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Definition and valuation of
the underlying instruments

1.1 INTRODUCTION

The main task of this book is to show how existing option models can be under-
stood, analysed and implemented in order to price and risk-manage ‘exotic’
interest-rate options. The term ‘exotic’ is, by itself, far from being unambiguous:
while, on the one hand, the financial press tend to extend the adjective to any
‘derivative’ instrument (thereby including even futures contracts), some traders
in the US$ derivatives market, on the other hand, might consider a 10-year Amer-
ican, step-up-coupon swaption with exit penalty a ‘commoditised’ plain-vanilla
instrument. In the context of this book, ‘exotic’ will be taken to refer to any
option whose value depends in an important way on the evolution of the yield
curve as a whole. Very often, this is tantamount to using the term ‘exotic’ for
any option whose value cannot be reduced to a closed-form expression, such as,
for instance, Black’s (1976) celebrated formula. Models, such as the Hull and
White (see Chapter 13), which do afford closed-form solutions for certain types
of options (typically calls or puts on discount bonds) are, of course, also treated,
but the emphasis is laid on the applications that go beyond the important but
limited cases for which exact formulae exist.

Before embarking on the treatment of these exotic interest-rate options it
is important to have a clear understanding of how the underlying instruments
are priced, and of the rather subtle interplay between the prices of the ‘under-
lying’ and of the ‘derivative’ instruments. This is the task undertaken in the
present chapter, and in Chapter 5. The attempt has been made to make the treat-
ment as self-contained as possible, and therefore Black’s formula is derived in
Section 5.2. Readers totally unfamiliar with the fundamentals of option pricing
might, however, find it profitable to read at least some chapters from any of the
many introductory texts (I cannot think of a better one than Hull’s (1992) classic).
Finally, the overall treatment would have been more elegant if a completely
axiomatic approach had been adopted, by deriving theoretical results first, and
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applications thereafter. It was feared, however, that in so doing more could be lost
in financial intuition than gained in elegance. Chapters 1 to 5 therefore make use
of an ‘intuitive’ understanding of what arbitrage is in order to derive important
results; arbitrage is ‘properly’ defined in Appendix B. Clearly, the derivations
in Chapters 1 and 5 are less general than they could have been if presented in
the context of the martingale approach. However, the reader would have missed
the important issue of the very motivation for yield curve models, presented in
Chapters 3 and 5. The simple proofs presented in this chapter should therefore
be seen in this light, and profitably revisited before embarking on Part Three.

Broadly speaking, pricing an exotic interest-rate option can be looked at in
two distinct ways. Complex interest-rate options can be regarded as tools which
allow the investor to express ‘sophisticated’ views about the future evolution
of interest rates. These views, as mentioned in the introduction, can go well
beyond simple directional positions (‘rates are going to go “up” or “down’’),
for which plain-vanilla instruments such as futures and swaps are probably more
suited, but can, for instance, express predictions about the steepening or flatting
of a yield curve, independently of, or in conjunction with, a change in level;
or about the precise timing of a certain yield curve move. In all these cases
the investor will reap his rewards if his views were correct and if these views
were different from the market’s. Therefore, in this framework, pricing the market
exactly (i.e. recovering the observed market prices within the bid/offer spread)
is neither logically necessary, nor, to some extent, desirable. If a model could be
trusted to give a fundamentally correct, albeit necessarily simplified, description
of economic reality then discrepancies between model and market values would
point to possible trading opportunities. Equilibrium models, which attempt to
describe the economy as a whole, belong in this class.

At the opposite end of the spectrum there is a pure no-arbitrage approach: in
this framework the user who needs to price an exotic interest-rate option will
hedge his position using either plain-vanilla options (such as caps or European
swaptions) or the underlying ‘cash’ instruments (bonds, forward rate agreements
(FRAs), swaps or futures); the correctness of the prices of the latter will not be
questioned, and the value of the exotic options will be regarded as the cost of
the replicating hedging portfolio. Clearly, exact recovery of the actually traded
market prices of the underlying instrument now becomes all-important. At the risk
of oversimplifying the issue, one approach can be seen as an attempt to explain
prices, the other as using these prices as exogenously given building blocks.

Whatever the approach might be, it will be necessary to recover the implied
market values for the underlying instruments using the more sophisticated
approaches described in later chapters. (In the context of no-arbitrage models,
the procedure is normally referred to as the calibration or parametrisation of
an interest rate model.) In turn, the market prices of futures, FRAs, swaps, or
bond prices are all a function of the discount curve. A discussion is therefore
undertaken in this chapter of the issues underlying the construction of a reliable
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yield curve, and the evaluation from the latter of the market prices of the
instruments mentioned above. An excellent (and lengthy) treatment of these
topics as far as LIBOR curves are concerned can be found in Miron and Swannell
(1991). The next section deals with the conceptual steps involved in the creation
of a discount curve, and highlights the methodological similarities and differences
in constructing bond and LIBOR yield curves.

1.2 DEFINITION OF SPOT RATES, FORWARD RATES, SWAP RATES
AND PAR COUPON RATES

There exist a number of equivalent descriptions of a given market yield curve.
Ultimately, spot rates, yields, swap rates, par coupon curves, etc., are all shorthand
notations for cash flows that will occur at some future time. These cash flows, in
turn, can either be certain, or conditional upon pre-specified states of the world
being attained in the future. A title to a single certain cash flow of magnitude
N at a known time in the future 7 is called a discount bond, and the amount
N is referred to as the principal, or notional, or face value. In certain cases,
i.e. especially for short maturities T, these instruments are traded directly in the
market. What is more common, however, is to have securities that promise to
pay a stream of certain payments at times {;}, often referred to as coupons, and
a (usually larger) payment on the last payment date (the maturity date). These
latter instruments are normally called coupon-bearing bonds. From the definition
given, it is clear that a coupon-bearing bond can be regarded as a collection of
discount bonds with notionals equal to the coupon of the bond, each maturing on
one of the different coupon-payment dates, plus an additional discount bond with
notional equal to the last (maturity) payment of the coupon-bearing bond. The
valuation of the latter can therefore be reduced to the valuation of a collection
of pure discount bonds. In the rest of this book, the price at time ¢ of a discount
bond maturing at time T will be denoted by P(¢, T), and the price at time ¢ of
a coupon-bearing bond paying coupons at times {z;}, and the principal amount
at time T by Bnd(z, {t;}, T). Since the problems connected with the possibility
of default are not touched upon in this book, and since, as seen, coupon-bearing
bonds are reducible to a suitable bundle of discount bonds with different face
values, from the conceptual point of view the collection of prices P(t, T) for
any T > ¢ fully describes the value to be associated to any collection of certain
future cash flows. Since, as mentioned before, pure, risk-free discount bonds
are rarely traded in the market, their prices have to be imputed from the prices
of the coupon-bearing bonds. Despite these practical difficulties the conceptual
advantages arising from assuming that the prices of a continuum of discount
bonds are indeed directly available are such that it will always be assumed in
the following chapters that this continuum of prices (otherwise known as the
discount function) have already been obtained. How this can be accomplished
is explained in the following sections.
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A security that entitles the holder to a given cash flow if a particular, pre-
specified, state of the world is attained at one or more future dates is called a
contingent claim (a more precise definition is given in Appendix B). In some
situations, despite the fact that the cash flows are uncertain at time #o, they can
be replicated exactly by entering suitable strategies which require only (posi-
tive or negative) holdings of discount bonds. If arbitrage (see Appendix B and
Chapter 6) is to be avoided, knowledge of the discount function at time #, there-
fore completely determines the prices of this class of contingent claims. Notice
that, since the payoffs of these simple contingent claims can be replicated using
instruments that pay certain cash flows in the future, no statistical assumptions
have to be made regarding the probability of occurrence of any future state of
the world. In particular, the value of these instruments is independent of any
volatility. Contingent claims that can be replicated in this fashion (e.g. FRAs,
swaps) are treated in this chapter.

For more general contingent claims, no-arbitrage and knowledge of the
discount function are not sufficient to determine their value, and one must also
make suitable assumptions about the probability distributions of the random
variable(s) that determine the future cash flows. (It will actually turn out
that, because of no-arbitrage, assumptions only need to be made regarding the
second, or higher, moments of these distributions.) Not surprisingly, therefore,
the prices of these contingent claims will turn out to be given (Appendix A,
Section A.7) by suitable expectations, taken with respect to the appropriate
probability distributions, of future cash flows. Some of these expectations can be
easily evaluated with closed-form expressions, using the market discount function
and the variance of the random variable(s) which determine the payoffs. These
simple, volatility-dependent, contingent claims which admit closed-form solutions
(caps, floors and European swaptions) are also treated in this chapter. The rest
of the book deals with contingent claims for which such simple solutions are not
available (or, as will be argued in Chapter 5, are of limited use), and whose future
cash flows depend on pre-specified future realisations of the discount function.
Despite the fact that this definition is perfectly self-consistent, it is more common
to express the conditions that trigger future payments in terms of rates. These
are therefore defined as follows.

The time-t continuously compounded discrete spot rate of maturity 7,
R (¢, T), is defined by

P(t, T) = exp[—R.(t, TX(T ~ 1)] (1.1)
R(t,T) = —l—'L[;J—(il-tTﬂ (1.1)

The quantity R, just defined is often referred to as the (continuously compounded)
yield of the discount bond P(¢, T). Given the existence of a full zoology of
yields (flat, current, gross, redemption, etc.), often imprecisely and sometimes
inconsistently defined, the term ‘yield’ is by and large avoided in this book.
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The time-¢ continuously compounded discrete forward rate spanning the
period [T T + Afl, f(t, T, T + At), is defined by

P, T+ Ap) _ _ 12

—l’ﬁ_ =exp[—f (¢ T, T + AnAt] (1.2)
— T

FOT. T+ AN = _In(P(t, T + Ar)) — In(P(2, T)) 1.2

At

The limits as T —> ¢, At — 0 in Equations (1.1’) and (1.2) define the instanta-
neous short rate, r(¢), and the instantaneous forward rate, f(z, T), respectively.

r(t) = x;,hn}R(t’ T) (1.3)

A In(P(t, T + Ar)) — In(P(t, T)) _ _3ln(P(t, T)) 13
f@T)= lim — At - aT .39

ie. the instantaneous forward rate as seen from the yield curve at time ¢ is
equal to (minus) the logarithmic derivative of the time-f price of a discount
bond of maturity T with respect to its maturity.

Finally, from (1.3’) one can write

T T
/ dIinP(z, 5) = —/ f@, $)ds =In(P@¢, T)) —In(P(t, 1) 1.4)
But, since P(¢,t) =1,
T

—/ f@t,s)ds=mInPt,T) (1.5)

and, finally, ;
P(t,T):exp—/ f@,s)ds (1.6)

t

The (logarithm of the) price at time ¢ of a discount bond maturing at time
T is equal to the integral over maturities of the instantaneous forward rates

as seen from the time-¢ yield curve. ) )
In complete analogy with the definitions given above, in the Case of 31mp1'e
(rather than continuous) compounding, the simply compounded spot rate is

d
efined to be /P T) — 1
T—t

RS(’! T) = (1.7)
and the simply compounded forward rate spanning the period [T T3],
F(,T,, T,) is then defined as

P(t, Tl)/P(t, Tz) -1

(1.8)
T, — T,

F(t, T\ T2)=
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Table 1.1  Summary of Definition of Rates

Name Symbol Definition
—InP@t, D/(T-10

Continuously-compounded R(t T
discrete spot rate

Continuously-compounded fit, T, T+ AD) —[InP(t, T+ AD —InP(t, D]/ At
discrete forward rate

Instantaneous forward rate fit —-3lnP(t, /BT

Instantaneous spot rate nt) ft, B

Simply-compounded R(t, D /P, D-11)(T—-0D

spot rate

Simply-compounded Ft T, T2) [Pt TH/P(L T2) = 11/(T2 — T7)
forward rate

z-period-compounded R.(0, 1) v[PO, =17t — 1]

spot rate

Between the limiting cases of simple and continuous compounding one can
define the r-period compounded spot rates, R, (0, ¢), implicitly given by

PO, T)=1/(1 + R.(0, t)/v)",

where v=1/1.

Having clarified these alternative equivalent ways of describing the value of
future cash flows, the next section will tackle the task of associating a value to a
contingent claim whose payoffs can be replicated using strategies involving pure
discount bonds. It will be assumed throughout that no market frictions are present.

Table 1.1 summarises the definitions of the various rates.

1.3 THE VALUATION OF PLAIN-VANILLA SWAPS AND FRAS

A plain-vanilla interest-rate swap is an agreement whereby two parties under-
take to exchange, at known dates in the future, a fixed for a floating set of
payments (often referred to as the fixed and floating legs of a swap). The fixed
leg is made up by payments B;:

B; = N X1, 1.9)

where N; is the notional principal of the swap outstanding at time #;, 7;, usually
referred to as the frequency or the tenor of the swap, is the fraction of the year
between the (i — 1)th and the ith payment (therefore approximately equal to % or
}‘ for a semi-annual or quarterly swap)', and X is the fixed rate contracted at the
outset to be paid by the fixed-rate payer at each payment time. For a plain-vanilla
swap each fixed payment B; occurs at the end of the accrual period, i.e. at time
ti+1. See Figure 1.1.

Definition and Valuation of the Underlying Instruments 9

R; T
Foremnmnsmnaremnanees R
t t; 17991

Figure 1.1 The timing of cash flows for a plain-vanilla swap: the realisation at time
t, (reset time) of the spot rate R; spanning the period [t; ;7] determines a floating
payment per unit principal at time t; (payment time) of magnitude R;z;. The tenor 7;
is given by the number of days between t; and t;.; divided by 360 or 365, as dictated
by the appropriate conventions. For a plain-vanilla swap, the fixed payment per unit
principal Xz; also occurs at time £,

If we denote by P(0, t) the price of a discount bond maturing at time ¢, the
present value of each fixed payment B; is given by:

PV (B;) = N:Xt,P(0, t;+1) (1.10)
As for the floating leg, each payment A;, also occurring at time #;1,, is given by
A; = NiR;7; (1.11)

where R; is a shorthand notation for the r-period spot rate (i.e. the 3-month or 6-
month LIBOR rate, for a quarterly or semi-annual swap, respectively) prevailing
at time ¢;, and covering the period from #; to t;4: R; = R(;, t; + 7). Times ¢;
and t; + t are normally referred to as the reset and payment times for the ith
period, respectively. Clearly, the realisations at times {t;} of these spot rates are
not known at time 0, and therefore the net present value at a generic time ¢ of
each of these floating payments is given by

PV(A;) = EIN:RiT,P(2, 1:11)), (1.12)

where the symbol E[-] denotes expectation. Needless to say, while, at time O,
the magnitudes of the fixed-leg payments are known, and a certain value can
therefore be associated to them (Equation (1.10)), the realisations of the z-period
spot rates R; at time 1, 2, ..., n are not known, and, therefore, for the moment
we do not know what value to associate to expression (1.12).

Let us now consider the following strategy: let us purchase at time O (today)
a discount bond maturing at time #;, P(0, t;), and sell (go short of) a discount
bond maturing at time ¢;11, P(0, t;1). At time ¢; the resulting portfolio will have
a value V(;):

V(t:) = P(ti, t;) — P(ti, ti1) = 1 — P4y, ti1) (1.13)
which, assuming simple compounding over the period [#; t;11], is equal to

1 Rﬂ-’,‘

= 1.13
14+ Rt 1+ Rit; ( )

Vi) =1—
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By Equation (1.12) above, the payer of the floating leg will have to make a
payment at time ;. of present value V/(#;) at time #; equal to
R:T:
V)= ——— .

@) 1+ Ry (1.14)
Therefore V() = V'(#;), i.e. the payoff arising from one reset of the floating
leg can be perfectly and certainly met by entering the long/short bond strategy
suggested before. At time 0 the commitment to pay R; in the floating leg and
the strategy of holding a bond P(0, ;) and shorting a bond P(0, t;,;) must
therefore have the same value:

P@O,t)—-P@©,t1) =RitP(0,¢t.1) (1.15)

It follows that, to avoid arbitrage (precisely defined in Appendix B, but intuitively
understandable at this stage as the capability of making certain money without
any risk), one can value the floating leg of a swap by setting the unknown
quantities R; equal to the value

_ P(Os ti)/P(O’ ti-H) —1

T

R;

(1.16)

(notice carefully that no statements about probability distributions or expectations
have been used in the argument); but Equation (1.16) is simply the well-known
definition of a simply compounded forward rate spanning the period [t; #; (1],
F(0, 1, t;11) (see Equation (1.8)). Therefore, to avoid arbitrage the a priori
unknown cash flows in the floating leg must be set equal to the projected
forward rates. (The same result can be obtained in a more general way using
the approach of Chapter 7, Section 7.5, where it is shown that, if one uses bonds
of maturities #;1; from the current term structure as numeraire, forward rates
are driftless.) Notice carefully that the quantities PV (A;) in Equation (1.12) are
stochastic variables, and, as such, possess a eertain variance. It is only the present
value of each floating reset plus the accompanying strategy of long/short bonds
that has no variance, and is therefore amenable to a purely deterministic evalua-
tion at time 0.

The equilibrium swap rate is then defined as the fixed rate X such that today’s
present value of the fixed and floating legs are the samé:

D _PV(B) =S NiXuP(0, tiy1) = > PV(@A) =D NiFiuP(, ti1)
(1.17)
The equilibrium swap rate is therefore equal to
ZNiFitiP(O, tiy1)
S NinPO, 1)

(1.18)
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i.e. it is a weighted average of the projected forward rates. This can be seen
more clearly by setting

N;7,P0,t;
Wi = iTP(0, tiy1) (1.19)
D NP0, tig1)
which allows one to rewrite Equation (1.18) as
X = ZF;'W:' (1.20)

This expression will be used later in the section.

By the way the equilibrium rate has been obtained it follows that entering an
equilibrium swap (i.€. a swap struck at the equilibrium rate) today has zero cost,
since, by definition, the two parties have undertaken to exchange legs of identical
value. After an equilibrium swap has been entered, the swap itself will in general
no longer have zero value, since interest rates will not, in general, have followed
the implied forward curve. It is in fact easy to show that the only values of the
joint realisations at time #, of the projected forward rates which preserve zero
value for an equilibrium swap initiated at time O are the values for the same
forward rates implied by the yield curve at time 0, i.e.

F(tlitisti_’_ti):F(O, ti, ti+ti) (1‘21)

where the full notation F(z, T, T + 7) has been employed to indicate the forward
rate from time 7" to time T + 7, as seen from the yield curve at time ¢. Notice
that, in Equation (1.21), the term i = 1 implies that

Fti,, 1 + ) =Rs(t1, 1) = F(0, 4,4 + 1) (1.22)

since F(t, t, T) = R(t, T'); therefore, in general (i.e. barring fortuitous cancella-
tions), for the time-0 equilibrium swap to retain its zero value, the realisation
at time ¢; of a spot rate must equal the time-0 projected forward rate.

For the payer of the fixed rate the present value of the swap at time ¢ will be
given by

NPVouap(t) = — D NiXTiP(t, tis1) + D NiFitiP(t, ti1) (1.23)

where the F;s are now the forward rates calculated from the discount curve
at time ¢. As mentioned after Equation (1.16) above, notice carefully that the
argument underpinning the derivation is of no-arbitrage nature, and no claim has
been made about expectations of future rates.

At time ¢, the second term on the RHS in Equation (1.23) is equal, by definition,
to the equilibrium swap rate prevailing at time ¢, X, times the present value of
the fixed leg. Therefore Equation (1.23) can be rewritten as

NPVguup(t) = (X: — X0) D_NiwmP(t ti) = (Xs —Xo) D_ B (1.23)
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which expresses the net present value of a swap at time ¢ as the difference
between the prevailing equilibrium swap rate, X,, and the swap rate originally
contracted, Xo, times the fixed leg of the swap.

Further insight into the equilibrium rate can be obtained by expanding the
numerator in Equation (1.18) making use of relation (1.16). For a swap with n
resets, and final maturity at time 7,4, one can write

PO, t; 0,1 -1
Z N:F;t;P(0, tiy1) = Z Nt ( ©. )/PE:[ tiv1) )P(O, tiy1)

i=1,n i=l,n

= Y NilP(©, ;) — PO, ti11)] (1.24)

i=l,n

which, for constant principals N; = 1, can be written

ST NiFiwP©, ti) = 3 PO, 1) — PO, ti1)
i=l,n i=l,n
=P, t1)— P, t2)+ PO, 12) — P(0,23).- ..
+ P,1t,)— P, t,11)
= P(0, t1) — PO, tp+1) (1.24")
For a spot-starting plain-vanilla swap the present value of the floating leg of a
unit-principal swap is therefore equal to
S PV@A:)=P©0,0)—P©,tr1) =1—P(©0,t,1) (1.24")

Notice that the frequency of the plain-vanilla swap does not affect the value of
the floating leg, which is therefore the same not only for different day count
conventions (ACT/360, ACT/365, 30/360, etc.)!, but also for a monthly or a
yearly swap with same final maturity. The equilibrium swap rate is therefore
given by the ratio of two portfolios of discount bonds:

_1-P0,tyy)
Z .P(0, 1)
or, in general, for a swap starting at a future time ¢, its value at time O is
PO, t)—P0,t,11)
Z P (0, ¢t1)

and, therefore, any yield curve model capable of pricing discount bonds
exactly must recover the market swap rates correctly for any choice of the
model volatility. (Notice that, since Eq. 1.24” holds for a plain-vanilla — i.e.
constant-principal — swap, the notional amount has been cancelled out.)

Notice carefully that this would no longer be the case if a simple modification
to the payment provisions were introduced, for instance if the rate determining

1.25)

X =

(1.25")
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the payoff in Equation (1.11) were still the z-period LIBOR reset at time z;,
but the corresponding payments were to occur at any time other than ;.. In
this case the cancellation in Equation (1.24) between P(0, ;1) in the numerator
and the denominator would no longer take place, and one would be left with a
dependence on the volatility input of a given yield curve model (see Chapter 7,
Sections 7.7 and 7.8 for a discussion of the LIBOR-in-arrears case).

Since a FRA is simply a one-period swap (or, conversely, since a swap is a
series of FRAs), the expressions just derived also price this simpler instrument:
the net present value of a forward rate agreement, whereby one party undertakes
to pay the other at time ¢;;, (per unit principal) the difference between the -
period LIBOR resetting at time #; and an agreed fixed rate, X, times the fraction
of the year t covered by the LIBOR spot rate, is simply given by

PV(FRA) = [P(0, ;) — P(0, ti+1)] — XP(0, t;11)T; (1.26)

Let us now consider the issuer of a coupon-bearing bond, who, against receipt
today of £1, undertakes to pay a fixed coupon X with frequency 1/z, and to repay
the principal at maturity 7,.;. The coupon liability incurred by the issuer clearly
has the same present value as the fixed leg of a swap. As for the principal to
be paid back (redeemed) at maturity and received upfront today, their combined
present values, PV(A’), are given by

PVA) =1—=P(0, tas1) (1.27)

Comparing Equation (1.27) with expression (1.24”) one can therefore conclude
that the floating leg of a swap has exactly the same value and plays exactly
the same role as the receipt of the proceeds from issuing the bond today,
and the accompanying commitment to repay the principal at maturity.
Whether one is dealing with plain-vanilla swaps or with bullet bonds (i.e.
bonds paying regular coupons, without any call or put provisions), their pricing
can therefore be completely reduced to a suitable manipulation of pure default-
free discount bonds. More precisely, in view of the above it is clear that, apart
from credit considerations, the present value of a bond, Bnd, paying n coupons
X at regular intervals every t years until a final maturity at time ¢, is given by

PV(Bnd) = 3 XuP(0, ;) + 100P(0, 1,) (1.28)

i=l,n

Using bond conventions, what has been referred to before as the equilibrium
rate is called the par coupon, which can therefore be defined as that particular
coupon that prices the bond today exactly at par. As pointed out before, by
moving the last term on the RHS of Equation (1.28) to the left one immediately
finds the bond equivalent of the present value of the floating leg of a swap. Just
as an equilibrium swap struck with a rate X at time #p will in general have a
non-zero value at a later time ¢ (see Equation (1.23)), a par bond issued at time
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to will, in bond terminology, trade at a premium or at a discount at later time

t, according to whether the RHS of Equation (1.24) above will add up to more

or less than 100, respectively.

1.4 OBTAINING THE DISCOUNT FUNCTION FROM A SET OF
SPANNING FORWARD OR SWAP RATES

In order to give a description of the discount function in terms of traded market
quantities, let us first of all define spanning forward rates as a particular set of
discrete forward rates such that the first coincides with the discrete spot rate, and
the maturity of the ith coincides with the beginning (expiry) of the (i + 1)th (see
Figure 1.2).

Similarly, spanning swap rates can be defined as a set of swap rates such that
the first covers the period from spot to a given maturity, and the ith spans the
period from the ith reset of the spot swap rate to the same final maturity (see
Figure 1.3). This set of swap rates is particularly important because it is made up
of the swap rates underlying a Bermudan swaption (see Chapter 2, Section 2.3).

From the relationships obtained in the previous sections, using forward
rates one can then immediately write for the discount function at the discrete
reset times:

P(to, ;) = Tim,n [1/ (1 + F(20, t;, tiy1)T)] (1.29)

A = A N
| | " "

b 4 1) 13

Figure 1.2 Three spanning forward rates covering the period from spot (f) to time ;.
Notice that the maturity of each forward rate coincides with the beginning (expiry) of
the next

S

Y

S

Ss

b 4 )

Figure 1.3 Three spanning swap rates covering the period from spot (f) to time t;.
In this example the first swap has three resets, the second two and the third just one.
Notice that the maturity of all the swap rates is the same, and that the start of a generic
swap other than the first coincides with the first cash-flow time from the previous swap
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Also spanning swap rates, however, allow the recovery of the discount function
sampled at the same discrete points and can, therefore, be regarded as equivalently
fundamental building blocks. To see how this can be accomplished, let us write
the equilibrium spanning swap rates for the example in Figure 1.3 as

83 = (P(to, 12) — P(t0, 13))/ (P(t0, 13)7) (1.30)
S2 = (P(to, ) — P(to, 13))/ ((P(to, t3) + P(to, 12))7) (1.31)
S1 = (P(to, to) — P(to, 13))/ ((P(to, 13) + P(to, t2) + P(to, t1))T)

=( 1 — P(to, 13))/ ((P(20, t3) + P(to, t2) + P(to, t1))r) (1.32)

where, in each equation, the numerator is the present value of the floating leg,
and the denomninator is the present value of the fixed leg for a unit coupon (the
same tenor has been assumed for every period to lighten notation). Notice that
Equation (1.32) does not introduce any additional unknowns, by virtue of the fact
that P(tp, to) = 1, and therefore one can solve for the three unknowns P(o, 1),
P(tp, t2) and P(tp, t3). In general, n discrete discount factors can always be found,
for any viable set of n spanning equilibrium swap rates, as the solution of a linear
[n x n] problem.

This result is important, not simply because it shows that equilibrium swap
rates are yet another set of equivalent quantities that can be used to describe the
yield curve, but because it shows that the somewhat privileged role enjoyed by
forward rates in term structure modelling might be more the result of historical
accident than of some fundamental financial reason. A whole body of literature
has in fact taken as the starting point a continuum of traded discount bonds,
whose logarithmic derivative is directly linked to a set of instantaneous forward
rates. These ‘building blocks’ have been regarded as the continuum-time coun-
terpart of their discrete LIBOR equivalent, and, as such, have provided a natural
proxy for the modelling of FRA-based instruments. For swap-based products,
however (such as Bermudan swaptions, or options on Constant Maturity Swaps),
swap rates constitute the most natural set of state variables, and the relationships
presented above therefore afford the necessary link with the discount function.
The issue of the ‘best’ choice of state variables (forward rates versus swap rates)
will be addressed in detail in the chapter devoted to the BGM/J approach (see
Chapter 18).

1.5 THE VALUATION OF CAPS, FLOORS AND EUROPEAN
SWAPTIONS

It will be important for the following to link the variance of the equilibrium swap
rates obtained above with the variances of and correlations among the underlying
forward rates. To see this more precisely, it is necessary to define first of all a
cap, and then a swap option (swaption in the following).
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A cap is a collection of caplets. A caplet, in turn, is a contract which pays at
time ¢, the difference between the r;-period spot rate resetting at time ¢;, R;,
and a strike price K multiplied by the year fraction z; between #; and ¢#;,1, if this
difference is positive, and zero otherwise:

Caplet(t;+,) = Max[R; — K, 0]7; (1.33)
The present value at time #; of this payoff is given by
Max[R; — K, 0JP(¢, t;+1) = Max[R; — K, O]—l* (1.34)

1+ R,"L’
where use has been made of definition (1.7).

No-arbitrage arguments, presented in detail in Appendix B, show that, for
valuation purposes, the unknown future value of the rate resetting at time #; must
be set equal to today’s implied forward (the analogy with the case of the FRA is
in this respect complete). If, in addition, one accepts the log-normal assumption
for the forward rates, one can very easily arrive at the Black model, in which a
caplet of expiry #; struck at K is seen as a call on the forward rate:

Caplet = [F (10, ti, t;1)N (h1) — KN(h2)1P(to, tiv1) (1.35)
where N(-) denotes the cumulative normal distribution,
In (f) + lo'z(t,- — )

ha=—KL 2 (1.35)

oti =10

o is the percentage volatility of the forward rate, and the indices 1 and 2 corre-
spond to the + and — signs, respectively. (See Chapter 5 for details of the
derivation.) Notice that, despite the fact that the Black formula was originally
derived for the particular case of an option on a futures commodity contract, in
the context of this book any valuation formula for a call option obtained under
the assumption of (i) log-normal distribution for the underlying variable, and
(ii) absence of drift in the process for the pércentage increment dx/x of the under-
lying variable will be referred to as a Black formula. The same terminology will
therefore apply irrespective of whether the variable x is, for example, a forward
rate or a forward bond price. Needless to say, stating that a certain forward rate
is indeed driftless will have to be justified on the basis of no-arbitrage arguments
(see Chapter 7).

Completely similar definitions hold for a floor(let), which can be seen as a put
(rather than a call) on a forward rate.

Let us now consider a call expiring at time 7" and struck at 1/(1 + Xt) on
a discount bond maturing at time 7 + r. At option expiry its payoff will be
given by

1
Payoff = Max |:P(T, T+ T) - m, 0]

T TR
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=Mu[ (1.36)

1 1
—_ 0
l1+Rt 14Xt ]
where R now indicates the realisation at time 7' of the z-period spot rate.
Equation (1.36) can be rearranged to give

(X — R)t
1+ R(1 +X7)’ ]

But, since the quantity 1/(1 + Xt) is known at the outset, the payoff at time T
of the call on the discount bond can be written as

1  Max[(X — R)z, 0]
14Xt 1+ Rz

i.e. it is identical, to within the proportionality factor 1/(1 + Xt), to the payoff,
paid at time T + 7, from a put on the z-period spot rate resetting at time 7, or, in
other terms, to a floorlet resetting at time 7" and paying at time 7 + t. Conversely,
a put (expiring and paying at time 7) on the same discount bond is equiv-
alent, to within the same proportionality factor, to a T-expiry caplet on the
t-period rate (see Equation (1.34)). The equivalence just established between a
caplet (floorlet) and a put (call) on a discount bond will be of great relevance
in the context of the calibration of interest-rate models, whenever closed-form
solutions are available for calls or puts on discount bonds. (See, in particular,
Chapters 11, 13 and 14.)

Going back to Equation (1.35’), one can notice that, given the market practice
of pricing caps using the Black formula, there is a one-to-one correspondence
between the prices and the volatilities that enter the Black equation. It is therefore
common in the market to express the value of a caplet in terms of the ‘implied
volatility’. One can therefore say that the market expresses, via a complete set
of cap prices, its views about the volatility of the underlying forward rates
and, at the same time, about how the imperfections of the Black model can be
accounted for by adjusting the volatility input.

A European swaption is then defined as a contract that gives the holder the
right at time #; to enter a swap (i.e. to pay or receive the fixed rate over the life
of the swap) of a given frequency, starting at time #; and maturing at time ¢,, at
a pre-known rate K:

Payoff = Max [ (1.37)

Payoff =

(1.38)

Max[X — K, 0]B (payer’s swaption) (1.39)

Max[K — X, 0]B (receiver’s swaption) (1.39%)

with B = 3, , P(t;, tix) . Swaptions are priced in the market assuming that
forward swap rates, given by expression (1.25) of Section 1.3, are log-normally
distributed, and using the Black model as applied to the forward swap rate X:

Payer’s swaption = [X(to, t;, t;+1)N(h1) — KN (h2))B
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(A justification of the theoretical soundness of this formula, i.e. of the reason
why one is justified in assuming no drift for the swap rate, will be given in
Chapter 7.) The relevant volatility for the Black formula as applied to swaptions
is now the volatility of the forward swap rate X. It is shown in Appendix A
that, despite the fact that B is in itself a stochastic quantity, as long as one can
hedge one’s position in the swaption using the forward bond B, the volatility
of B does not enter the valuation formula. This is the exact counterpart of the
statement that the volatility of the discount bond P(#o, #;11) in Equation (1.35)
does not enter the valuation formula for a caplet. It would be surprising if this
were not the case, since a one-period swaption is a caplet. Notice, however,
that since the swap rate is given by a linear combination of forward rates
(Equation (1.20)), if one assumes the latter to be log-normally distributed — as
implied by the Black formula as applied to caplets (Equation (1.35)) — then,
strictly speaking, a swap rate cannot be log-normally distributed as well, In
other terms, while both the cap and the swaption Black valuation formulae can
be soundly justified independently, the simultaneous pricing of both caps and
swaptions using the Black formula (as usually done in the market) is logically
inconsistent.

The Black formulae for caps and swaptions reported above constitute
the market standard for the valuation of these plain-vanilla instruments.
Whatever the ‘true’ distributions might be, as long as the log-normal distributions
are matched, as they are by the pricing procedure, to the first two moments, the
impact of this inconsistency is quite small.

Having defined the payoffs of caps and swaptions, one can revisit
Equation (1.20), which expresses a swap rate as a linear combination of forward
rates. Let us denote the volatilities of forward rate F; by o;, and let us make,
for the moment, the assumption that these volatilities are constant over time.
This important assumption, whose profound implications are discussed at length
in Chapter 4, will be relaxed later on. If these forward rates F; are correlated
stochastic quantities characterised by a known covariance matrix (see Chapter 3),
then, as long as one can regard the variability with interest rates of the coefficients
{w} to be much smaller than the variability of the forward rates {F} (in general
an excellent approximation), the variance of the swap rate is simply given by

Va.r[X] = ZZW;W]'U,'UJ'/)U (1.40)
L

where p;; is the correlation coefficient between forward i and forward j. Equation
(1.40) shows that, if the covariance matrix of the forward rates is known, then
the volatility of the swap rate can be immediately determined. Conversely, within
the limits of the approximation stated above, from the variances of a complete
series of swap rates one can, at least in principle, directly obtain the underlying
covariance matrix. If the volatilities (standard deviations per unit time) of the
swap rates are imputed from the traded prices of swaptions, then one can, at

s
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least in principle, obtain the market-implied covariance matrix. More precisely,
let us consider two caplets, resetting at times #; and #,, and spanning the periods
71 and 75. Their market prices will indicate (by inversion of Black’s formula) the
volatilities, o1 and o, of the underlying forward rates, F; and F,. See Figure 1.4.
Let us then consider the market price of the option to enter the swap covering
the period 71 + 3. This price will reveal the volatility of the swap rate (again by
inverting Black’s formula). Via Equation (1.28), and since ¢; and o7 are known
from the caplet prices, this will uniquely determine p;;.

Let us now extend the range of instruments to include a caplet resetting at
time 73. The new underlying forward rate F3 will introduce correlation terms
both with F; and with F3, p;3 and py3. Two new swaptions are, however,
brought into play by the additional forward rate, i.e. the option to enter the
swap covering the period 7 + 72 + 73, and the option to enter the swap span-
ning 72 + 3. Therefore, Equation (1.40), coupled with the assumption of constant
swap rate volatilities, allows, at least in principle, the determination of the full
covariance matrix by including the market volatilities of more and more swap
rates. This apparently cumbersome procedure is of crucial importance in the cali-
bration of two-factor models, and will be used, and referred to, extensively in
following chapters.

In the present and previous sections (i) swap rates and bond prices have been
defined; (ii) their valuation has been expressed in terms of pure discount bonds;
(ii1) the payoffs and the valuation of the plain-vanilla European options on FRAs
and swaps have been defined; (iv) the link between the volatilities of FRAs and

F, F, Fy
T, T, T3
g, () g3
Frseneemenee presemseopenseen o]
2 t Iy 1N
P2 Py
P13

Figure 1.4 The market prices of caplets resetting at times t;, &, and t; determine the
volatilities o4, o> and o3 of forward rates F;, F, and F3, respectively. The European swap-
tion spanning the period [t; t;] involves forward rates F; and F,, and therefore brings
in the correlation p;,. The European swaption spanning the period [t; 4] involves
forwards Fy, F, and F;, and therefore brings in the additional correlations p;3 and ps;.
The European swaption spanning the period [t ] involving forward rates F, and F; is
only affected by the correlation p,;. Under the assumption of constant volatilities, the
market prices of the three caplets and the three swaptions together therefore completely
specify, at least in principle, o, o3, o3 and pi12, P13, P23
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swap rates has been highlighted. In order to compute the value of a plain-vanilla
swap and of a bullet bond, however, it has been assumed that a market discount
function, i.e. a continuum of prices P(0, r), were known. These prices, however,
are not directly available in the market, but have to be distilled from the prices
of the instruments actually traded. The next section will therefore tackle the
complementary problem of determining the prices P(0, r) used in this section,
or, as it is commonly said, of determining the market discount function. Strictly
speaking, the discount function P(0, r) is the function that gives the price today
of a discount bond maturing at time ¢. The term structure of interest rates is
the function associating to each maturity the value of the (suitably compounded)
spot rate from time O to the desired maturity. The yield curve is the curve which
displays the yields of coupon-bearing bonds as a function of maturity. Since, as
is well known (see, e.g., Schaefer (1977) and Section 1.6), these yields depend in
general on the coupon of the bond, the yields of par coupon bonds are normally
used. Since any of these curves can be obtained from the other (see Section 1.6),
the three terms will be used interchangeably.

Although conceptually similar, the creation of the bond and of the LIBOR
discount curves are different in important ways. Bonds, in fact, are issued, either
by corporate entities or by government issuers, at discrete time intervals with
discrete maturities. At any point in time, therefore, one can obtain from the
market the prices of bonds which had been priced at par on the day of their
issuance, but currently trade at a discount or at a premium. In the swap market,
on the other hand, every day one has access to the equilibrium swap rates for
swaps of any of a range of benchmark maturities. It is as though par bonds of
all these maturities were issued every day. Since, as will be shown in the next
section, knowledge of the par coupon curve (i.e. of the curve describing the par
coupon for any possible maturity) is tantamount to knowledge of the (discrete)
discount function, it is clear that, for the LIBOR curve, obtaining the latter is little
more than an exercise in skilful and careful, but conceptually straightforward,
interpolation. Obtaining a reliable LIBOR discount curve is no trivial matter,
but the difficulties mainly lie in accounting properly for different conventions in
the deposit, futures and swap markets and in interpolating between benchmark
maturities in an efficient and consistent way.

‘When it comes to the bond market, however, the comparative paucity of data
changes the very nature of the problem, and forces upon the user the need to
employ best-fit estimation techniques. As a result, while major trading houses
agree on the LIBOR rates obtained from the discount factor typically to within
a basis-point (i.e. a percentage of a percentage point) equivalent in their plain-
vanilla rates, much bigger discrepancies arise in the bond curve estimation (to the
point, for instance, that the Financial Times Gilt curve published on Mondays is
always quoted with its source). The next sections therefore tackle the problem of
showing how, at least conceptually, the two different term structures of interest
rates can be obtained.

AT o 20 = s
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1.6 DETERMINATION OF THE DISCOUNT FUNCTION: THE CASE
OF BONDS — LINEAR MODELS

Bonds are issued by government and corporate entities. Their market prices reflect
not only the implied riskless discount function, but a series of important additional
factors, such as the creditworthiness of the issuer, liquidity, tax regimes, institu-
tional preferences or regulatory restrictions. All these are topics of great interest,
and a thorough treatment would require a book in its own right. However, for
the pricer of options in a given market (say, options on LIBOR instruments, or
options on government bonds of similar coupons, or options on bonds issued by
corporates of similar credit quality) the scope can be restricted by using homo-
geneous instruments for the estimation procedure. This is not a perfect, or even
a wholly consistent, solution, but it is adequate for most practical purposes.

Even those investors most superficially acquainted with the bond market have
certainly come in contact with the concept of gross redemption yield (GRY), i.e.
the internal rate of return of a bond: if Bnd(T) is the price of a bond of maturity
T paying a coupon X every t years, the GRY is defined as

XT,‘ 100
Bnd(T) = Z T AN
i=1,n (1 + ) 1+ —v
v

where v = 1/, and, to avoid unnecessary complications, it has been assumed
that the valuation is made at the beginning of a coupon period (no accrued
interest). The final nail in the coffin of the GRY was probably driven as early
as 20 years ago by Schaefer (1977), who clearly showed the inadequacies of
this bond statistic to convey any but the most imprecise information about the
bond itself. Without repeating the arguments, it will suffice here to say that, by
applying the concept of GRY to two bonds of different coupon and maturity, one
discounts payments occurring at the same point in time by different implied
discount factors (the terms 1/(1 + GRY /v)*), since in general the GRY will be
different for different bonds, but one discounts payments from the same bond
at different points in time by the same rate. In reality one would wish to do
exactly the opposite.

In order to provide a more useful description of the characteristics of a bond,
one can employ the definition of the r-period-compounded spot rates R(0, ),
given by

(1.41)

1
(1 + R(O, t))"r

1%

PO,r) = (1.42)

and thereby obtain a more satisfactory description of the yield curve, since these
rates are no longer bond-specific, but can be used for discounting any cash flow
occurring at a given point in time. While Equation (1.42) is simply a definition,
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an argument similar to the one presented in Section 1.2 (i.e. the discrete-time
counterpart of Equation (1.6)) shows that the discount bond price P(0, T) can be
expressed in terms of forward rates as

1
PO, T) = .
©.1=—4 AT FO, 5 D (143

i=0,n—

where T = nt, and F(0, t;, t; + 1) is the forward rate obtainable from the term
structure at time 0, spanning the period from time ¢; to time ¢; + T, i.e.

P(0,1;)/P(0, tiy1) — 1
T

FO, 5,6+ 1) =

(1.44)

with zp = 0. A further equivalent description of the yield curve can be given by
supplying the par-coupon curve. The par-coupon curve, it will be remembered
from the previous section, is the bond equivalent of the equilibrium swap rate
(Equation (1.25)), i.e. the ratio of the floating to the fixed leg. Avoiding again, for
conceptual simplicity, the case of non-integer periods, and imposing, to lighten
notation, T = 1, let us then consider the par coupon X (1) paid by a bond maturing
in one year’s time; by rearranging Equation (1.24) one obtains

P(0,0)— P(0,1) 1—P(0,1)
P©, 1) - PO, 1)

X(1) = (1.45)
whence P(0, 1), i.e. the discount factor out to time #;, can be immediately recov-
ered; moving to a bond issued at par today and paying the par coupon X(2), one
can write the ratio of the floating to the fixed leg as

1—-P,2)

X@ =0 1D=P0.2

(1.45")
but, since P(0, 1) is known from Equation (1.45), P(0, 2) can be readily solved
for. By this boot-strapping procedure the whole par-coupon curve can be obtained.
Therefore, at least conceptually, supplying the par-coupon curve is equivalent
to supplying the discount function (at least at the discrete points where the
coupons are paid).

We have arrived at the conclusion that, while from the GRY the discount
curve cannot be recovered, either the set of spot rates R(0, 7), or the set of
forward rates F (0, ¢, ¢ + 1), or the par-coupon curve all give access via simple
manipulations to the discount function. Despite the fact that conceptually there
is therefore no distinction between one description and the other, practically the
differences are important, since the discount function can be estimated using
linear methods, while any of the other equivalent quantities require non-linear
procedures. This can be seen as follows.
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Let us expand the discount function P(0, ¢) on the basis of an arbitrarily chosen
set of s basis functions g, (#):

PO,0 = agi(®) (1.46)
k=15

where o is the (as yet unknown) weight corresponding to the kth basis function.
Therefore the price of a bond of maturity T,,, Bnd,, paying (again for simplicity
of notation) annual coupons can be written as

PV(Bnd,) = Y _ XP(0,1;)+ 100P(0, t,)

i=1,n

= Z X Z argi(t;) + 100 Z o 8i(tn)

i=l,n k=l,s k=1,s
=Y Gk (1.47)
k=1,s5

with G = >, , Xgi(#;) + 100g,(2,), or, in vector notation,

Bnd = GA (1.47")

where Bnd is the (nbonds,1) vector containing the prices of the nbonds bonds
available in the market, A is the (s, 1) vector containing the coefficients of
the s basis functions, and G is the (nbonds,s) matrix of coefficients G, ; of
Equation (1.47). Equation (1.47’) justifies the term ‘linear’ applied to this type
of approach.

If nbonds = s, and providing that Det[G] # O, the system provides a unique
and ‘perfect’ solution, where ‘perfect’ in this context simply means that all
the bonds are exactly priced. More generally, and realistically, nbonds > s,
and therefore

A =(G'G)"'G"Bnd (1.48)

will provide the least-square estimator of A, i.e. of the set of coefficients {c}
such that the sum of the square of the differences between the market and the
model prices, i.e. the prices calculated using the last line of Equation (1.47),
is minimised. (The superscripts T and —1, as usual, indicate the transpose and
the inverse of a matrix.) It is also very easy to incorporate constraints such as
the requirement that the discount function should be equal to 1 at the origin,
P(0, 0) = 1, either via the formal use of Lagrange multipliers, or by solving
explicitly for one of the coefficients in Equation (1.47).

Since even low-power personal computers can effect the matrix inversion
required by Equation (1.48) in a few seconds, the linear approach just described
seems to afford a very efficient and rapid way of estimating the discount func-
tion. In practice, however, this strategy is fraught with practical difficulties,
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largely stemming from the very nature of the target function, i.e. the discount
function P(0, t). In order to be able to say something more precise, one must
examine more carefully the basis functions used for the expansion of the discount
function. Many different choices have been proposed (cubic splines, B-splines,
Chebychev polynomials, exponential splines, Bernstein polynomials, etc.) — see,
e.g., Anderson et al. (1996). In general, all these basis functions promise, and
indeed deliver, a continuous and continuously differentiable discount function
at every point. Mathematical continuity can, however, bear surprisingly little
resemblance to an intuitive requirement of continuity, especially when it comes
to derivatives. These in turn are particularly important since it has been shown
in Section 1.2 that

' PO, t+¢e)1
0, t,t = ———
fO.11+8) PO, 1) &
s —In PO, 3
_ _IP@ t+a: n P, 1) :_am};fo D 149

i.e. forward rates are given by (minus) the logarithmic derivative with respect
to maturity of the discount bond covering the period from time  to time ¢ + ¢.
Unfortunately, functions of very smooth appearance can have still continuous,
but not so smooth, derivatives, as shown in Figure 1.5.

Discount Function and Corresponding Forward Rates
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Figure 1.5 A smooth discount function, and the not-so-smooth forward rates that it
implies
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If this is the case, forward rates will also display a rapidly changing, and there-
fore intuitively implausible, behaviour. For the same reason, forward rates are
prone to display a very pronounced dependence on such ‘technical details’ as the
positioning of the knots for B-splines, the number of basis functions, or small
variations in the vector of input bond prices. A thorough treatment of these impor-
tant issues would require more than a chapter. The essential point that should
have been conveyed, however, is that direct modelling of the discount function
gives rise to a mathematically simple but practically very delicate exercise. The
success of the approach will largely depend on the intrinsic suitability of the basis

function chosen to describe the behaviour of the discount function. To use a not

terribly original, but once again very apt, expression, obtaining reliable forward
rates from fitted discount functions can be more of an art than a science.

1.7 DETERMINATION OF THE DISCOUNT FUNCTION: THE CASE
OF BONDS — NON-LINEAR MODELS

The difficulties highlighted in the previous section have prompted some
researchers to model the spot or forward rates themselves, rather than the discount
function. More precisely, one can attempt to expand, say, the continuously
compounded spot rates R(¢) using a chosen set of basis functions:

R@) =) axge(®) (1.50)
k=1,s
giving rise to the present value of the bond price (neglecting again for simplicity

non-integer periods):

PV(Bnd,) = Z XP(0,t;) + 100P(0, t,,)

i=1,n

= Y Xexp(—R(t:)t;) + 100 exp(—R(t)t,)

i=1,n

Do Xexp [ | D awg@) | ti| +100exp | | D axgiltn) | 2

i=1,n k=1,s k=1,s

i

(1.51)

Once again the goal will be to change the coefficients {«} of expansion (1.50)
until, for instance, the sum of the squares of the deviations between model and
market bond prices will be minimised. Since, however, the coefficients now
appear as arguments of an exponential function, the problem is no longer linear,
and there exists no strategy guaranteed to yield the absolute minimum (i.e. the
set of parameters that actually minimises the squares of the deviations). Non-
linear minimisation algorithms are considerably more laborious to implement.
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More importantly, those methods that ensure fast convergence are also the most
prone to get stuck in local minima. (Conjugate gradients and simulated annealing
are two apt and extreme examples of this feature.) To make matters worse, only
the most inefficient methods (multi-dimensional simplex) permit the search for a
minimum without knowledge of the derivatives of the target function with respect
to the optimisation parameters. All the methods which ensure reasonably quick
convergence do require (numerical or analytic) evaluation of the derivatives.
These, in turn, can be quite time consuming to evaluate, and often algebraically
very tedious. ‘Smart’ methods (such as conjugate gradients) promise stunningly
good convergence properties: for a truly parabolic minimum the number of iter-
ations needed should be exactly equal to two! In reality, no minimum is truly
parabolic, and fast methods tend to get very close to their target very soon, and
use an often infuriatingly large number of iterations to home in to the ‘true’
solution within the required degree of tolerance.

Slower methods ‘ramble around’ the coefficient space in a less purposeful
manner in the first stages of the optimisation, but, because of this very weakness,
are in general better able to explore competing minima.

In the cases of both linear and non-linear methods, the number of basis func-
tions to be used to model either the discount factors or the (spot or forward)
rates should be determined on the basis of an enlightened compromise between
an oversimplistic description of the target function, and the dangerous tendency
to chase every mispriced bond in the market.

For linear models (and, with some qualifications, for non-linear models as
well), a useful indication of how many coefficients one ‘should’ use can be
provided by the R’ criterion. Let us first define, for a quantity y (the target
function, i.e. in this case the bond prices) ‘explained’ by k variables x;, (i = 1, k),
the quantity R? as the ratio between the variance of y explained by the regressors
and the total variance of y, i.e.

ez _ 2 Dmod) — yave)®
D “[y(obs) — y(avg)F

where y(mod) indicates the model prediction for the bond price, y(obs) the

corresponding market price, and y(avg) the average of the bond prices. Then R
is given by

(1.52)

2
R K -kn-D (1.53)
(n—1)/n—k—1)

where k is the number of regressors (parameters), and n the number of obser-
vations (the number of bond prices). The imprecise but intuitively suggestive
interpretation of the maximum of this statistical indicator is that it displays the

‘optimal’ number of parameters needed to describe a certain set of data.
Once again, the issue of non-linear minimisation cannot be dealt with in a
satisfactory way in a limited space. More simply, the purpose of this section
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is to highlight the type of issues faced by those users who need to model the
bond discount function in order to calibrate the interest-rate models described
later on. The different problems encountered when the underlying instrument is
LIBOR-based are mentioned in the following section.

1.8 DETERMINATION OF THE DISCOUNT FUNCTION: THE CASE
OF THE LIBOR CURVE

Every day interest-rate market screens display information about three different
but interlinked markets: LIBOR borrowing rates, 3-month futures prices and
equilibrium swap rates. (Equilibrium swap rates have been defined and treated
in Sections 1.2 and 1.3.)

LIBOR (London Inter-Bank Offered Rates) are the rates at which high-credit
financial institutions can borrow in the interbank market for a series of possible
maturities, ranging from overnight to, usually, 12 months. (The lending rate is
denoted by the acronym LIBID.) In most markets, it is conventional to quote
these rates on a simple compounding basis.

As for interest-rate (short money) futures, at expiry they assume the value
of 100 minus (the 3-month LIBOR at expiry multiplied by 100). Day by day,
the buyer and seller of a futures contract make or receive a payment in the so-
called margin account equal to the difference between the strike price X and the
prevailing market value of the futures contract. On expiry date the cash flow
occurring between the buyer and the writer of the futures contract is simply
the last of the margin-account payments. In other words, all gains and losses
are realised, day by day, as they occur. Positive balances in the margin account
accrue interest. Even neglecting the effect of this reinvested cash, the equilibrium
value of a futures contract (i.e. the value that gives zero value to the contract
itself) is different from the equilibrium rate of the underlying FRA. In the latter
case, in fact, the payment (notionally)’ occurs three months after the expiry
of the contract itself. Since, at inception of the contract, the future discount
factor from expiry to three months hence is unknown, the relationship between
the equilibrium FRA rate and the implied equilibrium futures rate cannot be
achieved by discounting by a deterministic quantity (i.e. by a quantity known
at contract inception). The correction term which accounts for this difference in
payoff timing can easily be obtained using the formalism presented in Chapter 7,
i.e. by making use of suitable numeraires, and depends on the volatility of the
underlying forward rate and on the correlation between this forward rate and
the discounting zero-coupon bond. This correction term is normally referred to
as the ‘futures/FRAs adjustment’. Very good approximations exist for this term
(see, e.g., Doust (1995), Vaillant (1995)). For very long-expiry contracts (the
US$ market has 3-month futures prices extending to 10 years!) the difference
between (100 — futures price)/100 and the FRA rate can be as large as 30 basis
points, for reasonable choices of the volatility and correlation inputs (see Vaillant
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(1995)). The initial margin — i.e. the amount of money which both parties have
to pay into the margin account at contract inception — is not accounted for by
this correction term, but is of smaller import.

It is not the purpose of this chapter to go into the intricacies of exact futures
pricing. It should be clear, however, that a great amount of care has to be exer-
cised in order to splice together information available from different markets,
and that there exists a spectrum of maturities over which more than one type
of instrument is traded (LIBOR deposit rates overlap the first futures contracts,
and the later-expiry futures contracts overlap the swap market). In theory, once
proper account is taken of the exact payoffs, it should be immaterial which
type of instruments should be used, since no-arbitrage should ensure the equiv-
alence of the results, however obtained. In practice, not all instruments enjoy
the same degree of liquidity; it is therefore common practice to make use of
the most liquid assets over the different segments of the yield curve. For many
markets this often means using deposit rates to reach the expiry of the first futures
contract, and then using a market-dependent number of liquid futures contracts
before switching to the market swap rates. Due to this overlap, careful inter-
polation techniques must be used in order to ensure a ‘smooth transition’ (and
therefore, as discussed above, smooth forward rates). However delicate these
techniques might be (see, e.g., Miron and Swannell (1991)), it is clear that the
problem is, at least conceptually, much simpler than the estimation of the bond
discount function: in the LIBOR market, as mentioned above, day by day there
exists the equivalent of a whole series of par-coupon bonds. Not surprisingly,
as mentioned above, the agreement amongst practitioners (or, at least, ‘good’
practitioners) about the LIBOR curves is far greater than the agreement about
the government par-yield curve.

For the remainder of the book, the ‘market’ discount function will therefore be
taken as uncontroversially available to market participants, despite the fact that,
in the light of the last two sections, the assumption is actually more justifiable
for the LIBOR curve. The first sections of this chapter have made use of this
market discount function to price some elementary underlying instruments. In
the chapters of Part Four the price of discount bonds will play a crucial role in
the calibration of the various option models.

ENDNOTES

1. Different markets have different conventions (Actual/360, Actual/365, 30/365, etc.)
to measure the fraction of the year. Details of the different conventions are clearly
presented in Miron and Swannell (1991).

2. In practice, FRAs settle in cash at the start of the accrual period (time #;) on the basis
of the present value of the maturity (time f;.;) payoff:

Payoff(t,) = (R, — K)

1+R,"E
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Exotic interest-rate
instruments: description
and valuation issues

2.1 INTRODUCTION

In this chapter important classes of exotic interest-rate insttuments are presented
with a view to illustrating their financial rationale; to describing them as simply as
possible in terms directly amenable to the treatment to be found in the subsequent
chapters; and to highlighting the valuation issues that must be taken into account
when applying in practice any of the models described in Part Four. No attempt
will be made to indicate ‘the right way’ to price any of these complex instruments,
since it is the contention of the writer that such a question in isolation is essentially
misguided: if there were one correct approach it would, after all, hardly make
sense to study and apply several pricing models. All the models available at the
moment are, in some important respect, ‘wrong’, and it is only by appreciating
their shortcomings that intelligent use of them can be made. The emphasis of
this book is therefore in furnishing the reader with the analytic tools necessary
to strike an informed balance between such incommensurable criteria as realism
of description of financial reality, robustness of parameter estimation, ease of
calibration, etc. Rather than presenting a recipe book, the attempt has been made,
in this and the following chapters, to illustrate what the essential features of a
product or a model are, so as to achieve as effective a ‘match’ between the two
as possible.

In this light, it has also been deemed pointless to present a catalogue or
‘encyclopedia’ of all the known, or even important, exotic interest-rate products.
Rather, a choice has been made by selecting those representative types of product
that share the same pricing issues of a whole class: for instance, LIBOR-in-arrears
swaps have been described in some detail, despite the fact that, per se, they are not
very important products from the financial point of view, because they introduce
in the simplest manner the pricing issues shared by the ‘hedge-payoff—-mismatch’



