function. 

THEOREM 4.6. In the convex case the relation 

(4.23) - oo < min(g) = sup(9) < oo 

holds, and moreover the set of all optimal solutions to (9) is given by 

(4.24) argmax(9) = -dcP(0) 

= { W* E ? I((U) > (>(0) - (U, W*) for all U E }. 

The elements W* in this set, if any, are precisely the ones associated with an optimal 
solution X* to (G) by the optimality conditions in Theorem 4.1 or Theorem 4.2. 

In particular the set (4.24) is nonempty if (9) has an optimal solution S* and the 
constraint qualification in Theorem 4.1 is satisfied. In the linear-quadratic case it is sure 
to be nonempty from (9) being feasible, i.e., having - n SO/4 0. 

PROOF. This specializes the theory in ?30 of [16] to the present case. The 
assertions about the set (4.24) being nonempty are justified by Theorem 4.1 and 4.2 
(and to some extent the existence in Proposition 3.3 of an optimal solution to (9) 
when i'n J/ 0). o 

The importance of formula (4.24) in Theorem 4.6 is that it identifies the optimal 
multipliers W* in our framework with subdifferentiability properties of the convex 
functional (P. The subgradient inequality 

(4.25) ((U) > ( (0) - (U, W*) for all U E d-, 

furnishes us a means of seeing what W * represents. 
Let us go back to the idea that W * is an "information price system" and give it the 

following, more specific interpretation: W*(s) is a price vector that can be used, if 
the scenario finally turns out to be s, to take the decision X(s), which had to be 
chosen as part of an implementable policy X, and change it with hindsight to a 
different decision X'(s) = X(s) + U(s). The cost of this service is U(s) * W*(s). 
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Taking all possible scenarios into account with their various weights, and imagining 
how one might want to alter decisions after the fact in all cases, we come up with the 
cost expression 

E P[u(s) 'w*(s)] = (U, W*>. 
StS 

Only deviations U that belong to E need to be considered, because all other aspects 
of the uncertain environment could already be taken care of in our model through 
the selection of X as an implementable policy. 

The inequality (4.25) expresses W* as a system of "equilibrium" prices in the sense 
that under this system is no incentive for such a posteriori change of decisions. A 
change represented by a deviation U e X# would achieve (P(U) in place of F(0) as 
the optimal value in the problem, but the cost of the change, as perceived at the time 
of decision making, would be (U, W* ). The net result for the decision maker would 
be >(U) + (U, W* ). Because of the inequality in (4.25), there is no advantage in this 
procedure as compared with just accepting the implementability constraint X E /Y 
and the corresponding optimal value D(0). 

In summary, the price systems W* are the ones that would charge for hindsight 
everything it might be worth. They do therefore truly embody the value of informa- 
tion in the uncertain environment. 

Tighter expressions than (4.25) can be derived under additional assumptions. For 
instance, if W * is unique then W * = - V<(0). We refer to the theory of subgradi- 
ents of convex functions in ??23-25 of [16]. 

5. Convergence in the convex case. This section contains our main results. So as 
not to overburden the reader with all the details at once, we begin with the form of 
the algorithm in which exact solutions are calculated for the subproblems in Step 2. 
This is referred to as the case of exact minimization in contrast to the case of 
approximate minimization that will be treated afterward. Exact minimization, as the 
reader will recall, makes sense when the scenario subproblems fall within the realm 
of linear or quadratic programming and are not themselves of large scale. 

Our essential line of argument will be to show that the progressive hedging 
algorithm can be constructed in terms of the generation of the sequence {(X", WV)} = 
(or rather, a slightly rescaled version of it) as a certain instance of the proximal point 
algorithm developed in Rockafellar [3]. The convergence theorems in [3] then give us 
what we want. This same line of argument has been followed by Spingarn [4], [7], in 
obtaining a wider class of decomposition methods expressed through operations on 
subgradient mappings. Rather than pass through the intermediary of Spingarn's 
formulation, however, we appeal directly to the original theory and emphasize the 
connection with calculating a certain "proximal saddle point" in each iteration. This 
has the advantage of illuminating the relationship between our procedure and 
augmented Lagrangian methods, which similarly can be treated in the convex case via 
the proximal point algorithm, either in a dual or a saddle point (i.e., primal-dual) 
form [6]. 

THEOREM 5.1. Consider the algorithm in the convex case with exact minimization. 
Let {XV}=t and {W}v=, be the sequences it generates from an arbitrary initial choice 

of XO e ' and W? E X. (In particular X?(s) could be obtained by solving (p), but 
that is not presupposed here.) 

These sequences will be bounded if and only if optimal solutions exist for the 

subproblems (s') and (9), i.e., there exist elements X* and W* satisfying the 
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optimality conditions in Theorem 4.1, or equivalently the saddle point condition in 
Theorem 4.2. In that case, for some particular pair of such elements X * and W * (even 
though optimal solutions to (c,) and (9) might not be unique), it will be true that 

(5.1) X" -* X* and Wv - W*. 

Furthermore, in terms of the norm expression 

(5.2) I1(X, W)IIr = (llX1|2 + r-211WI12)1/2 

one will have in every iteration v = 0, 1, 2, ... that 

(5.3) l(k "1, WV+l) - (X*, W*)Ir < lR, Wv) -(X*, W*)I,, 

with strict inequality unless ( xv, WV) = ( X *, W *). 

Thus every iteration of the algorithm from the start makes a definite improvement until 
solutions are attained (if that occurs in finitely many steps). One will also have in every 
iteration v = 1, 2, ... that 

(5.4) I\(x , W ?1) - (, w)llr < II(X, - (X+, Wv-l)lr. 

PROOF. A slight shift of notation will be useful. Let 

(5.5) v = , 

and rescale all multiplier vectors by 

(5.6) W= r-lW, Wv = r-lWV, W* = r-W (etc.). 

Then 

(5.7) Ii(X, W)Ir = II(x, W)| = (iIXll2 + w12)1/2 

Consider now the "projected" saddle function 

(5.8) lr(V, W) inf{r-F(X) + (X, W)lX E {, X = V} for V E X, W E. 

We shall show that the progressive algorithm in the convex case with exact minimiza- 
tion takes the form that 

(5.9) (V+1 , W^+l) is the (unique) saddle point of 

lr(V, W) = lr(V, W) + _iV Vl| V 12 - II| - W vII2 

subject to minimizing in V E 4X and maximizing in W e X. 

The nature of the function Ir must be clarified first. We can write the formula for Ir 
in (5.8) alternatively as 

lr( V, W) = inf {(pr(V, U) + (U, W>), 
UE.4 
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where 

(5.11) Pr(V, U) = r- F(X) + 8,(X) for the unique 

X E E having JX = V, KX = U. 

This just amounts to a "change of coordinates" corresponding to the orthogonal 
decomposition 4= eAx X/ which expresses the closed proper convex function 
r-1F + 8t (where 8t is the indicator of e) in terms of the components V and U of 
X. Obviously <r is a closed proper convex function on Ax J/, and from this it 
follows by (5.10) that Ir is a closed proper saddle function on Jx XJ in the 
terminology of convex analysis (see ?34 of [16]). 

Associated with lr is the multifunction 

(5.12) Tr(V, W) = ((Y, - U)I(Y, U) E lr(V, W)}, 

which is known to be maximal monotone and to be given also by 

(5.13) Tr(V, W) = {(Y, - U)I(Y, - W) E r(V, U)}. 

(See ?35 of [16] for a review of subgradients of saddle functions.) Our claim in (5.9) is 
that 

(0,0) E ar(v+l v+l) = dlr(VV+1, WV+) + (V'+l - V WV - V+1), 

or in terms of Tr that 

(5.14) (V_ - V1,WV - Wv+) E T(+1, W+1). 

In order to verify this claim we employ (5.13) and (5.11) to get an expression for Tr 
in the original context of F and e. We have 

(5.15) (V, - W) E dfr( V, U) : Y- WE ~(r-'F + 56)(X), 

where X = V+ U. 

Moreover the subdifferentiation rules of convex analysis (?23 of [16]) yield 

(5.16) d(r-'F + 8,)(X) = r-ldF(X) + Ne(X). 

Therefore by (5.13), 

(5.17) (Y,- U) E Tr(V, W) < Y-W E r-' dF(X) + N(X), 

where X= V+ U, Vei JV, U E M, Y e 4 

We can now transmute our claim from (5.14) into the equivalent form 

(5.18) V v - V+_ v+1 r- l dF v+lFV + W +1 - Wv) 

+ Nt(Vpi + Wr1 - WV). 
At this point a return to our original notation is in order. From (5.5), (5.6) and the 
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updating formula 

Wv+ = Wv + r[XV+1 _ x+l] 

used in our algorithm, which says WV+l - WV = XV+1 + X+, we get 

Vv+1I 
1 

fv+l _ v W = XvY +1 v+ _ Xv+1 = Xv+l1 

Vv _ vv+l - Wv+1 = Xv ..- V+1 - r-1WV+l = v _ XV+l _ r-lwv 

Thus (5.18) as a version of our claim is the same as 

0 E dF(Xv+l) + N,(XV+1) + WV + r(XV+l -XV) 

or better still 

(5.19) 0 E dFv(X+'1) + Ne(XV+1), 

where Fv is the objective in the subproblem (6?v) in Step 2 of our algorithmic 
procedure, 

(5.20) F`(X) = F(X) + (X, WV) + rllX - XI2. 

But because we are working at present in a framework of convex programming, the 
subdifferential condition (5.19) is both necessary and sufficient for 

(5.21) X"+ E argminFv(X) = argmin(?VP). 
xe' 

Recapitulating up to this point, we have established that the three conditions (5.9), 
(5.14), and (5.21) are equivalent. The uniqueness mentioned in (5.9) is evident from 
the strict convexity-concavity induced. on the function Ir by the proximal terms in V 
and W. It is equivalent also to the uniqueness of XV+1 in (5.21), which comes from 
the proximal term in (5.20). In terms of the operator T, which will play an ever more 
important role in our analysis, the uniqueness property is expressed by writing (5.14) 
as 

(5.22) (VV+l, WV+l) = Mr(VV, W), 

where 

(5.23) Mr =(I+ Tr)- 

Although Tr is itself generally multivalued, its maximal monotonicity ensures, as is 
well known (cf. Minty [17]), that the operator Mr is single-valued everywhere and 
actually nonexpansive. This means in the notation 

(5.24) Z =(V, W), Zv = (V, W), Z* = (V*,W*), 

that one has always 

2IMr(Z') - Mr(Z')II < IiZ' - zil. 
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Indeed, (5.25) can be stated even more strongly (cf. Proposition 1 of [3]) as 

(5.26) IlMr(Z') - Mr(Z)112 + |I(Z' - Mr(Z')) - (Z - Mr(Z))112 

< IZ'- Zl2. 

The assertions of the theorem follow from the representation of our procedure in 
the form (5.22)-(5.23), which is the exact version of the proximal point algorithm 
associated with the maximal monotone operator Tr. As a special case of Theorem 1 of 
[3] (a result stated to allow for inexactness in (5.22)), the sequence {(V , WV)}^= is 
bounded if and only if there is a pair (V*, W *) satisfying 

(5.27) (0,0) E Tr(V*,W*) with V* E J, W* E X, 

in which case the sequence actually converges to some such pair. We must confirm 
that the pairs (V *, W *) satisfying (5.28) are precisely the pairs (X , r- 1W *) such 
that X* solves the primal problem (I) and W* solves the dual problem (2). We 
have from (5.17) that the pairs satisfying (5.27) are the ones with 

-W* Er-ldF(X*) + N(X*) forX* = V*. 

This relation can also be written as 

-W* E F(X*) + N(X*) forX* = V* 

and is equivalent by Theorem 4.1 to X* being optimal for (i9) and W* being an 
associated multiplier. By Theorem 4.6, W* is such a multiplier if and only if W* 
solves (9). 

All that remains to the proof of Theorem 5.1 is the verification of the inequalities 
(5.3) and (5.4). In the notation (5.24) these take the form 

(5.28) IIZV+1 - Z*II < llZ - Z*Jl for all v, 

with strict inequality unless Z" = Z*, 

(5.29) \\ZV+1 - ZVl < IIZv - Z'-lll for all v. 

Noting that the optimality relation (5.27) can be written as Z* = Mr(Z*), whereas 
ZV+l = Mr(ZV) for every v, we can get both these inequalities from (5.26), as we now 
show. 

In the case of (5.28) we take Z = Z* and Z' = Z" to turn (5.26) into 

lZv+1 - _*112 + Il(Zv - zV+l) 
_ 0112 < lIZv - Z*12. 

This yields the inequality in (5.28) and the information that the inequality is strict 
unless IIZV - Z"+1' = 0. Of course lIZ- - Z`+11 = 0 if and only if Zv = Mr(Z"), in 
which event the sequence generated by our procedure must forever more remain 
fixed at Z", and Z" must of course coincide with Z*. The full assertion of (5.28) is 
thereby justified. 
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In the case of (5.29) we apply (5.26) with Z = ZV1- and Z' = ZV. This gives 

IIZ^+1 - z^112 + jl(zv - ZV+l) _ (Zv-1 _ Z-)112 < lIZV - z'-1112 

and in particular proves (5.29). D 
A stronger result about the rate of convergence will be obtained now for the 

linear-quadratic case of problem (s). 

THEOREM 5.2. Consider the algorithm in the linear-quadratic case with exact mini- 
mization, and suppose that (i?) and (9) have unique optimal solutions. Then the 
convergence in Theorem 5.1 is at a linear rate from the start: there is a value Or E [0, 1) 
such that in every iteration v = 0, 1, 2, ... one has 

(5.30) (v+l, wv+l) - (x*, W*)llr < 0rl(X , W") - (X*, W*)Ilr. 

PROOF. To demonstrate this we return to the context of the proximal point 
algorithm in the proof of Theorem 5.1. The results will follow from Theorem 2 of [3] 
through verifying a Lipschitz property for T- 1 at (0, 0). 

Recall that in the linear-quadratic case F is a quadratic (possibly affine) function 
and - is a polyhedral convex set. In this case the multifunction X - 9F(X) reduces 
to an affine transformation. At the same time the multifunction Ne: X -? Ne(X) is 
polyhedral in a sense defined and demonstrated by Robinson [18]: the graph of N. is 
the union of a finite collection of polyhedral convex subsets of F x &. The multifunc- 
tion r-i F + N. is then polyhedral too, and hence so is the multifunction dopr for (Pr 
in (5.11), because of (5.16). The graph of Tr differs from that of 9(pr only by some 
changes in sign and shifts in the roles of various components; this is seen in (5.13). 
Therefore Tr is polyhedral, and it follows now that Tr-1 is polyhedral. 

We have seen that (5.27) characterizes the optimal solutions X* to (G,) and W* 
to (9): For each such pair we get (V*, W*) satisfying (5.27) by taking V* =X*, 
W* = r 1W*, and conversely. Our uniqueness assumption implies therefore that 
T-'1(0, 0) is a singleton. Of course Tr-1 is at the same time a maximal monotone 
operator, because Tr is. Any maximal monotone operator has the property of being 
single-valued (in fact differentiable) almost everywhere on the interior of its effective 
domain (the set of points where it is nonempty-valued); see Theorem 1.3 of Mignot 
[19]. Furthermore, the interior of the effective domain is characterized as the set of 
points where the operator is nonempty-compact-valued; Rockafellar [20]. Since 
Tr-1(0,0) is a singleton (which in particular is a nonempty compact set), we may 
conclude from these facts that T- 1 is single-valued almost everywhere in a neighbor- 
hood of (0, 0). But the graph of Tr 1 is the union of finitely many polyhedral convex 
sets in & x e. The conclusion must be drawn that T- 1 is actually single-valued on an 
entire neighborhood of (0, 0) and indeed must be piecewise affine there. In particular 
T1-1 is Lipschitz continuous at (0, 0). 

The Lipschitz property guarantees by Theorem 2 of Rockafellar [3] that a value 
Or E [0, 1) exists for which- the desired inequality (5.30) holds when v is sufficiently 
large. The strict inequality in property (5.3) in Theorem 5.1 makes it possible for us, 
by raising the value of Or somewhat if necessary, to get the inequality to hold for all v. 

The modulus of convergence in Theorem 5.2 depends on the choice of the 
parameter r > 0, which can also influence the behavior of the algorithm in other 
ways. This is a matter that will require further exploration. Some preliminary insights 
can be gained from the saddle point representation of our algorithm that was 
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observed in (5.9) of the proof of Theorem 5.1. We can record that representation in a 
more useful form for the present as follows. 

PROPOSITION 5.3. When the algorithm is executed in the convex case with exact 
minimization, the basic iteration can be expressed in terms of the function. 

(5.31) l(V, W) = inf{F(X) + (X, W)IX E {, X = V} for V E XI, W E 

by saying that (XW+ , W+ 1) is the unique saddle point of the convex-concave function 

(5.32) l(V, W) + I2IV - -112 W - WIw- W112 

with respect to minimizing over V E -X and maximizing over W E -'. 

PROOF. This differs only in notation from the version of (5.9) that was established 
in the proof of Theorem 5.1. o 

The formulation of our algorithm in terms of Proposition 5.3 reveals a trade-off 
which must be respected in choosing r. A low value of r is likely to encourage 
progress in the primal sequence {X}", but it could hinder progress in the dual 
sequence {W'}. A high value of r may be expected to have the opposite effects. The 
ultimate consequences for the numerical behavior of the algorithm will have to be 
seen in practice, but a deeper study of convergence properties of the underlying 
proximal point algorithm could also lead to a better understanding of this situation. 
We cannot pursue the matter further in the present paper. 

We now take up the question of how the algorithm may be realized with only 
approximate minimization in the subproblems (9s"). As see in Proposition 4.4, the 
condition that in the convex case is necessary and sufficient for the point X+ 1(s) E Cs 
to be the exact (unique) optimal solution to (sj") is (4.19), which can be written as 

(5.33) 0 E OfS(XV+l(s)) + Nc(Xv+l(s)) 

for the function 

(5.34) fs(x) = f(x) +x WV(s) + rlIx -Xv(s)l2 

Problem (9^) consists, of course, minimizing fv over Cs. 
The criterion we shall use for approximate minimization in (7sv) is, in place of 

(5.33), the inequality 

(5.35) dist(0, Ds) < (1 - )^+ min{1, IXV+ (s) - XV(s)l} with 

Ds := daf(xv+1(s)) + Nc(XV+l(s)), 

where ,I > 0 and 0 < e < 1 (fixed values). The left side of this inequality involves the 
Euclidean distance of the set dfSV(X+'l(s)) + Nc(Xv+'(s)) from the origin of R", a 
distance we known to be 0 in the case of exact minimization in (5.33). Note that 
unless XV(s) itself is the unique solution to (<s), a special possibility that could be 
tested for at the outset of any procedure for solving (k'), the right side of the 
inequality in (5.35) will tend to some positive value. Then there will be leeway for 
determining in finitely many iterations an XV+l(s) for which the condition is met. 

This form of stopping criterion is easier to implement than might be guessed. The 
exact condition in (5.33) corresponds in a standard linear or smooth nonlinear 
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programming formulation of (9v) to the Kuhn-Tucker conditions. Then the set 
afs(x) reduces just to the gradient vector of Vfs(x), which is Vfs(x) + Wv(s) + 
r(x - Xv(s)), and Nc(x) is a cone generated by the gradients of the active constraint 
vectors at x in the constraint representation for Cs, as was explained at the beginning 
of ?4. The fulfillment of the Kuhn-Tucker conditions at X+)'(s) means then that a 
vector 

(5.36) Yv(s) E Ofd(Xv+l(s)) + Nc(Xv+l(s)) 

has been determined and shown to equal 0. 
In the approximate minimization we are proposing, one has (5.36) holding but the 

vector Yv(s) is not quite 0. Nonetheless 

(5.37) dist(0, df(Xv+'(s))) + Nc(Xv+l(s)) < IYV(s)l. 

Our stopping criterion (5.35) is satisfied if 

(5.38) IYV(s)l < 4(1 - E)Y+ min{1, IX+1(s) - X( s)l, 

and then X"+l(s) is appropriately deemed an approximate solution to (9s^). 

THEOREM 5.4. If the algorithm in the convex case is implemented with approximate 
minimization in the sense of criterion (5.35) for the modified scenario subproblems 
(075), then all the convergence results in Theorems 5.1 and 5.2 remain valid. 

PROOF. Going back again to the formulation of the algorithm in terms of Tr and 
Mr in the proof of Theorem 5.1, we aim at applying the criterion given in Rockafellar 
[3] for approximate implementation of the proximal point algorithm. This criterion in 
present notation takes the form that 

o0 

(5.39) II(V+1, W+1) - Mr(Vv, Wv)|I < Ev with ev > 0, E eV < oo, 
v=1 

(5.40) II(v +', WV+1) - Mr(Vv, W)11 )I 6 11((V+'1, W'+1) - (VI, WV)11 

oo 

with S > 0, E _v < oo 
v=0 

We can subsume the two inequalities into the single, somewhat simpler conditions 
that 

(5.41) I(Vv+,, Wv+l) _ 
Mr(VV, Wv)1 

< rA (1 - ,) >+min{1 1I(Vv+1 Wv+1) - (V, W)I11} 

for fixed ,u > 0 and e E (0, 1). (The factor 3r anticipates a relationship that will 
subsequently emerge.) We set out now to demonstrate that (5.41) is implied by (5.35). 

To say that (5.35) is satisfied is to say that for some vector satisfying (5.36) one has 
(5.38). (The set on the right side of (5.36) is nonempty and closed.) Let us suppose we 
have such a vector Yr(s) for every scenario s E S and observe that then 

Y"v aFv(XV+1) + Ne(xv+') 
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in the notation (5.20), or what is the same thing, 

yv E dF(XV+l) + NA,(XVl) + Wv + r(X+ - X). 

We can relate this expression more closely to the formula in (5.17) for Tr by writing it 
as 

(5.43) r-YV - Wv - (XV+l - Xv) E r-'lF(XV+') + N,(XV^+), 

where Wv = r-1WV as in the notation (5.6). The vector on the left in (5.43) can be 
decomposed into a component 

(5.44) J[r-Yv - WV - (X+1 - Xv)] = r-lJYV - V+1 + Vv in I/ 

and a component 

(5.45) K[r -'l - WV - (XV+' - X r)] = r-'KYV - W - KXV+1 

= r-lKYV - W+1 in . 

Here we are also using the notation (5.5) and the fact that WV+1 = WV + KX^+ . 
Decomposing Xv+ 1 itself by 

X+l = JXv+l + KXV+1 = VV+1 + (W+l - Wv), 

we can now invoke (5.17) and write (5.43) in terms of Tr as 

(rljyv - VV+1 + VV, - WV+1 + W^) E Tr(VV+l, W+ r-lKYv) 

This in turn becomes 

(VV + rlJYV, WV - r-rKYV) - (V+1,^ 1 V - r-lKY) 

E T(Vv+l, WV+1 r-1KyV) 

which for the mapping Mr = (I + Tr)-1 can be expressed as 

(5.46) (Vv+l, W+l) - (0, r- KYv) = Mr(Vv + r- JY W - r-KY). 

The nonexpansive property of Mr in (5.25) lets us estimate 

(5.47) IIMr(Vv + r-'JYV, Wv - r- KYv) 
- Mr(Vv, Wv)I 

< rI(r-lJYV, - r-lKYV)l = r-lllyvll 

(where we use the fact that JYV and KYV are the components of Yv with respect to 
the orthogonal decomposition = M/e 4). But (5.46) gives 

(5.48) II(VV+l, W+l) _ Mr(VV + r-lJYV, WV - r-lKY^V)I 

< I1(0,- r-1KYV)II < r-1IYvll. 
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In combining (5.47) with (5.48) we achieve 

(5.49) Il( VV+, Wv+1) _ Mr(VV, Wv)II < 2r-1llYvll. 

We originally chose Y" to have (5.38) satisfied for every s E S. This condition gives 

IYv(s)12 [ (1- )+1]2, IYV(s)l2 < [,(l - E) Vl]2XV+()- ^(s)12. 

Calculating IIYV112 = E{(Y"(s)12}, we therefore have 

(5.50) IIYVl < ? p(l - E) +lmin{l, IIX^+1 - Xll} . 

This brings us to the finish: (5.49) plus (5.50) implies (5.41). Thus the proposed 
stopping criterion (5.35) does ensure that (5.41) will be respected at every iteration, 
and the convergence facts in Theorems 1 and 2 of [3] can be applied to get the results 
claimed. o 

6. Convergence in the nonconvex case. Outside of the convex case of problem 
(P) we really have no substantial results of convergence of the algorithm along the 
lines of the ones in ?5, at least at present. This territory has not been well 
investigated, however. We do think there are possibilities for using the algorithm 
effectively in the nonconvex case as well. So that the reader is not left with too narrow 
an impression, we wish to provide in this section some evidence supporting that 
opinion. 

In the nonconvex case it is probably futile to count on being able to solve (~) 
globally. The same could well to be true for the subproblems (sV). The analog of 
"exact minimization" (we do not try to deal with "approximate minimization" here) is 
the calculation of XV+ (s) as a locally optimal solution to (9sV) at each iteration. A 
slippery quality of local minimization, however, is the variability of what "local" might 
mean from one iteration to the next. 

Let us speak of a 8-locally optimal solution as an optimal solution relative to a 
5-neighborhood of the point in question. While the calculation of a globally optimal 
solution may be out of the question, an idea not very farfetched is that the technology 
of optimization will allow us to calculate for fixed (possibly small) 8 > 0 specified in 
advance a 5-locally optimal solution X+ 1(s) to (<sv). Properties such as Lipschitz 
continuity of the objective and constraint functions could support this capa- 
bility. 

Proceeding anyway on such a basis, we are able to show that the algorithm, if it 
does converge to something (a big assumption?), produces in the nonconvex case of 
(9) about as good a "solution" as could be hoped for. 

THEOREM 6.1. Suppose that the algorithm is implemented in the nonconvex case in 
such a way that in each iteration the calculated vector X+ l(s) is 8-locally optimal for 
(Vs), where 8 > 0 is fixed. If the generated sequences {X^}=l and {WV},,= do 
converge to elements X* and W* respectively, then X* and W* satisfy the optimality 
conditions in Theorem 4.1. In this sense, X* is a stationary point for (s). 

Under these circumstances, in fact, X* is a locally optimal solution to, and W* a 
corresponding multiplier vector for, the problem (?) obtained from (9) by replacing 
each function fs by 

f,(x) =f,(x) + rlx- X*(s)12. 
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PROOF. The assertion about problem (?) implies the one about X* being a 
stationary point for (0?), because df,(x) = rdf(x) + r(x - X*(s)) (see Corollary 
2.4.2 of [1]) and consequently 

(6.2) af(X*(s)) = df(X*(s)). 

The only distinction between (,_) and (00) in the optimality conditions of Theorem 
4.1 would lie in a possible discrepancy between the two sets shown in (6.2) to 
coincide. We may concentrate therefore on the assertion about (0,). 

The condition that X"^+(s) is 3-locally optimal in (,tsv) for every s E S implies 
that X^"' is locally optimal in the problem (^v) where 

(6.3) F"(X) = F(X) + (X, W) + rllX - X112 

is minimized over {. Indeed, X^+' is S'-locally optimal in (^"), where 

(6.4) S' = Sminpf/2, 
sES 

because 

IIX - XV+l112 < (')2 E plX(s) - X^+l(s)2 < (5)2 
sES 

IX(s) - Xv+ (s)l < (S')2/p for all s 

and consequently 

(6.5) IIX - X"+'ll < ' IX(s) - xv+(s)l <I S for all s. 

Working now with our assumption that Xv -- X* and W" - W * we see, because 
F^(X) > FV(X^+l) when X E e and IIX - XV+ll < 3', that in the limit one has 

(6.6) F(X) + (X, W*) + rrlX - X'112 > F(X*) + (X*, W* 

+ 4rIX* - X*112 when X E e, |IX - X*1i < (', 

or in other words, X* is 5'-locally optimal for the problem 

( . * ) minimize F(X) + (X, W*> + 5rllX - X*1I2 over X E -. 

The convergence of W to W * implies, because W E, and W +l- W = 

rKX ^+, that W* E and KX^ 0. The latter means XV - XV' -- 0. Hence 
X* - = 0, i.e., X * E A The fact that X * is S'-locally optimal in (0 *) gives 
us then in particular, because (X, W*) = 0 when X e X, that X* is 5'-locally 
optimal for minimizing the expression 

F(X) + XrlX- X*112 = E{fs(X(s))} 

over X E - en ,A4. This is all we needed to prove. o 
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