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1 A Multiproduct Assembly Example

A manufacurer produces n products out of a total of m different parts which are ordered.

One unit of product i requires aij units of part j. The manufacturer orders parts, then we

observe how many units of each product are demanded d1, . . . , dn, and should decide how

much of each demand to satisfy.

minz,y
∑n

i=1(li − qi)zi −
∑n

j=1 sjyj

s.t. yj +
∑n

i=1 aijzi = xj

0 ≤ zi ≤ di
yj ≥ 0

where what is the strategic problem to be decided by the manufacturer ahead knowing the

demand? What if there are finitely many demand scenarios?



1.1 Chance constraints

If the manufacturer is more concerned about not loosing demand (and not so much about

the salvage value of unused items) then a more interesting constraint would be to enforce

that
∑n

i=1 aijdi ≤ xj holds with high probability. The problem would be transformed as:

This corresponds to the chance constrained model:

minx cTx

s.t. Pr{ATD ≤ x} ≥ 1− α
x ≥ 0

easy when:

but typically hard:

Pr{ξx1 + x2 ≥ 7} ≥ 1− α, with ξ ∼ U [0, 1]

1.2 Multi-stage model

Assume now that the manufacturer has a planning horizon of T periods, where each period

a demand dt1, . . . , dtn is observed, assume that unused parts can be stored. Each period

decisions of what to order xt, what to produce zt, and what parts to store yt are made.



If we denote D[t] = (D1, . . . , Dt) the uncertain demand vector from period 1 to period t

and d[t] = (d1, . . . , dt) a sample realization of this uncertain vector, express this multistage

problem

1.3 Network Design Problem

A deterministic mathematical model for the supply chain design problem can be written as

follows:
minx,y cTx+ qT y

s.t. Ny = 0

Cy ≥ d
Sy ≤ s
Ry ≤Mx

x ∈ X , y ≥ 0

write this problem as a two stage stochastic programming problem if at the time of the

desing of the supply chain there is uncertainty about operational costs, demand, supplies,

processing requirements and processing capacities.

what about a multistage stochastic problem.



2 Two Stage Problems

We now want to explore the two stage stochastic linear problem

minx cTx+ E{Q(x, ξ)}
s.t. Ax = b, x ≥ 0

where Q(x, ξ) represents the value of the second stage given the uncertain parameters ξ =

(T,W, h, q) given by

miny qT y

s.t. Tx+Wy = h, y ≥ 0 .

Property The function Q(·, ξ) is convex and either

• polyhedral

• Q(x, ξ) = +∞

• Q(·, ξ) = −∞

and if Q(x0, ξ) is finite, then δQ(x0, ξ) = −Tπ∗ where π∗ = argmax(h−Tx0)Tπ : W Tπ ≤ q

Example What is the subdifferential of the second stage cost function for the 2 stage supply

chain design problem if the uncertainty has finite support?



3 Cutting Plane Methods: Bender’s Decomposition

Example: Consider the problem in n variables, with n << m:

max cTx

s.t. aTi x ≤ bi i = 1 . . .m

Consider an algorithm that defines a restricted problem with only k < m constraints, and

then gradually adds constraints that are missing:

max cTx

s.t. aTi x ≤ bi i = 1 . . . k .

• If x∗ optimal for (RM) is feasible for i = 1 . . .m then

• Otherwise need to identify a violated inequality

What upper and lower bounds does the cutting plane method provide?

3.1 Bender’s basics

Problems for which Bender’s Decomposition (constraint generation) methods work best,

are those that have a large number of constraints and the following structure

min
x,y1,...,yk

cTx+ qT y1 . . . qT yk

s.t. Ax = b

T1x Wy1 = h1

T2x Wy2 = h2

...
. . . =

...

Tkx Wyk = hk

x, y1, . . . , yk ≥ 0



This structure is exploited by doing each minimization separately:

minx cTx+
∑k

i=1Qi(x)

s.t. Ax = b

x ≥ 0

with

Qi(x) = Q(x, ξi) = minyi qT yi

s.t. Wyi = hi − Tix
yi ≥ 0

for every i = 1, . . . , k. What does the function Qi(x) look like?

The functions Qi(x) are constructed sequentially through cuts:

• Optimality cut: If γ ≥ Qi(x) then

• Feasibility cut: If x makes some subproblem infeasible, Qi(x) =∞, then

The master problem that is solved is

minx cTx+
∑k

i=1 γi

s.t. Ax = b

x ≥ 0

hTi z
k − xTTizk ≤ γi for zk BFS of W T z ≤ q

hTi w
k − xTTiwk ≤ 0 for wk extreme ray of W T z ≤ q

BFS: basic feasible solution = extreme point. An important observation is that if W and

q are stochastic, i.e. vary in each scenario, then we have the same master with extreme

points and rays zki and wk
i for each Qi(·).



3.2 Benders Decomposition Algorithm

1- Formulate a master problem (i.e. find a BFS for W T z ≤ q)
2- Obtain (x∗, γ∗) the optimal solution for the master problem

3- Solve the subproblem Qi(x
∗) for every scenario i

4- If all subproblems have optimal solution Qi(x
∗) ≤ γ∗i

- STOP: (x∗, γ∗) is optimal as it is feasible for all cuts

- else if some i has ∞ > Qi(x
∗) > γ∗i

- add optimality cut hTi z
k − xTTizk ≤ γi

- else if some i has Qi(x
∗) =∞

- add feasibility cut hTi w
k − xTTiwk ≤ 0

5- Goto 2

• How do we start this algorithm?

• What if we can’t wait for it to converge?

3.3 Example

An electric utility company faces the problem of satisfying demand at minimum cost. In

the case of a thermal plant and a hydro plant, satisfying the demand over the next two

periods can be written as:

min 3x1 + 3x2

x1 + h1 ≥ 10

x2 + h2 ≥ 12

h1 ≤ 5

h2 ≤ V2

V2 + h1 = 5 + r

xi, hi ≥ 0

Note that this is a production and inventory problem.



Suppose

- 2nd period demand can be 15 or 10 each with prob. 1/2

- 2nd period thermal cost can be 1 or 5 each with prob. 1/2

- rain can be r = 0 or r = 10 each with prob. 1/2

Question: Best strategy to satisfy 1st period demand considering uncertainty?

scenario prob. 2nd demand thermal cost rain best strategy

1 0.125 15 5 0 save water, x1 high

2 0.125 10 3 10 use water, x1 low
...

...

Solution: Minimize the expected value:
∑8

i=1 pizi. The zi is the optimal solution for each

scenario. Note that some variables have to be decided before the uncertainty (x1 and h1)

and some after the uncertainty (x2 and h2). Recourse.

This leads to the following problem:

4 Multi-Stage Problems

4.1 Non-anticipativity- 2 stage

Consider the following equivalent formulation of the 2 stage stochastic programming prob-

lem with finite number of scenarios:

min
∑K

k=1 pkc
Txk +Q(xk, ξk)

s.t. Axk = b, xk ≥ 0

xk = xk+1 k = 1, . . . ,K − 1



The second set of constraints define the non-anticipativity constraints, all first stage (here-

and-now) variables have to be coordinated prior to the uncertainty being revealed. What

if these constraints did not exist?

An equivalent form of these non-anticipativity constraints (a linear subspace in nK dimen-

sional space) is

Px = (
K∑
k=1

pixi, . . . ,
K∑
k=1

pixi) = (x1, . . . , xK) = x

4.2 Linear Multistage Problems

Consider the problem

min cT1 x1 + cT2 x2 + cT3 x3 + . . . + cTTxT

s.t. A1x1 = b1

B2x1 + A2x2 = b2

B3x2 + A3x3 = b3
. . .

BTxT−1 + ATxT = bT

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 . . . xT ≥ 0

Where the decision xt is taken knowing the outcome of the uncertainty from periods

1, 2, . . . , t and the decisions taken in periods 1, 2, . . . , t−1. The objective is to minimize the

expected value. Letting ξ[t] = (ξ1, ξ2, . . . , ξt) denote the vector of uncertain variables up to

period t we can express the Nested Formulation of the multistage problem as

min
A1x1 = b1

x1 ≥ 0

cT1 x1 + E

 min
B2x1 + A2x2 = b2

x2 ≥ 0

cT2 x2 + E

· · ·+ E

 min
BT xT−1 + AT xT = bT

xT ≥ 0

cTTxT







Where the expectations are taken with respect to what is uncertain up to each period. A

dynamic programming formulation is as follows: Starting from period T Therefore at period

t the future cost function is

4.3 Scenario tree and non-anticipativity constraints

Given a finite uncertainty scenarios we can obtain represent the multistage optimization

problem by repeating all variables in every scenario by:

min

K∑
k=1

pk

[
(ck1)Txk1 + (ck2)Txk2 + (ck3)Txk3 + . . . + (ckT )TxkT

]
s.t. A1x

k
1 = b1

Bk
2x

k
1 + Ak

2x
k
2 = bk2

B3x
k
2 + Ak

3x
k
3 = bk3

. . .

Bk
Tx

k
T−1 + Ak

Tx
k
T = bkT

xk1 ≥ 0 xk2 ≥ 0 xk3 ≥ 0 . . . xkT ≥ 0

Where the uncertainty is represented by a scenario tree

The non-anticipativity constraints, not only have to match up all the first stage variables

xl1 =
∑K

k=1 pkx
k
1, but also all variables that share a common history up to a certain period:



4.4 Progressive Hedging

We say that the solution (xk1, . . . , x
k
T )Kk=1 is

• admissible: for each k (xk1, . . . , x
k
T ) ∈ Ck is feasible for scenario k, i.e.:

A1x
k
1 = b1

Bk
t x

k
t−1 +Ak

t x
k
t = bt, t = 2 . . . T

• implementable: when the value of solution at time t only depends on past information,

that is

xkt =
1∑

s∈At
ps

∑
s∈At

psx
s
t = E[xst |At], ∀k ∈ At

Note that this is equivalent to a linear constraint (I − J)x = Kx = 0

The progressive hedging algorithm is an augmented Lagrangian method to solve our problem

of interest:
min

∑K̄
k=1 pk(

∑T
t=1(ckt )Txkt ))

s.t. (xk1, . . . , x
k
T ) ∈ Ck

Kx = 0

1- At iteration i: xi an admissible (not implementable) solution

W i vector of multipliers

2- Let x̂i = Jxi

3- Solve the subproblem Qi(x
∗) for every scenario i

4- Solve the separable subproblem to obtain xi+1, that is

(xi+1)k = argmin
∑T

t=1(ckt )Txt + (W i)Txt + r/2‖xt − x̂ikt ‖22 | xt ∈ Ck

5- W i+1 = W i + rKXi+1

6- i← i+ 1. STOP if ‖xi − x̂i‖ ≤ ε, otherwise Goto 2



5 Sample Average Approximation

Given xi i.i.d. random variables with mean µ and standard deviation σ we have that the

central limit theorem says that

x̄ =
1

n

n∑
i=1

xi ∼ N(µ,
1

n
σ2) for large n

we use this property to build confidence intervals (smallest interval guaranteed to contain

a value with a given probability):

µ ∈ [x̄− 1√
n
σφ−1(α/2), x̄+

1√
n
σφ−1(α/2)]

with probability 1− α

If the uncertainty of a stochastic programming problem is continuous:

v∗ = min cTx+ E{Q(x, ξ)}
s.t. Ax = b, x ≥ 0

we can use statistics to obtain bounds on the optimal solution value by sampling the un-

certainty and considering the approximate problem

v∗N = min cTx+ 1
N

∑N
k=1Q(x, ξk)

s.t. Ax = b, x ≥ 0

Indeed we have that

ĝN ′(x̄) = cT x̄+
1

N ′

N ′∑
k=1

Q(x̄, ξk)

is a statistical upper bound if x̄ is feasible. That is with 1− α probability

cT x̄+ E{Q(x̄, ξ)} ∈ [ĝN ′(x̄)− STD(ĝN ′(x̄))φ−1(α/2), ĝN ′(x̄) + STD(ĝN ′(x̄))φ−1(α/2)]



where STD(ĝN ′(x̄)) =
√

1
N ′(N ′−1)

∑N ′

i=1(cT x̄+Q(x̄, ξi)− ĝN ′(x̄))2.

Similarly v̄N,M = 1
M

∑M
m=1 v

m
N is a statistical lower bound of v∗ whose empirical variance is

σ2
v̄N,M

=
1

M(M − 1)

M∑
m=1

(vmN − v̄N,M )2


