

DUXBURY

AMPL
A Modeling Language

for Mathematical Programming

Second Edition

Robert Fourer
Northwestern University

David M. Gay
AMPL Optimization LLC

Brian W. Kernighan
Princeton University

THOMSON

• BROOKS/COLE

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

THOMSON

* BROOKS/COLE

Publisher: Curt Hinrichs
Assistant Editor: Ann Day
Editorial Assistant: Katherine Brayton
Technology Project Manager: Burke Taft

Marketing Manager: Joseph Rogove
Advertising Project Manager: Tami Strang

This book was typeset
(grap I p i c I tbll eqn I t ra f f ~mpm) in Times
and Courier by the authors.

COPYRIGHT © 2003 by Robert Fourer, David M.
Gay, and Brian W. Kernighan.

ALL RIGHTS RESERVED. No part of this publication

may be reproduced, SlOred in a retrieval system, or
transmitted, in any foml or by any me,ms- clectronic,
mechanical, photocopying, recording, or otherwise­
without the prior written pcnnission of the publisher.

AMPL is a registered trademark of AM PL
Optimization LLC.

Printed in Canada
I 2 3 4 5 6 7 06 05 04 03 02

For more information about our products.
contact us at:

Thomson Learning Academic Resource Center
1-800-423-0563

For pennission to use material from this text.
contact us by:

Phone: 1-800-730-2214

Fax: 1-800-730-2215

Web: http://www.thomsonrights.com

Library of Congress Control Number: 200211212 J

ISBN 0-534-38809-4

Project Manager, Editorial Production: Karen Haga
Print/Media Buyer: Jessica Reed
Pennissions Editor: Bob Kauser
Cover Designer: Carole Lawson
Cover and Text Printer: Transcontinental Printing, Inc.

Brooks/Cole-Thomson Learning
5 II Forest Lodge Road
Pacific Grove, CA 93950
USA

Asia
Thomson Learning
5 Shenton Way #01-01
UIC Building
Singapore 068808

Australia
Nelson Thomson Learning
102 Dodds Street
South Melbourne, Victoria 3205

Australia

Canada
Nelson Thomson Learning
1120 Birchmount Road
Toronto, Ontario M I K 5G4

Canada

Europe/Middle East/Africa
Thomson Learning
High Holborn House
50/51 Bedford Row
London WC I R 4LR
United Kingdom

Latin America
Thomson Learning
Seneca, 53

Colonia Polanco
11560 Mexico D.E
Mexico

About the Authors

Robert Fourer received his Ph.D. in operations research from Stanford University in
1980 and is an active researcher in mathematical programming and modeling language
design. He joined the Department of lndustrial Engineering and Management Sciences at
Northwestern University in 1979 and served as chair of the department from 1989 to 1995.

David M. Gay received his Ph.D. in computer science from Cornell University in 1975
and was in the Computing Science Research Center at Bell Laboratories from 1981 to
200 I; he is now CEO of AMPL Optimization LLC. His research interests include numerical
analysis, optimization, and scient ific computing.

Brian Kernighan received his Ph.D. in electrical engineering from Princeton University
in 1969. He was in the Computing Science Research Center at Bell Laboratories from
1969 to 2000 and now teaches in the Computer Science department at Princeton. He is the
co-author of several computer science books. including Tile C Programming Language
and The UNIX Programming Environment.

Introduction

Chapter I. Production Models: Maximizing Profits
1.1 A two-variable linear program
1.2 The two-variable linear program in AMPL
1.3 A linear programming model
1.4 The linear programming model in AMPL

The basic model
An improved model
Catching errors

1.5 Adding lower bounds to the model
1.6 Adding resource constraints to the model
1.7 AMPL interfaces

Chapter 2. Diet and Other Input Models: Minimizing Costs
2.1 A linear program for the diet problem
2.2 An AMPL model for the diet problem
2.3 Using the AMPL diet model
2.4 Generalizations to blending. economics and scheduling

Chapter 3. Transportation and Assignment Models
3. 1 A linear program for the transportation problem
3.2 An AMPL model for the transportation problem
3.3 Other interpretations of the transportation model

Chapter 4. Building Larger Models
4.1 A multicommodity transportation model
4.2 A multjperiod production model
4.3 A model of production and transportation

Chapter s. Simple Sets and Indexing
5.1 Unordered sets

Contents

xv

2

5
6
7

8
10
12
13
15
18

27
27
30
32
37

43
44
45
49

SS
56
59
63

73
73

viii AMPL: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

5.2 Sets of numbers

5.3 Set operations
5.4 Set member!lhip operations and functions

5.5 Indexing expressions
5.6 Ordered sets

Predefined sets and interval expressions

Chapter 6. Compound Sets and Indexing
6.1 Sets of ordered pairs
6.2 Subsets and slices of ordered pairs

6.3 Sets of longer tuples
6.4 Operations on sets of tuples

6.5 Indexed collections of sets

Chapter 7. Parameters and Expressions
7.1 Parameter declarations
7.2 Arithmetic expressions

7.3 Logical and conditional expressions
7.4 Restrictions on parameters

7.5 Computed parameters
7.6 Randomly generated parameters

7.7 Logical parameters
7.8 Symbolic parameters

Chapter 8. Linear Programs: Variables, Objectives and Constraints
8.1 Variables

8.2 Linear expressions
8.3 Objectives

8.4 Constraints

Chapter 9. Specifying Data
9.1 Formatted data: the data command

9.2 Data in lists
Lists of one-dimensional sets and parameters

Lists of two-dimensional sets and parameters
Lists of higher-dimensional sets and parameters

Combined lists of sets and parameters

9.3 Data in tables
Two+dimensional tables
Two+dimensional slices of higher+dimensional data

Higher+dimensionaJ tables
Choice of format

9.4 Other features of data statements
Default values
Indexed collections of sets
Initi al va lues for variables

75
76
78
79
82
86

91

91
93
96
98

100

109
110
III

114
116
118
121
122
123

129

129
132
134
137

143
143
145
145
146
148
151
154
154
156
157
159
160
160
161
162

AMPL: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING ix

9.5 Reading unformatted data: the read command 163

Chapter 10. Database Access 169
10.1 General principles of data correspondence 169
10.2 Examples of table-handling statements 174
10.3 Reading data from relational tables 180

Reading parameters only 180
Reading a set and parameters 182
Establishing correspondences 184
Reading other values 185

10.4 Writing data to relational tables 186
Writing rows inferred from the data specifications 186
Writing rows inferred from a key specification 189

10.5 Reading and writing the same table 191
Reading and writing using two table declarations 192
Reading and writing using the same table declaration 193

10.6 Indexed collections of tables and columns 193
Indexed collections of tables 193
Indexed collections of data columns 196

10.7 Standard and built-in table handlers 197
Using the standard ODSe table handler 198
Using the standard ODse table handler with Access and Excel 200
Built-in table handlers for text and binary files 201

Chapter 11. Modeling Commands 203
11 .1 General principles of commands and options 203

Commands 204
Options 204

11.2 Selling up and solving models and data 206
Entering models and data 206
Solving a model 207

11.3 Modifying data 209
Resetting 209
Resampling 209
The let command 210

11.4 Modifying models 212
Removing or redefining model components 213
Changing the model: fix. unfix; drop, restore 214
Relaxing integraHty 215

Chapter 12. Display Commands 219
12.1 Browsing through results: the display command 219

Displaying sets 220
Displaying parameters and variables 220
Displaying indexed expressions 224

12.2 Formatting options for display 227

X AMPL A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

Arrangemcnt of lists and tables
Contro l of line width
Suppression of zeros

12.3 Numeric options for display
Appearance of numeric va lues
Rounding of solut ion values

12.4 Other output commands: print and printf
The print command
The print f command

12.5 Related so lution values
Objective functions
Bounds and slacks
Dual values and reduced costs

12.6 Other display features for models and instances
Displaying model components: the show command:
Displaying model dependencies: thc xref command
Displaying model instances: the expand command
Generic synonyms for variables. constraints and objecti ves
Resource listings

12.7 General facilities for numipulating output
Redirection of output
Output logs
Limits on messages

Chapter 13. Command Scripts
13. 1 Running scripts: include and commands
13.2 Iterating over a set: the for statement
13.3 Iterating subject to a condition: the repea t statement
13.4 Testing a condition: the if-then-else stalement
13.5 Terminating a loop: break and continue
13.6 Stepping through a script
13.7 Manipulating character strings

String functions and operators
String expressions in AMPL commands

Chapter 14. Interactions with Solvers
14.1 Presolvc

Activities of the presolve phase
Controlling the effects of presolve
Detecting infeasibility in prcsolve

14.2 Retrieving results from solvers
Solve results
Solver statuses of objectives and problems
Solver statuses of variab les
Solver ~latu~es of constraints
AMPL statuses

227
229
23 1
232
233
236
238
238
239
240
240
24 1
243
245
246
247
247
249
250
251
25 1
251
252

255
255
258
262
264
266
268
270
270
273

275
275
276
278
279
282
282
286
287
291
293

AMPL: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING xi

14.3 Exchanging information wi th solve rs via suffixes 295
User-defined suffixes: integer programming direclives 296
Solver-defined suffixes: sensitivity ana lysis 298
Solver-defined suffixes: infeasibility diagnosis 299
Solver-defined suffixes: direction of unboundedness 300
Defining and using suffixes 302

14.4 Alternating between models 304
14.5 Named problems 309

Defining named problems 31 1
Using named problems 3 14
Displaying named problems 3 15
Defining and using named environments 3 16

Chapter 15. Network Linear Programs 319
15.1 Minimum-cost transshipment models 319

A general transshipment model 320
Specialized transshipment models 323
Variations on transshipment models 326

15.2 Other network models 328
Maximum flow models 328
Shortest path models 329
Transportation and assignment models 330

15.3 Declaring network models by node and arc 333
A general transshipment model 334
A specialized transshipment model 335
Variations on transshipment models 336
Maximum flow models 337

15.4 Rules for node and arc declarations 340
node declarations 340
arc declarations 340
Interaction with objective declarations 341
Interaction with constraint declarations 342
Interaction with variable declarations 342

15.5 Solving network linear programs 343

Chapter 16. Columnwise Formulations 353
16.1 An input-output model 354

Formulation by constraints 354
A column wise formulation 355
Refinements of the column wise formu lation 357

16.2 A scheduling model 359
16.3 Rules for col umnwise formulations 362

Chapter 17. Piecewise-Linear Programs 365
17. 1 Cost terms 366

Fixed numbers of pieces 366

xii AMPL: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

Varying numbers of pieces

17.2 Common two-piece and three-piece terms

Penalty terms for "soft" constraints

Dealing with infeasibility

Reversible activities

17.3 Other piecewise-linear functions

17.4 Guidelines for piecewise-linear optimization

Forms for piecewise-linear expressions

Suggestions for piecewise-linear models

Chapter 18. Nonlinear Programs
18. J Sources of nonlinearity

Dropping a linearity assumption

Achieving a nonlinear effect

Modeling an inherently nonlinear process

18.2 Nonlinear variables

Initial values of variables

Automatic substitution of variables

18.3 Nonlinear expressions

18.4 Pitfalls of nonlinear programming

Function range violations

Multiple local optima

Other pitfalls

Chapter 19. Complementarity Problems
19.1 Sources of complementarity

A complementarity model of production economics

Complementarity for bounded variables

Complementarity for price-dependent demands

Other complementarity models and applications

19.2 Forms of complementarity constraints

19.3 Working with complementarity constraims

Related solution values

Presolve

Generic synonyms

Chapter 20. integer Linear Programs
20.1 Integer variables

20.2 Zero-one variables and logical conditions

Fixed costs
Zero-or-minimum restrictions

Cardinality restrictions
20.3 Practical considerations in integer programming

368
369
369
373
377
379
382
382
383

391
392
393
396
397
397

398
399
400
403
403
407
410

419
419
420
423
425
426
427
428
428
429
431

437
438
439
440
444
445
448

AMPl: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING xiii

Appendix A. AMPL Reference Manual 453
A.I Lexical rules 453
A.2 Set members 454
A.3 Indexing expressions and subscripts 455
A.4 Expressions 455

A.4.l Built·in functions 458
A.4.2 Strings and regular expressions 459
A.4.3 Piecewise·Jinear terms 460

A.5 Declarations of model entities 461
A.6 Set declarations 461

A.6.1 Cardinality and arity functions 462
A.6.2 Ordered sets 463
A.6.3 Interva1s and other infinite sets 463

A.7 Parameter declarations 465
A.7.1 Check statements 465
A.7.2 Infinity 466

A.8 V mabie declarations 466
A.S.l Defined variables 467

A.9 Constraint declarations 468
A.9.1 Complementarity constraints 469

A.IO Objective declarations 470
A.II Suffix notation for auxiliary values 470

A.II.I Suffix declarations 471
A.I 1.2 Statuses 473

A.12 Standard data format 473
A.12.1 Set data 473
A.12.2 Parameter data 475

A.13 Database access and tables 477
A.14 Command language overview 479

A.14.1 Options and environment variables 481
A.15 Redirection of input and output 481
A.16 Printing and display commands 482
A.17 Reading data 484
A.18 Modeling commands 485

A. I S. I The solve command 485
A.IS.2 The solution command 487
A.1S.3 The wri te command 487
A.ISA Auxiliary files 487
A.lS.5 Changing a model: delete. purge, redeclare 488
A.IS.6 The drop, restore and objective commands 489
A.IS.7 The fix and unfix commands 489
A.IS.S Named problems and environments 489
A.IS.9 Modifying data: reset, update, let 490

A.19 Examining models 491
A.19.! The show command 491

xiv AMPL: A MODELING LANGUAGE FOR MATHEMATICAL PROGRAMMING

A.19.2 The xref command
A.19.3 The expand command
A.19.4 Generic names
A.19.5 The check command

A.20 Scripts and control flow statements
A.20.1 The for, repeat and if-then-else statements
A.20.2 Stepping through comm.and~

A.21 Computational environment
A.2 1.! The shell command
A.21.2 The cd command
A.21.3 The qui t. exi t and end commands
A.21.4 Built·in timing parameters
A.21.5 Logging

A.22 Imported runctions
A.23 AMPL invocation

Index

•

492
492
492
492
492
493
495
495
495
495
496
496
496
497
499

501

__
Introduction

As our title suggests, there are two aspects to the subject of this book. The first is
mathematical programming, the optimization of a function of many variables subject to
constraints. The second is the AMPL modeling language, which we designed and imple-
mented to help people use computers to develop and apply mathematical programming
models.

We intend this book as an introduction both to mathematical programming and to
AMPL. For readers already familiar with mathematical programming, it can serve as a
user’s guide and reference manual for the AMPL software. We assume no previous
knowledge of the subject, however, and hope that this book will also encourage the use of
mathematical programming models by those who are new to the field.

Mathematical programming

The term ‘‘programming’’ was in use by 1940 to describe the planning or scheduling
of activities within a large organization. ‘‘Programmers’’ found that they could represent
the amount or level of each activity as a variable whose value was to be determined.
Then they could mathematically describe the restrictions inherent in the planning or
scheduling problem as a set of equations or inequalities involving the variables. A solu-
tion to all of these constraints would be considered an acceptable plan or schedule.

Experience soon showed that it was hard to model a complex operation simply by
specifying constraints. If there were too few constraints, many inferior solutions could
satisfy them; if there were too many constraints, desirable solutions were ruled out, or in
the worst case no solutions were possible. The success of programming ultimately
depended on a key insight that provided a way around this difficulty. One could specify,
in addition to the constraints, an objective: a function of the variables, such as cost or pro-
fit, that could be used to decide whether one solution was better than another. Then it
didn’t matter that many different solutions satisfied the constraints — it was sufficient to
find one such solution that minimized or maximized the objective. The term mathemati-
cal programming came to be used to describe the minimization or maximization of an
objective function of many variables, subject to constraints on the variables.

xv

xvi INTRODUCTION

In the development and application of mathematical programming, one special case
stands out: that in which all the costs, requirements and other quantities of interest are
terms strictly proportional to the levels of the activities, or sums of such terms. In mathe-
matical terminology, the objective is a linear function, and the constraints are linear equa-
tions and inequalities. Such a problem is called a linear program , and the process of set-
ting up such a problem and solving it is called linear programming. Linear programming
is particularly important because a wide variety of problems can be modeled as linear
programs, and because there are fast and reliable methods for solving linear programs
even with thousands of variables and constraints. The ideas of linear programming are
also important for analyzing and solving mathematical programming problems that are
not linear.

All useful methods for solving linear programs require a computer. Thus most of the
study of linear programming has taken place since the late 1940’s, when it became clear
that computers would be available for scientific computing. The first successful compu-
tational method for linear programming, the simplex algorithm, was proposed at this
time, and was the subject of increasingly effective implementations over the next decade.
Coincidentally, the development of computers gave rise to a now much more familiar
meaning for the term ‘‘programming.’’

In spite of the broad applicability of linear programming, the linearity assumption is
sometimes too unrealistic. If instead some smooth nonlinear functions of the variables
are used in the objective or constraints, the problem is called a nonlinear program. Solv-
ing such a problem is harder, though in practice not impossibly so. Although the optimal
values of nonlinear functions have been a subject of study for over two centuries, compu-
tational methods for solving nonlinear programs in many variables were developed only
in recent decades, after the success of methods for linear programming. The field of
mathematical programming is thus also known as large scale optimization, to distinguish
it from the classical topics of optimization in mathematical analysis.

The assumptions of linear programming also break down if some variables must take
on whole number, or integral, values. Then the problem is called integer programming,
and in general becomes much harder. Nevertheless, a combination of faster computers
and more sophisticated methods have made large integer programs increasingly tractable
in recent years.

The AMPL modeling language

Practical mathematical programming is seldom as simple as running some algorithmic
method on a computer and printing the optimal solution. The full sequence of events is
more like this:

� Formulate a model, the abstract system of variables, objectives, and constraints that
represent the general form of the problem to be solved.

� Collect data that define a specific problem instance.
� Generate a specific objective function and constraint equations from the model and

data.

INTRODUCTION xvii

� Solve the problem instance by running a program, or solver , to apply an algorithm
that finds optimal values of the variables.

� Analyze the results.
� Refine the model and data as necessary, and repeat.

If people could deal with mathematical programs in the same way that solvers do, the for-
mulation and generation phases of modeling might be relatively straightforward. In real-
ity, however, there are many differences between the form in which human modelers
understand a problem and the form in which solver algorithms work with it. Conversion
from the ‘‘modeler’s form’’ to the ‘‘algorithm’s form’’ is consequently a time-
consuming, costly, and often error-prone procedure.

In the special case of linear programming, the largest part of the algorithm’s form is
the constraint coefficient matrix, which is the table of numbers that multiply all the vari-
ables in all the constraints. Typically this is a very sparse (mostly zero) matrix with any-
where from hundreds to hundreds of thousands of rows and columns, whose nonzero ele-
ments appear in intricate patterns. A computer program that produces a compact repre-
sentation of the coefficients is called a matrix generator. Several programming languages
have been designed specifically for writing matrix generators, and standard computer pro-
gramming languages are also often used.

Although matrix generators can successfully automate some of the work of translation
from modeler’s form to algorithm’s form, they remain difficult to debug and maintain.
One way around much of this difficulty lies in the use of a modeling language for mathe-
matical programming. A modeling language is designed to express the modeler’s form in
a way that can serve as direct input to a computer system. Then the translation to the
algorithm’s form can be performed entirely by computer, without the intermediate stage
of computer programming. Modeling languages can help to make mathematical pro-
gramming more economical and reliable; they are particularly advantageous for develop-
ment of new models and for documentation of models that are subject to change.

Since there is more than one form that modelers use to express mathematical pro-
grams, there is more than one kind of modeling language. An algebraic modeling lan-
guage is a popular variety based on the use of traditional mathematical notation to
describe objective and constraint functions. An algebraic language provides computer-
readable equivalents of notations such as x j + y j , Σ j = 1

n a i j x j , x j ≥ 0, and j∈S that would
be familiar to anyone who has studied algebra or calculus. Familiarity is one of the major
advantages of algebraic modeling languages; another is their applicability to a particu-
larly wide variety of linear, nonlinear and integer programming models.

While successful algorithms for mathematical programming first came into use in the
1950’s, the development and distribution of algebraic modeling languages only began in
the 1970’s. Since then, advances in computing and computer science have enabled such
languages to become steadily more efficient and general.

This book describes AMPL, an algebraic modeling language for mathematical pro-
gramming; it was designed and implemented by the authors around 1985, and has been
evolving ever since. AMPL is notable for the similarity of its arithmetic expressions to
customary algebraic notation, and for the generality and power of its set and subscripting

xviii INTRODUCTION

expressions. AMPL also extends algebraic notation to express common mathematical
programming structures such as network flow constraints and piecewise linearities.

AMPL offers an interactive command environment for setting up and solving mathe-
matical programming problems. A flexible interface enables several solvers to be avail-
able at once so a user can switch among solvers and select options that may improve
solver performance. Once optimal solutions have been found, they are automatically
translated back to the modeler’s form so that people can view and analyze them. All of
the general set and arithmetic expressions of the AMPL modeling language can also be
used for displaying data and results; a variety of options are available to format data for
browsing, printing reports, or preparing input to other programs.

Through its emphasis on AMPL, this book differs considerably from the presentation
of modeling in standard mathematical programming texts. The approach taken by a typi-
cal textbook is still strongly influenced by the circumstances of 30 years ago, when a stu-
dent might be lucky to have the opportunity to solve a few small linear programs on any
actual computer. As encountered in such textbooks, mathematical programming often
appears to require only the conversion of a ‘‘word problem’’ into a small system of
inequalities and an objective function, which are then presented to a simple optimization
package that prints a short listing of answers. While this can be a good approach for
introductory purposes, it is not workable for dealing with the hundreds or thousands of
variables and constraints that are found in most real-world mathematical programs.

The availability of an algebraic modeling language makes it possible to emphasize the
kinds of general models that can be used to describe large-scale optimization problems.
Each AMPL model in this book describes a whole class of mathematical programming
problems, whose members correspond to different choices of indexing sets and numerical
data. Even though we use relatively small data sets for illustration, the resulting prob-
lems tend to be larger than those of the typical textbook. More important, the same
approach, using still larger data sets, works just as well for mathematical programs of
realistic size and practical value.

We have not attempted to cover the optimization theory and algorithmic details that
comprise the greatest part of most mathematical programming texts. Thus, for readers
who want to study the whole field in some depth, this book is a complement to existing
textbooks, not a replacement. On the other hand, for those whose immediate concern is
to apply mathematical programming to a particular problem, the book can provide a use-
ful introduction on its own.

In addition, AMPL software is readily available for experiment: the AMPL web site,
www.ampl.com, provides free downloadable ‘‘student’’ versions of AMPL and repre-
sentative solvers that run on Windows, Unix/Linux, and Mac OS X. These can easily
handle problems of a few hundred variables and constraints, including all of the examples
in the book. Versions that support much larger problems and additional solvers are also
available from a variety of vendors; again, details may be found on the web site.

INTRODUCTION xix

Outline of the book

The second edition, like the first, is organized conceptually into four parts. Chapters
1 through 4 are a tutorial introduction to models for linear programming:

1. Production Models: Maximizing Profits
2. Diet and Other Input Models: Minimizing Costs
3. Transportation and Assignment Models
4. Building Larger Models

These chapters are intended to get you started using AMPL as quickly as possible. They
include a brief review of linear programming and a discussion of a handful of simple
modeling ideas that underlie most large-scale optimization problems. They also illustrate
how to provide the data that convert a model into a specific problem instance, how to
solve a problem, and how to display the answers.

The next four chapters describe the fundamental components of an AMPL linear pro-
gramming model in detail, using more complex examples to examine major aspects of the
language systematically:

5. Simple Sets and Indexing
6. Compound Sets and Indexing
7. Parameters and Expressions
8. Linear Programs: Variables, Objectives and Constraints

We have tried to cover the most important features, so that these chapters can serve as a
general user’s guide. Each feature is introduced by one or more examples, building on
previous examples wherever possible.

The following six chapters describe how to use AMPL in more sophisticated ways:

9. Specifying Data
10. Database Access
11. Modeling Commands
12. Display Commands
13. Command Scripts
14. Interactions with Solvers

The first two of these chapters explain how to provide the data values that define a spe-
cific instance of a model; Chapter 9 describes AMPL’s text file data format, while Chapter
10 presents features for access to information in relational database systems. Chapter 11
explains the commands that read models and data, and invoke solvers; Chapter 12 shows
how to display and save results. AMPL provides facilities for creating scripts of com-
mands, and for writing loops and conditional statements; these are covered in Chapter 13.
Chapter 14 goes into more detail on how to interact with solvers so as to make the best
use of their capabilities and the information they provide.

Finally, we turn to the rich variety of problems and applications beyond purely linear
models. The remaining chapters deal with six important special cases and generaliza-
tions:

xx INTRODUCTION

15. Network Linear Programs
16. Columnwise Formulations
17. Piecewise-Linear Programs
18. Nonlinear Programs
19. Complementarity Problems
20. Integer Linear Programs

Chapters 15 and 16 describe additional language features that help AMPL represent par-
ticular kinds of linear programs more naturally, and that may help to speed translation
and solution. The last four chapters cover generalizations that can help models to be
more realistic than linear programs, although they can also make the resulting optimiza-
tion problems harder to solve.

Appendix A is the AMPL reference manual; it describes all language features, includ-
ing some not mentioned elsewhere in the text. Bibliography and exercises may be found
in most of the chapters.

About the second edition

AMPL has evolved a lot in ten years, but its core remains essentially unchanged, and
almost all of the models from the first edition work with the current program. Although
we have made substantial revisions throughout the text, much of the brand new material
is concentrated in the third part, where the original single chapter on the command envi-
ronment has been expanded into five chapters. In particular, database access, scripts and
programming constructs represent completely new material, and many additional AMPL
commands for examining models and accessing solver information have been added.

The first edition was written in 1992, just before the explosion in Internet and web
use, and while personal computers were still rather limited in their capabilities; the first
student versions of AMPL ran on DOS on tiny, slow machines, and were distributed on
floppy disks.

Today, the web site at www.ampl.com is the central source for all AMPL informa-
tion and software. Pages at this site cover all that you need to learn about and experiment
with optimization and the use of AMPL:

� Free versions of AMPL for a variety of operating systems.
� Free versions of several solvers for a variety of problem types.
� All of the model and data files used as examples in this book.

The free software is fully functional, save that it can only handle problems of a few hun-
dred variables and constraints. Unrestricted commercial versions of AMPL and solvers
are available as well; see the web site for a list of vendors.

You can also try AMPL without downloading any software, through browser inter-
faces at www.ampl.com/TRYAMPL and the NEOS Server (neos.mcs.anl.gov).
The AMPL web site also provides information on graphical user interfaces and new AMPL
language features, which are under continuing development.

INTRODUCTION xxi

Acknowledgements to the first edition

We are deeply grateful to Jon Bentley and Margaret Wright, who made extensive
comments on several drafts of the manuscript. We also received many helpful sugges-
tions on AMPL and the book from Collette Coullard, Gary Cramer, Arne Drud, Grace
Emlin, Gus Gassmann, Eric Grosse, Paul Kelly, Mark Kernighan, Todd Lowe, Bob Rich-
ton, Michael Saunders, Robert Seip, Lakshman Sinha, Chris Van Wyk, Juliana Vignali,
Thong Vukhac, and students in the mathematical programming classes at Northwestern
University. Lorinda Cherry helped with indexing, and Jerome Shepheard with typeset-
ting. Our sincere thanks to all of them.

Bibliography

E. M. L. Beale, ‘‘Matrix Generators and Output Analyzers.’’ In Harold W. Kuhn (ed.), Proceed-
ings of the Princeton Symposium on Mathematical Programming , Princeton University Press
(Princeton, NJ, 1970) pp. 25–36. A history and explanation of matrix generator software for linear
programming.

Johannes Bisschop and Alexander Meeraus, ‘‘On the Development of a General Algebraic Model-
ing System in a Strategic Planning Environment.’’ Mathematical Programming Study 20 (1982)
pp. 1–29. An introduction to GAMS, one of the first and most widely used algebraic modeling lan-
guages.

Robert E. Bixby, ‘‘Solving Real-World Linear Programs: A Decade and More of Progress.’’ Oper-
ations Reearch 50 (2002) pp. 3)–15. A history of recent advances in solvers for linear program-
ming. Also in this issue are accounts of the early days of mathematical programming by pioneers
of the field.

George B. Dantzig, ‘‘Linear Programming: The Story About How It Began.’’ In Jan Karel Lens-
tra, Alexander H. G. Rinnooy Kan and Alexander Schrijver, eds., History of Mathematical Pro-
gramming: A Collection of Personal Reminiscences. North-Holland (Amsterdam, 1991) pp. 19–31.
A source for our brief account of the history of linear programming. Dantzig was a pioneer of such
key ideas as objective functions and the simplex algorithm.

Robert Fourer, ‘‘Modeling Languages versus Matrix Generators for Linear Programming.’’ ACM
Transactions on Mathematical Software 9 (1983) pp. 143–183. The case for modeling languages.

C. A. C. Kuip, ‘‘Algebraic Languages for Mathematical Programming.’’ European Journal of
Operational Research 67 (1993) 25–51. A survey.

1
__

Production Models:
Maximizing Profits

As we stated in the Introduction, mathematical programming is a technique for solv-
ing certain kinds of problems — notably maximizing profits and minimizing costs —
subject to constraints on resources, capacities, supplies, demands, and the like.AMPL is a
language for specifying such optimization problems. It provides an algebraic notation
that is very close to the way that you would describe a problem mathematically, so that it
is easy to convert from a familiar mathematical description toAMPL.

We will concentrate initially on linear programming, which is the best known and eas-
iest case; other kinds of mathematical programming are taken up later in the book. This
chapter addresses one of the most common applications of linear programming: maxi-
mizing the profit of some operation, subject to constraints that limit what can be pro-
duced. Chapters 2 and 3 are devoted to two other equally common kinds of linear pro-
grams, and Chapter 4 shows how linear programming models can be replicated and com-
bined to produce truly large-scale problems. These chapters are written with the beginner
in mind, but experienced practitioners of mathematical programming should find them
useful as a quick introduction toAMPL.

We begin with a linear program (or LP for short) in only two decision variables, moti-
vated by a mythical steelmaking operation. This will provide a quick review of linear
programming to refresh your memory if you already have some experience, or to help
you get started if you’re just learning. We’ll show how the same LP can be represented
as a general algebraic model of production, together with specific data. Then we’ll show
how to express several linear programming problems inAMPL and how to runAMPL and
a solver to produce a solution.

The separation of model and data is the key to describing more complex linear pro-
grams in a concise and understandable fashion. The final example of the chapter illus-
trates this by presenting several enhancements to the model.

1

2 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

1.1 A two-variable linear program

An (extremely simplified) steel company must decide how to allocate next week’s
time on a rolling mill. The mill takes unfinished slabs of steel as input, and can produce
either of two semi-finished products, which we will call bands and coils. (The terminol-
ogy is not entirely standard; see the bibliography at the end of the chapter for some
accounts of realistic LP applications in steelmaking.) The mill’s two products come off
the rolling line at different rates:

Tons per hour: Bands 200
Coils 140

and they also have different profitabilities:

Profit per ton: Bands $25
Coils $30

To further complicate matters, the following weekly production amounts are the most that
can be justified in light of the currently booked orders:

Maximum tons: Bands 6,000
Coils 4,000

The question facing the company is as follows: If 40 hours of production time are avail-
able this week, how many tons of bands and how many tons of coils should be produced
to bring in the greatest total profit?

While we are given numeric values for production rates and per-unit profits, the tons
of bands and of coils to be produced are as yet unknown. These quantities are the deci-
sion variables whose values we must determine so as to maximize profits. The purpose
of the linear program is to specify the profits and production limitations as explicit for-
mulas involving the variables, so that the desired values of the variables can be deter-
mined systematically.

In an algebraic statement of a linear program, it is customary to use a mathematical
shorthand for the variables. Thus we will writeX B for the number of tons of bands to be
produced, andX C for tons of coils. The total hours to produce all these tons is then given
by

(hours to make a ton of bands)× X B + (hours to make a ton of coils)× X C

This number cannot exceed the 40 hours available. Since hours per ton is the reciprocal
of the tons per hour given above, we have aconstraint on the variables:

(1/200)X B + (1/140)X C ≤ 40.

There are also production limits:

0 ≤ X B ≤ 6000
0 ≤ X C ≤ 4000

SECTION 1.1 A TWO-VARIABLE LINEAR PROGRAM 3

In the statement of the problem above, the upper limits were specified, but the lower lim-
its were assumed — it was obvious that a negative production of bands or coils would be
meaningless. Dealing with a computer, however, it is necessary to be quite explicit.

By analogy with the formula for total hours, the total profit must be

(profit per ton of bands)× X B + (profit per ton of coils)× X C

That is, our objective is to maximize 25X B + 30 X C. Putting this all together, we have
the following linear program:

Maximize 25X B + 30X C

Subject to (1/200)X B + (1/140)X C ≤ 40

0 ≤ X B ≤ 6000

0 ≤ X C ≤ 4000

This is a very simple linear program, so we’ll solve it by hand in a couple of ways, and
then check the answer withAMPL.

First, by multiplying profit per ton times tons per hour, we can determine the profit
per hour of mill time for each product:

Profit per hour: Bands $5,000
Coils $4,200

Bands are clearly a more profitable use of mill time, so to maximize profit we should pro-
duce as many bands as the production limit will allow — 6,000 tons, which takes 30
hours. Then we should use the remaining 10 hours to make coils — 1,400 tons in all.
The profit is $25 times 6,000 tons plus $30 times 1,400 tons, for a total of $192,000.

Alternatively, since there are only two variables, we can show the possibilities graphi-
cally. If X B values are plotted along the horizontal axis, andX C values along the vertical
axis, each point represents a choice of values, or solution, for the decision variables:

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

Constraints

← Hours
feasible region

4 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

The horizontal line represents the production limit on coils, the vertical on bands. The
diagonal line is the constraint on hours; each point on that line represents a combination
of bands and coils that requires exactly 40 hours of production time, and any point down-
ward and to the left requires less than 40 hours.

The shaded region bounded by the axes and these three lines corresponds exactly to
the feasible solutions — those that satisfy all three constraints. Among all the feasible
solutions represented in this region, we seek the one that maximizes the profit.

For this problem, a line of slope –25/30 represents combinations that produce the
same profit; for example, in the figure below, the line from (0, 4500) to (5400, 0) repre-
sents combinations that yield $135,000 profit. Different profits give different but parallel
lines in the figure, with higher profits giving lines that are higher and further to the right.

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

← $220K

$192K→

$135K→

Profit

If we combine these two plots, we can see the profit-maximizing, oroptimal , feasible
solution:

0 2000 4000 6000 8000

0

2000

4000

6000

Coils

Bands

Optimal Solution

SECTION 1.2 THE TWO-VARIABLE LINEAR PROGRAM IN AMPL 5

The line segment for profit equal to $135,000 is partly within the feasible region; any
point on this line and within the region corresponds to a solution that achieves a profit of
$135,000. On the other hand, the line for $220,000 does not intersect the feasible region
at all; this tells us that there is no way to achieve a profit as high as $220,000. Viewed in
this way, solving the linear program reduces to answering the following question:
Among all profit lines that intersect the feasible region, which is highest and furthest to
the right? The answer is the middle line, which just touches the region at one of the cor-
ners. This point corresponds to 6,000 tons of bands and 1,400 tons of coils, and a profit
of $192,000 — the same as we found before.

1.2 The two-variable linear program in AMPL

Solving this linear program withAMPL can be as simple as typingAMPL’s descrip-
tion of the linear program,

var XB;
var XC;
maximize Profit: 25 * XB + 30 * XC;
subject to Time: (1/200) * XB + (1/140) * XC <= 40;
subject to B_limit: 0 <= XB <= 6000;
subject to C_limit: 0 <= XC <= 4000;

into a file — call itprod0.mod — and then typing a fewAMPL commands:

ampl: model prod0.mod;

ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000

ampl: display XB, XC;
XB = 6000
XC = 1400

ampl: quit;

The invocation and appearance of anAMPL session will depend on your operating envi-
ronment and interface, but you will always have the option of typingAMPL statements in
response to theampl: prompt, until you leaveAMPL by typingquit. (Throughout the
book, material you type is shown inthis slanted font.)

The AMPL linear program that you type into the file parallels the algebraic form in
every respect. It specifies the decision variables, defines the objective, and lists the con-
straints. It differs mainly in being somewhat more formal and regular, to facilitate com-
puter processing. Each variable is named in avar statement, and each constraint by a
statement that begins withsubject to and a name likeTime or B_limit for the con-
straint. Multiplication requires an explicit* operator, and the≤ relation is written<=.

The first command of yourAMPL session,model prod0.mod, reads the file into
AMPL, just as if you had typed it line-by-line atampl: prompts. You then need only

6 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

type solve to haveAMPL translate your linear program, send it to a linear program
solver, and return the answer. A final command,display, is used to show the optimal
values of the variables.

The messageMINOS 5.5 directly following thesolve command indicates that
AMPL used version 5.5 of a solver calledMINOS. We have usedMINOS and several
other solvers for the examples in this book. You may have a different collection of
solvers available on your computer, but any solver should give you the same optimal
objective value for a linear program. Often there is more than one solution that achieves
the optimal objective, however, in which case different solvers may report different opti-
mal values for the variables. (Commands for choosing and controlling solvers will be
explained in Section 11.2.)

Procedures for runningAMPL can vary from one computer and operating system to
another. Details are provided in supplementary instructions that come with your version
of the AMPL software, rather than in this book. For subsequent examples, we will
assume thatAMPL has been started up, and that you have received the firstampl:
prompt. If you are using a graphical interface forAMPL, like one of those mentioned
briefly in Section 1.7, many of theAMPL commands may have equivalent menu or dialog
entries. You will still have the option of typing the commands as shown in this book, but
you may have to open a ‘‘command window’’ of some kind to see the prompts.

1.3 A linear programming model

The simple approach employed so far in this chapter is helpful for understanding the
fundamentals of linear programming, but you can see that if our problem were only
slightly more realistic — a few more products, a few more constraints — it would be a
nuisance to write down and impossible to illustrate with pictures. And if the problem
were subject to frequent change, either in form or merely in the data values, it would be
hard to update as well.

If we are to progress beyond the very tiniest linear programs, we must adopt a more
general and concise way of expressing them. This is where mathematical notation comes
to the rescue. We can write a compact description of the general form of the problem,
which we call amodel, using algebraic notation for the objective and the constraints.
Figure 1-1 shows the production problem in algebraic notation.

Figure 1-1 is a symbolic linear programming model. Its components are fundamental
to all models:

� sets, like the products
� parameters, like the production and profit rates
� variables, whose values the solver is to determine
� anobjective, to be maximized or minimized
� constraints that the solution must satisfy.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 7

__
__

Given: P, a set of products
a j = tons per hour of productj, for eachj∈P
b = hours available at the mill
c j = profit per ton of productj, for eachj∈P
u j = maximum tons of productj, for eachj∈P

Define variables:X j = tons of productj to be made, for eachj∈P

Maximize:
j∈P
Σ c j X j

Subject to:
j∈P
Σ (1/ a j) X j ≤ b

0 ≤ X j ≤ u j , for eachj∈P

Figure 1-1: Basic production model in algebraic form.
__

The model describes an infinite number of related optimization problems. If we provide
specific values for data, however, the model becomes a specific problem, orinstance of
the model, that can be solved. Each different collection of data values defines a different
instance; the example in the previous section was one such instance.

It might seem that we have made things less rather than more concise, since our
model is longer than the original statement of the linear program in Section 1.1. Consider
what would happen, however, if the setP had 42 products rather than 2. The linear pro-
gram would have 120 more data values (40 each fora j , c j , andu j); there would be 40
more variables, with new lower and upper limits for each; and there would be 40 more
terms in the objective and the hours constraint. Yet the abstract model, as shown above,
would be no different. Without this ability of a short model to describe a long linear pro-
gram, larger and more complex instances of linear programming would become impossi-
ble to deal with.

A mathematical model like this is thus usually the best compromise between brevity
and comprehension; and fortunately, it is easy to convert into a language that a computer
can process. From now on, we’ll assume models are given in the algebraic form. As
always, reality is rarely so simple, so most models will have more sets, parameters and
variables, and more complicated objectives and constraints. In fact, in any real situation,
formulating a correct model and providing accurate data are by far the hardest tasks; solv-
ing a specific problem requires only a solver and enough computing power.

1.4 The linear programming model in AMPL

Now we can talk aboutAMPL. The AMPL language is intentionally as close to the
mathematical form as it can get while still being easy to type on an ordinary keyboard and

8 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set P;

param a {j in P};
param b;
param c {j in P};
param u {j in P};

var X {j in P};

maximize Total_Profit: sum {j in P} c[j] * X[j];

subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j];

Figure 1-2: Basic production model inAMPL (file prod.mod).
__

to process by a program. There areAMPL constructions for each of the basic components
listed above — sets, parameters, variables, objectives, and constraints — and ways to
write arithmetic expressions, sums over sets, and so on.

We first give anAMPL model that resembles our algebraic model as much as possible,
and then present an improved version that takes better advantage of the language.

The basic model

For the basic production model of Figure 1-1, a direct transcription intoAMPL would
look like Figure 1-2.

The keywordset declares a set name, as in

set P;

The members of setP will be provided in separate data statements, which we’ll show in a
moment.

The keywordparam declares a parameter, which may be a single scalar value, as in

param b;

or a collection of values indexed by a set. Where algebraic notation says that ‘‘there is an
a j for eachj in P’’, one writes inAMPL

param a {j in P};

which means thata is a collection of parameter values, one for each member of the setP.
Subscripts in algebraic notation are written with square brackets inAMPL, so an individ-
ual value likea j is writtena[j].

Thevar declaration

var X {j in P};

names a collection of variables, one for each member ofP, whose values the solver is to
determine.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 9

The objective is given by the declaration

maximize Total_Profit: sum {j in P} c[j] * X[j];

The nameTotal_Profit is arbitrary; a name is required by the syntax, but any name
will do. The precedence of thesum operator is lower than that of*, so the expression is
indeed a sum of products, as intended.

Finally, the constraints are given by

subject to Time: sum {j in P} (1/a[j]) * X[j] <= b;

subject to Limit {j in P}: 0 <= X[j] <= u[j];

TheTime constraint says that a certain sum over the setP may not exceed the value of
parameterb. The Limit constraint is actually a family of constraints, one for each
memberj of P: eachX[j] is bounded by zero and the correspondingu[j].

The construct{j in P} is called anindexing expression. As you can see from our
example, indexing expressions are used not only in declaring parameters and variables,
but in any context where the algebraic model does something ‘‘for eachj in P’’. Thus the
Limit constraints are declared

subject to Limit {j in P}

because we want to impose a different restriction0 <= X[j] <= u[j] for each different
productj in the setP. In the same way, the summation in the objective is written

sum {j in P} c[j] * X[j]

to indicate that the different termsc[j] * X[j], for eachj in the setP, are to be added
together in computing the profit.

The layout of anAMPL model is quite free. Sets, parameters, and variables must be
declared before they are used but can otherwise appear in any order. Statements end with
semicolons and can be spaced and split across lines to enhance readability. Upper and
lower case letters are different, sotime, Time, andTIME are three different names.

You have undoubtedly noticed several places where traditional mathematical notation
has been adapted inAMPL to the limitations of normal keyboards and character sets.
AMPL uses the wordsum instead ofΣ to express a summation, andin rather than∈ for
set membership. Set specifications are enclosed in braces, as in{j in P}. Where math-
ematical notation uses adjacency to signify multiplication inc j X j , AMPL uses the* oper-
ator of most programming languages, and subscripts are denoted by brackets, soc j X j

becomesc[j]*X[j].
You will find that the rest ofAMPL is similar — a few more arithmetic operators, a

few more key words likesum andin, and many more ways to specify indexing expres-
sions. Like any other computer language,AMPL has a precise grammar, but we won’t
stress the rules too much here; most will become clear as we go along, and full details are
given in the reference manual, Appendix A.

Our original two-variable linear program is one of the many LPs that are instances of
the Figure 1-2 model. To specify it or any other such instance, we need to supply the

10 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set P := bands coils;

param: a c u :=
bands 200 25 6000
coils 140 30 4000 ;

param b := 40;

Figure 1-3: Production model data (fileprod.dat).
__

membership ofP and the values of the various parameters. There is no standard way to
describe these data values in algebraic notation; usually some kind of informal tables are
used, such as the ones we showed earlier. InAMPL, there is a specific syntax for data
tables, which is sufficiently regular and unambiguous to be translated by a computer.
Figure 1-3 gives data for the basic production model in that form. Aset statement sup-
plies the members (bands andcoils) of setP, and aparam table gives the corre-
sponding values fora, c, andu. A simpleparam statement gives the value forb. These
data statements, which are described in detail in Chapter 9, have a variety of options that
let you list or tabulate parameters in convenient ways.

An improved model

We could go on immediately to solve the linear program defined by Figures 1-2 and
1-3. Once we have written the model inAMPL, however, we need not feel constrained by
all the conventions of algebra, and we can instead consider changes that might make the
model easier to work with. Figures 1-4a and 1-4b show a possible ‘‘improved’’ version.
The short ‘‘mathematical’’ names for the sets, parameters and variables have been
replaced by longer, more meaningful ones. The indexing expressions have become{p
in PROD}, or just {PROD} in those declarations that do not use the indexp. The
bounds on variables have been placed within theirvar declaration, rather than in a sepa-
rate constraint; analogous bounds have been placed on the parameters, to indicate the
ones that must be positive or nonnegative in any meaningful linear program derived from
the model.

Finally, comments have been added to help explain the model to a reader. Comments
begin with# and end at the end of the line. As in any programming language, judicious
use of meaningful names, comments and formatting helps to makeAMPL models more
readable and understandable.

There are always many ways to describe a particular model inAMPL. It is left to the
modeler to pick the way that seems clearest or most convenient. Our earlier, mathemati-
cal approach is often preferred for working quickly with a familiar model. On the other
hand, the second version is more attractive for a model that will be maintained and modi-
fied by several people over months or years.

SECTION 1.4 THE LINEAR PROGRAMMING MODEL IN AMPL 11

__
__

set PROD; # products

param rate {PROD} > 0; # tons produced per hour
param avail >= 0; # hours available in week

param profit {PROD}; # profit per ton
param market {PROD} >= 0; # limit on tons sold in week

var Make {p in PROD} >= 0, <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

Constraint: total of hours used by all
products may not exceed hours available

Figure 1-4a: Steel production model (steel.mod).

set PROD := bands coils;

param: rate profit market :=
bands 200 25 6000
coils 140 30 4000 ;

param avail := 40;

Figure 1-4b: Data for steel production model (steel.dat).
__

If we put all of the model declarations into a file calledsteel.mod, and the data
specification into a filesteel.dat, then as before a solution can be found and dis-
played by typing just a few statements:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 192000

ampl: display Make;
Make [*] :=
bands 6000
coils 1400
;

Themodel anddata commands each specify a file to be read, in this case the model
from steel.mod, and the data fromsteel.dat. The use of two file-reading com-
mands encourages a clean separation of model from data.

Filenames can have any form recognized by your computer’s operating system;AMPL
doesn’t check them for correctness. The filenames here and in the rest of the book refer
to example files that are available from theAMPL web site and otherAMPL distributions.

12 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

Once the model has been solved, we can show the optimal values of all of the vari-
ablesMake[p], by typingdisplay Make. The output fromdisplay uses the same
formats asAMPL data input, so that there is only one set of formats to learn. (The[*]
indicates a variable or parameter with a single subscript. It is not strictly necessary for
input, sinceMake is one-dimensional, butdisplay prints it as a reminder.)

Catching errors

You will inevitably make some mistakes as you develop a model.AMPL detects vari-
ous kinds of incorrect statements, which are reported in error messages following the
model, data or solve commands.

AMPL catches many errors as soon as the model is read. For example, if you use the
wrong syntax for the bounds in the declaration of the variableMake, you will receive an
error message like this, right after you enter themodel command:

steel.mod, line 8 (offset 250):
syntax error

context: var Make {p in PROD} >>> 0 <<< <= Make[p] <= market[p];

If you inadvertently usemake instead ofMake in an expression likeprofit[p] *
make[p], you will receive this message:

steel.mod, line 11 (offset 339):
make is not defined

context: maximize Total_Profit:
sum {p in PROD} profit[p] * >>> make[p] <<< ;

In each case, the offending line is printed, with the approximate location of the error sur-
rounded by>>> and<<<.

Other common sources of error messages include a model component used before it is
declared, a missing semicolon at the end of a command, or a reserved word likesum or
in used in the wrong context. (Section A.1 contains a list of reserved words.) Syntax
errors in data statements are similarly reported right after you enter adata command.

Errors in the data values are caught after you typesolve. If the number of hours
were given as –40, for instance, you would see:

ampl: model steel.mod;
ampl: data steel.dat;
ampl: solve;
Error executing "solve" command:
error processing param avail:

failed check: param avail = -40
is not >= 0;

It is good practice to include as many validity checks as possible in the model, so that
errors are caught at an early stage.

Despite your best efforts to formulate the model correctly and to include validity
checks on the data, sometimes a model that generates no error messages and that elicits

SECTION 1.5 ADDING LOWER BOUNDS TO THE MODEL 13

an ‘‘optimal solution’’ report from the solver will nonetheless produce a clearly wrong or
meaningless solution. All of the production levels might be zero, for example, or the
product with a lower profit per hour may be produced at a higher volume. In cases like
these, you may have to spend some time reviewing your formulation before you discover
what is wrong.

Theexpand command can be helpful in your search for errors, by showing you how
AMPL instantiated your symbolic model. To see whatAMPL generated for the objective
Total_Profit, for example, you could type:

ampl: expand Total_Profit;
maximize Total_Profit:

25*Make[’bands’] + 30*Make[’coils’];

This corresponds directly to our explicit formulation back in Section 1.1. Expanding the
constraint works similarly:

ampl: expand Time;
subject to Time:

0.005*Make[’bands’] + 0.00714286*Make[’coils’] <= 40;

Expressions in the symbolic model, such as the coefficients1/rate[p] in this exam-
ple, are evaluated before the expansion is displayed. You can expand the objective and
all of the constraints at once by typingexpand by itself.

The expressions above show that the symbolic model’sMake[j] expands to the
explicit variablesMake[’bands’] andMake[’coils’]. You can use expressions
like these inAMPL commands, for example to expand a particular variable to see what
coefficients it has in the objective and constraints:

ampl: expand Make[’coils’];
Coefficients of Make[’coils’]:

Time 0.00714286
Total_Profit 30

Either single quotes (’) or double quotes (") may surround the subscript.

1.5 Adding lower bounds to the model

Once the model and data have been set up, it is a simple matter to change them and
then re-solve. Indeed, we would not expect to find an LP application in which the model
and data are prepared and solved just once, or even a few times. Most commonly, numer-
ous refinements are introduced as the model is developed, and changes to the data con-
tinue for as long as the model is used.

Let’s conclude this chapter with a few examples of changes and refinements. These
examples also highlight some additional features ofAMPL.

14 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

Suppose first that we add another product, steel plate. The model stays the same, but
in the data we have to addplate to the list of members for the setPROD, and we have
to add a line of parameter values forplate:

set PROD := bands coils plate;

param: rate profit market :=
bands 200 25 6000
coils 140 30 4000
plate 160 29 3500 ;

param avail := 40;

We put this version of the data in a file calledsteel2.dat, and useAMPL as before to
get the solution:

ampl: model steel.mod; data steel2.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 196400

ampl: display Make;
Make [*] :=
bands 6000
coils 0
plate 1600
;

Profits have increased compared to the two-variable version, but now it is best to produce
no coils at all! On closer examination, this result is not so surprising. Plate yields a pro-
fit of $4640 per hour, which is less than for bands but more than for coils. Thus plate is
produced to absorb the capacity not taken by bands; coils would be produced only if both
bands and plate reached their market limits before the available hours were exhausted.

In reality, a whole product line cannot be shut down solely to increase weekly profits.
The simplest way to reflect this in the model is to add lower bounds on the production
amounts, as shown in Figures 1-5a and 1-5b. We have declared a new collection of
parameters namedcommit, to represent the lower bounds on production that are
imposed by sales commitments, and we have changed>= 0 to >= commit[p] in the
declaration of the variablesMake[p].

After these changes are made, we can runAMPL again to get a more realistic solution:

ampl: model steel3.mod; data steel3.dat; solve;
MINOS 5.5: optimal solution found.
2 iterations, objective 194828.5714

ampl: display commit, Make, market;
: commit Make market :=
bands 1000 6000 6000
coils 500 500 4000
plate 750 1028.57 3500
;

For comparison, we have displayedcommit andmarket on either side of the actual
production,Make. As expected, after the commitments are met, it is most profitable to

SECTION 1.6 ADDING RESOURCE CONSTRAINTS TO THE MODEL 15

__
__

set PROD; # products

param rate {PROD} > 0; # produced tons per hour
param avail >= 0; # hours available in week
param profit {PROD}; # profit per ton

param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time: sum {p in PROD} (1/rate[p]) * Make[p] <= avail;

Constraint: total of hours used by all
products may not exceed hours available

Figure 1-5a: Lower bounds on production (steel3.mod).

set PROD := bands coils plate;

param: rate profit commit market :=
bands 200 25 1000 6000
coils 140 30 500 4000
plate 160 29 750 3500 ;

param avail := 40;

Figure 1-5b: Data for lower bounds on production (steel3.dat).
__

produce bands up to the market limit, and then to produce plate with the remaining avail-
able time.

1.6 Adding resource constraints to the model

Processing of steel slabs is not a single operation, but a series of steps that may pro-
ceed at different rates. To motivate a more general model, imagine that we divide pro-
duction into a reheat stage that can process the incoming slabs at 200 tons per hour, and a
rolling stage that makes bands, coils or plate at the rates previously given. Further imag-
ine that there are only 35 hours of reheat time, even though there are 40 hours of rolling
time.

To cover this kind of situation, we can add a setSTAGE of production stages to our
model. The parameter and constraint declarations are modified accordingly, as shown in
Figure 1-6a. Since there is a potentially different number of hours available in each
stage, the parameteravail is now indexed overSTAGE. Since there is a potentially dif-
ferent production rate for each product in each stage, the parameterrate is indexed over
both PROD andSTAGE. In theTime constraint, the production rate for productp in

16 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

set PROD; # products
set STAGE; # stages

param rate {PROD,STAGE} > 0; # tons per hour in each stage
param avail {STAGE} >= 0; # hours available/week in each stage
param profit {PROD}; # profit per ton

param commit {PROD} >= 0; # lower limit on tons sold in week
param market {PROD} >= 0; # upper limit on tons sold in week

var Make {p in PROD} >= commit[p], <= market[p]; # tons produced

maximize Total_Profit: sum {p in PROD} profit[p] * Make[p];

Objective: total profits from all products

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

In each stage: total of hours used by all
products may not exceed hours available

Figure 1-6a: Additional resource constraints (steel4.mod).
__

stages is referred to asrate[p,s]; this is AMPL’s version of a doubly subscripted
entity likea ps in algebraic notation.

The only other change is to the constraint declaration, where we no longer have a sin-
gle constraint, but a constraint for each stage, imposed by limited time available at that
stage. In algebraic notation, this might have been written

Subject to
p∈P
Σ (1/ a ps) X p ≤ b s, for eachs∈S.

Compare theAMPL version:

subject to Time {s in STAGE}:
sum {p in PROD} (1/rate[p,s]) * Make[p] <= avail[s];

As in the other examples, this is a straightforward analogue, adapted to the requirements
of a computer language. In almost all models, most of the constraints are indexed collec-
tions like this one.

Sincerate is now indexed over combinations of two indices, it requires a data table
all to itself, as in Figure 1-6b. The data file must also include the membership for the
new setSTAGE, and values ofavail for bothreheat androll.

After these changes are made, we useAMPL to get another revised solution:

ampl: reset;
ampl: model steel4.mod; data steel4.dat; solve;
MINOS 5.5: optimal solution found.
4 iterations, objective 190071.4286

SECTION 1.6 ADDING RESOURCE CONSTRAINTS TO THE MODEL 17

__
__

set PROD := bands coils plate;
set STAGE := reheat roll;

param rate: reheat roll :=
bands 200 200
coils 200 140
plate 200 160 ;

param: profit commit market :=
bands 25 1000 6000
coils 30 500 4000
plate 29 750 3500 ;

param avail := reheat 35 roll 40 ;

Figure 1-6b: Data for additional resource constraints (steel4.dat).
__

ampl: display Make.lb, Make, Make.ub, Make.rc;
: Make.lb Make Make.ub Make.rc :=
bands 1000 3357.14 6000 5.32907e-15
coils 500 500 4000 -1.85714
plate 750 3142.86 3500 3.55271e-15
;

ampl: display Time;
Time [*] :=
reheat 1800

roll 3200
;

Thereset command erases the previous model so a new one can be read in.
At the end of the example above we have displayed the ‘‘marginal values’’ (also

called ‘‘dual values’’ or ‘‘shadow prices’’) associated with theTime constraints. The
marginal value of a constraint measures how much the value of the objective would
improve if the constraint were relaxed by a small amount. For example, here we would
expect that up to some point, additional reheat time would produce another $1800 of
extra profit per hour, and additional rolling time would produce $3200 per hour; decreas-
ing these times would decrease the profit correspondingly. In output commands like
display, AMPL interprets a constraint’s name alone as referring to the associated mar-
ginal values.

We also display several quantities associated with the variablesMake. First there are
lower boundsMake.lb and upper boundsMake.ub, which in this case are the same as
commit and market. We also show the ‘‘reduced cost’’Make.rc, which has the
same meaning with respect to the bounds that the marginal values have with respect to
the constraints. Thus we see that, again up to some point, each increase of a ton in the
lower bound (or commitment) for coil production should reduce profits by about $1.86;
each one-ton decrease in the lower bound should improve profits by about $1.86. The
production levels for bands and plates are between their bounds, so their reduced costs are
essentially zero (recall thate-15 means×10−15), and changing their levels will have no

18 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

Figure 1-7a: A Java-basedAMPL graphical user interface (Macintosh).
__

effect. Bounds, marginal (or dual) values, reduced costs and other quantities associated
with variables and constraints are explored further in Section 12.5.

Comparing this session with our previous one, we see that the additional reheat time
restriction reduces profits by about $4750, and forces a substantial change in the optimal
solution: much higher production of plate and lower production of bands. Moreover, the
logic underlying the optimum is no longer so obvious. It is the difficulty of solving LPs
by logical reasoning alone that necessitates computer-based systems such asAMPL.

1.7 AMPL interfaces

The examples that we have presented so far all useAMPL’s command interface: the
user types textual commands and the system responds with textual results. This is what
we will use throughout the book to illustrateAMPL’s capabilities. It permits access to all
of AMPL’s rich collection of features, and it will be the same in all environments. A
text-based interface is most natural for creating scripts of frequently used commands and
for writing programs that useAMPL’s programming constructs (the topics of Chapter 13).
And text commands are used in applications whereAMPL is a hidden or behind-the-
scenes part of some larger process.

SECTION 1.7 AMPL INTERFACES 19

__
__

Figure 1-7b: A Tcl/Tk-basedAMPL graphical user interface (Unix).
__

All that said, however, there are plenty of times where a graphical user interface can
make a program easier to use, helping novices to get started and casual or infrequent
users to recall details.AMPL is no exception. Thus there are a variety of graphical inter-
faces forAMPL, loosely analogous to the ‘‘integrated development environments’’ for
conventional programming languages, thoughAMPL’s environments are much less elabo-
rate. AnAMPL graphical interface typically provides a way to easily execute standard
commands, set options, invoke solvers, and display the results, often by pushing buttons
and selecting menu items instead of by typing commands.

Interfaces exist for standard operating system platforms. For example, Figure 1-7a
shows a simple interface based on Java that runs on Unix and Linux, Windows, and Mac-
intosh, presenting much the same appearance on each. (The Mac interface is shown.)
Figure 1-7b shows a similar interface based on Tcl/Tk, shown running on Unix but also
portable to Windows and Macintosh. Figure 1-7c shows another interface, created with
Visual Basic and running on Windows.

There are also web-based interfaces that provide client-server access toAMPL or
solvers over network connections, and a number of application program interfaces
(API’s) for calling AMPL from other programs. TheAMPL web site,www.ampl.com,
provides up to date information on all types of available interfaces.

20 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

__
__

Figure 1-7c: A Visual BasicAMPL graphical user interface (Windows).
__

Bibliography

Julius S. Aronofsky, John M. Dutton and Michael T. Tayyabkhan,Managerial Planning with Lin-
ear Programming: In Process Industry Operations. John Wiley & Sons (New York, NY, 1978). A
detailed account of a variety of profit-maximizing applications, with emphasis on the petroleum
and petrochemical industries.

Vas ˇek Chva ´ tal, Linear Programming, W. H. Freeman (New York, NY, 1983). A concise and eco-
nomical introduction to theoretical and algorithmic topics in linear programming.

Tibor Fabian, ‘‘A Linear Programming Model of Integrated Iron and Steel Production.’’ Manage-
ment Science4 (1958) pp. 415–449. An application to all stages of steelmaking — from coal and
ore through finished products — from the early days of linear programming.

Robert Fourer and Goutam Dutta, ‘‘A Survey of Mathematical Programming Applications in Inte-
grated Steel Plants.’’ Manufacturing & Service Operations Management4 (2001) pp. 387–400.

David A. Kendrick, Alexander Meeraus and Jaime Alatorre,The Planning of Investment Programs
in the Steel Industry. The Johns Hopkins University Press (Baltimore, MD, 1984). Several detailed
mathematical programming models, using the Mexican steel industry as an example.

Robert J. Vanderbei,Linear Programming: Foundations and Extensions (2nd edition). Kluwer
Academic Publishers (Dordrecht, The Netherlands, 2001). An updated survey of linear program-
ming theory and methods.

SECTION 1.7 AMPL INTERFACES 21

Exercises

1-1. This exercise starts with a two-variable linear program similar in structure to the one of Sec-
tions 1.1 and 1.2, but with a quite different story behind it.

(a) You are in charge of an advertising campaign for a new product, with a budget of $1 million.
You can advertise on TV or in magazines. One minute of TV time costs $20,000 and reaches 1.8
million potential customers; a magazine page costs $10,000 and reaches 1 million. You must sign
up for at least 10 minutes of TV time. How should you spend your budget to maximize your audi-
ence? Formulate the problem inAMPL and solve it. Check the solution by hand using at least one
of the approaches described in Section 1.1.

(b) It takes creative talent to create effective advertising; in your organization, it takes three
person-weeks to create a magazine page, and one person-week to create a TV minute. You have
only 100 person-weeks available. Add this constraint to the model and determine how you should
now spend your budget.

(c) Radio advertising reaches a quarter million people per minute, costs $2,000 per minute, and
requires only 1 person-day of time. How does this medium affect your solutions?

(d) How does the solution change if you have to sign up for at least two magazine pages? A maxi-
mum of 120 minutes of radio?

1-2. The steel model of this chapter can be further modified to reflect various changes in produc-
tion requirements. For each part below, explain the modifications to Figures 1-6a and 1-6b that
would be required to achieve the desired changes. (Make each change separately, rather than accu-
mulating the changes from one part to the next.)

(a) How would you change the constraints so that total hours used by all products mustequal the
total hours available for each stage? Solve the linear program with this change, and verify that you
get the same results. Explain why, in this case, there is no difference in the solution.

(b) How would you add to the model to restrict the total weight of all products to be less than a
new parameter,max_weight? Solve the linear program for a weight limit of 6500 tons, and
explain how this extra restriction changes the results.

(c) The incentive system for mill managers may tend to encourage them to produce as many tons as
possible. How would you change the objective function to maximize total tons? For the data of
our example, does this make a difference to the optimal solution?

(d) Suppose that instead of the lower bounds represented bycommit[p] in our model, we want to
require that each product represent a certain share of the total tons produced. In the algebraic nota-
tion of Figure 1-1, this new constraint might be represented as

X j ≥ s j
k∈P
Σ X k, for eachj∈P

wheres j is the minimum share associated with projectj. How would you change theAMPL model
to use this constraint in place of the lower boundscommit[p]? If the minimum shares are 0.4 for
bands and plate, and 0.1 for coils, what is the solution?

Verify that if you change the minimum shares to 0.5 for bands and plate, and 0.1 for coils, the lin-
ear program gives an optimal solution that produces nothing, at zero profit. Explain why this
makes sense.

22 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

(e) Suppose there is an additional finishing stage for plates only, with a capacity of 20 hours and a
rate of 150 tons per hour. Explain how you could modify the data, without changing the model, to
incorporate this new stage.

1-3. This exercise deals with some issues of ‘‘sensitivity’’ in the steel models.

(a) For the linear program of Figures 1-5a and 1-5b, displayTime andMake.rc. What do these
values tell you about the solution? (You may wish to review the explanation of marginal values
and reduced costs in Section 1.6.)

(b) Explain why the reheat time constraints added in Figure 1-6a result in a higher production of
plate and a lower production of bands.

(c) UseAMPL to verify the following statements: If the available reheat time is increased from 35
to 36 in the data of Figure 1-6b, then the profit goes up by $1800 as predicted in Section 1.6. If the
reheat time is further increased to 37, the profit goes up by another $1800. However, if the reheat
time is increased to 38, there is a smaller increase in the profit, and further increases past 38 have
no effect on the optimal profit at all. To change the reheat time to, say, 26 without changing and
reading the data file over again, type the command

let avail["reheat"] := 36;

By trying some other values of the reheat time, confirm that the profit increases by $1800 per extra
hour for any number of hours between 35 and 379/14, but that any increase in the reheat time
beyond 379/14 hours doesn’t give any further profit.

Draw a plot of the profit versus the number of reheat hours available, for hours≥ 35.

(d) To find the slope of the plot from (c) — profit versus reheat time available — at any particular
reheat time value, you need only look at the marginal value ofTime["reheat"]. Using this
observation as an aid, extend your plot from (c) down to 25 hours of reheat time. Verify that the
slope of the plot remains at $6000 per hour from 25 hours down to less than 12 hours of reheat
time. Explain what happens when the available reheat time drops to 11 hours.

1-4. Here is a similar profit-maximizing model, but in a different context. An automobile manu-
facturer produces several kinds of cars. Each kind requires a certain amount of factory time per car
to produce, and yields a certain profit per car. A certain amount of factory time has been scheduled
for the next week, and it is desired to use all this time; but at least a certain number of each kind of
car must be manufactured to meet dealer requirements.

(a) What are the data values that define this problem? How would you declare the sets and param-
eter values for this problem inAMPL? What are the decision variables, and how would you declare
them inAMPL?

(b) Assuming that the objective is to maximize total profit, how would you declare an objective in
AMPL for this problem? How would you declare the constraints?

(c) For purposes of experiment, suppose that there are three kinds of cars, known at the factory as
T, C andL, that 120 hours are available, and that the time per car, profit per car and dealer orders
for each kind of car are as follows:

Car time profit orders

T 1 200 10
C 2 500 20
L 3 700 15

SECTION 1.7 AMPL INTERFACES 23

How much of each car should be produced, and what is the maximum profit? You should find that
your solution specifies a fractional amount of one of the cars. As a practical matter, how could you
make use of this solution?

(d) If you maximize the total number of cars produced instead of the total profit, how many more
cars do you make? How much less profit?

(e) Each kind of car achieves a certain fuel efficiency, and the manufacturer is required by law to
maintain a certain ‘‘fleet average’’ efficiency. The fleet average is computed by multiplying the
efficiency of each kind of car times the number of that kind produced, summing all of the resulting
products, and dividing by the total of all cars produced. Extend yourAMPL model to contain a
minimum fleet average efficiency constraint. Rearrange the constraint as necessary to make it lin-
ear — no variables divided into other variables.

(f) Find the optimal solution for the case where carsT, C andL achieve fuel efficiencies of 50, 30
and 20 miles/gallon, and the fleet average efficiency must be at least 35 miles/gallon. Explain how
this changes the production amounts and the total profit. Dealing with the fractional amounts in
the solution is not so easy in this case. What might you do?

If you had 10 more hours of production time, you could make more profit. Does the addition of the
fleet average efficiency constraint make the extra 10 hours more or less valuable?

(g) Explain how you could further refine this model to account for different production stages that
have different numbers of hours available per stage, much as in the steel model of Section 1.6.

1-5. A group of young entrepreneurs earns a (temporarily) steady living by acquiring inadequately
supervised items from electronics stores and re-selling them. Each item has a street value, a
weight, and a volume; there are limits on the numbers of available items, and on the total weight
and volume that can be managed at one time.

(a) Formulate anAMPL model that will help to determine how much of each item to pick up, to
maximize one day’s profit.

(b) Find a solution for the case given by the following table,

Value Weight Volume Available

TV 50 35 8 20
radio 15 5 1 50
camera 85 4 2 20
CD player 40 3 1 30
VCR 50 15 5 30
camcorder 120 20 4 15

and by limits of 500 pounds and 300 cubic feet.

(c) Suppose that it is desirable to acquire some of each item, so as to always have stock available
for re-sale. Suppose in addition that there are upper bounds on how many of each item you can
reasonably expect to sell. How would you add these conditions to the model?

(d) How could the group use the dual variables on the maximum-weight and maximum-volume
constraints to evaluate potential new partners for their activities?

(e) Through adverse circumstances the group has been reduced to only one member, who can carry
a mere 75 pounds and five cubic feet. What is the optimum strategy now? Given that this requires
a non-integral number of acquisitions, what is the best all-integer solution? (The integrality con-
straint converts this from a standard linear programming problem into a much harder problem
called a Knapsack Problem. See Chapter 20.)

24 PRODUCTION MODELS: MAXIMIZING PROFITS CHAPTER 1

1-6. Profit-maximizing models of oil refining were one of the first applications of linear program-
ming. This exercise asks you to model a simplified version of the final stage of the refining pro-
cess.

A refinery breaks crude oil into some collection of intermediate materials, then blends these materi-
als back together into finished products. Given the volumes of intermediates that will be available,
we want to determine how to blend the intermediates so that the resulting products are most prof-
itable. The decision is made more complicated, however, by the existence of upper limits on cer-
tain attributes of the products, which must be respected in any feasible solution.

To formulate an algebraic linear programming model for this problem, we can start by defining sets
I of intermediates,J of final products, andK of attributes. The relevant technological data may be
represented by

a i barrels of intermediatei available, for eachi∈I
r ik units of attributek contributed per barrel of intermediatei, for eachi∈I andk∈K
u j k maximum allowed units of attributek per barrel of final productj,

for eachj∈J andk∈K
δ i j 1 if intermediatei is allowed in the blend for productj, or 0 otherwise,

for eachi∈I andj∈J

and the economic data can be given by

c j revenue per barrel of productj, for eachj∈J

There are two collections of decision variables:

X i j barrels of intermediatei used to make productj, for eachi∈I andj∈J
Y j barrels of productj made, for eachj∈J

The objective is to

maximize Σ j∈J
c j Y j,

which is the sum of the revenues from the various products.

It remains to specify the constraints. The amount of each intermediate used to make products must
equal the amount available:

Σ j∈J
X i j = a i, for eachi∈I.

The amount of a product made must equal the sum of amounts of the components blended into it:

Σ i∈I
X i j = Y j, for eachj∈J.

For each product, the total attributes contributed by all intermediates must not exceed the total
allowed:

Σ i∈I
r ik X i j ≤ u j k Y j, for eachj∈J andk∈K.

Finally, we bound the variables as follows:

0 ≤ X i j ≤ δ i j a i, for eachi∈I, j∈J,
0 ≤ Y j, for eachj∈J.

SECTION 1.7 AMPL INTERFACES 25

The upper bound onX i j assures that only the appropriate intermediates will be used in blending. If
intermediatei is not allowed in the blend for productj, as indicated byδ i j being zero, then the
upper bound onX i j is zero; this ensures thatX i j cannot be positive in any solution. Otherwise, the
upper bound onX i j is justa i, which has no effect since there are onlya i barrels of intermediatei
available for blending in any case.

(a) Transcribe this model toAMPL, using the same names as in the algebraic form for the sets,
parameters and variables as much as possible.

(b) Re-write theAMPL model using meaningful names and comments, in the style of Figure 1-4a.

(c) In a representative small-scale instance of this model, the intermediates areSRG (straight run
gasoline),N (naphtha),RF (reformate),CG (cracked gasoline),B (butane),DI (distillate intermedi-
ate),GO (gas oil), andRS (residuum). The final products arePG (premium gasoline),RG (regular
gasoline),D (distillate), andHF (heavy fuel oil). Finally, the attributes arevap (vapor pressure),
oct (research octane),den (density), andsul (sulfur).

The following amounts of the intermediates are scheduled to be available:

SRG N RF CG B DI GO RS

21170 500 16140 4610 370 250 11600 25210

The intermediates that can be blended into each product, and the amounts of the attributes that they
possess, are as follows (with blank entries representing zeros):

Premium & regular gasoline Distillate Heavy fuel oil
vap oct den sul den sul

SRG 18.4 –78.5
N 6.54 –65.0 272 .283
RF 2.57 –104.0
CG 6.90 –93.7
B 199.2 –91.8
DI 292 .526
GO 295 .353 295 .353
RS 343 4.70

The attribute limits and revenues/barrel for the products are:

vap oct den sul revenue

PG 12.2 –90 10.50
RG 12.7 –86 9.10
D 306 0.5 7.70
HF 352 3.5 6.65

Limits left blank, such as density for gasoline, are irrelevant and may be set to some relatively
large number.

Create a data file for yourAMPL model and determine the optimal blend and production amounts.

(d) It looks a little strange that the attribute amounts for research octane are negative. What is the
limit constraint for this attribute really saying?

2
Diet and Other Input Models:

Minimizing Costs

To complement the profit-maximizing models of Chapter I, we now consider linear
programming models in which the objective is to minimize costs. Where the constraints
of maximization models tend to be upper limits on the availability of resources, the con­
straints in minimization models are more likely to be lower limits on the amounts of cer­
tain "qualities" in the solution.

As an intuitive example of a cost-minimizing model, this chapter uses the well-known
'''diet problem". which finds a mix of foods that sat isfies requirements on the amounts of
various vitamins. We wi ll again construct a small, explicit linear program, and then show
how a general model can be formulated for all linear programs of that kind. Since you
are now more familiar with AMPL, however, we will spend more time on AMPL and less
with algebraic notation.

After formulating the diet model, we will discuss a few changes that might make it
more realistic. The full power of this model, however, derives from its applicability to
many situations that have nothing to do with diets. Thus we conclude this chapter by
rewriting the model in a more general way, and discussing its application to blending,
economics, and scheduling.

2.1 A linear program for the diet problem

Consider the problem of choosing prepared foods to meet certain nutritional require­
ments. Suppose that precooked dinners of the following kinds are available for the fol­
lowing prices per package:

28 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS CHAPTEA 2

BEEF beef $3.19
CHK chicken 2.59
FISH fish 2.29
HAM ham 2.89
MCH macaron i & cheese 1.89
MTL meat loaf 1.99
SPG spagheui 1.99
TUR turkey 2.49

These dinners provide the following percentages, per package, of the minimum daily
requirements for vitamins A, C, B I and B2:

A C BI B2

BEEF 60% 20% 10% -15%
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10

The problem is to find the cheapest combination of packages that will meet a week"s
requirements - that is, at least 700% of the daily requirement for each nutrient.

Lct us write X BEEF for the number of packages of beef dinner to be purchased, X CflK

for the number of packages of chicken dinner, and so forth. Then the total cost of the diet
will be:

total cost ;;;:

3.19 X BEEF + 2.59 X CHK + 2.29 X FISH + 2.89 XI/AM +
1.89 X MCH + 1.99 X AlTL + 1.99 X SPG + 2.49 X TUN

The total percentage of the vitamin A requirement is given by a similar formula, except
that X BEEF, X CHK, and so forth are multiplied by the percenlage per package instead of
the cost per package:

total percentage of vitamin A daily requirement met;;;;
60 X BEEF + 8 X CHK + 8 X FlSH +40 X HAM +
15 XMCI/ + 70 XMTt + 25 X SPG + 60 X TUR

This amount needs to be greater than or equal to 700 percent.. There is a si milar formula
for each of the other vitamins, and each of these also needs to be ~ 700.

Putting these all together, we have the following linear program:

r SECTION 2.1 A LINEAR PROGRAM FOR THE DIET PROBLEM

Minimize
3.19 X BEEF + 2.59 X CHK + 2.29 X FISH + 2.89 X HAM +

1.89 X MCH + 1.99 X MTL + 1.99 X sPo + 2.49 X TUR

Subject to
60 X BEEF + 8 X CHK + 8 X FISH + 40 X flAM +

15 X MCH + 70 X MTL + 25 X SPO + 60 X TUR '" 700

20 X flEEF + 0 X CHK + lOX FISH + 40 X HAM +

35 X MCH + 30 X MTL + 50 X SPO + 20 X TVR '" 700

10 X BEEF + 20 X CHK + 15 XF/SH + 35 X HAM +

15 X MCH + 15 X MTL + 25 X sPc + 15 X TUR '" 700

15XBEEf +20XCHK + 10 X FISH + IOX HAM +

15 X MCH + 15 X MTL + 15 X SI'O + 10XTUR '" 700

X BEEF'" 0, X CHK '" 0, X FISH '" 0, X HAM'" 0 ,

X MCH '" 0, X MTL '" 0, X SPC '" 0, X TUR '" 0

29

At the end we have added the common-sense requirement that no fewer than zero pack­
ages of a food can be purchased.

As we first did with the production LP of Chapter I, we can transcribe to a file , say
dietO. mod, an AMPL statement of the explicit diet LP:

var Xbeef >= 0; var Xchk >= 0 ; var Xfish >= 0;
var Xham >= 0; var Xmch >= 0; var Xmtl >= 0;
var Xspg >= 0; var Xtur >= o·

minimize cost:
3 . 19*Xbeef + 2 . S9*Xchk + 2 . 29*Xfish + 2 . 89*Xham +

1 . 89*Xmch + 1.99*Xmtl + 1 . 99*Xspg + 2 . 49*Xtur;

subject to A:
60*Xbeef + 8*Xchk + B*Xfish + 40·Xham +
lS*Xmch + 70*Xmtl + 25*Xspg + 60*Xtur >= 700;

subject to c:
20·Xbeef + Q*Xchk + lO·Xfish + 40·xham +
35*Xmch + 30*Xrntl + SO*Xspg + 20·Xtur >= 700;

subject to B1 ,
lO*Xbeef + 20*Xchk + 15*Xfish + 35*Xham +

15*Xmch + 15*Xmtl + 25*Xspg + 15*Xtur >= 700;

subject to 82,
15*Xbeef + 20*Xchk + 10*Xfish + 10*Xham +

15*Xmch + 15*Xmtl + 15*Xspg + lO*Xtur >= 700;

Again a few AMPL commands then suffice to read the file, send the LP to a solver, and
retrieve the results:

30 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS

ampl : model dietO.mod;
ampl : solve;
MINOS 5 . 5 : optimal solution found.
6 iterations, objective 88.2

CHAPTER 2

ampl: display XbeeI,Xchk,Xfish,Xham,xmch,Xmtl,Xspg,Xtur;
Xbeef = 0
Xchk = 0
Xfish = a
Xham 0
Xmch 46.6667
Xmtl -3.6915ge-1S
Xspg -4 . 05347e-16
Xtur 0

The optimal solution is found quickly, but it is hardly what we might have hoped for.
The cost is minimized by a monotonous diet of 462/] packages of macaroni and cheese!
You can check that this neatly provides 15% x 4621.3 = 700% of the requirement for vita­
mins A, B I and B2, and a lot more vitamin C than necessary; the cost is only $1.89 x
4621.3 = $88.20. (The tiny negative values for meat loaf and spaghetti can be regarded as
zeros, like the tiny positive values we saw in Section 1.6.)

You might guess that a bener solution would be generated by requiring the amount of
each vitamin to equal 700% exactly. Such a requirement can easily be imposed by
changing each >= to = in the AMPL constraints. If you go ahead and solve the changed
LP, you will find that the diet does indeed become more varied: approximately 19.5 pack­
ages of chicken, 16.3 of macaroni and cheese, and 4.3 of meat loaf. But since equalities
are more restrictive than inequalities, the cost goes up to $89.99.

2.2 An AMPL model for the diet problem

Clearly we will have to consider more extensive modifications to our linear program
in order to produce a diet that is even remotely acceptable. We will probably want to
change the sets of food and nutrients, as well as the nature of the constraints and bounds.
As in the production example of the previous chapter, this will be much easier to do if we
rely on a general model that can be coupled with a variety of specific data files.

This model deals with two things: nutrients and foods. Thus we begin an AMPL
model by declaring sets of each:

set NUTR;
set FOOD;

Next we need to specify the numbers required by the model. Certainly a positive cost
should be given for each food:

param cost {FOOD} > 0;

We also specify that for each food there are lower and upper limits on the number of
packages in the diet:

r SECTION 2.2 AN AMPL MODEL FOR THE DIET PROBLEM 31

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

Notice that we need a dummy index j to run over FOOD in the declaration of f_max, in
order to say that the maximum for each food must be greater than or equal to the corre­
sponding minimum.

To make this model somewhat more general than our examples so far, we also specify
similar lower and upper limits on the amount of each nutrient in the diet:

param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min(i] ;

Finally, for each combination of a nutrient and a food, we need a number that represents
the amount of the nutrient in one packagc of the food. You may recall from Chapter I
that such a "product" of two sets is written by listing them both:

pararn arnt {NUTR, FOOD} >= 0;

References to this parameter require two indices. For example, amt (i, j) is the amount
of nutrient i in a package of food j.

The decision variables for this model are the numbers of packages to buy of the differ­
ent foods:

var Buy {j in FOOD} >= f_min[j1, <= f_max[j];

The number of packages of some food j to be bought will be called Buy [j J; in any
acceptable solution it will have to lie between f_min [j J and f_max [j J .

The total cost of buying a food j is the cost per package, cost [j], times the num­
ber of packages, Buy [j J. The objective to be minimized is the sum of this product over
all foods j :

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j] i

This minimize declaration works the same as maximize did in Chapter I.
Similarly, the amount of a nutrient i supplied by a food j is the nutrient per package,

amt [i, j J , times the number of packages Buy [j J. The total amount of nutrient i sup­
plied is the sum of this product over all foods j:

sum {j in FOOD} amt[i,j] * Buy[j]

To complete the model, we need only specify that each such sum must lie between the
appropriate bounds. Our constraint declaration begins

subject to Diet {i in NUTR}:

to say that a constraint named Diet [i] must be imposed for each member i of NUTR.
The rest of the declaration gives the algebraic statement of the constraint for nutrient i:
the variables must satisfy

n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max(iJ

32 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS

set NUTRi
set FOOD;

param cost
param f_min
param f _max

param n _min
param n_max

{FOOD}
{FOOD}
{j in

{NUTR}
{i in

> O·
>= 0 ,

FOOD} >=

>= 0,
NUTR} >=

param amt {NUTR, FOOD} >= 0:

f _ min[j] i

n_min[i] ;

var Buy {j in FOOD} >= f_min[j] , <= f _max[j];

CHAPTER 2

minimize Total_Cost: sum {j in FOOD} cost[j] * Buy[j] i

subject to Diet {i in NUTR} :
n_min(il <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_rnax[i];

Figure 2-1: Diet model in AMPL (diet . mod).

A "double inequality" like this is interpreted in the obvious way: the value of the slim in
the middle must lie between n_min [i] and n_max [i]. The complete model is shown
in Figure 2-1.

2.3 Using the AMPL diet model

By specifying appropriate data, we can solve any of the linear programs that corre­
spond to the above model. Let's begin by using the data from the beginning of this chap­
ter, which is shown in AMPL format in Figure 2-2.

The values of f_min and n_rnin are as given originally, wh ile f_max and n_rnax
are set, for the time being. to large values that won't affect the optimal solution. In the
table for amt, the notation (tr) indicates that we have "transposed" the table so the
columns correspond to the first index (nutrients), and the rows to the second (foods).
Alternatively, we could have changed the model to say

param amt {FOOD,NUTR)

in which case we would have had to write amt [j , i] in the constraint.
Suppose that model and data are stored in the files diet. mod and diet. dat,

respectively. Then AMPL is used as follows to read these files and to solve the resulting
linear program:

ampl: model diet .mod;
ampl : data diet.dat;

ampl: solve;
MINOS 5.S : optimal solution found .
6 iterations, objective 88.2

r
SECTION 2.3 USING THE AMPL DIET MODEL

set NUTR : = A B1 B2 C ;
set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR

param : cost f _min f_max : =
BEEF 3.19 0 100
CHK 2.59 0 100
FISH 2.29 0 100
HAM 2.89 0 100
MCH 1. 89 0 100
MTL 1. 99 0 100
SPG 1. 99 0 100
TUR 2.49 0 100

param: n_min n_max :=

A 700 10000
C 700 10000
B1 700 10000
B2 700 10000

pararn arnt (tr) ,

A C B1 B2 :=

BEEF 60 20 10 15
CHK 8 0 20 20
FISH 8 10 15 10
HAM 40 40 35 10
MCH 15 35 15 15
MTL 70 30 15 15
SPG 25 50 25 15
TUR 60 20 15 10

Figure 2-2: Data for diet model (diet. da t).

ampl: display Buy;
Buy (*] : =

BEEF 0
CHK 0

FISH 0
HAM 0
MCH 46.6667
MTL -1.07823e-16
SPG -1.32893e-16
TUR 0

Naturally, the result is the same as before.

33

Now suppose that we want to make the following enhancements. To promote variety,
the weekly diet must contain between 2 and 10 packages of each food. The amount of
sodium and calories in each package is also given; total sodium must not exceed 40,000
mg, and total calories must be between 16,000 and 24,000. All of these changes can be
made through a few modifications to the data, as shown in Figure 2-3. Putting this new
data in file diet2 . dat, we can run AMPL again:

34 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS

set NUTR ,= A Bl B2 C NA CAL ;
set FOOD ,= BEEF CHK FISH HAM MCH MTL SPG TUR

param: cost f _min f_max . -
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1. 89 2 10
MTL 1.99 2 10
SPG 1. 99 2 10
TUR 2 .4 9 2 10

param : n_min n_max .-
A 700 20000
C 700 20000
Bl 700 20000
B2 700 20000
NA 0 40000
CAL 16000 24000

param amt (tr) ,

A C Bl B2 NA CAL : =
BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450

Figure 2·3; Data for enhanced diet model (diet2. dat).

ampl: model diet.mod;
ampl : data diet2.dat;

ampl : solve;
MINOS 5 . 5: infeasible problem.
9 iterations

CHAPTER 2

The message infeasible problem tells us that we have constrained the diet too
tightly; there is no way that all of the restrictions can be sati sfied.

AMPL lets us ex.amine a variety of values produced by a solver as it attempts to find a
solution. In Chapter 1, we used marginal (or dual) values to invest igarc the sensitivity of
an optimum solution to changes in the constraints. Here there is no optimum, but the
solver does return the last solution that it found while attempting to satisfy the con­
straints. We can look for the source of the infeasibility by displaying some values associ­
ated with this solution:

SECTION 2.3 USING THE AMPL DIET MODEL 35

ampl : display Diet.lb, Diet.body, Diet.ubi
Diet . lb Diet .body Diet.ub : =

A 700 1993.09 20000
Bl 700 841.091 20000
B2 700 601.091 20000
C 700 1272.55 20000
CAL 16000 17222.9 24000
NA 0 40000 40000

For each nutrient, Diet. body is the sum of the terms amt [i, j 1 * Buy [j 1 in the
constraint Diet [i]. The Diet .lb and Diet. ub values are the "lower bounds" and
"upper bounds" on the sum in Diet {i] - in this case, just the values n_min [i] and
n_max [i l. We can see that the diet returned by the solver does not supply enough vita­
min 82, while the amount of sodium (NA) has reached its upper bound.

At this point, there are two obvious choices: we could require less 82 or we could
allow more sodium. If we try the latter, and relax the sodium limit to 50,000 mg, a feasi­
ble solution becomes possible:

ampl: let n_ max{"NA"} := SOOOOi

ampl: solvei
MINOS 5 . 5: optimal solution found.
5 iterations, objective 118.0594032

ampl: display BUYi
Buy [*] :=
BEEF 5.36061

CHK 2
FISH 2

HAM 10
MCH 10
MTL 10
SPG 9.30605
TUR 2

This is at least a start toward a palatable diet, although we have to spend $118.06, com­
pared to $88.20 for the original. less restricted case. Clearly it would be easy, now that
the model is set up, to try many other possibilities. (Section 11.3 describes ways to
quickly change the data and re-solve.)

One still disappointing aspect of the solution is the need to buy 5.36061 packages of
beef, and 9.30605 of spaghetti. How can we find the best possible solution in terms of
whole packages? You might think that we could simply round the optimal values to
whole numbers - or integers, as they're often called in the context of optimization -
but it is not so easy to do so in a feasible way. Using AMPL to modify the reported solu­
tion, we can observe that rounding up to 6 packages of beef and 10 of spaghetti , for
example, will violate the sodium limit:

36 DIET AND OTHER INPUT MODELS: MINIMIZ ING COSTS

amp l : ~et Buy["BEEF"} := 6;
ampl: let Buy["SPG"1 := ~O;

ampl : display Diet.lb, Diet.body, Diet.ubi
Diet.lb Diet . body Diet . ub :=

A 700 2012 20000
B1 700 1060 20000
B2 700 720 20000
C 700 1730 20000
CAL 16000 20240 24000
NA 0 51522 50000

CHAPTER 2

(The let statement, which permits modifications of data, is described in Section 11.3.)
You can similarly check that rounding the solution down to 5 of beef and 9 of spaghetti
will provide insufficient vitamin B2. Rounding one up and the other down doesn't work
either. With enough experimenting you can find a nearby all-integer solution that does
satisfy the constraints , but still you will have no guarantee that it is the least-cost all­
integer solution.

AMPL does provide for putting the integrality restriction directly into the declaration
of the variables:

var Buy {j in FOOD} integ er >= f_min[j], <= f_max [j] i

This will only help. however. if you use a solver that can deal with problems whose vari­
ables must be integers. For this , we LUm to CPLEX, a solver that can handle these so­
called integer programs. If we add integer to the declaration of variable Buy as
above, save the resulting model in the file dieti . mod, and add the higher sodium limit
LO diet2 a. dat. then we can fe -solve as follows:

ampl : reset;
ampl : model dieti.mod;
ampl : data diet2a.dat;
ampl : option solver cplex;
ampl: solve;
CPLEX 8 . 0 . 0 : optimal integ er solution; objective 119 . 3
11 MIP simplex i terations
1 branch-and-bound nodes

arnp l , display Buy;
Buy [* 1 : =

BEEF 9
CHK 2

FISH 2
HAM 8
MCH 10
MTL 10
SPG 7
TUR 2

r SECTION 2.4 GENERALIZATIONS TO BLENDING, ECONOMICS AND SCHEOULING 37

Since integrality is an added constraint, it is no surprise that the best integer solution costs
about $1.24 more than the best "continuous" one. But the difference between the diets
is unexpected; the amounts of 3 foods change, each by two or more packages. In general,
integrality and other "discrete" restrictions make solutions for a model much harder to
find. We discuss this at length in Chapter 20.

2.4 Generalizations to blending, economics and scheduling

Your personal experience probably suggests that diet models are not widely used by
people to choose their dinners. These models would be much better suited to situations in
which packaging and personal preferences don't play such a prominent role - for exam­
ple. the blending of animal feed or perhaps food for college dining halls.

The diet model is a convenient, intuitive example of a linear programming formula­
tion that appears in many contexts. Suppose that we rewrite the model in a more general
way, as shown in Figure 2-4. The objects that were called foods and nutrients in the diet
model are now referred to more generically as "inputs" and "outputs". For each input
j, we must decide to use a quantity X [j I that lies between in_min [j I and
in_max [j]; as a result we incur a cost equal to cos t [j] * X (j] , and we create
io (i f j] * X [j] units of each output i. OUf goal is to find the least-cost combination
of inputs that yields, for each output i, an amount between out_min [i] and
out_max [i].

In one common class of applications for this model, the inputs are raw materials to be
mixed together. The outputs are qualities of the resulting blend. The raw materials could
be the components of an animal feed, but they could equally well be the crude oil deriva­
tives that are blended to make gasoline, or the different kinds of coal that are mixed as
input to a coke oven. The qualities can be amounts of something (sodium or calories for
animal feed), or more complex measures (vapor pressure or octane rating for gasoline), or
even physical properties such as weight and volume.

In another well-known application, the inputs are production activities of some sector
of an economy, and the outputs are various products. The in_min and in_max param­
eters are limits on the levels of the activities, while out_min and out_max are regu­
lated by demands. Thus the goal is to find levels of the activities that meet demand at the
lowest cost. This interpretation is related to the concept of an economic equilibrium, as
we will explain in Chapter 19.

In still another, quite different application, the inputs are work schedules, and the out­
puts correspond to hours worked on cenain days of a month. For a particular work
schedule j, io [i f j] is the number of hours that a person following schedule j will
work on day i (zero if none). cos t [j I is the monthly salary for a person following
schedule j, and X [j] is the number of workers assigned that schedule. Under this inter­
pretation, the objective becomes the total cost of the monthly payroll, while the con­
straints say that for each day i, the total number of workers assigned to work that day
must lie between the limits out_min [i) and out_max [i]. The same approach can

38 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS

set INPUT;
set OUTPUT;

inputs
outputs

pararn cost {INPUT} > 0;
param in_min {INPUT} >= 0;
par am in_max {j in INPUT} >= in_min(j];

param out_min {OUTPUT} >= 0;
param out_max {i in OUTPUT) >= out_min[iJ;

param io (OUTPUT,INPUT) >= 0;

var X {j in INPUT} >= in_min[jl, <= in_max[j];

minimize Total_Cost : sum {j in INPUT} cost[j] * X[j];

subject to Outputs {i in OUTPUT} :

CHAPTER 2

out_min[iJ <= sum {j in INPUT} io[i,j] * X[j] <= out_max[il;

Figure 2-4: Least-cost input model (blend . mod).

be used in a variety of other scheduling contexts, where the hours, days or months are
replaced by other periods of time.

Although linear programming can be very useful in applications like these, we need to
keep in mind the assumptions that underlie the LP model. We have already mentioned
the "continuity" assumption whereby X (j] is allowed to take on any value between
in_min [j J and in_max [j J. This may be a lot more reasonable for blending than for
scheduling.

As another example, in writing the objective as

sum {j in INPUT} cost(j) * X[j]

we are assuming " linearity of costs", that is , that the cost of an input is proportional to
the amount of the input used, and that the total cost is the sum of the inputs' individual
costs.

In writing the constraints as

out_min(iJ <= sum {j in INPUT} io[i,j] * X[j] <= out_max[iJ

we are also assuming that the yield of an output i from a particular input is proportional
to the amount of the input used. and that the total yield of an output i is the !o, um of the
yields from the individual inputs. This " linearity of yield'· assumption poses no problem
when the inputs are schedules, and the outputs are hours worked. But in the blending
example, linearity is a physical assumption about the nature of the raw materials and the
qualities, which mayor may not hold. In early applications to refineries, for example, it
was recognized that the addition of lead as an input had a nonlinear effect on the quality
known as octane rating in the resulting blend.

AMPL makes it easy to express discrete or nonlinear models, but any departure from
continuity or linearity is likely to make an optimal solution much harder to obtain. At the

r
SECTION 2.4 GENERALIZATIONS TO BLENDING, ECONOMICS AND SCHEDULING 39

least, it takes a more powerful solver to optimize the resulting mathematical programs.
Chapters 17 through 20 discuss these issues in more detail.

Bibliography

George B. Danrzig. "The Diet Problem." Interfaces 20, 4 (1990) pp. 43-47. An entertaining
account of the origins of the diet problem.

Susan Garner Garille and Saul I. Gass, "Stigler's Diet Problem Revisited." Operations Research
49, 1 (2001) pp. 1-13. A review of the diet problem's origins and its influence over the years on
linear programming and on nutritionists.

Said S. Hilal and Warren Erikson, "Matching Supplies to Save Lives: Linear Programming the
Production of Heart Valves." Interfaces 11,6 (1981) pp. 48-56. A less appetizing equivalent of
the diet problem, involving the choice of pig heart suppliers.

Exercises

2-1. Suppose the foods listed below have calories, protein, calcium, vitamin A, and costs per
pound as shown. In what amounts should these food be purchased to meet at least the daily
requirements listed while minimizing the total cost? (This problem comes from George B.
Dantzig's classic book, Linear Programming and Extensions, page 118. We will take his word on
nutritional values, and for nostalgic reasons have left the prices as they were when the book was
published in \963.)

bread meat potatoes cabbage milk gelatin required

calories 1254 1457 318 46 309 1725 3000
protein 39 73 8 4 16 43 70 g.
calcium 418 41 42 141 536 0 800 mg.
vitamin A 0 0 70 860 720 0 500 l.U.

cost/pound $0.30 $1.00 SO.05 SO.08 SO.23 $0.48

2-2. (a) You have been advised by your doctor to get more exercise, specifically. to burn off at
least 2000 extra calories per week by some combination of walking, jogging, swimming, exercise­
machine, collaborative indoor recreation, and pushing yourself away from the table at mealtimes.
You have a limited tolerance for each activity in hours/week; each expends a certain number of
calories per hour. as shown below:

Calories

Tolerance

walking

100

5

jogging

200
2

swimming

300

3

machine

150
3.5

indoor

300

3

pushback

500
0.5

How should you divide your exercising among these activities to minimize the amount of time you
spend?

40 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS CHAPTER 2

(b) Suppose that you should al so have some variety in your exercise - you must do at least one
hour of each of the first four exercises, bUI no morc than four hours total of walking. jogging, and
exercise-machine. Solve the problem in this form.

2-3. (a) A manufacturer of soft drinks wishes to blend three sugars in approximately Clltual quanti­
ties to ensure uniformilY of laSle in a product. Suppliers onl y provide combinations of the sugars,
at varying costs/ton:

SUPPLIER

Sugar A B C D E F G

Cane 10% 10 20 30 40 20 60
Corn 30% 40 40 20 60 70 10
Beet 60% 50 40 50 0 10 30

Cost/IOn $10 II 12 13 14 12 15

Formulate an AMPL model thal minimi7.es the cost of supply while producing a blend that contains
52 tons of cane sugar, 56 tons of com sugar, and 59 tons of beel sugar.

(b) The manufacturer feels that to ensure good relations with suppliers it is necessary to buy at least
10 tons from each. How does this change the model and the minimum-cost solution?

(c) Formulate an alternative to the model in (a) that finds the lowest-cost way to blend one {On of
supplies so that the amount of each sugar is between 30 and 37 percent of the total.

2-4. At the end of Chapter 1. we indicated how to interpret the marginal (or dual) values of con­
straints and the reduced costs of variab les in a production model. The same ideas can be applied to
thi s chapter's diet model.

(a) Going back to the diet problem that was successfull y solved in Section 2.3, we can di splay the
marginal va lues as follows:

ampl : display Diet.lb,Diet.body,Diet.ub,Diet;
Diet . lb Diet . body Diet .ub Diet :=

A 700 1956 . 29 20000 0
B1 700 1036 . 26 20000 0
82 700 700 20000 0 . 404585
C 700 1682 . 51 20000 0
CAL 16000 19794. 6 24000 0
NA 0 50000 50000 -0 . 00306905

How can you interpret the two that are nonzero?

(b) For the same problem, thi s li sting gives the reduced costs:

ampl : display Buy. Ib, Buy, Buy. ub, Buy. rc;
Buy . lb Buy Buy.ub Buy.rc : =

BEEF 2 5 . 36061 10 8 . 88178e-16
CHK 2 2 10 1. 18884
FI SH 2 2 10 1 . 14441
HAM 2 10 10 -0 . 302651
MCH 2 10 10 -0 . 551151
MTL 2 10 1 0 - 1 . 3289
SPG 2 9.30605 10 0
TUR 2 2 10 2 . 73162

--
SECTION 2.4 GENERALIZATIONS TO BLENDING, ECONOMICS AND SCHEDULING 41

Based on this information, if you want to save money by eating morc than 10 packages of some
food. which one is likely to be your best choice?

2·5. A chain of fast-food restaurants operates 7 days a week, and requires the following minimum
number of kitchen employees from Monday through Sunday: 45, 45, 40, 50, 65, 35, 35. Each
employee is scheduled to work one weekend day (Saturday or Sunday) and four other days in a
week. The management wants to know the minimum total number of employees needed to satisfy
the requirements on every day.

(a) Set up and solve this problem as a linear program.

(b) In light of the discussion in Section 2.4, explain how this problem can be viewed as a special
case of the blending model in Figure 2-4.

2a 6. The output of a paper mill consists of standard rolls 110 inches (110") wide, which are cut
into smaller rolls to meet orders. This week there are orders for rolls of the following widths:

Width Orders
20" 48
45" 35
50" 24
55" 10
75" 8

The owner of the mill wants to know what cUlting patterns to apply so as to fill the orders using the
smallest number of 110" rolls.

(a) A cutting pattern consists of a certain number of rolls of each width, such as two of 45" and one
of 20", or one of 50" and one of 55" (and 5" of waste). Suppose, to start with, that we consider
only the following six patterns:

Width I 2 J 4 5 6
20" 3 I 0 2 I 3
45" 0 2 0 0 0 I
50" I 0 I 0 0 0
55" 0 0 I I 0 0
75" 0 0 0 0 0

How many rolls should be cut according to each pattern, to minimize the number of 110" rolls

used? Fonnulate and solve this problem as a linear program, assuming that the number of smaller
rolls produced need only be greater than or equal to the number ordered.

(b) Re-solve the problem, with the restriction that the number of rolls produced in each size must
be between 10% under and 40% over the number ordered.

(c) Find another pattern that, when added to those above, improves the optimal solution.

(d) All of the solutions above use fractional numbers of rolls. Can you find solutions that also sat­
isfy the constraints, but that cut a whole number of rolls in each pattern? How much does your
whole-number solution cause the objective function value to go up in each case? (See Chapter 20
for a discussion of how to find optimal whole-number, or integer, solutions.)

2 a 7. In the refinery model of Exercise 1-6, the amount of premium gasoline to be produced is a
decision variable. Suppose instead that orders dictate a production of 42,000 barrels. The octane
rating of the product is pennitted to be in the range of 89 to 91, and the vapor pressure in a range of
11.7 to 12.7. The five feedstocks that are blended to make premium gasoline have the following
production and/or purchase costs:

42 DIET AND OTHER INPUT MODELS: MINIMIZING COSTS CHAPTER 2

SRG 9.57
N 8.87
RF 11.69
CG 10.88
B 6.75

Other data are as in Exercise 1-6. Construct a blending model and data file to represent this prob­
lem. Run them through AMPL to determine the optimal composition of the blend.

2·8. Recall that Figure 2-4 generalizes the diet model as a minimum-cost input selection model,
with constraints on the outputs.

(a) In the same way, generalize the production model of Figure \-6a as a maximum-revenue output
selection model, with constraints on the inputs.

(b) The concept of an "input-output" model was one of the first applications of linear program­
ming in economic analysis. Such a model can be described in terms of a set A of activities and a
set M of materials. The decision variables are the levels XJ ~ ° at which the activities are run; they
have lower limits lIj and upper limits lI j.

E~lch activity j has either a revenue per unit C j > 0, or a cost per unit represented by C J < O. Thus
total profit from all activities is L . cJXJ, which is to be maximized.

J' ~

Each unit of activity j produces an amount of material i given by a ;J ;;:: 0, or consumes an amount
of material i represented by aij <0. Thus if L. a ;j X j is > 0 it is the total production of material

JeA

i by all activities; if < O. it is the lotal consumption of material i by all activities.

For each material i, there is either an upper limit on the total production given by b; >0. or a lower
limit on the total consumption given by b; < O. Similarly. there is either a lower limit on the total
production given by b; >0, or an upper limit on the total consumption given by b , <0.

Write out a formulation of this model in AMPL.

(c) Explain how the minimum-cost input selection model and maximum-revenue output-selection
model can be viewed as special cases of the input-output model.

3
Transportation and

Assignment Models

The linear programs in Chapters 1 and 2 are all examples of classical "activ ity" mod­
els. In such models the variables and constraints deal with distinctly different kinds of
activities - tons of steel produced versus hours of mill lime used, or packages of food
bought versus percentages of nutrients supplied. To use these models you must supply
coefficients like tons per hour or percentages per package that convert a unit of activity in
the variables to the corresponding amount of activity in the constraints.

This chapter addresses a significantly different but equally common kind of model, in
which something is shipped or assigned. but not converted. The resulting constraints,
which reflect both limitations on availability and requirements for delivery, have an espe­
cially simple form.

We begin by describing the so-called transportation problem, in which a single good
is to be shipped from several origins to several destinations at minimum overall cost.
This problem gives rise to the simplest kind of linear program for minimum-cost flows.
We then generalize to a transportation model, an essential step if we are to manage all the
data, variables and constraints effectively.

As with the diet model, the power of the transportation model lies in its adaptability.
We continue by considering some other interpretations of the "flow" from origins to
destinations, and work through one particular interpretation in which the variables repre­
sent assignments rather than shipments.

The transportation model is only the most elementary kind of minimum-cost flow
model. More general models are often best expressed as networks, in which nodes -
some of which may be origins or destinations - are connected by arcs that carry flows of
some kind. AMPL offers convenient features for describing network flow models, includ­
ing node and arc declarations that specify network structure directly. Network models
and the relevant AMPL features are the topic of Chapter 15.

44 TRANSPORTATION AND ASSIGNMENT MODELS CHAPTER 3

3.1 A linear program for the transportation problem

Suppose that we have decided (perhaps by the methods described in Chapter I) to
produce steel coils at three mill locations, in the following amounts:

GARY

CLEV

PllT

Gary, Indiana
Cleveland, Ohio
Pittsburgh, Pennsylvania

1400

2600
2900

The lotaJ of 6,900 tons must be shipped in various amounts to meet orders at seven loca­
tions of automobile factories:

FRA Framingham, Massachusetts 900
DET Detroit, Michigan 1200
LAN Lansing, Michigan 600
WIN Windsor, Ontario 400
STL St. Louis, Missouri 1700
FRE Fremont, California 1100
LAF Lafayeue, Indiana 1000

We now have an optimization problem: What is the least expensive plan for shipping the
coi ls from mills to plants?

To answer the question, we need to compile a table of shipping costs per ton:

GARY CLEV PllT

FRA 39 27 24
DET 14 9 14
LAN II 12 17
WIN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 20

Let GARY:FRA be the number of tons to be shipped from GARY to FRA, and similarly for
the other city pairs. Then the objective can be written as follows:

Minimize
39 GARY:FRA + 27 CLEV:FRA + 24 PllT:FRA +
14 GARY:DET + 9 CLEV:DET + 14 PllT:DET +
II GARY:LAN + 12 CLEV:LAN + 17 PllT:LAN +
14 GARY:WlN + 9 CLEV:W1N + 13 PllT:W1N +
16 GARY:STL + 26 CLEV:STL + 28 PllT:STL +
82 GARY:FRE + 95 CLEV:FRE + 99 PllT:FRE +

8 GARY:LAF + 17 CLEV:LAF + 20 PllT:LAF

There are 21 decision variables in all. Even a small transportation problem like this one
has a lot of variables. because there is one for each combination of mill and factory.

SECTION 3.2 AN AMPL MODEL FOR THE TRANSPORTATION PROBLEM 45

By supplying each factory from the mill that can ship most cheaply to it, we could
achieve the lowest conceivable shipping cost. But we would then be shipping 900 LOns
from PIrr, 1600 from CLEV, and all the rest from GARY - amounts quite inconsistent
with the production levels previously decided upon. We need to add a constraint that the
sum of the shipments from GARY to the seven factories is equal to the production level of

1400:

GARY:FRA + GARY:DET + GARY:LAN + GARY:IVIN +
GARY:STL + GARY:FRE + GARY:LAF = 1400

There are analogous constraints for the other two mills:

CLEV:FRA + CLEV:DET + CLEV:LAN + CLEV:WIN +
CLEV:STL + CLEV:FRE + CLEV:LAF = 2600

PIIT:FRA + PI1T:DET + PIIT:LAN + PIlT:WIN +
PITT:STL + PITT:FRE + PITT:LAF = 2900

There also have to be constraints like these at the factories, to ensure that the amounts
shipped equal the amounts ordered. At FRA, the sum of the shipments received from the

three mills must equal the 900 tons ordered:

GARY:FRA + CLEV:FRA + PITT:FRA = 900

And similarly for the other six factories:

GARY:DET + CLEV:DET + PITT:DET = 1200

GARY:LAN + CLEV:LAN + PITT:LAN = 600

GARY:WlN + CLEV:IVIN + PtTT:IVIN = 400

GARY:STL + CLEV:STL + PITT:STL = 1700

GARY:FRE + CLEV:FRE + PITT:FRE = 1100

GARY:LAF + CLEV:LAF + PITT:LAF = 1000

We have ten constraints in all, one for each mill and one for each factory. If we add the
requirement that all variables be nonnegative, we have a complete linear program for the
transportation problem.

We won't even try showing what it would be like to type all of these constraints into
an AMPL model file. Clearly we want to set up a general model to deal with this prob­

lem.

3.2 An AMPL model for the transportation problem

Two fundamental sets of objects underlie the transportation problem: the sources or
origins (mi lls, in our example) and the destinations (factories). Thus we begin the AMPL
model with a declaration of these two sets:

46 TRANSPORTATION AND ASSIGNMENT MODELS

set ORIGi
set OEST;

CHAPTER 3

There is a supply of something at each origin (tons of steel coils produced, in our case),
and a demand for the same thing at each destination (tons of coils ordered). AMPL
defines nonnegative quantities like these with param statements indexed over a set; in
this case we add one extra refinement, a check statement to test the data for validity:

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

check: sum {i in ORIG} supply(i] = sum {j in DEST} demand[j);

The check statement says that the sum of the supplies has to equal the sum of the
demands. The way that our model is to be set up, there can't possibly be any solutions
unless this condition is satisfied. By putting it in a check statement, we tell AMPL to
test this condition after reading the data, and to issue an error message if it is violated.

For each combination of an origin and a destination, there is a transportation cost and
a variable representing the amount transported. Again, the ideas from previous chapters
are easily adapted to produce the appropriate AMPL slatements:

param cost {ORIG,DEST} >= 0;
var Trans {ORIG,DEST} >= 0;

For a particular origin i and destination j, we ship Trans [i, j] units from i to j. at a
cost of cost [i, j J per unit; the total cost for this pair is

cost[i,j] * Trans[i,j]

Adding over all pairs, we have the objective function:

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j] * Trans[i,j]:

which could also be written as

sum {j in DEST, i in ORIG} cost[i,j] * Trans[i,jl;

or as

sum {i in ORIG} sum (j in DEST) cost[i,j] * Trans[i,j]:

As long as you express the objective in some mathematically correct way, AMPL will sort
out the terms.

It remains to specify the two collections of constraints, those at the origins and those
at the destinations. If we name these collections Supply and Demand, their declara­
tions will start as follows:

subject to Supply {i in ORIG}:
subject to Demand (j in DEST):

To complete the Supply constraint for origin i, we need to say that the sum of all ship­
ments out of i is equal to the supply available. Since the amount shipped out of i to a
particular destination j is Trans [i, j] , the amount shipped to all destinations must be

SECTION 3.2 AN AMPL MODEL FOR THE TRANSPORTATION PROBLEM

set ORIG;
set DESTj

origins
H destinations

param supply {ORIG} >= 0;
param demand (DEST) >= 0;

amounts available at origins
amounts required at destinations

47

check: sum {i in ORIG} supply[i1 = sum {j in DEST} demand[j1;

param cost {ORIG,DEST} >= 0; # shipment costs per unit
var Trans {ORIG,DEST} >= 0; # units to be shipped

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,j) * Trans[i,j];

subject to Supply {i in ORIG}:
sum {j in DEST} Trans[i,j) = supply(i);

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,jj = demand[j];

Figure 3-1a: Transportation model (transp. mod).

sum {j in DEST} Trans[i,j]

Since we have already defined a parameter supply indexed over origins, the amount
available at i is supply [i]. Thus the constraint is

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,jj = supply[i] i

(Note that the names supply and Supply are unrelated; AMPL distinguishes upper and
lower case.) The other collection of constraints is much the same. except that the ro les of
i in ORIG, and j in DEST, are exchanged, and the sum equals demand [j] .

We can now present the complete transportation model, Figure 3- I a. As you might
have noticed, we have been consistent in using the index i to run over the set ORIG, and
the index j to run over DE ST. This is not an AMPL requirement, but such a convention
makes it easier to read a model. You may name your own indices whatever you like, but
keep in mind that the scope of an index - the part of the model where it has the same
meaning - is to the end of the expression that defines it. Thus in the Demand constraint

subject to Demand {j in DEST}:
sum {i in ORIG} Trans[i,j] = demand(j];

the scope of j runs to the semicolon at the end of the declaration, while the scope of i
extends only through the summand Trans [i, j]. Since i's scope is inside j ' s scope.
these two indices must have different names. Also an index may not have the same name
as a set or other model component. Index scopes are discussed more fully, with further
examples, in Section 5.5.

Data values for the transportation model are shown in Figure 3-1 b. To define DEST
and demand. we have used an input format that permits a set and one or more parameters
indexed over it to be specified together. The set name is surrounded by colons. (We also
show some comments. which can appear among data statements just as in a model.)

48 TRANSPORTATION AND ASSIGNMENT MODELS CHAPTER 3

param: ORIG, supply := # defines set "ORIG" and param "supply"
GARY 1400
CLEV 2600
PITT 2900

param : DEST, demand := # defines "DEST" and "demand"
FRA 900
DET 1200
LAN 600
WIN 400
STL 1700
FRE 1100
LAF 1000

param cost:
FRA DET LAN WIN STL FRE LAF :=

GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

Figure 3-lb: Data for transportation mode l (transp. da t).

I f the model is stored in a file transp. mod and the data in transp. dat, we can
solve the linear program and examine the output:

ampl : model transp.mod;
ampl: data transp.dat;
ampl: solve;
CPLEX B.O.O: optimal solution; objective 196200
12 dual simplex iterations (0 in phase I)

amp1, display Trans ;
Trans [*, *] (tr)

CLEV GARY PITT :=

DET 1200 0 0
FRA 0 0 900
FRE 0 1100 0
LAF 400 300 300
LAN 600 0 0
STL 0 0 1700
WIN 400 0 0

By displaying the variable Trans, we see that most destinations are supplied from a sin­
gle mi ll , but CLEV. GARY and PITT all ship to LAF.

It is inslrUctive to compare th is solution to one given by another solver, SNOPT:

ampl : o~tion solver sno~t;
ampl : solve;
SNOPT 6.1-1: Optimal solution found.
15 iterations. objective 196200

r SECTION 3.3

ampl :
Trans

DET
FRA
FRE
LAF
LAN
STL
WIN

OTHER INTERPRETATIONS OF THE TRANSPORTATION MODEL 49

display Trans;
[* , *] (tr)
CLEV GARY PITT : =

1200 0 0
0 0 900
0 1100 0

400 0 600
600 0 0

0 300 1400
400 0 0

The minimum cost is still 196200, but it is achieved in a different way. Alternative opti·
mal solutions such as these are often exhibited by transportation problems. particularly
when the coefficients in the objective function are round numbers.

Unfortunately, there is no easy way to characterize all the optimal solutions. You
may be able to get a better choice of optimal solution by working with several objectives.
however, as we will illustrate in Section 8.3.

3.3 Other interpretations of the transportation model

As the name suggests, a transportation model is applicable whenever some material is
being shipped from a set of origins to a set of destinations. Given certain amounts avail­
able at the origins, and required at the destinations, the problem is to meet the require­
ments at a minimum shipping cost.

Viewed more broadly, transportation models do not have to be concerned with the
shipping of "materials·'. They can be applied to the transportation of anything. provided
that the quantities available and required can be measured in some units, and that the
transportation cost per unit can be determined. They might be used to model the ship­
ments of automobi les to dealers, for example, or the movement of military personnel to
new assignments.

In an even broader view, transportation models need not deal with "shipping" at all.
The quantities at the origins may be merely associated with various destinations, whi le
the objective measures some value of the association that has nothing to do with actually
moving anything. Often the result is referred to as an "assignment" model.

As one particularly well-known example, consider a department that needs to assign
some number of people to an equal number of offices. The origins now represent individ­
ual people, and the destinations represent individual offices. Since each person is
assigned one office, and each office is occupied by one person, all of the parameter values
supply (i] and d e ma nd (j] are l. We interpret Trans [i , j] as the " amount" of
person i that is assigned to office j; that is, if Trans (i I j] is I then person i will
occupy office j, while if Trans (i , j] is 0 then person i will not occupy office j .

What of the objective? One possibility is to ask people to rank the offices, giving
their first choice, second choice, and so forth. Then we can let cost (i, j] be the rank

50 TRANSPORTATION AND ASSIGNMENT MODELS CHAPTER 3

set ORIG := Caul lard Daskin Hazen Hopp Iravani Linetsky
Mehrotra Nelson Smilowitz Tamhane White

set DEST := C118Cl38C140 C246 C250 C251 0237 0239 0241 M233 M239;

param supply default 1

param demand default 1

param cost:
C118 Cl38 C140 C246 C250 C251 0237 0239 0241 M233 M239 : =

Coullard 6 9 8 7 11 10 4 5 3 2 1
Daskin 11 8 7 6 9 10 1 5 4 2 3
Hazen 9 10 11 1 5 6 2 7 8 3 4
Hopp 11 9 8 10 6 5 1 7 4 2 3
Iravani 3 2 8 9 10 11 1 5 4 6 7
Linetsky 11 9 10 5 3 4 6 7 8 1 2
Mehrotra 6 11 10 9 8 7 1 2 5 4 3
Nelson 11 5 4 6 7 8 1 9 10 2 3
Smilowitz 11 9 10 8 6 5 7 3 4 1 2
Tamhane 5 6 9 8 4 3 7 10 11 2 1
White 11 9 8 4 6 5 3 10 7 2 1

Figure 3-2: Data for assignment problem (assign . dat).

that person i gives to office j. This convention lets each objective function term
cost [i, j J * Trans [i, j J represent the preference of person i for office j, if person
i is assigned to office j (Trans [i, j J equals I), or zero if person i is not assigned to
office j (Trans [i, j J equals 0). Since the objective is the sum of all these terms, it
must equallhc sum o f all the nonzero terms, which is the sum of everyone's rankings for
the offices to which they were assigned. By minimizing this sum, we can hope to find an
assignment that will please a lot of people.

To use the transportation model for this purpose, we need only supply the appropriate
data. Figure 3-2 is one example, with II people to be assigned to II offices. The
default oplion has been used to set all the supply and demand values to I wilhout
typing all the I's. If we store this data set in assign . dat, we can use it with the trans­
portalion model that we already have:

ampl: model transp.mod;
ampl: data assign.dat;
ampl : solve;
CPLEX 8.0.0: optimal solution; objective 28
24 dual simplex iterations (0 in phase I)

By setting the option omi t_zero_rows to 1, we can print just the nonzero terms in the
objective. (Options for displaying results are presented in Chapter 12.) This listing tells
us each person's assigned room and his or her preference for it:

r
SECTION 3.3 OTHER INTERPRETATIONS OF THE TRANSPORTATION MODEL 51

ampl: option omit_ zero_ rows ~;
ampl: display {i in ORIG, j in DEST} cost[i,j] * Trans[i,j};
cost[i,j]*Trans[i,j] : =

Coullard ellS 6
Daskin D241 4
Hazen C246 1
Hopp D237 1
Iravani C138 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1

The solution is reasonably successful, although it does assign two fourth choices and one
sixth choice.

It is not hard to see that when all the supply [i J and demand [j J values are I, any
Trans [i, j J satisfying all the constraints must be between a and 1. But how did we
know that every Trans [i I j] would equal either 0 or I in the optimal solution, rather
than, say, Y2? We were able to rely on a special property of transportation models, which
guarantees that as long as all supply and demand values are integers, and all lower and
upper bounds on the variables are integers. there will be an optimal solution that is
entirely integral. Moreover, we used a solver that always finds one of these integral solu­
tions. But don't let this favorable result mislead you into assuming that integrality can be
assured in all other circumstances; even in examples that seem to be much like the trans­
p0l1ation model, finding integral solutions can require a special solver, and a lot more
work. Chapter 20 discusses issues of integrality at length.

A problem of assigning 100 people to 100 rooms has ten thousand variables; assign­
ing 1000 people to 1000 rooms yields a million variables. In applications on this scale,
however. most of the assignments can be ruled out in advance, so that the number of
actual decision variables is not too large. After looking at an initial solution, you may
want to rule out some more assignments - in OUf example, perhaps no assignment to
lower than fifth choice should be allowed - or you may want to force some assignments
to be made a certain way, in order to see how the rest could be done optimally. These sit­
uations require models that can deal with subsets of pairs (of people and offices, or ori­
gins and destinations) in a direct way. AMPL's features for describing pairs and other
"compound " objects are the subject of Chapter 6.

52 TRANSPORTATION AND ASSIGNMENT MODELS CHAPTER 3

Exercises

3-1. Thjs transportation model. which deals with finding a least cost shipping schedule, comes
from Dantzig's LiTlear Programming and Exte1lsions. A company has planlS in Seattle and San
Diego, with capacities 350 and 600 cases per week respectively. It has customers in New York,
Chicago, and Topeka, which order 325, 300. and 275 cases per week. The distances involved afe:

Sean Ie
San Diego

New York

2500
2500

Chicago

1700
1800

Topeka

1800
1400

The shipping cost is $90 per case per thousand miles. FomlUlate this model in AMPL and solve it
to determine the mjnimum cost and the amounts to be shipped.

3-2. A small manufacturing operation produces six kinds of parts. using three machines. For the
coming month, a certain number of each part is needed, and a certain number of parts can be
accommodated on each machine; to complicate matters, it does not cost the same amount to make
the same part on different machines. Specifically, the costs and related values are as follows:

Pan
Machine 2 3 4 5 6 CapacilY

1 3 3 2 5 2 1 80
2 4 1 1 2 2 1 30
3 2 2 5 2 160

Required 10 40 60 20 20 30

(a) Using the model in Figure 3-1 a, create a file of data statements for this problem; treat the
machines as the origins. and the pans as the destinations. How many of each part should be pro­
duced on each machine, so as to minimize total cost?

(b) If the capacity of machine 2 is increased to 50, the manufacturer may be able to reduce the total
cost of production somewhat. What small change to the model is necessary to analyze this situa­
tion? How much is the total cost reduced, and in what respects does the production plan change?

(c) Now suppose that the capacities arc given in hours, rather than in numbers of parts, and that it
takes a somewhat different number of hours to make the same part on different machines:

Pan
Machine 2 3 4 5 6 Capacity

1 1.3 1.3 1.2 1.5 1.2 1.1 50
2 1.4 1.1 1.1 1.2 1.2 1.1 90
3 1.2 1.2 1.5 1.1 1.1 1.2 175

Modify the supply constraint so that it limits total time of production at each "origin" rather than
the total quantity of production. How is the new optimal solution different? On which machines is
all available time used?

(d) Solve the preceding problem again. but with the Objective function changed to minimize total
machine-hours rather than total cost.

3-3. This exercise deals with generalizations of the transportation model and data of Figure 3-1.

(a) Add two parameters, supply-.pct and demand-'pct, to represent the maximum fraction of
a mill's supply that may be sent to anyone factory, and the maximum fraction of a factory's

r SECTION 3.3 OTHER INTERPRETATIONS OF THE TRANSPORTATION MODEL 53

demand that Illay be satisfied by anyone mill. Incorporate these parameters into the model of Fig.
ure 3-la.

Solve for the case in which no more than 50% of a mill's supply may be sent to anyone factory,
and no more than 85% of a factory's demand may be satisfied by anyone mill. How does this
change the minimum cost and the optimal amounts shipped?

(b) Suppose that the rolling mills do not produce their own slabs, but instead obtain slabs from two
other plants, where the following numbers of tons are to be made available:

MIDTWN 2700
HAMLTN 4200

The cost per ton of shipping a slab from a plant to a mill is as follows:

GARY
MIDTWN 12
HAMLTN 10

CLEV
8
5

PITT
17
13

All other data values are the same as before, but with supply-pct reinterpreted as the maximum
fraction of a plant's supply that may be sent to anyone mill.

Formulate this situation as an AMPL model. You will need two indexed collections of variables,
one for the shipments from plants to mills, and one for the shipments from mills to factories. Ship­
ments from each mill will have to equal supply, and shipments to each factory will have to equal
demand as before; also, shipments out of each mill will have to equal shipments in.

Solve the resulting linear program. What are the shipment amounts in the minimum-cost solution?

(c) In addition to the differences in shipping costs, there may be different costs of production at the
plants and mills. Explain how production costs could be incorporated into the model.

(d) When slabs are rolled, some fraction of the steel is lost as scrap. Assuming that this fraction
may be different at each mill. revise the model to take scrap loss into account.

(e) In reality, scrap is not really lost, but is sold for recycling. Make a further change to the model
to account for the value of the scrap produced at each mill.

3-4. This exercise considers variations on the assignment problem introduccd in Section 3.3.

(a) Try reordering the list of members of DEST in the data (Figure 3-2), and solving again. Find a
reordering that causes your solver to report a different optimal assignment.

(b) An assignment that gives even one person a very low-ranked office may be unacceptable, even
if the total of the rankings is optimized. In particular, our solution gives one individual her sixth
choice; to rule this out, change all preferences of six or larger in the cost data to 99, so that they
will become very unattractive. (You'll learn more convenient features for doing the same thing in
later chapters, but this crude approach will work for now.) Solve the assignment problem again,
and verify that the result is an equaJly good assignment in which no one gets worse than fifth
choice.

Now apply the same approach to try to give everyone no worse than fourth choice. What do you
find?

(c) Suppose now that offices e118, C2S0 and C2S1 become unavailable, and you have to put two
people each into C138, CI40 and C246. Add 20 to each ranking ror these three offices, 1O renecl
the facllhat anyone would prefer a private office to a shared one. What other modifications to the
model and data would be necessary to handle this situation? What optimal assignment do you get?

4
Building Larger Models

The linear programs that we have presented so far have been quite small, so their data
and solutions could fit onto a page. Most of the LPs found in practical applications, how­
ever, have hundreds or thousands of variables and constraints, and some are even Jarger.

How do linear programs get to be so large? They might be like the ones we have
shown, but with larger indexing sets and more data. A steel mill cou ld be considered to
make hundreds of different products, for example, if every variation of width. thickness,
and finish is treated separately. Or a large organization could have thousands of people
involved in one assignment problem. Nevertheless, these kinds of applications are not as
common as one might expect. As a model is refined to greater levels of detail, its data
values become harder to maintain and its solutions harder to understand; past a certain
point, extra detail offers no benefit. Thus to plan production for a few lines, considerable
detail may be justiliablc; but to plan for an entire company, it may be better to have a
small aggregated, plant-level model thal be run many times with different scenarios.

A more common source of large linear programs is the linking together of smaller
ones. It is not unusual for an application to give rise to many simple LPs of the kinds we
have discussed before; here are three possibilities:

• Many products are to be shipped, and there is a transponation problem (as in Chap­
ter 3) for each product.

• Manufacturing is to be planned over many weeks, and there is a production prob­
lem (as in Chapter I) for each week.

• Several products are made at several mills, and shipped to several factories; there is
a production problem for each mill, and a transportation problem for each product.

When variables or constraints are added to tie these LPs together, the result can be one
very large LP. No individual part need be particularly detailed; the size is more due to
the large number of combinations of origins, destinations, products and weeks.

This chapter shows how AMPL models might be formulated for the three situations
outlined above. The resulting models are necessarily more complicated than our previou~
ones, and require the use of a few more features from the AMPL language. Since they
build on the terminology and logic of ~maJler models that have already been introduced,
however, these larger models are still manageable.

56 BUILDING LARGER MODELS CHAPTER 4

4.1 A multicommodity transportation model

The transportation model of the previous chapler was concerned with shipping a sin­
gle commodity from origins to destinations. Suppose now that we are shipping several
different products. We can define a new set, PROD, whose members represent the differ­
ent products, and we can add PROD to the indexing of every component in the model ; the
result can be seen in Figure 4- 1. Because supply, demand, cost, and Trans are
indexed over one more set in this version, they take one morc subscript: supply [i, p)

for the amount of product p shipped from origin i , Trans [i, j, pJ for the amount ofp
shipped from i to j, and so fonh. Even the check statement is now indexed over
PROD, so that it verifies that supply equals demand for each separate product.

If we look at Supply, Demand and Trans, there are (origins + destin,ations) x
(products) constraints in (origins) x (destinations) x (products) variables. The result
could be quite a large linear program, even if the individual sets do not have many memo
bers. For example, 5 origins, 20 destinations and 10 products give 250 constraints in
I ()()() variables. The size of this LP is misleading, however, because the shipments of the
products are independent. That is, the amounts we ship of one product do not affect the
amounts we can ship of any other product, or the costs of shipping any other product. We
would do better in thi s case to solve a smaller transportation problem for each individual
product. In AMPL terms, we would use the simple transponation model from the previ·
ous chapter, together with a different data file for each product.

The situation would be different if some additional circumstances had the effect of
tying together the different products. As an example, imagine that there arc restrictions
on the totaJ shipments of products from an origin to a destination, perhaps because of lim­
ited shipping capacity. To acconunodate such restrictions in our model , we declare a new
parameter limi t indexed over the combinations of origins and destinations:

param limit {ORIG,DEST} >= 0;

Then we have a new collection of (origins) x (destinations) constraints, one for each ori­
gin i and destination j, which say that the sum of shipments from i to j of all products
p may not exceed limit [i, jJ:

subject to Multi {i in ORIG, j in DEST}:
sum (p in PROD) Trans(i,j,p] <= limit[i,j];

Subject to these constraints (also shown in Figure 4-1), we can no longer set the amount
of one product shipped from i to j without considering the amounts of other products
also shipped from i to j, since it is the sum of all products that is limited. Thus we have
no choice but to solve the one large linear program.

For the steel mill in Chapter I, the products were bands, coils, and plate. Thus the
data for the multicommodity model could look like Figure 4·2. We invoke AMPL in the
usual way to get the following solution:

ampl: model multi.mod; data multi.dat; solve;
CPLEX 8.0.0: optimal solution; objective 199500
41 dual simplex iterations (0 in phase I)

SECTION 4.1

set ORIG;
set DEST;
set PRODj

» origins
» destinations
products

A MULTICOMMODITY TRANSPORTATION MODEL 57

» amounts available at origins param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= 0; » amounts required at destinations

check {p in PROD}:
sum {i in ORIG} supply(i,p]

param limit {ORIG,DEST} >= 0:

param cost {ORIG,DEST,PROD} >= OJ
var Trans {ORIG,DEST,PROD} >= OJ

minimize Total_Cost :
sum {i in ORIG, j in DEST, p in

cost[i,j,p] * Trans[i,j,p] :

sum {j in DEST} demand(j,p]j

» shipment costs per unit
» units to be shipped

PROD)

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p]j

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p):

subject to Multi {i in ORIG, j in DEST) :
sum {p in PROD} Trans[i,j,p) <= limit[i,j]:

Figure 4-1: Multicommodity transportation model (multi . mod).

ampl : display {p in PROD}: {i in ORIG, j in DEST} Trans[i,j,p}i

Trans[i,j, 'bands'] [*, *] (tr)
CLEV GARY PITT . -

DET 0 0 300
FRA 225 0 75
FRE 0 0 225
LAF 225 0 25
LAN 0 0 100
STL 250 400 0
WIN 0 0 75

Trans[i,j, 'coils'] [*, *] (tr)
CLEV GARY PITT ; =

DET 525 0 225
FRA 0 0 500
FRE 225 625 0
LAF 0 150 350
LAN 400 0 0
STL 300 25 625
WIN 150 0 100

58 BUILDING LAAGER MODELS CHAPTER 4

set ORIG : = GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF ;

set PROD := bands coils plate ;

param supply (tr) ; GARY CLEV PITT . -
bands 400 700 800
coils 800 1600 1800
plate 200 300 300

par am demand (tr) ;
FAA DET LAN WIN STL FRE LAF :=

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250

param limit default 625 ;

param cost .-

['* , * , bands I : FAA DET LAN WIN STL FRE LAF :=
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

[*,*,coils] : FAA DET LAN WIN STL FRE LAF . -
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

[*, * ,plate) : FAA DET LAN WIN STL FRE LAF . -
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20

Figure 4-2: Multicommodity transportation problem data (multi. dat).

Trans [i, j, 'plate'] [* , *] (tr)
CLEV GARY PITT . -

DET 100 0 0
FAA 50 0 50
FRE 100 0 0
LAF 0 0 250
LAN 0 0 0
STL 0 200 0
WIN 50 0 0

Tn both our specification of the shipping costs and AMPL's display of the solution, a
three-dimensional collection of data (that is , indexed over three sets) must be represented
on a two-dimensional screen or page. We accompl ish this by "slicing" the data along
onc index, so that it appears as a collection of two-dimensional tables. The display
command wi ll make a guess as to the best index on which to slice, but by use of an

SECTION 4.2 A MULTI PERIOD PRODUCTION MODEL

set PROD: # products
param T > 0: # number of weeks

param rate (PROD) > o· # tons per hour produced
param avail (1. . T) >= 0: # hours available in week
param profit (PROD, 1. .T): # profit per ton
param market (PROD, 1. .T) >= 0: # limit on tons sold in week

var Make {p in PROD, tin 1 .. T} >= 0, <= market[p,t];
tons produced

maximize Total Profit :
sum {p in PROD, tin 1 .. T} profit[p,t] * Make[p,t]i

total profits from all products in all weeks

subject to Time {t in 1 .. T}:
sum (p in PROD) (l/rate[p]J • Make[p,t] <= avail[t]:

total of hours used by all products
may not exceed hours available, in each week

Figure 4-3: Production model replicated over periods (s teel TO. mod).

59

explici t indexing expression as shown above, we can tell it to display a table for each
product.

The optimal solution above ships only 25 tons of coils from GARY to STL and 25 tons
of bands from PITT to LAF. It might be reasonable to require that, if any amount at all is
shipped, it must be at least, say, 50 tons. In terms of our model , either Trans [i, j ,p J
= 0 or Trans [i, j ,pJ >= 50. Unfortunately, although it is possible to write such an
"either/or" constraint in AMPL, it is not a linear constraint , and so there is no way that an
LP solver can handle it. Chapter 20 explains how more powerful (but costlier) integer
programming techniques can deal with this and related kinds of discrete restrictions.

4,2 A multi period production model

Another common way in which models are expanded is by replicating them over time.
To illustrate. we consider how the model of Figure 1-4a might be used to plan production
for the next T weeks, rather than for a single week.

We begin by adding another index set to most of the quantities of interest. The added
set represents weeks numbered 1 through T, as shown in Figure 4-3. The expression
1 .. Tis AMPL's shorthand for the set of integers from I through T. We have replicated
all the parameters and variables over this set, except for rate, which is regarded as fixed
over time. As a result there is a constraint for each week, and the prof i t terms are
summed over weeks as well as products.

So far this is merely a separate LP for each week, unless something is added to tie the
weeks together. Just as we were able to find constraints that involved aillhe products, we

60 BUILDING LARGER MODELS CHAPTER 4

could look for constraints that involve production in all of the weeks. Most lTIultiperiod
models take a different approach, however, in which constraints relate each week's pro­
duction to that of the following week only.

Suppose that we allow some of a week 's production to be placed in inventory, for sale
in any later week. We thus add new decision variables to represent the amounts invento­
ried and sold in each week. The variables Make [j , t] are retained, but they represent
only the amounts produced, which are now not necessarily the same as the amounts sold.
OUT new variable declarations look like this:

var Make {PROD,l .. T} >= 0 ;
var Inv {PROD,D .. T} >= 0 ;

var Sell {p i n PROD , t in 1 .. T} > = 0, < = market(p ,t] ;

The bounds mark et [p, t] , which represent the maximum amounts that can be sold in
a week, are naturally transferred to Sell [p, t) .

The variable I nv [p, t) will represent the inventory of product p at the end of period
t . Thus the quantities I n v [p f 0] will be the inventories at the end of week zero, or
equivalently at the beginning of the first week - in other words, now. Our model
assumes that these initial inventories are provided as part of the data:

param invO {PROD} >= 0 ;

A simple constraint guarantees that the variables I n v [p, 0] take these values:

subject t o I n it_Inv {p in PROD} : Inv[p, O] = invO[p] ;

It may seem "inefficient" to devote a constraint like this to saying that a variable equals
a constant, but when it comes time to send the linear program to a solver, AMPL will
automatically substitute the value of i nvO [p] for any occurrence of I nv [p, 0] . In
most cases, we can concentrate on writing the model in the clearest or easiest way, and
leave matters of efficiency to the computer.

Now that we are distinguishing sales, production, and inventory, we can explicitly
model the contribution of each to the profit, by defining three parameters:

param revenue {PROD,l .. T} >= 0 ;
param prodcost {PROD} >= 0 ;
param invcost {PROD} >= 0 ;

These are incorporated into the objective as follows:

maximize Total_ Profit :
sum {p in PROD, t in 1 .. T} (revenue[p,t]*Sell [p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);

As you can see, r e v enue [P , t] is the amount received per ton of product p sold in
week t ; p rod cos t [p] and invcost [PI are the production and inventory carrying
cost per ton of product p in any week.

Finally, with the sales and inventories full y incorporated into our model, we can add
the key constraints that tie the weeks together: the amount of a product made available in

r SECTION 4.2 A MULTIPERIOD PRODUCTION MODEL 61

a week, through production or from inventory, must equal the amount disposed of in that
week, through sale or to inventory :

subject to Balance {p in PROD, tin 1 .. T}:
Make[p,t) + Inv[p,t-1) = Se11[p,t) + Inv[p,t);

Because the index t is from a set of numbers, the period previous to t can be written as
t-l. In fact, t can be used in any arithmetic expression; conversely, an AMPL expres­
sion such as t-l may be used in any context where it makes sense. Notice also that for a
first-period constraint (t equal to I), the inventory term on the left is Inv[p, 0], the ini­
tial inventory.

We now have a complete model, as shown in Figure 4-4. To illustrate a solution, we
use the small sample data file shown in Figure 4-5; it represents a four-week expansion of
the data from Figure 1-4b.

Jf we put the model and data into files steel T. mod and steel T. dat, then AMPL
can be invoked to find a solution:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
20 iterations, objective 515033

ampl : option display_ leol 0;

ampl : display Make;
Make [*, *] (tr)

bands coils :=

1 5990 1407
2
3
4

6000
1400
2000

1400
3500
4200

amp1 : display Inv;
Inv [*, *] (tr)

bands coils
0 10 0
1 0 1100
2 0 0
3 0 0
4 0 0

: =

ampl: display Sell;
Sell [*, *] (tr)

bands coils :=

1 6000 307
2 6000 2500
3 1400 3500
4 2000 4200

62 BUILDING LARGER MODElS

set PROD; n products
param T > 0; # number of weeks

param rate {PROD} > 0;
param invO {PROD) >= 0;
param avail {l . . T} >= 0;

tons per hour produced
initial inventory
hours available in week

CHAPTER 4

param market {PROD,l .. T} >= 0; # limit on tons sold in week

param prodcost {PROD} >= 0;
pararn invcost {PROD} >= 0;
param revenue {PROD,l .. T} >=

cost per ton produced
carrying cost / ton of inventory

0; # revenue per ton sold

var Make {PROD,i .. T} >= 0;
var rnv {PROD,O .. T} >= 0;
var Sell {p in PROD, t in 1 .. T}

maximize Total_Profit;

tons produced
tons inventoried
>= 0, <= market[p,t); # tons sold

sum {p in PROD, t in 1. .T} (revenue(p,t]*Sell(p,tJ -
prodcost(p]*Make[p,t] - invcost(p]*Inv[p,t»);

Total revenue less costs in all weeks

subject to Time {t in 1 .. T} :
sum {p in PROD} {l/rate[p}} • Make[p,t] <= avail[t];

Total of hours used by all products
may not exceed hours available. in each week

subject to Init_Inv {p in PROD}: Inv[p.O) = invO[p);

Initial inventory must equal given value

subject to Balance {p in PROD. tin 1 .. T} :
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 4-4: Mult iperiod production model (steel T. mod).

par am T := 4;
set PROD := bands coils;

param avail : = 1 40 2 40 3 32 4 40

param rate : = bands 200 coils 140
param invO := bands 10 coils 0

pararn prodcost bands 10 coils 11
param invcost := bands 2.5 coils 3

param revenue: 1 2 3 4 . -
bands 25 26 27 27
coils 30 35 37 39

param market: 1 2 3 4 . -
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200

Figure 4-5: Data for multiperiod production model (steel T. dat).

r SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 63

Production of coils in the first week is held over to be sold at a higher price in the second
week. In the second through fourth weeks, coils are more profitable than bands, and so
coil s are sold up to the limit, with bands filling out the capacity. (Selling option
display _leol to zero permits this output to appear in a nicer format, as explained in
Section 12.2.)

4.3 A model of production and transportation

Large linear programs can be created not only by tying together small models of one
kind, as in the two examples above, but by linking different kinds of models. We con­
clude this chapter with an example that combines features of both production and trans­
portation models.

Suppose that the steel products are made at several mills, from which they are shipped
to customers at the various factories. For each mill we can define a separate production
model to optimize the amounts of each product to make. For each product we can define
a separate transportation model, with mills as origins and factori es as destinations, to
optimize the amounts of the product to be shipped. We would like to link all these sepa­
rate models into a single integrated model of production and transportation.

To begin, we replicate the production model of Figure 1-4a over mills - that is, ori­
gi ns - rather than over weeks as in the previous example:

products set PROD;
set ORIG ; # origins {steel mills}

param rate (ORIG,PROD) > 0;
param avail (ORIG) >= 0;

var Make (ORIG,PROD) >= 0;

subject to Time (i in ORIG):

tons per hour at origins
hours available at origins

tons produced at origins

sum {p in PROD} (l/rate[i,p]) * Make[i,p] <= avail[il;

We have temporarily dropped the components pertaining to the objective, to which we
will return later. We have also dropped the market demand parameters, since the
demands are now properly associated with the destinations in the transportation models.

The next step is to replicate the transportation model , Figure 3- 1a, over products, as
we did in the multicommodity example at the beginning of this chapter:

set ORIG;
set DEST,
set PROD ;

origins (steel mills)
destinations (factories)
products

param supply {ORIG,PROD) >= 0; # tons available at origins
param demand {DEST,PROD) >= 0; # tons required at destinations

var Trans (ORIG,DEST,PROD) >= 0; # tons shipped

64 BUILDING LARGER MODELS

set ORIG;
set DEST;
set PROD;

origins (steel mills)
destinations (factories)
products

tons per hour at origins

CHAPTER 4

param rate {ORIG,PROD} > 0;
param avail {ORIG} >= 0;
param demand {DEST,PROD} >= o·

hours available at origins
tons required at destinations

param make_cost {ORIG,PROD} >= 0;
param trans_cost {ORIG,DEST,PROD} >= 0;

manufacturing cost/ton
shipping cost/ton

var Make {ORIG,PROD} >= 0; # tons produced at origins
var Trans {ORIG,DEST,PROD} >= 0; # tons shipped

minimize Total_Cost :
sum {i in ORIG, p in PROD} make_cost [i,p) * Make[i,p] +
sum {i in ORIG, j in DEST, p in PROD}

trans_cost (i, j ,p] * Trans [i, j ,p] ;

subject to Time {i in ORIG} :
sum {p in PROD} (l/rate(i,p]) * Make[i,p] <= avail[i] i

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = Make[i,p] i

subject to Demand {j in DEST, p in PROD} :
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

Figure 4-6: Production/transportation model , 3rd version (s teelP . mod).

subject to Supply {i in ORIG, p in PROD} :
sum {j in DEST} Trans(i,j,p] = supply[i,p] i

subject to Demand {j in DEST, p in PROD} :
sum {i in ORIG} Trans[i,j,p] = demand[j,p] i

Comparing the resulting production and transportation models, we see that the sets of ori­
gins (ORIG) and products (PROD) are the same in both models. Moreover, the "tons
available at origins" (supply) in the transportation model are really the same thing as
the " tons produced at origins" (Make) in the production model, since the steel available
for shipping will be whatever is made at the mill.

We can thus merge the two models, dropping the definition of supply and substitut­
ing Make [i, p) for the occurrence of supply [i, p) :

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = Make[i,p];

There are several ways in which we might add an objective to complete the model. Per­
haps the simplest is to define a cost per ton corresponding to each variable. We define a
parameter make_cos t so that there is a term make_cos t [i I p] * Make [i, p) in
the objective for each origin i and product p; and we define trans_cost so that there
is a term trans_cost [i, j ,p] * Trans [i, j ,p] in the objective for each origin i,
destination j and product p . The full model is shown in Figure 4-6.

r SECTION 4.3 A MODEL OF PROOUCTION AND TRANSPORTATION 65

set ORIG := GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF ;

set PROD := bands coils plate

param avail := GARY 20 CLEV 15 PITT 20

param demand (tr) ,
FRA DET LAN WIN STL FRE LAF :=

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250

param rate (tr) , GARY CLEV PITT . -
bands 200 190 230
coils 140 130 160
plate 160 160 170

param make_cost (tr) ,
GARY CLEV PITT :=

bands 180 190 190
coils 170 170 180
plate 180 185 185

param trans_cost : =

[*,*,bandsl: FRA DET LAN WIN STL FRE LAF : =
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

(*,*,coils] : FRA DET LAN WIN STL FRE LAF .-
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

[*,*,plate) : FRA DET LAN WIN STL FRE LAF :=
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20

Figure 4·7: Data for production/transportation model (5 teelP. dat).

Reviewing this formulation, we might observe that, according to the Supply decla·
ration, the nonnegative expression

sum {j in DEST} Trans(i,j,p]

can be substituted for Make [i, p]. 1f we make this substitution for all occurrences of
Make [i, p] in the objective and in the Time constraints, we no longer need to include
the Make variables or the Supply constraints in our model , and our linear programs will
be smaller as a result. Nevertheless, in most cases we will be better off leaving the model
as it is shown above. By "substituting out" the Make variables we render the model
harder to read, and not a great deal easier to solve.

66 BUILDING LARGER MODELS CHAPTER 4

As an instance of solving a linear program based on this model, we can adapt the data
from Figure 4-2, as shown in Figure 4-7. Here are some representative result values:

ampl : model steelP.mod; data steelP.dat; solve;
CPLEX 8 . 0 . 0 : optimal solution; objective 1392175
27 dual simplex iterations (0 in phase I)

ampl : option display_ leol 5;
ampl: option omit_ zero_ rows 1, omit_ zero_ cols 1;

ampl : display Makei
Make [*, *]

bands coils plate
CLEV 0 1950
GARY 1125 1750
PITT 775 500

ampl : display Trans;
Tr a n s (CLEV , *,*]

DET
LAF
LAN
STL

coils : =
750
500
400

50
WIN 250

[GARY, '*, *]
bands coils

FRE 225 850
LAF 250 0
STL 650 900

[PITT, *. *]
bands coils

DET 300 0
FRA 300 500
LAF 0 0
LAN 100 0
WIN 75 0

plate
100

0
200

plate
100
100
250

0
50

ampl: display Time;
Time [*] : =

CLEV -1300
GARY -2800

0
300
500

; =

: =

: =

As one might expect, the optimal solution does not ship all products from all mills (Q all
factories. We have used the options omi t_ze ro_rows and omi t_zero_cols to
!> uppress the printing of table rows and columns that are all zeros. The dual values for
Ti me show that additional capacity is likely to have the greatest impact on total cost if it
is placed at GARY, and no impact if it is placed at PITT.

r SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 67

We can also investigate the relative costs of production and shipping. which are the
tWO components of the objective:

ampl : display sum (1 in ORIG, p in PROD)
make_ cost{i,p1 * Make[i,p};

sum(i in ORIG, p in PROD} rnake_cost[i,p]*Make[i,p]

ampl: display sum {i in ORIG, j in DEST, p in PROD}
trans_ cose[i,j,p} * Trans[i,j,p};

surn{i in ORIG, j in DEST, p in PROD}
trans_cost[i,j,p]*Trans[i,j,p) = 176925

1215250

Clearly the production costs dominate in this case. These examples point up the ability of
AMPL to evaluate and display any valid expression.

Bibliography

H. P. Williams. Model Building ill Mathematical Programming (4th edition). John Wiley & Sons
(New York, 1999). An extended compilation of many kinds of models and combinations of them.

Exercises

4-1. Formulate a multi-period version of the transportation model, in which inventories are kept at
the origins.

4-2. Formulate a combination of a transportation model for each of several foods, and a diet
model at each destination.

4-3. The fo llowing questions pertain to the multiperiod production model and data of Section 4.2.

(a) Display the marginal va lues assoc iated with the constraints Time [t] . In which periods does it
appear that addi tional production capacity would be most valuable?

(b) By soliciting additional sa les, you might be able 10 raise the upper bounds market [p, t J.
Display the reduced costs Sell [p, t) . re, and use them to suggest whether you would prefer to
go after more orders of bands or of co il s in each week.

(c) If the inventory costs are all positive. any optimal solution will have zero inventories after the
last week. Why is this so?

This phenomenon is an example of an "end effect". Because the model comes to an end after
period T. the solution tends to behave as if production is to be shut down after that point. One way
of dealing with end effects is to increase the number of weeks modeled; then the end effects should
have little influence on the so lut ion for the earlier weeks. Another approach is to modify the model
to better reflect the realities of inventories. Describe some modifications you might make to the
constraints. and to the objective.

4-4. A producer of packaged cookies and crackers runs several shifts each month at its large bak­
ery. This exercise is concerned with a multiperiod planning model for deciding how many crews
to employ each month. In the algebraic description of the model, there are sets S of shifts and P of

68 BUILDING LARGER MODELS CHAPTER 4

products, and the planning horilon is T four-week periods. The relevant operational data are as
follows:

number of production lines: maximum number of crews that can work in any shift
r ll production rate for product p. in crew-hours per 1000 boxes
h I number of hours that a crew works in planning period I

The following data are detennined by market or managerial considerations:

uP s tolal w<lges for a crew on shin s in one period
d pI demand for product plhat must be meL in period 1

M maximum change in number of crews employed from one period to the next

The decision variables of the model are:

X p1 2: dp,

o $ Yj / $ J
total boxes (in 1000s) of product p baked in period 1

number of crews employed on shift s in period ,

The objective is 10 minimize the total cost of all crews employed.

~ ~ T '" Y
~ ''''S ~' '' I -, 51 '

Total hours required for production in each period may not exceed total hours available from all
shifts,

The change in number of crews is restricted by

-M:5 L. Jd(YS.I+I- YSI) S M.foreachl=I •... ,T-1.

As required by the definition of M, this constraint restricts any change to lie between a reduction of
M crews and an increase of M crews.

(a) Formulate this model in AMPL. and solve the following instance. There are T = 13 periods, J = 8
production lines. and a maximum change of M=3 crews per period. The products are 18REG.
24REG, and 24PRO. with production rates rJl of 1.194, 1.509 and 1.509 respectively. Crews work
either a day shift with wages W .f of $44,900, or a night shift with wages $123,100. The demands
and working hours are given as follows by period:

Period t d 1811H/.1 d 2411EG.I d 241'110 .1 h ,
I 63.8 1212.0 0.0 156
2 76.0 306.2 0.0 152
3 88.4 319.0 0.0 160
4 913.8 208.4 0.0 152
5 115.0 298.0 0.0 156
6 133.8 328.2 0.0 152
7 79.6 959.6 0.0 152
8 111.0 257.6 0.0 160
9 12 1.6 335.6 0.0 152

10 470.0 118.0 1102.0 160
II 78.4 284.8 0.0 160
12 99.4 970.0 0.0 144
13 140.4 343.8 0.0 144

-
SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 69

Display the numbers of crews required on each shift. You will find many fractional numbers of
crews; how would you convert this solution to an optimal one in whole numbers?

(b) To be consisle~, you should also require at most a change of M between the known initial
number of crews (already employed in the period before the first) and the number of crews to be
employed in the first planning period. Add a provision for this restriction to the model.

Re-solve with 11 initial crews. You should get the same solution.

(c) Because of the limit on the change in crews from period to period, more crews than necessary
are employed in some periods. One way to deal with Ihis is to carry inventories from one period to
the next, so as to smooth out the amount of production required in each period. Add a variable for
the amount of inventory of each product after each period, as in the model of Figure 4-4, and add
constraints that relate inventory to production and demand. (Because inventories can be carried
forward, production X p1 need not be ~ demand dI'1 in every period as required by the previous ver­
sions.) Also make a provision for setting initial inventories to zero. Finally, add an inventory cost
per period per 1000 boxes to the objecti ve.

Let the inventory costs be $34.56 for product 18REG, and $43.80 for 24REG and 24PRO. Solve
the resulting linear program; display the crew sizes and inventory levels. How different is this
solution? How much of a saving is achieved in labor cost, at how much expense in inventory cost?

(d) The demands in the given data peak at certain periods, when special discount promotions are in
effect. Big inventories are built up in advance of these peaks, particularly before period 4. Baked
goods are perishable, however, so that building up inventories past a certain number of periods is
unrealistic.

Modify the model so that the inventory variables are indexed by product, period and age, where
age runs from I to a specified limit A. Add constraints that the inventories of age 1 after any
period cannot exceed the amounts just produced, and that inventories of age a > I after period t
cannot exceed the inventories of age a - I after period 1 - 1.

Verify that, with a maximum inventory age of 2 periods, you can use essentially the same solution
as in (c). but that with a maximum inventory age of I there are some periods that require more
crews.

(e) Suppose now that instead of adding a third index on inventory variables as in (d), you impose
the following inventory constraint: The amount of product p in inventory after period t may not
exceed the total production of product p in periods t -A + I through t.

Explain why this constraint is sufficient to prevent any inventory from being more than A periods
old, provided that inventories are managed on a first-ill, first-out basis. Support your conclusion
by showing that you gel the same results as in (d) when solving with a maximum inventory age of
20rofl.

(f) Explain how you would modify the models in (c), (d), and (e) to account for initial inventories
that are 1Iot zero.

4-5. Multiperiod linear programs can be especially difficult to develop, because they require data
pertaining to the future. To hedge against the uncertainty of the future, a user of these LPs typi­
cally develops various scenarios, containing different forecasts of certain key parameters. This
exercise asks you to develop what is known as a stochastic program, which finds a sol ution that can
be considered robust over all scenarios.

(a) The revenues per ton might be particularly hard to predict, because they depend on fluctuating
market conditions. Let the revenue data in Figure 4-5 be scenario I, and also consider scenario 2:

70 BUILDING LARGER MODELS CHAPTER 4

param revenue : 1 2 3 4 :=

bands 23 24 25 25
coils 30 33 35 36

and scenario 3:

param revenue: 1 2 3 4 :=

bands 21 27 33 35
coils 30 32 33 33

By solving the three associated linear programs, verify thal each of these scenarios leads to a dif­
ferent optimaJ production and sa les strategy, even for the first week. You need one strategy, how­
ever, not three. The purpose of the stochastic programming approach is 10 determine a single solu­
tion that produces a good profit don average" in a certain sense.

(b) As a first step toward formulating a stochastic program, consider how the three scenarios could
be brought together into one linear program. Define a parameter S as the number of scenarios, and
replicate the revenue data over the set 1 .. s:

param S > 0;
param revenue {PROD,l .. T,l .. S} >= 0;

Replicate all the variables and constraints in a similar way. (The idea is the same as earlier in this
chapter, where we replicated model components over products or weeks.)

Define a new collection of parameters prob [s]. to represent your estimate of the probability that
a scenario s takes place;

param prob {I .. S} >= 0, <= 1;
check: 0.99999 < sum {s in 1 .. S} probes] < 1.00001;

The objective function is the expected profit, which equals the sum over all scenarios of the proba­
bility of each scenario times the optimum profit under that scenario:

maximize Expected_Profit:
sum {s in 1 .. S} prob[s] *

sum {p in PROD, t in 1 .. T} (revenue[p,t,s]*Sell[p,t,s] -
prodcost[p]*Make[p,t,s] - invcost[p]*Inv[p,t,s]);

Complete the formulation of this ffiultisccnario linear program, and put together the data for it. Let
the probabilities of scenarios], 2 and 3 be 0.45, 0.35 and 0.20, respectively. Show that the solu­
tion consists of a production strategy for each scenario that is the same as the strategy in (a).

(c) The formulation in (b) is no improvement because it makes no connection between the scenar­
ios. One way to make the model usable is to add "nonanticipativity" constraints that require each
week-I variable to be given the same value across all scenarios. Then the result will give you the
best single strategy for the first week, in the sense of maximizing expected profit for all weeks.
The strategies will still diverge after the first week - but a week from now you can update your
data and run the stochastic program again to generate a second week's strategy.

A nonanticipativity constraint for the Make variables can be written

subject to Make_na {p in PROD, S in 1 .. S-I}:
Make(p,l,s] = Make[p,l,s+l] i

Add the analogous constrainb for the Inv and Sell variables. Solve the stochastic program, and
verify that the solution consists of a single period- l strategy for all three scenarios.

(d) After getting your solution in (c). use the following command to look at the prollts that the rec·
om mended strategy will achieve under the Lhree scenarios:

-
SECTION 4.3 A MODEL OF PRODUCTION AND TRANSPORTATION 71

display {s i n 1 .. S}
sum {p in PROD, tin 1 .. T} (revenue [p,t,s]*Sell[p,t,s] -

p r odcost[p] *Make[p,t,s) - invcost[p] *Inv(p,t,s]l i

Which scenario will be most profitable, and wfftch will be least profitable?

Repeat the analysis with probabilities of 0.000 I, 0 .000 I and 0.9998 for scenarios I, 2 and 3. You
should find that profit from strategy 3 goes up, but profits from the other two go down. Explain
what these profits represent, and why the results are what you would expect.

5
Simple Sets and Indexing

The next four chapters of this book are a comprehensive presentation of AMPL's facil­
ities for Linear programming. The organization is by language features, rather than by
model types as in the four preceding tutorial chapters. Since the basic features of AMPL
tend to be closely interrelated, we do not attempt to explain anyone feature in isolation.
Rather, we assume at the outset a basic knowledge of AMPL such as Chapters I through 4
provide.

We begin with sets, the most fundamental components of an AMPL model. Almost
all of the parameters, variables, and constraints in a typical model are indexed over sets,
and many expressions contain operations (usually summations) over sets. Set indexing is
the feature that permits a concise model to describe a large mathematical program.

Because sets are so fundamental, AMPL offers a broad variety of set types and opera­
tions. A set's members may be strings or numbers, ordered or unordered; they may occur
singly, or as ordered pairs, triples or longer "tuples". Sets may be defined by listing or
computing their members explicitly, by applying operations like union and intersection to
other sets, or by specifying arbitrary arithmetic or logical conditions for membership.

Any model component or iterated operation can be indexed over any set, using a stan­
dard form of indexing expression. Even sets themselves may be declared in collections
indexed over other sets.

This chapter introduces the simpler kinds of sets, as well as set operations and index­
ing expressions; it concludes with a discussion of ordered sets. Chapter 6 shows how
these ideas are extended to compound sets, including sets of pairs and triples, and indexed
collections of sets. Chapter 7 is devoted to parameters and expressions, and Chapter 8 to
the variables, objectives and constraints that make up a linear program.

5,1 Unordered sets

The most elementary kind of AMPL set is an unordered collection of character strings.
Usually all of the strings in a set are intended to represent instances of the same kind of

74 SIMPLE SETS AND INDEXING CHAPTER 5

entity - such as raw materials, products, factories or cities. Often the strings are chosen
to ha\.'e recognizable meanings (coils, FISH, New_York), but they could just as well
be codes known only to the modeler (23RPFG. 486/33C). A literal string that appears
in an AMPL model must be delimited by quotes, either single (' A&P') or double
(tlBell+Howell "). In all contexts, upper case and lower case letters are distinct, so
that for exam pic "fish", "Fish".and "FISH" represent different set members.

The declaration of a set need only contain the keyword set and a name. For exam­
ple, a model may declare

set PROD;

to indicate that a certain set will be referred to by the name PROD in the rest of the model.
A name may be any sequence of letters, numerals. and underscore (_) characters that is
not a legal number. A few names have special meanings in AMPL, and may only be used
for specific purposes, while a larger number of names have predefined meanings that can
be changed if they are used in some other way. For example, sum is reserved for the iter­
ated addition operator; but prod is merely pre-defined as the iterated multiplication
operator, so you can redefine prod as a set of products:

set prod;

A list of reserved words is given in Section A.1.
A declared set's membership is normally specified as part of the data for the model, in

the manner to be described in Chapter 9; this separation of model and data is recom­
mended for most mathematical programming applications. Occasionally, however, it is
desirable to refer to a particular set of strings within a model. A literal set of this kind is
specified by listing its members within braces:

{"bands", "coilsn, "plate"}

This expression may be used anywhere that a set is valid, for example in a model state­
mentthat gives the set PROD a fixed membership:

set PROD = ("bands", "coils", "plate");

This sort of declaration is best limited to cases where a set's membership is small, is a
fundamental aspect of the model, or is not expected to change often. Nevertheless we
will see that the = phrase is often useful in set declarations, for the purpose of defining a
set in terms of other sets and parameters. The operator:: may be replaced by defaul t
to initialize the set while allowing its value to be overridden by a data statement or
changed by subsequent assignments. These options are more important for parameters,
however, so we discuss them more fully in Section 7.5.

Notice that AMPL makes a distinction between a string such as "bands" and a set
like {n bands "} that has a membership of one string. The set that has no members (the
empty set) is denoted {}.

SECTION 5.2 SETS OF NUMBERS 75

5.2 Sets of numbers

Set members may also be numbers. Ln fact a set' s members may be a mixture of num­
bers and strings, though this is seldom the case. In an AMPL model, a literal number is
written in the customary way as a sequence of digits, optionally preceded by a sign, con­
taining an optional decimal point , and optionally followed by an exponent; the exponent
consists of ad, D, e , or E, optionally a sign, and a sequence of digits. A number (1) and
the corresponding string (" 1 ") are distinct; by contrast, different representations of the
same number, such as 100 and lE+2, stand for the same set member.

A set of numbers is often a sequence that corresponds to some progression in the situ­
ation being modeled, such as a series of weeks or years. Just as for strings, the numbers
in a set can be specified as part of the data, or can be specified within a model as a list
between braces, such as (1, 2, 3,4, 5, 6). This sort of set can be described more con­
cisely by the notation 1 .. 6. An additional by clause can be used to specify an interval
other than I between the numbers; for instance,

1990 .. 2020 by 5

represents the set

{1990, 1995, 2000, 2005, 2010, 2015, 2020)

This kind of expression can be used anywhere that a set is appropriate, and in particular
within the assignment phrase of a set declaration:

set YEARS = 1990 .. 2020 by 5;

By giving the set a short and meaningful name, this dcclaration may help to make the rest
of the model more readable.

It is not good practice to specify all the numbers within a .. expression by literals
like 2020 and 5, unless the values of these numbers are fundamental to the model or will
rarely change. A better arrangement is seen in the multiperiod production example of
Figures 4-4 and 4-5, where a parameter T is declared to represent the number of periods,
and the expressions 1 .. T and O .. T are used to represent sets of periods over which
parameters, variables, constraints and sums are indexed. The value of T is speci fied in
the data, and is thus easily changed from one run to the next. As a more elaborate exam­
ple, we could write

param start integer;
param end> start integer;
param interval> 0 integer;

set YEARS = start .. end by interval:

[f subsequently we were to gi ve the data as

param start : = 1990;
param end := 2020;
param interval := 5;

76 SIMPLE SETS AND INDEXING CHAPTER 5

then YEARS would be the same set as in the previous example (as it would also be if end
were 2023.) You may use any arithmetic expression to represent any of the values in a
.. expression.

The members of a set of numbers have the same properties as any other numbers, and
hence can be lIsed in arithmetic expressions. A simple example is seen in Figure 4-4,
where the material balance constraint is declared as

subject to Balance {p in PROD, tin 1 .. T}:
Make[p,t] + Inv[p,t-1] = Sell[p,t] + Inv[p,t];

Because t runs over the set 1 .. T, we can write Inv [p, t-l] to represent the inventory
at the end of the previous week. If t instead ran over a set of strings, the expression t-l
would be rejected as an error.

Set members need not be integers. AMPL attempts to store each numerical set mem­
ber as the nearest representable floating-point number. You can see how this works out
on your computer by trying an experiment like the following :

ampl: option display_ width 50;
ampl : display -513 •. 5/3 by 1/3;
set -5/3 .. 5/3 by 1/3 ,=
-1.6666666666666667 0.33333333333333326
-1 . 3333333333333335 0.6666666666666663
-1
-0 . 6666666666666667

0 . 9999999999999998
1 . 3333333333333333
1.6666666666666663 -0.3333333333333335

-2.220446049250313e-16;

You might expect 0 and I to be members of this set, but things do not work out that way
due to rounding error in the floating-point computations. It is unwise to lise fractional
numbers in sets, if your model relies on set members having precise values. There should
be no comparable problem with integer members of reasonable size; integers are repre­
sented exaetly for magnitudes up to 2S3 (approximately] 0 16) for IEEE standard arith­
metic, and up to 247 (approximately 10 14

) for almost any computer in current use.

5.3 Set operations

AMPL has four operators that construct new sets from existing ones:

A union B
A inter B
A diff B
A symdiff B

union: in either A or B
intersection: in bOlh A and B
difference: in A but not B
symmetric difference: in A or B but not both

The following excerpt from an AMPL session shows how these work:

SECTION 5.3

ampl: set Y1 = 1990 .. 2020 by 5;
ampl: set Y2 = 2000 .. 2025 by 5;
ampl: display Yl union Y2, Y1 inter Y2;

SET OPERATIONS

set Y1 union Y2 ,= 1990 1995 2000 2005 2010 2015 2020 2025;
set Y1 inter Y2 ,= 2000 2005 2010 2015 2020;

ampl: display Y1 diff Y2, Yl symdiff Y2;
set Y1 diff Y2 ,= 1990 1995;
set Y1 symdiff Y2 ,= 1990 1995 2025;

77

The operands of set operators may be other set expresslons, allowing more complex
expressions to be built up:

ampl: display Yl symdiff (Yl symdiff Y2);
set Yl symdiff IYl symdiff Y2) ,=
2000 2005 2010 2015 2020 2025;

ampl: display
set Yl union
1990 1995

(Y~ union (2025,2035,2045)) diff
(2025, 2035, 2045) diff Y2 ,=
2035 2045;

Y2;

amp1, disp~sy 2000 .. 2040 by 5 symdiff (Y~ union Y2);
set 2000 .. 2040 by 5 symdiff IYl union Y2) ,=
2030 2035 2040 1990 1995;

The operands must always represent sets. however, so that for example you must write
Ylunion {2025}, not Ylunion2025.

Set operators group to the left unless parentheses are used to indicate otherwise. The
union, diff , and symdiff operators have the same precedence, just below that of
in ter. Thus. for example,

A union B inter C diff D

is parsed as

(A union (B inter C») diff D

A precedence hierarchy of all AMPL operators is given in Table A-I of Section A.4.
Set operations are often used in the assignment phrase of a set declaration. to define a

new set in tenns of already declared sets. A simple example is provided by a variation on
the diet model of Figure 2-1. Rather than specifying a lower limit and an upper limit on
the amount of every nutrient, suppose that you want to specify a set of nutrients that have
a lower limit, and a set of nutrients that have an upper limit. (Every nutrient is in one set
or the other; some nutrients might be in both.) You could declare:

set MINREQ;
set MAXREQ;
set NUTR:

nutrients with minimum requirements
nutrients with maximum requirements
all nutrients (DUBIOUS)

But then you would be relying on the user of the model to make sure that NUTR contains
exactly all the members of MINREQ and MAXREQ. At best thi s is unnecessary work, and
at worst it will be done incorrectly. Instead you can define NUTR as the union:

set NUTR = MINREQ union MAXREQ:

78 SIMPLE SETS AND INDEXING

set MINREQ;
set MAXREQ;

nutrients with minimum requirements
nutrients with maximum requirements

set NUTR = MINREQ union MAXREQ ;
set FOOD;

pararn cost {FOOD} > 0;
param f - min {FOOD} >= 0;

nutrients
foods

param f - max {j in FOOD} >= Cmin[j] ;

param n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0 ;

param amt (NUTR,FOOD) >= 0;

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

CHAPTER 5

minimize Total_Cost: sum {j in FOOD} cost{j] * Buy[j] ;

subject to Diet_Min {i in MINREQ):
sum {j in FOOD} amt[i,jj * Buy[jj >= n_min[il;

subject to Diet_Max {i in MAXREQ}:
sum {j in FOOD} amt[i,j) * Buy[j] <= n_max[i];

Figure 5-1: Diet model using union operator (dietu . mod).

All three of these sets are needed, since the nutrient minima and maxima are indexed over
MINREQ and MAXREQ,

pararn n_min {MINREQ} >= 0;
param n_max {MAXREQ} >= 0;

while the amounts of nutrients in the foods are indexed over NUTR:

param amt {NUTR,FOOD) >= 0;

The modification of the rest of the model is straightforward; the result is shown in Figure
5- 1.

As a general principle. it is a bad idea to set up a model so that redundant information
has to be provided. Instead a minimal necessary collection of sets should be chosen to be
supplied in the data, while other relevant sets are defined by expressions in the model.

5.4 Set membership operations and functions

Two other AMPL operators, in and wi thin, test the membership of sets. As an
example, the expression

"B2" in NUTR

is true if and only if the ~trillg "B2" is a member of the set NUTR. The expression

MINREQ within NUTR

SECTION 5.5 INDEXING EXPRESSIONS 79

is true if all members of the set MINREQ are also members of NUTR - that is , if
MINREQ is a subset of (or is the same as) NUTR. The in and wi thin operators are the
AMPL counterparts of E and ~ in traditional algebraic notation. The distinction between
members and sets is especially important here; the left operand of in must be an expres­
sion that evaluates to a string or number. whereas the left operand of wi thin must be an
expression that evaluates to a set.

AMPL also provides operators not in and not within, which reverse the truth
value of their result.

You may apply wi thin directly to a set you are declaring. to say that it must be a
subset of some other set. Returning to the diet example, if all nutrients have a minimum
requirement, but only some subset of nutrients has a maximum requirement, it would
make sense to declare the sets as:

set NUTR;
set MAXREQ within NUTR;

AMPL will reject the data for this model if any member specified for MAXREQ is not also
a member of NUTR.

The built-in function card computes the number of members in (or cardinality of) a
set; for example, card (NUTR) is the number of members in NUTR. The argument of
the card function may be any expression that evaluates to a set.

5,5 Indexing expressions

In algebraic notation, the use of sets is indicated informally by phrases such as "for
all i E P .. or "for t = I, . .. , T" or "for all j E R such that C j > 0." The AMPL counter­
part is the indexing expression that appears within braces (...) in nearly all of our exam­
ples. An indexing expression is used whenever we specify the set over which a model
component is indexed, or the set over which a summation runs. Since an indexing
expression defines a set, it can be used in any place where a set is appropriate.

The simplest form of indexing expression is just a set name or expression within
braces. We have seen this in parameter declarations such as these from the multi period
production model of Figure 4-4:

param rate {PROD} > 0;
param avail fl .. T} >= 0;

Later in the model, references to these parameters are subscripted with a single set mem­
ber, in expressions such as avail [t 1 and rate [p l. Variables can be declared and
used in exactly the same way, except that the keyword var takes the place of par am.

The names such as t and i that appear in subscripts and other expressions in our
models are examples of dummy indices !hal have been defined by indexing expressions.
In fact, any indexing expression may optjonally define a dummy index that runs over the
specified set. Dummy indices are convenient in specifying bounds on parameters:

80 SIMPLE SETS AND INDEXING CHAPTER 5

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

and on variables:

var Buy {j in FOOD} >= f_min[j], <= f_max[j] ;

They are also essential in specifying the sets over which constraints are defined, and the
sets over which summations are done. We have often seen these uses together, in decla­
rations such as

subject to Time {t in 1 .. T} :
sum (p in PROD) (l/rate[pl) * Make[p, tl <= avail [tl ;

and

subject to Diet_Min {i in MINREQ} :
sum {j in FOOD} amt[i,j) * Buy[j] >= n_min[i];

An indexing expression consists of an index name, the keyword in, and a set expression
as before. We have been using single leLlers for our index names, but this is not a
requirement; an index name can be any sequence of letters, digits. and underscores that is
not a valid number, just like the name for a model component.

Although a name defined by a model component's declaration is known throughout
all subsequent statements in the model, the definition of a dummy index name is effective
only within the scope of the defining indexing expression. Normally the scope is evident
from the context. For instance, in the Diet_Min declaration above, the scope of {i in
MINREQ} runs to the end of the statement, so that i can be used anywhere in the descrip­
tion of the constraint. On the other hand, the scope of (j in FOOD I covers on ly the
summand amt [i I j] * Buy [j]. The scope of indexing expressions for sums and other
iterated operators is discussed further in Chapter 7.

Once an indexing expression's scope has ended, its dummy index becomes undefined.
Thus the same index name can be defined again and again in a model , and in fact it is
good practice to use re lati vely few different index names. A common convention is to
associate certain index names with certain sets, so that for example i always runs over
NUTR and j always runs over FOOD. This is merely a convention, however, not a restric­
tion imposed by AMPL. Indeed, when we modified the diet nlOdel so that there was a
subset MINREQ of NUTR, we used i to run over MINREQ as well as NUTR. The opposite
situation occurs, for example, if we want to specify a constraint that the amount of each
food j in the diet is at least some fraction min_frac [j) of the total food in the diet:

subject to Food_Ratio {j in FOOD} :
Buy[j] >= min_frac[j] * sum {jj in FOOD} Buy[jj];

Since the scope of j in FOOD extends to the end of the declaration , a different index j j
is defined to run over the set FOOD in the summation within the constraint.

As a final option, the set in an indexing expression may be followed by a colon (:)
and a logical condition . The indexing expression then represents only the subset of mem­
bers that satisfy the condition. For example,

SECTION 5.5 INDEXING EXPRESSIONS 81

(j in FOOD: f_max[j] - f_min[j) < 1}

describes the set of all foods whose minimum and maximum amounts are nearly the
same, and

{i in NUTR : i in MAXREQ or n_min[i] > O}

describes the set of nutrients that are either in MAXREQ or for which n_min is posi ti ve.
The use of operators such as or and < to form logical conditions will be fully explained
in Chapter 7.

By specifying a condition, an indexing expression defines a new sel. You can use the
indexing expression to represent this set not only in indexed declarations and summa­
tions, but anywhere else that a set expression may appear. For example, you could say
either of

set NUTREQ = {i in NUTR : i in MAXREQ or n_min[i] > O}i

set NUTREQ = MAXREQ union {i in MINREQ : n_min[i] > OJ;

to define NUTREQ to represent our preceding example of a set expression, and you could
use either of

set BOTHREQ = {i in MINREQ: i in MAXREQ};
set BOTHREQ = MINREQ inter MAXREQi

to define BOTHREQ to be the set of all nutrients that have both minimum and maximum
requirements. It' s not unusual to find that there are several ways of describing some
complicated set, depending on how you combine set operations and indexing expression
conditions. Of course, some possibilities are easier to read than others, so it's worth tak­
ing some trouble to find the most readable. In Chapter 6 we also di scuss efficiency con­
siderations that sometimes make one alternative preferable to another in specifying com­
pound sets.

In addition to being valuable within the model, indexing expressions are useful in
display statements to summarize characteristics of the data or solution. The following
example is based on the model of Figure 5-1 and the data of Figure 5-2:

ampl: mode~ dietu.mod;
ampl: data dietu . da t ;

ampl: disp~ay MAXREO un ion (i in MINREO: n_min [iJ > OJ;
set MAXREQ union {i in MINREQ: n_min[il > O} := A NA CAL C;

ampl: so~ve;

CPLEX 8.0.0: optimal solution ; objective 74 . 27382022
2 dual simplex iterations (0 in phase I)

ampl: display {j in FOOD: Buy(j] > E_min(j]J;
set (j in FOOD: Buy[j] > f_min{j]} := CHK MTL SPG;

ampl: disp~ay (i in MINREQ: Diet_ Hin(i].slack = OJ;
set {i in MINREQ : (Diet_Min[i).slack) == O} : = C CAL i

AMPL interactive commands are allowed to refer to variables and constrajnts in the COIl­

dition phrase of an indexing expression, as illustrated by the last two display state-

82 SIMPLE SETS AND INDEXING CHAPTER 5

set MINREQ ,= A B1 B2 C CAL ;

set MAXREQ , =ANACAL ;

set FOOD , = BEEF CHK FISH HAM MCH MTL SPG TUR

param : cost f_min f_max : =
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1. 89 2 10
MTL 1. 99 2 10
SPG 1. 99 2 10
TUR 2.49 2 10

param : n_min n_max : =
A 700 20000
C 700
Bl 0
B2 0
NA 50000
CAL 16000 24000

param amt (tr) , A C B1 B2 NA CAL : =
BEEF 60 20 10 15 938 295
CHK 8 0 20 20 2180 770
FISH 8 10 15 10 945 440
HAM 40 40 35 10 278 430
MCH 15 35 15 15 1182 315
MTL 70 30 15 15 896 400
SPG 25 50 25 15 1329 370
TUR 60 20 15 10 1397 450

Figure 5-2: Data for diet model (dietu. dat).

ments above. Within a model, however, only sets, parameters and dummy indices may
be mentioned in any indexing expression.

The set BOTHREQ above might well be empty. in the case where every nutrient has
either a minimum or a maximum requirement in the data, but not both. Indexing over an

empty set is not an error. When a model component is declared to be indexed over a set
that turns out to be empty, AMPL simply skips generating that component. A sum over
an empty set is zero. and other iterated operators over empty selS have the obvious inter­
pretations (see A.4).

5_6 Ordered sets

Any set of numbers has a natural ordering. so numbers are often used to represent
entities, like time periods, whose ordering is essential to the specification of a model. To

SECTION 5.6 ORDERED SETS 83

describe the difference between this week's inventory and the previous week's inventory,
for example, we need the weeks to be ordered so that the " previous" week is always well
defined.

An AMPL model can also define its own ordering for any set of numbers or strings, by
adding the keyword ordered or circular to the set's declaration. The order in
which you give the set's members. in either the model or the data, is then the order in
which AMPL works with them. In a set declared circular, the first member is consid­
ered to follow the last one, and the last to precede the first; in an ordered set, the first
member has no predecessor and the last member has no successor.

Ordered sets of strings often provide better documentation for a model's data than sets
of numbers. Returning to the multi period production model of Figure 4-4, we observe
that there is no way to tell from the data which weeks the numbers I through T refer to, or
even that they arc weeks instead of days or months. Suppose that instead we let the
weeks be represented by an ordered set that contains. say. 27sep, 04oct, lloct and
l8oet. The declaration of T is replaced by

set WEEKS ordered;

and all subsequent occurrences of 1 .. T ure replaced by WEEKS. In the Balance con­
straint, the expression t-l is replaced by prev (t), which selects the member before t

in the set's ordering:

subject to Balance {p in PROD, t in WEEKS}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t]; # WRONG

This is not quite right. however, because when t is the first week in WEEKS. the member
prev (t) is not defined. When you try to solve the problem, you will get an error mes­
sage like this:

error processing constraint Balance['bands', '27sep'):
can't compute prev('27sep', WEEKS)

'27sep' is the first member

One way to fix this is to give a separate balance constraint for t.he first period, in which
Inv [p, prev (t)] is replaced by the initial in ventory, invO [p J :

subject to BalanceD {p in PROD}:
Make[p,first(WEEKS») + invD(pl

= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

The regular balance constraint is limited to the remaining weeks:

subject to Balance (p in PROD, t in WEEKS: ord(t) > 1} :
Make[p,t] + Inv[p,prev(t)] = Sel1[p,t] + Inv[p,t];

The complete model and data are shown in Figures 5-3 and 5-4. As a tradeoff for more
meaningful week names, we have to write a slightly more complicated model.

As our example demonstrates. AMPL provides a variety of functions that apply specif­
ically to ordered sets. These functions are of three basic types.

84 SIMPLE SeTS AND INDEXING

set PROD; It products
set WEEKS ordered; # number of weeks

par am rate {PROD} > 0;
param invD {PROD} >= 0;
param avail {WEEKS} >= 0;

It tons per hour produced
It initial inventory
It hours available in week

CHAPTER 5

par am market {PROD,WEEKS} >= 0; It limit on tons sold in week

param prodcost {PROD} > = 0; # cost per ton produced
param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {PROD, WEEKS} >= 0; # revenue / ton sold

var Make {PROD, WEEKS} >= 0;
var Inv {PROD, WEEKS} >= 0;
var Sell {p in PROD, t in WEEKS}

maximize Total_Profit:

tons produced
It tons inventoried
>= 0, <= market[p,t]; It tons sold

sum {p in PROD, t in WEEKS} (revenue(p,t]*Sell[p,t] -
prodcost(p] *Make[p, t) - invcost[p]*Inv[p,t]) i

Objective: total revenue less costs in all weeks

subject to Time {t in WEEKS):
sum (p in PROD) (l/rate[p» * Make[p,tl <= avail[t];

Total of hours used by all products
may not exceed hours available, in each week

subject to BalanceO {p in PROD):
Make[p,first(WEEKS» + invO[pl

= Sell[p, first (WEEKS) 1 + Inv[p,first(WEEKS»;

subject to Balance {p in PROD, t in WEEKS: ord{t) > 1) :
Make[p,t) + Inv[p,prev(t)l = Sell[p,tl + Inv[p,tl;

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 5·3: Production model with ordered sets (5 tee 1 T2 . mod).

First, there are functions that return a member from some absolute position in a set.
You can write first (WEEKS) and last (WEEKS) for the first and last members of
the ordered set WEEKS. To pick out other members, you can use member (5, WEEKS) ,
say, for the 5th member of WEEKS. The arguments of these functions must evaluate to an
ordered set, except for the first argument of member, which can be any expression that
evaluates to a positive integer.

A second kind of function returns a member from a position relative to another mem­
ber. Thus you can write prey (t, WEEKS) for the member immediately before t in
WEEKS, and next (t, WEEKS) for the member immediately after. More generally.
expressions such as prey (t, WEEKS, 5) and next (t, WEEKS, 3) refer to the 5th
member before and the 3rd member after t in WEEKS. There are also "wraparound"
versions prevw and nextw that work the same except that they treat the end of the set
as wrapping around to the beginning; in effect, they treat all ordered sets as if their decla-

SECTION 5.6 ORDERED SETS 85

set PROD := bands coils ;

set WEEKS : = 27sep 040ct 110ct 180ct ;

pararn avail : = 27sep 40 040ct 40 110ct 32 180ct 40

pararn rate : = bands 200 coils 140
pararn invO := bands 10 coils 0

param prodcost := bands 10 coils 11
param invcost := bands 2.5 coils 3

pararn revenue : 27sep 040ct 110ct 180ct . -
bands 25 26 27 27
coils 30 35 37 39

param market: 27sep 040ct lloct 180ct :=

bands 6000 6000 4000 6500
coils 4000 2500 3500 4200

Figure 5·4: Data for production model (8 teel T2 . dat).

rations were circular. In all of these functions, the first argument must evaluate to a
number or string. the second argument to an ordered set, and the third to an integer. Nor­
mally the integer is positive, but zero and negative values are interpreted in a consistent
way: for instance, next (t, WEEKS, 0) is the same as t, and next (t, WEEKS, - 5) is
the same as prev (t , WEEKS, 5) .

Finally, there are functions that return the position of a member within a set. The
expression ord (t, WEEKS) returns the numerical position of t within the set WEEKS,
or gives you an error message if t is not a member of WEEKS. The alternative
ordO (t, WEEKS) is the same except that it returns 0 if t is not a member of WEEKS.
For these functions the first argument must evaluate to a positive integer. and the second
to an ordered set.

If the first argument of next, nextw, prev, prevw, or ord is a dummy index that
runs over an ordered set. its associated indexing set is assumed if a set is not given as the
second argument. Thus in the constraint

subject to Balance (p in PROD, t in WEEKS : ord(t) > I}:
Make[p,t] + Inv[p,prev(tl] = Sell(p,t] + Inv(p,t];

the functions ord (t) and prev (t) are interpreted as if they had been written
ord (t, WEEKS) and prev (t, WEEKS) .

Ordered sets can also be used wi th any of the AMPL operators and functions that
apply to sets generally. The result of a diff operation preserves the ordering of the left
operand, so the material balance constraint in our example could be written:

subject to Balance {p in PROD, t in WEEKS diff {first(WEEKS)}}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t]i

For union, inter and syrndiff, however. the ordering of the result is not well
defined; AMPL treats the resull as an unordered sel.

86 SIMPLE SETS AND INDEXING CHAPTER 5

For a set that is contained in an ordered set, AMPL provides a way to say that the
ordering should be inherited. Suppose for example that you want to try mnning the mul­
tiperiod production model with horizons of different lengths. In the following declara­
tions, the ordered set ALL_WEEKS and the parameter T are given in the data, while the
subset WEEKS is defined by an indexing expression to include only the first T weeks:

set ALL_WEEKS ordered;
param T > a integer;

set WEEKS = {t in ALL_WEEKS : ord(t) <= T} ordered by ALL_WEEKS;

We speci fy ordered by ALL_WEEKS so that WEEKS becomes an ordered set, wi th its
members having the same ordering as they do in ALL_WEEKS. The ordered by and
circular by phrases have the same effect as the within phrase of Section 5.4
together with ordered or circular, except that they also cause the declared set to
inherit the ordering from the containing sel. There are also ordered by reversed
and circular by reversed phrases, which cause the declared set's orderi ng to be
the opposite of the containing set's ordering. All of these phrases may be used either
with a subset supplied in the data, or with a subset defined by an expression as in the
example above.

Predefined sets and interval expressions

AMPL provides special names and expressions for certain common intervals and other
sets that are either infinite or potentially very large. Indexing expressions may not iterate
over these sets, but they can be convenient for specifying the conditional phrases in set
and par am declarations.

AMPL intervals are sets containing all numbers between two bounds. There are inter­
vals of real (floating-point) numbers and of integers, introduced by the keywords
interval and integer respectively. They may be specified as closed, open, or half­
open, following standard mathematical notation,

interval la, bl = {x: a S x S b I,
interval (a, bl = [x: a < x:S b},
interval la, b) = [x: a S x < b},
interval (a, b) =: {x: a < x < b},
integer la, bl ={xe / :aSxSb},
integer (a, bl =[xe / :a<xSb},
integer la, b) E [x E I : a :S x < b I,
integer (a, b) =[xE / :a<x<bl

where a and b are any arithmetic express ions. and I denotes the set of integers. In the
declaration phrases

in imaml
wi thin imen'ld
ordered by f reversed I imen'tli
circular by I reversed J il/terml

SECTION 5.6 ORDERED SETS 87

the keyword interval may be omitted.
As an example, in declaring Chapter 1 's parameter rate, you can declare

param rate {PROD} in interval (O,maxrate]i

to say that the production rates have to be greater than zero and not more than some pre­
viou~ly defined parametcr maxrate: you could write the same thing more concisely as

param rate {PROD} in {O,maxrate]i

or equivalently as

param rate {PROD} > 0, <= maxratei

An open-ended interval can be specified by using the predefined AMPL parameter
Infini ty as the right-hand bound, or - Infini ty as the left-hand bound, so that

param rate {PROD} in {O,InfinitY)i

means exactly the same thing as

param rate {PROD} > 0;

in Figure 1-4a. In general, intervals do not let you say anything new in set or parameter
declarations; they just give you alternative ways to say things. (They have a more essen­
tial role in defining imported function s, as discussed in Section A.22.)

The predefincd infinite sets Reals and Integers are the sets of all floating-point
numbers and integers, respectively, in numeric order. The predefined infinite sets
ASCII, EBCDIC, and Display all represent the universal set of stri ngs and numbers
fro m which members of anyone-dimensional set are drawn. ASCII and EBCDIC are
ordered by the ASCII and EBCDIC collating sequences, respectively. Display has the
ordering used in AMPL's display command (Section A.16): numbers precede literals
and arc ordered numerically: literals are sorted by the ASCII collating sequence.

As an example, you can declare

set PROD ordered by ASCIIi

to make AMPL's ordering of the mcmbers of PROD alphabetical, regardless of their order­
ing in the data. This reordering of the members of PROD has no effect on the solutions of
the model in Figure 1-4a, but it causes AMPL listings of most entities indexed over PROD
to appear in the same order (sec A.6.2).

Exercises

5-1. (aj Display 'he selS

~5/3 .. 5/3 by 1/3
O .. lby.l

Explain any evidence of rounding error in your computer's arithmetic.

88 SIMPLE SETS ANO INDEXING

(b) Try the following commands from Sections 5.2 and 5.4 on your computer:

ampl: set HUGE - 1 •• 1e7;
ampl: display card(HUGK);

CHAPTER 5

When AMPL runs out of memory , how many bytes does it say were available? (If your computer
really does have enough memory. try 1 .. 1eB.) Experiment to see how big a set HUGE your com­
puter can hold without running out of memory.

5-2. Revise the model of Exercise 1-6 so that it makes use of two different attribute sets: a set of
attributes that have lower limits, and a set of attributes that have upper limits. Use the same
approach as in Figure 5-1.

5-3. Use the display command, together with indexing expressions as demonstrated in Section
5.5, to determine the following sets relating to the diet model of Figures 5-1 and 5-2:

- Foods that have a unit cost greater than $2.00.

- Foods that have a sodium (NA) con lent of more than 1000.

- Foods that contribute more than $10 to the total cost in the optimal solution.

- Foods that are purchased at more than the minimum level but less than the maximum level in
the optimal solution.

- Nutrients that the optimal diet supplies in exactly the minimum allowable amount.

- Nutrients that the optimal diet supplies in exactly the maximum allowable amount.

- Nutrients that the optimal diet supplies in more than the minimum allowable amount but less
than the maximum allowable amount.

5 M 4. This exercise refers 10 the mulliperiod production model of Figure 4-4.

(a) Suppose that we define two additional scalar parameters,

param Tbegin integer >= 1;
param Tend integer> Tbegin, <= T;

We want to solve the linear program that covers only the weeks from Tbegin through Tend. We
still want the parameters to use the indexing 1 .. T. however. so that we don ' t need to change the
data tables every time we try a different value for Tbeg in or Tend.

To start with. we can change every occurrence of 1 .. T in the variable. objective and constraint
declarations to Tbegin .. Tend. By making these and other necessary changes. create a model
that correctly covers only the desired weeks.

(b) Now suppose that we define a different scalar parameter,

param Tagg integer >= 1;

We want to "aggregate" the model, so that one "period" in our LP becomes Tagg weeks long,
rather than one week. This would be appropriate if we have, say, a year of weekly data, which
would yield an LP too large to be convenient for analysis.

To aggregate properly, we must define the availability of hours in each period to be the sum of the
availabilities in all weeks of the period:

param avai1_agg {t in 1 .. T by Tagg)
= sum {u in t .. t+Tagg-1} avai1[u):

The parameters market and revenue must be similarly summed. Make all the necessary
changes to the model of Figure 4-4 so that the resulting LP is properly aggregated.

SECTION 5.6 ORDERED SETS 89

(e) Re·do the models of (a) and (b) to use an ordered sel of strings for the periods. as in Figure 5·3.

5-5. Extend the transponation model of Figure 3· 1 a to a mulliperiod vers ion, in which the periods
are months represented by an ordered set of character strings such as "Jan", "Feb" and so forth.
Use inventories at the origins to link the periods.

5-6. Modify the model of Figure 5·3 to merge the BalanceO and Balance constraints. a$ in
Figure 4A. Hint : O .. T and 1 .. T are analogous to

set WEEKSO ordered;
set WEEKS = {i in WEEKSO: ord(i) > 1) ordered by WEEKSO;

6
Compound Sets and Indexing

Most linear programming models involve indexing over combinations of members
from several different sets. Indeed, the interaction of indexing sets is often the most com­
plicated aspect of a model; once you have the arrangement of sets worked out, the rest of
the model can be written clearly and conc isely.

All but the simplest models employ compound sets whose members arc pairs, triples,
quadruples. or even longer "tuples" of objects. This chapter begins with the declaration
and use of sets of ordered pairs. We concentrate first on the set of all pairs from two sets,
then move on to subsets of al1 pairs and to "slices" through sets of pairs. Subsequent
sections explore sets of longer tuplcs. and extensions of AMPL' s set operators and index­
ing expressions to sets of tuples.

The final section of this chapter introduces sets that are declared in collections
indexed over other sets. An indexed collection of sets often plays much the same role as
a set of tuples, but it represents a somewhat different way of thinking about the formula~
tion. Each kind of set is appropriate in certain situations, and we offer some guidelines
for choosing between them.

6.1 Sets of ordered pairs

An ordered pair of objects, whether numbers or strings. is written with the objects
separated by a comma and surrounded by parentheses:

("P ITT", "STL")
("bands",5)
(3,101)

As the term "ordered" suggests. it makes a difference which object comes first;
(" S TL" , "PITT") is not the same 3!o, (" PITT" , "STL"). The same object may
appear both first and second, as in (" P ITT" , "PITT") .

Pairs can be collected into sets, just like si ngle objects. A comma-separated list of
pairs may be enclosed in braces to denote a literal set of ordered pairs:

92 COMPOUND SETS AND INDEXING CHAPTER 6

((" PITT " , "STL ") , (" P I TT" , "FRE ") , (" P I TT " , " DET") , ("CLEV" , "FRE "))
«(1 , 1) , (1 , 2), (1 , 3), (2 ,1), (2 , 2), (2 , 3) , (3,1) , (3,2), (3,3»

Because sets of ordered pairs are often large and subject to change. however, they seldom
appear explicitly in AMPL models. Instead they are described symbolically in a variety of
ways.

The set of all ordered pairs from two given sets appears frequently in our examples.
In the transportation model of Figure 3-1 a, for instance, the set of all origin-destination
pairs is written as either of

(ORI G , DEST)
(i i n ORIG, j i n DEST)

depending on whether the context requires dummy indices i and j. The multi period pro­
duction model of Figure 4-4 uses a set of aU pairs from a set of strings (representing prod­
ucts) and a set of numbers (representing weeks):

(PROD , 1. . T)
{p in PROD, t i n 1 .. T}

Various collections of model components, such as the I?arameter r evenue and the vari­
able Se l l , are indexed over this set. When individual \components are referenced in the
model, they must have two subscripts, as in revenue [p, t J or Sell [p, t J. The
order of the subscripts is always the same as the order of the objects in the pairs; in this
case the first subscript must refer to a string in PROD, and the second to a number in
1 .. T.

An indexing expression like {p in PROD, t in 1 .. T } is the AMPL transcription of
a phrase like' 'for all p in P, 1 ;;;; I, T , . from algebraic notation. There is no com­
pelling reason to think in terms of ordered pairs in this case, and indeed we did not men­
tion ordered pairs when introducing the multiperiod production model in Chapter 4. On
the other hand, we can modify the transportation model of Figure 3-la to emphasize the
role of origin-destination pairs as "links" between cities, by defining this set of pairs
explicitly:

• set LINKS = (ORIG, DEST) ;

The shipment costs and amounts can then be indexed over links:

param cost (LINKS) >= 0;
var Trans (LINKS) >= 0 ;

In the objective, the sum of costs over all shipments can be written like this:

min imize Total_Cost :
sum {(i,j) in LINKS} cost[i,j] * Trans(i,j] ;

Notice that when dummy indices run over a set of pairs like LINKS , they must be defined
in a pair like (i , j) . It would be an error to sum over {k in LINKS} . The complete
model is !)hown in Figure 6-1 , and should be compared with Figure 3-1 a. The specifica­
tion of the data could be the same as in Figure 3-1 b.

SECTION 6.2

set ORIG:
set DEST ;

set LINKS

o r igins
destination s

{ORIG, DEST} ;

param supply {ORIG} >= 0;
param demand {DEST} >= 0 ;

SUBSETS AND SLICES OF ORDERED PAIRS 93

amounts available at origins
amounts required at destinations

check : sum { i in ORI G} supply[i] = s um {j in DEST} demand[j];

param cost {LINKS} >= 0 ;
var Trans {LINKS} >= 0 ;

minimize Total _Cost :

shipment costs per unit
units to be shipped

sum ({ i,j) in LINKS} cost[i,j] * Trans[i, j] ;

subject to Supply {i in ORIG} :
sum {j in DEST } Trans[i ,j] = supply[i];

subject to Demand (j in DEST) :
sum (i in ORIG) Trans[i, j] = demand[j] :

Figure 6-1 : Transportation model with all pairs (transp2 .mod).

6.2 Subsets and slices of ordered pairs

In many applications, we are concerned only with a subset of all ordered pairs from
two sets. For example, in the transportation model, shipments may not be possible from
every origin 10 every destination. The shipping costs per unit may be provided only for
the usable origin-destination pairs, so that it is desirable to index the costs and the vari­
ables only over these pairs. In AMPL terms, we want the set LINKS defined above to
contain just a subset of pairs that are given in the data, rather than all pairs from ORIG
and DEST.

It is not sufficient to declare s et LINKS. because that declares only a set of single
members. At a minimum, we need to say

set LINKS d imen 2;

to indicate that the data must consist of members of "dimension" two - that is, pairs.
Better yet, we can say that LINKS is a subset of the set of all pairs from ORIG and
DEST:

set LINKS within {ORIG,DEST};

This has the advantage of making the model ' s intent clearer; it also helps catch errors in
the data. The subsequent declarations of parameter c ost , variable Trans, and the
objective function remain the same as they are in Figure 6- t. But the components
cost [i, j 1 and Trans [i, j 1 will now be defined only for those pairs given in the
data as members of LINKS, and the expression

sum {{i,j) i n LINKS} cost[i,j] * Trans[i,j]

will represent a sum over the specified pairs only.

94 COMPOUND SETS AND INDEXING CHAPTER 6

How are the constraints written? In the original transportation model , the supply limit
constraint was:

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,j1 = supply[i];

Thi s does not work when LINKS is a subset of pairs, because for each i in ORIG it tries
to sum Trans [i, j lover every j in DEST, while Trans [i, j 1 is defined only for
pairs (i, j) in LINKS. If we try it, we get an error message like this:

error processing constraint Supply['GARY'J :
invalid subscript Trans['GARY', 'FRA/)

What we want to say is that for each origin i, the sum should be over all destinations j
such that (i, j) is an allowed link. This statement can be transcribed directly to AMPL,
by adding a condition to the indexing expression after sum:

subject to Supply {i in ORIG}:
sum {j in DEST : (i, j) in LINKS} Trans [i, j] = supply [i J ;

Rather than requiring this somewhat awkward form, however, AMPL lets us drop the j
in DEST from the indexing expression to produce the following more concise constraint:

subject to Supply {i in ORIG):
sum (Ii,j) in LINKS) Trans[i,j] = supply[i);

Because { (i, j) in LINKS) appears in a context where i has already been defined,
AMPL interpret!) thi s index ing expression as the set of all j such that (i, j) is in
LINKS. The demand constmint is handled s imilarly. and the entire revised version of the
model is shown in Figure 6-2a. A small representative collection of data for this model is
shown in Figure 6-2b; AMPL offers a variety of convenient ways to specify the member­
ship of compound sets and the data indexed over them, as explained in Chapter 9.

You can see from Figure 6-2a that the indexing expression

(Ii, j) in LINKS)

means something different in each of the three places where it appears. Its membershjp
can be understood in terms of a table like thi s:

FRA DET LAN WIN STL FRE LAF
GARY
CLEV
PITT

x
x

x
x

x
x x

x

x
x
x x

x
x

The rows represent origins and the columns destinations, while each pair in the set is
marked by an x. A table for {ORIG,DEST} would be completely filled in with x's,
while the table shown depicts (LINKS) for the "sparse" subset of pairs defined by the
data in Figure 6-2b.

At a point where i and j are not currently deli ned, such as in lhe objective

minimize Total_Cost:
sum ((i,j) in LINKS) cost{i,j] * Trans[i,j);

SECTION 6.2 SUBSETS AND SLICES OF ORDERED PAIRS 95

set ORIG;
set DEST:

origins
destinations

set LINKS within {ORIG,DEST}:

param supply {ORIG} >= 0;
param demand {DEST} >= 0:

amounts available at origins
amounts required at destinations

check: sum {i in ORIG}

param cost {LINKS} >= 0;
var Trans {LINKS} >= 0;

supply(i] = sum {j in DEST} demand(j];

shipment costs per unit
units to be shipped

minimize Total_Cost:
sum ({i,j) in LINKS} cost(i,j] * Trans(i,j];

subject to Supply {i in ORIG} :
sum {(i,j) in LINKS} Trans[i,j) supplylil ;

subject to Demand {j in DEST} :
sum {{i,j) in LINKS} Trans(i,j] = demand(j];

Figure 6-2a: Transportation model with selected pairs (transp3 . mod).

param : ORIG , supply : =

GARY 1400 CLEV 2600 PITT 2900 ;

param: DEST, demand .-
FRA 900 DET 1200 LAN 600 WIN 400
STL 1700 FRE 1100 LAF 1000

param: LINKS , cost . -
GARY DET 14 GARY LAN II GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
CLEV STL 26 CLEV LAF 17
PITT FRA 24 PITT WIN 13 PITT STL 28 PITT FRE 99

Figure 6-2b: Data for transportation model (transp3 . dat).

the indexing expression { (i, j) in LINKS) represents all the pairs in this table. But at
a point where i has already been defined, such as in the Supply constraint

subject to Supply {i in ORIG} :
sum {{i,j) in LINKS} Trans(i,j] = supply(i];

the expression { (i, j) in LINKS} is associated with just the row of the table corre­
sponding to i. You can think of it as taking a one-dimensional "slice" through the table
in the row corre~ponding to the already-defincd first componcnt. Although in this case
the first component is a previously defined dummy index, the same convention applies
when the first component is any expression that can be evaluated to a valid set object; we
could write

(("GARY",j) in LINKS)

for example, to represent the pairs in the first row of the table.

96 COMPOUND SETS AND INDEXING CHAPTER 6

Similarly. where j has already been defined, such as in the Demand constraint

subject to Demand {j in DEST}:
sum {(i,j) in LINKS} Trans[i,j] = demand[j];

the expression { (i, j) in LINKS} selects pairs from the column of the table corre­
sponding to j. Pairs in the third column of the table could be specified by { (i, "LAN" I
in LINKS).

6.3 Sets of longer tuples

AMPL's notation for ordered pairs extends in a natura] way to triples. quadruples, or
ordered lists of any length. All tuples in a set must have the same dimension. A set can't
contain both pairs and triples. for example. nor can the determination as to whether a set
contains pairs or triples be made according to some value in the data.

The multicommodity transportation model of Figure 4-1 offers some examples of how
we can use ordered triples, and by extension longer tuples. In the original version of the
model , the costs and amounts shipped are indexed over origin-destination-producl triples:

param cost {ORIG,DEST,PROD} >= 0;
var Trans {ORIG,DEST,PROD} >= 0;

In the objective. cost and Trans are written with three subscripts, and the total cost is
determined by summing over all triples:

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD}

cost[i,j,p] * Trans[i,j,p];

The indexing expressions are the same as before, except that they list three sets instead of
two. An indexing expression that listed k sets would similarly denote a set of k-tuples.

If instead we define LINKS as we did in Figure 6-2a, the multicommodity declara­
tions come out like this:

set LINKS within {ORIG,DEST};

param cost {LINKS, PROD} >= 0;
var Trans {LINKS, PROD} >= 0;

minimize Total_Cost:
sum {(i,j) in LINKS, p in PROD} cost[i,j,p] * Trans[i,j,p];

Here we see how a set of triples can be specified as combinations from a set of pairs
(LINKS) and a set of single members (PROD). Since cost and Trans are indexed over
{LINKS, PROD}, their first two subscripts must come from a pair in LINKS, and their
third subscript from a member of PROD. Sets of longer tuples can be built up in an analo­
gous way.

SECTION 6.3 SETS OF LONGER TUPLES 97

As a final possibility, it may be that only certain combinations of origins, destinations,
and products are workable. Then it makes sense to define a set that cOl1luins only the tri­
ples of allowed combinations:

set ROUTES within {ORIG,DEST,PROD}i

The costs and amounts shipped are indexed over this SCI:

param cost {ROUTES} >= 0;
var Trans {ROUTES} >= 0;

and in the objective, the tOlal cost is a sum over all triples in this set:

minimize Total_Cost :
sum {(i,j,p) in ROUTES} cost[i,j,p] * Trans[i,j,p];

Individual triples are written, by analogy with pairs, as a parenthesized and comma­
separaled Iisl (i , j ,p). Longer lisls specify longer tuples.

Tn the three constraints of this model, the sllmmations must be taken over three differ­
ent slices through the set ROUTES:

subject to Supply {i in ORIG, p in PROD}:
sum {(i,j,p) in ROUTES} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD} :
sum {(i,j,p) in ROUTES} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIG, j in DEST}:
sum {(i,j,p) in ROUTES} Trans[i,j,p] <= limit[i,j];

In the Supply constraint. for instance. indices i and p are defined before the sum, so
{ (i, j ,p) in ROUTES) refers 10 all j such Ihal (i, j ,p) is a triple in ROUTES.
AMPL allows comparable slices through any set of tuples, in any number of dimensions
and any combination of coordinates.

When you declare a high-dimensional sci such as ROUTES, a phrase like wi thin
{ORIG, DEST, PROD} may specify a sel wilh a huge number of members. With 10 ori­
gins. 100 deslinalions and 100 producls, for inslance, Ihis sel pOlenlially has 100,000
members. Fortunately, AMPL does not create this set when it processes the declaration,
but merely checks Ihal each luple in Ihe dala for ROUTES has ils firsl componenl in
ORIG, ils second in DEST, and ils Ihird in PROD. The sel ROUTES can Ihus be handled
efficiently so long as it docs not itself contain a huge number of triples.

When using high-dimensional set.;; in other contexts, you may have to be more careful
that you do not inadvenently force AMPL to generate a large set of tuples. As an exam­
ple, consider how you could constrain the volume of all products shipped out of each ori­
gin to be less than some amount. You might write either

subject to Supply_All (i in ORIG}
sum {j in DEST, p in PROD: (i, ,p) in ROUTES}

Transli,j,p] <= supply_all[];

or, using the more compact slice notation,

98 COMPOUND SETS AND INDEXING CHAPTER 6

subject to Supply_All {i in ORIG}:
sum {(i,j,p) in ROUTES} Trans[i,j,p] <= supply_all(i] i

In the first case. AMPL explicitly generates the set {j in DEST, P in PROD} and
checks for membership of (i, j ,p) in ROUTES. while in the second case it is able to
use a more efficient approach 10 finding all (i, j ,p) from ROUTES that have a given i.
In our small examples this may not seem critical, but for problems of realistic size the
slice version may be the only one that can be processed in a reasonable amount of time
and space.

/
6.4 Operations on sets of tuples

Operations on compound sets are, as much as possible, the same as the operations
introduced for simple sets in Chapter 5. Sets of pairs, triples, or longer tuples can be
combined with union, inter, diff, and symdiff; can be tested by in and
wi thin; and can be counted with card. Dimensions of operands must match appropri­
ately. so for example you may not form the union of a set of pairs with a set of triples.
Also, compound sets in AMPL cannot be declared as ordered or circular, and
hence also cannot be arguments to functions like first and next that take only
ordered sets.

Another set operator, cross, gives the sel of all pairs of its arguments - the cross or
Cartesian product. Thus the set expression

ORIG cross DEST

represents the same set as the indexing expression {ORIG, DEST}, and

ORIG cross DEST cross PROD

is the same as {ORIG, DEST, PROD}.

Our examples so far have been constructed so that every compound set has a domain
within a cross product of previously specified simple sets; LINKS lies within ORIG
cross DEST, for example, and ROUTES within ORIG cross DEST cross PROD.
This practice helps to produce clear and correct models. Nevenheless, if you find it
inconvenient to ~peci fy lhe domains as part of lhe data, you may define them instead
wilhin the model. AMPL provides an iterated setof operator for this purpose, as in the
following example:

set ROUTES dimen 3;

set PROD = setof {(i,j,p) in ROUTES} p;
set LINKS = setof {(i,j,p) in ROUTES} (i,j);

Like an iterated sum operator, setof is followed by an indexing expression and an
argument, which can be any expression that evaluates to a legal set member. The argu­
ment is evaluated for each member of the indexing set, and the results are combined into
a new set that is rClUmed by the operator. Duplicate members are ignored. Thus these

SECTION 6.4 OPERATIONS ON SETS OF TUPLES 99

expressions for PROD and LINKS give the sets of all objects p and pairs (i, j) such
that there is some member (i, j ,p) in ROUTES.

As with simple sets, membership in a compound set may be restricted by a logical
condition at the end of an indexing expression. For example, the multicommodity trans­
portation model could define

set DEMAND = {j in DEST, p in PROD: demand[j,p] > Ol;

so that DEMAND contains only those pairs (j, p) with positive demand for product p at
destination j. As another example. suppose that we also wanted to model transfers of the
products from one origin 10 another. We could simply define

set TRANSF = (ORIG,ORIG);

10 specify the set of all pairs of members from ORIG. But this set would include pairs
like (" PITT" , "PITT") ; to specify the set of all pairs of differelll members from
ORIG, a condition must be added:

set TRANSF = (i1 in ORIG, i2 in ORIG : il <> i2);

This is another case where two different dummy indices, il and i2 , need to be defined
to run over the same set; the condition selects those pairs where il is not equal to i2 .

If a set is ordered, the condition within an indexing expression can also refer to the
ordering. We could declare

set ORIG ordered;
set TRANSF = {i1 in ORIG, i2 in ORIG: ord(i1) < ord(i2)};

to define a "triangular" set of pairs from ORIG that does not contain any pair and its
reverse. For example, TRANSF would contain either of the pairs (" PITT", "CLEV")

or ("CLEV ", "PITT "), depending on which came first in ORIG, but it would not con­
tain both.

Sets of numbers can be treated in a similar way, since they are naturally ordered.
Suppose that we want to accommodate inventories of different ages in the multi period
production model of Figure 4-4, by declaring:

products
number of weeks

set PROD;
param T > 0;
pararn A > 0; # maximum age of inventory

var Inv {PROD,D .. T,O .. A} >= 0; # tons inventoried

Depending on how initial inventories are handled, we might have to include a constraint
that no inventory in period t can be more than t weeks old:

subject to Too_Old
{p in PROD, tin 1 .. T, a in 1 .. A: a> t}: Inv[p,t,a] 0;

In this case, there is a simpler way to write the indexing expression:

subject to Too_Old
{p in PROD, t in 1 .. T, a in t+l .. A} : Inv[p,t,a] 0;

100 COMPOUND SETS AND INDEXING CHAPTER 6

Here the dummy index defined by t in 1 .. T is immediately used in the phrase a in
t+l .. A. In thi s and other cases where an indexing expression specifics two or more
sets, the comma-separated phrases are evaluated from left to right. Any dummy index
defined in one phrase is avai lable for use in all subsequent phrases.

/

6.5 Indexed collections of sets

Although declarations of individual sets are most common in AMPL models, sets may
also be declared in collections indexed over other sets. The principles are much the same
as for indexed collections of parameters, variables or constraints.

As an example of how indexed collections of sets can be useful , let us extend the mul­
tiperiod production model of Figure 4-4 to recognize different market areas for each prod­
uct. We begin by declaring:

set PROD;
set AREA (PROD);

This says that for each member p of PROD, there is to be a set AREA [p]; its members
will denote the market areas in which product p is sold.

The market demands, expected sales revenues and amounts to be sold should be
indexed over areas as weU as products and weeks:

param market {p in PROD. AREA[p], 1 .. T} >= 0 ;
param revenue {p in PROD, AREA[p] , 1 .. T} >= 0;
var Sell {p in PROD, a in AREA[p], tin 1 .. T}

>= 0, <= market[p,a,t];

In the declarations for market and revenue, we define only the dummy index p that is
needed to specify the set AREA [p] , but for the Sell variables we need to define a ll the
dummy indices. so that they can be used to specify the upper bound market [p, a, t] .

Thi s is another example in which an index defined by one phrase of an indexing expres­
sion is used by a subsequent phrase; for each p from the set PROD. a runs over a different
set AREA [pl.

In the objective, the expression revenue [p, t] * Sell [p, t] from Fi gure 4-4

must be replaced by a sum of revenues over all areas for product p:

maximize Total_Profit:
sum {p in PROD, tin 1 .. T}

(sum {a in AREA[p]} revenue[p,a,t]*Sell[p,a,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]);

The on ly other change is in the Balance constraints, where Sell [P, t] is similarly
replaced by a summation:

subject to Balance {p in PROD, tin 1 .. T}:
Make[p,t] + Inv[p,t-l]

= sum {a in AREA[p]} Sell[p,a,t} + Inv[p,t];

SECTION 6.5 INDEXED COLLECTIONS OF SETS

set PROD: # products
set AREA (PROD);
param T > 0;

market areas for each product
number of weeks

param rate {PROD} > 0:
pararn invO {PROD} >= 0:
param avail {I .. T} >= 0;
param market (p in PROD,

tons per hour produced
initial inventory
hours available in week

AREA[p), 1. . T) >= 0;
limit on tons sold in week

param prodcost {PROD} >= 0; n cost per ton produced

101

param invcost {PROD} >= 0; # carrying cost/ton of inventory
param revenue {p in PROD, AREA[p], 1 .. T} >= 0:

revenue per ton sold

var Make {PROD,l .. T} >= 0; # tons produced
var Inv {PROD,O .. T} >= a: # tons inventoried
var Sell {p in PROD, a in AREA[p], tin 1 .. T} # tons sold

>= 0, <= market[p,a,t];

maXlmlze Total_Profit :
sum {p in PROD, t in 1 . . T}

(sum {a in AREA[p]} revenue[p,a,tj*Sell[p,a,t] -
prodcost[pj*Make[p,t] - invcost[p)*Inv[p,t]);

Total revenue less costs for all products in all weeks

subject to Time {t in 1 .. T} :
sum {p in PROD} (l/rate[p]) * Make[p, t] <= avail [t];

Total of hours used by all products
may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv[p,O] = invO[p];

Initial inventory must equal given value

subject to Balance {p in PROD, t in 1 .. T}:
Make[p,t) + Inv[p,t-l)

sum (a in AREA[p)) Sell[p,a,t) + Inv[p,t),

Tons produced and taken from inventory
must equal tons sold and put into inventory

Figure 6-3: Multiperiod production with indexed sets (s teel T3 . mod).

The complete model is shown in Figure 6-3.
In the data for this model, each set within the indexed collection AREA is specified

like an ordinary set:

set PROD := bands coils;
set AREA[bandsl := east north
set AREA[coils] := east west export

The parameters revenue and market are now indexed over three sets. so their data
values are specified in a series of tables. Since the indexing is over a different set

102 COMPOUND SETS AND INDEXING

param T := 4;

set PROD : = bands coils;
set AREA [bandsl := east north
set AREA[coils] := east west export

param avail:= 1 40 2 40 3 32

param rate .- bands 200 coils
pararn invO .- bands 10 coils

4 40

140 ;
o ;

param prodcost :=

param invcost :=

bands 10
bands 2.5

coils 11
coils 3

param revenue :=

[bands, * , * 1 :
east
north

{coils, *, *]:
east
west
export

param market :=

[bands, *, * 1 :
east
north

[coils, *, *]:
east
west
export

1
25 . 0
26 . 5

1
30
29
25

1
2000
4000

1
1000
2000
1000

2
26 . 0
27.5

2
35
32
25

2
2000
4000

2
800

1200
500

3
27.0
28.0

3
37
33
25

3
1500
2500

3
1000
2000

500

4 . -
27.0
28.5

4 . -
39
35
28

4 .-
2000
4500

4 ,=
1100
2300

800

CHAPTER 6

Figure 6·4: Data for multi period production with indexed sets (steel T3 . dat).

AREA [p] for each product p, the values are most conveniently arranged as one table for
each product, as shown in Figure 6·4. (Chapter 9 explains the general rules behind this
arrangement.)

We could instead have written this model with a set PRODAREA of pairs, such that
product p will be sold in area a if and only if (p, a) is a member of PRODAREA. Our
formulation in terms of PROD and AREA[pJ seems preferable, however, because it
emphasizes the hierarchical relationship between products and areas. Although the model
must refer in many places to the set of al l areas selling one product, it never refers to the
set of all products sold in one area.

As a contrasting example. we can consider how the multicommodity transportation
model might use indexed collections of sets . As shown in Figure 6-5, for each product
we define a set of origins where that product is supplied, a set of destinations where lhe
product is demanded, and a set of links that represent possible shipments of the product:

SECTION 6.5 INDEXED COLLECTIONS OF SETS 103

set ORIG; # origins
set DEST; # destinations
set PROD: # products

set orig (PROD) within ORIG;
set dest (PROD) within DEST;
set links (p in PROD) = orig[p] cross dest [pI ;

param supply {p in PROD, orig[p}} >= 0: # available at origins
param demand {p in PROD, dest[p]} >= 0; # required at destinations

check {p in PROD}: sum (i in orig[p]) supply[p,i]
sum (j in dest[p]) demand[p,j];

param limit {ORIG,DEST} >= 0:

param cost {p in PROD, links[p]} >= 0;
var Trans {p in PROD, links[p]} >= 0;

minimize Total_Cost:

shipment costs per unit
units to be shipped

sum {p in PROD, (i,j) in links[p]} cost[p,i,j] * Trans[p,i,j];

subject to Supply {p in PROD, i in orig(p]}:
sum (j in dest[p]) Trans[p,i,j] = supply[p,i];

subject to Demand {p in PROD, j in dest(p]):
sum (i in orig[p]) Trans[p,i,j] = demand[p,j];

subject to Multi {i in ORIG, j in DEST} :
sum {p in PROD : (i,j) in links[p]} Trans[p,i,j] <= limit[i,j]:

Figure 6-5: Multicommodity transportation with indexed sets (mul tic. mod).

set orig {PROD) within ORIG ;
set dest (PROD) within DEST:
set links (p in PROD) = orig[p] cross dest[p];

The declaration of links demonstrates that it is possible to have an indexed collection

of compound sets, and that an indexed collection may be defined through set operations
from other indexed collections. Tn addition to the operations previously mentioned, there

are iterated union and intersection operators that apply to sets in the same way that an
iterated sum applies to numbers. For example. the expressions

union {p in PROD} orig[p]
inter (p in PROD) orig[p]

represent the subset of origins that supply at least one product, and the subset of origins
that supply all products.

The hierarchical relationship based on products that was observed in Figure 6-3 is
seen in most of Figure 6-5 as well. The model repeatedly deals with the sets of all ori­
gins, destinations, and links associated with a particular product. The only exception
comes in the last constraint. where the summation must be ovcr all products shipped via a
particular link :

104 COMPOUND SETS AND INDEXING CHAPTER 6

subject to Multi {i in ORIG. J 1n DEST}:
sum {p in PROD: (i,j) in links[p]} Trans[p,i,j] <= limit[i,j];

Here it is necessary. following sum, to use a somewhat awkward indexing expression to
describe a set that does not match the hierarchical organization.

In general, almost any model that can be written with indexed collections of sets can
also be written with sets of tuples. As our examples suggest, indexed collections are most
suitable for entities such as products and areas that have a hierarchical relationship_ Sets
of tuples are preferable, on the other hand, in dealing with entities like origins and desti­
nations that are related symmetrically.

Exercises

6~1. Return 10 the production and transportation model of Figures 4-6 and 4-7. Using the
display command, together with indexing expressions as de monstrated in Section 6.4, you can
determine the membership of a variety of compound sets; for example, you can use

ampl: display (j in DEST, p in PROD: demandlj,p) > SaO};
set {j in DEST, p in PROD: demand[j,p] > SOO} :=

WET, coils) (STL, bands) (STL,coils) (FRE,coils);

10 show the set of all combinations of products and destinations where the demand is greater than
500.

(a) Use display to determine the me mbership of the following sets, which depend only on the
data:

- All combinations of origins and products for which the production rate is greater than 150 tons
per hour.

- All combinations of origins, destinations and products for which there is a shipping cost of ~
$ 10 per IOn.

- All combinations of origins and destinations for which the shipping cost of coils is ~ $10 per
IOn.

- All combinations of origins and products for which the production cost per hour is less than
$30.000.

- All combinations of origins, destinations and products for which the transportation cost is more
than 15% of the production cost.

- All combinations of origins. destinations and products for which the transportation cost is more
than 15% but less than 25% of the production cost.

(b) Use display 10 determine the membership of the following sets. which depend on the opti­
mal solution as well as on the data:

- All combinations of orig ins and products for which there is production of at least 1000 tons.

- All combinations of origins, destinations and products for which there is a nonzero amount
shipped.

- All combinations of origins and products for which more than 10 hours are used in production .

- All combinations of origins and products such that the product accounts for more than 25% of
the hou rs available at the origin.

SECTION 6.5 INDEXED COLLECTioNS OF SETS 105

- All combinations of origins and products such that the total amount of the product shipped
from the origin is at least 1000 tons.

6-2. This e.'(ercise resembles the previous one, but asks about the ordered·pair version of the
tran~portation model in Figure 6·2.

(a) Use display and indexing expressions to determine the membership of the following sets:

- Origin·destination links that have a transportation cost less than $10 per ton.

- Deslination~ that can be served by GARY.

- Origins that can serve FRE.

- Links that are used for transportation in the optimal solution.

- Links that are used for transportation from CLEV in the optimal solution .

- Destinations to which the total cost of shipping, from all orig ins, exceeds $20,000.

(b) Use the display command and the setof operator to determine the membership of the fol­
lowing sets:

- Destinations that have a shipping cost of more than 20 from any origin.

- All destination-origin pairs (j, i) such that the link from i to j is used in the optimal solu·
tion.

6-3. Use display and appropriate set expressions to determine the membership of the following
sets from the multi period production model of Figures 6-3 and 6-4:

- All market areas served with any of the products.

- All combinations of products , areas and weeks such that the amount actually sold in the optimal
solution equals the maximum that can be sold.

- All combinations of products and weeks such that the total sold in all areas is greater than or
equal to 6000 tons.

6-4. To try the following experiment, first en ter these declarations:

ampl: set Q

ampl: set S

ampl: da.ta.;
ampl: sst S

- (l •. lO,l .• lO,l •• lO,l •• lO,l •• lO,l •. lO);
within Q;

:= 1 2 3 3 4 5 2 3 4 4 5 6 3 4 5 5 6 7 4 5 6 7 8 9 ;

(a) Now try the following two commands:

display $;
display {(a,b,c,d,e,f) in Q: (a,h,c,d,e,f) in S};

The two expressions in these commands represent the same set, but do you get the same speed of
response from AMPL? Explain the cause of the differencc.

(b) Predict the result of the command display Q.

6-5. This cxercise asks you to reformulate the diet model of Figure 2- 1 in a variety of ways, using
compound sets.

(a) Reformulate the diet model so that it uses a declaration

set GIVE within {NUTR,FOOD};

to define a subset of pairs (i, j) such that nutrient i can be found in food j.

(b) Reformulate the diet model so that it uses a declaration

106 COMPOUND SETS ANO INDEXING CHAPTER 6

set FN {NUTR} within FOOD;
I

to define. for each nutrient i, the set FN [i) of all foods that can suppl y that nutrie nt.

(c) Reformulate the diet model so Lhal il uses a declaration

set NF {FOOD} within NUTR;

to define, for each food j, the set NF [j] of all nutrients suppl ied by that food. Explain why you
find th is fonnulation morc or less natural and convenient than the one in (b).

6·6. Re- read the suggestions in Section 6.3, and complete the following re formulalions of the
multi commodity transportation mode l:

(a) Use a subset LINKS of orig in-destination pairs.

(b) Use a subset ROUTES of origin-destinalion-producl triples.

(c) Use a subset MARKETS of destination-product pairs, with the property that product p c;.m be
sold at destinati on j if and onl y if (j , p) is in the subset.

6·7. Carry through the following two suggestions from Sec tion 6.4 fo r enhancements to the multi ­
commodity transportation problem of Figure 4- 1.

(a) Add a declaration

set DEMAND = {j in DEST, p in PROD : demand[j,p] > OJ;

and index the variables over {ORIG, DEMAND}, so that variables are defined onl y where they
might be needed to meet demand. Make all of the necessary change~ in the rest of the modc1to usc
thi s set.

(b) Add the declarations

set LINKS within {ORIG,DEST};
set TRANSF = {il in ORIG, i2 in ORIG : il <> i2};

Define variables over LI NKS to represent shipments to destinations, and over TRANSF to repre­
sent shipments between origins. The constraint at each origin now must say that IOtal ~hipment s

out - to other orig ins as well as to destinations - must equa l suppl y plus shipments in from other
origins. Complete the fonnulation fo r thi s case.

6·8. Refonnulate the model from Exe rc ilje 3-3(b) so that it u ~e~ a set LINK! of allowable plant­
mill shipment pairs, and a sel LINK2 of allowable mill-faclOry ~hipmcnt pairs.

6-9. As chainmm of the program committee for a prestigious scientific conference. you nll] ~ t
assign submiued papers to volunteer re ferees. To do so in the most effecti ve way, you can fo rmu­
late an LP mode l along the lines of the ass ignme nt model di sc u lj~ed in Chapler 3. but wi th a few
ex tra twists.

After look ing through the papers and the list of referees, you can compi le the following data:

set Papers;
set Referees;
set Categories;

set PaperKind within (papers,Categories);
set Willing within (Referees,categories);

The contenl':. o f the fi rst two sets are self-evident , while the thi rd ..,et contains subject categories
into which papers may be classified. The set paperKind contains a pair (p, c) if paper p fall s

SECTION 6.5 INDEXED COLLECTIONS OF SETS 107

into category c; in general. a paper can fit into several categories. The set Willing contains a
pair (r, c) if referee r is willing to handle papers in category c.

(a) What is the dimension of the set

{(r,e) in Willing, (p,e) in PaperKind}

and what is the significance of the tuples contained in this set?

(b) Based on your answer to (a), explain why the declaration

set CanHandle = setof ((r,e) in Willing, (p,e) in PaperKind) (r,p);

gives the set of pairs (r, p) such that referee r can be assigned paper p.

Your model could use parameters ppref and variables Review indexed over CanHandle;
ppref [r, p] would be the preference of referee r for paper p, and Review [r, p I would be I
if referee r were assigned paper p, or 0 otherwise. Assuming higher preferences are better. write
out the declarations for these components and for an objective function to maximize the sum of
preferences of all assignments.

(c) Unfortunately, you don't have the referees' preferences for individual papers, since they haven't
seen any papers yet. What you have are their preferences for different categories:

param cpref (Willing) integer >= 0, <= 5;

Explain why it would make sense to replace ppref [r, p] in your objective by

max {(r,e) in Willing: (p,e) in paperKind} epref[r,c]

(d) Finally, you must define the following parameters that indicate how much work is to be done:

param nreferees integer> 0.
param minwork integer> 0;
param maxwork integer > minwork;

* referees needed per paper
min papers to each referee
max papers to each referee

Formulate the appropriate assignment constrain ts. Complete the model, by formulating constraints
that each paper must have the required number of referees, and that each referee must be assigned
an acceptable number of papers.

7
Parameters and Expressions

A large optimization model invariably uses many numerical values. As we have
explained before, only a concise symbolic description of these values need appear in an
AMPL model, while the explicit data values are given in separate data statements, to be
described in Chapter 9.

In AMPL a single named numerical value is called a parameter. Although some
parameters are defined as individual scalar values, most occur in vectors or matrices or
other collections of numerical val ues indexed over sets. We wi ll thus loosely refer to an
indexed coneetion of parameters as "a parameter" when the meaning is clear. To begin
this chapter, Section 7.1 describes the rules for declaring parameters and for referring to
them in an AMPL model.

Parameters and other numerical values are the building blocks of the expressions that
make up a model's objective and constraints. Sections 7.2 and 7.3 describe arithmetic
expressions, which have a numerical value, and logical expressions, which evaluate to
true or false. Along with the standard unary and binary operators of conventional alge·
braic notation, AMPL provides iterated operators like sum and prod, and a conditional
(if-then-else) operator that chooses between two expressions, depending on the truth
of a third expression.

The expressions in objectives and constraints necessarily involve variables, whose
declaration and use will be discussed in Chapter 8. There are several common uses for
expressions that involve only sets and parameters, however. Section 7.4 describes how
logical expressions are used to test the validity of data, either directly in a parameter dec­
laration, or separately in a check statement. Section 7.5 introduces features for defining
new parameters through arithmetic expressions in previously declared parameters and
sets, and 7.6 describes randomly-generated parameters.

Although the key purpose of parameters is to represent numerical values, they can
also represent logical values or arbitrary strings. These possibilities are covered in Sec­
tions 7.7 and 7.8, respectively. AMPL provides a range of operators for strings, but as
they are most often used in AMPL commands and programming rather than in models, we
defer their introduction to Section 13.7.

109

110 PARAMETERS AND EXPRESSIONS CHAPTER 7

7.1 Parameter declarations

A parameter declaration describes certain data required by a model, and indicates how
the model will refer to data values in subsequent expressions.

The simplest parameter declaration consists of the keyword param and a name:

param T;

At any point after this declaration, T can be used to refer to a numerical value.
More often, the name in a parameter declaration is followed by an indexing expres­

sion:

param avail {l . . T}j
param demand {DEST,PROD};
param revenue (p in PROD, AREA[p), l . . T};

One parameter is defined for each member of the set specified by the indexing expres­
sion. Thus a parameter is uniq uely determined by its name and its associated set mem­
ber; throughout the rest of the model, you would refer to this parameter by writing the
name and bracketed '"subscripts":

avail(i]
demand[j,p]
revenue[p,a,t]

If the indexing is over a simple set of objects as described in Chapter 5. there is one sub­
script. If the indexing is over a set of pairs. triples. or longer tuples as described in Chap­
ter 6, there must be a corresponding pair, triple, or longer li st of subscripts separated by
commas. The subscripts can be any expressions. so long as they evaluate La members of
the underlyi ng index sel.

An un indexed parameter is a scalar value, but a parameter indexed over a simple set
has the characteristics of a vector or an array; when the indexing is over a sequence of
integers, say

param avail {l .. T};

the individual subscripted parameters are avail [1] , avail [2], ... , avail [T], and
there is an obvious analogy to the vectors of linear algebra or the arrays of a program­
ming language li ke Fortran or C. AMPL's concept of a vector is more general, however,
since parameters may also be indexed over sets of strings, which need not even be
ordered. Indexing over sets of strings is best suited for parameters that correspond to
places. products and other entities for which no numbering is especially natural. Indexing
over sequences of numbers is more appropriate for parameters that correspond to weeks,
stages, and the like, which by their nature lend to be ordered and numbered; even for
these, you may prefer to use ordered sets of strings as described in Section 5.6.

A parameter indexed over a set of pairs is like a two-dimensional array or matrix_ If
the indexing is over all pairs from two sets, as in

SECTION 7.2

set ORIGi
set DESTi
param cost {ORIG,DEST}i

ARITHMETIC EXPRESSIONS 111

then there is a parameter cost [i, j 1 for every combination of i from ORIG and j
from DEST, and the analogy to a matrix is strongest - although again the subscripts are
more likely to be strings than numbers. If the indexing is over a subset of pairs, however:

set ORIG;
set DESTi
set LINKS within {ORIG,DEST}i
param cost {LINKS}i

then cos t [i, j 1 exists only for those i from ORIG and j from DEST such that (i, j)
is a member of LINKS. In this case, you can think of cost as being a "sparse" matrix.

Similar comments apply to parameters indexed over triples and longer tuples, which
resemble arrays of higher dimension in programming languages.

7.2 Arithmetic expressions

Arithmetic expressions in AMPL are much the same as in other computer languages.
Literal numbers consist of an optional sign preceding a sequence of digits. which mayor
may not include a decimal point (for example, - 1 7 or 2 .7 1828 or +.3). At the end of
a literal there may also be an exponent, consisting of the letter d, D, e, or E and an
optional sign followed by digits (le3 0 or 7. 66439D-07).

Literals, parameters, and variables are combined into expressions by the standard
operations of addition (+), subtraction (-), multiplication (*), division (I), and exponen­
tiation C). The familiar conventions of arithmetic apply. Exponentiation has higher
precedence than multiplication and division, which have higher precedence than addition
and subtraction; successive operations of the same precedence group to the left, except
for exponentiation, which groups to the right. Parentheses may be used to change the
order of evaluation.

Arithmetic expressions may also use the di v operator, which returns the truncated
quotient when its left operand is divided by its right operand; the mod operator, which
computes the remainder; and the less operator, which returns its left operand minus its
right operand if the result is positive, or zero otherwise. For purposes of precedence and
grouping, AMPL treats di v and mod like division. and less like subtraction.

A li st of arithmetic operators (and logical operators, to be described shortly) is given
in Table 7-1. As much as possible, AMPL follows common programming languages in its
choice of operator symbols, such as * for multiplication and / for division. There is
sometimes more than one standard, however, as with exponentiation, where some lan­
guages use " while others use * *. Tn this and other cases, AMPL provides alternate
forms. Table 7-1 shows the more common forms to the left, and the alternatives (if any)

112 PARAMETERS AND EXPRESSIONS CHAPTER 7

Usual altemative type of type of
~tyl c style operand c; result

if-then-else logical , arithmetic arithmetic
or I I log ical logical
exists forall logical logical
and && logical logical
not (unary) logical logical
< <= = <> > >= < <= ! = > >= arithmetic logical
i n not in object, set logical

+ - less arithmetic arithmetic
sum prod min max arithmetic arithmetic

* / div mod arithmetic arithmetic
+ - (unary) arithmetic arithmetic

* * arithmetic arithmetic

Exponentiation and i f -the n-else are right-associative ; the other operators are
left-associative. The logical operand of if-then-else appears after if , and the
arithmetic operands after then and (optionally) e l s e.

Table 7-1: Arithmetic and logical operators, in increasing precedence.

to the right ; you can mix them as you like, but your models will be easier to read and
understand if you are consistent in your choices.

Another way to build arithmetic expressions is by applying functions to other expres­
sions. A function reference consists of a name followed by a parenthcsiled argument or
comma-separated list of arguments; an arithmetic argument can be any arithmetic expres­
sion. Here are a few examples. which compute the minimum, absolute value. and square
root of their arguments, respectively:

min(T,20)
abs(surn {i in ORIG} supply[i] - sum {j in DEST } demand[j])
s q rt((tan [j]-tan [k]) "2)

Table 7-2 lists the built-in arithmetic functions that are typically found in models, Except
for mi n and ma x , the names of any of these functions may be redefined, but their original
meanings will become inaccessible. For example, a model may declare a parameter
named tan as in the last example above, but then it cannot also refer to the function
tan.

The set function s card and o r d, which were described in Chapter 5, also produce an
arithmetic result. In addition, AMPL provides several " rounding" functions (Section
11.3) and a variety of random-number functions (Section 7.6 below). A mechanism for
"imponing" functions defined by your own programs is described in Appendix A.22.

SECTION 7.2

abs (xl
acos (xl
acosh(xl
asin(x)
asinh(x)
atan (xl
atan2(y,x)
atanh (xl
cos (x)

cosh(x)
exp(xl
log (x)

loglO(x)
max (x, y, .. 1
min (x, y, ...)
sin (x)

sinh(x)
sqrt (x)

tan (x)

tanh (x)

ARITHMETIC EXPRESSIONS

absolute va lue, Ixl
inverse cosine, COS-I (x)
inverse hyperbolic cosine, cosh - I (x)
inverse sine, sin -I (x)
inverse hyperbolic sine, sinh - 1 (x)
inverse tangent, tan - I (x)
inverse tangent, tan - I (y/x)
inverse hyperbolic tangent, tanh - I (x)
cosine
hyperbolic cosine
exponential, e:r

naturallogarithm, log e(x)
common logarithm, log 10 (x)
maximum (2 or more arguments)
minimum (2 or more arguments)
sine
hyperbolic sine
square rOOl

tangent
hyperbolic tangent

Table 7-2: Built-in arithmetic functions for use in models.

113

Finally, the indexed operators such as Land 11 from algebraic notation are generalized
in AMPL by expressions for iterating operations over sets. In particular, most large-scale
linear programming models contain iterated summations:

sum {i in ORIG} supply[i]

The keyword sum may be followed by any indexing expression. The subsequent arilh­
metic expression is evaluated once for each member of the index set, and all the resulting
values are added. Thus the sum above, from the transportation model of Figure 3-1 a, rep­
resents the total supply available, at all origins. The sum operator has lower precedence
than *. so the objective of the same model can be written

sum {i in ORIG, j in DEST} cost[i/jj * Trans(i,j]

to represent the total of cost [i I j] * Trans [i I j] over all combinations of origins
and destinations. The precedence of sum is higher than that of + or -, however, so for
the objective of the multi period production model in Figure 6-3 we must write

sum {p in PROD, tin l .. T}
(sum {a in AREA(p]} revenue(p / a,t)*Sell(p,a,t] -

prodcost[p]*Make[p,tj - invcost(pJ*Inv(p/tJ);

The outer sum applies to the entire parenthesized expression following it, while the inner
sum applies only to the term revenue [P, a , t] * Sell [P, a , t].

TECNOL6GICO DE Mnr.lT"~R~V

114 PARAMETERS AND EXPRESSIONS CHAPTER 7

Other iterated arithmetic operators are prod for multiplication, min for minimum,
and max for maximum. As an example. we could use

max {i in ORIG} supply[il

to describe the greatest supply available at any origin.
Bear in mind that, while an AMPL arithmetic function or operator may be applied to

variables as well as to parameters or to numeric members of sets, most operations on vari­
ables are not linear. AMPL's requirements for arithmetic expressions in a linear program
are described in Section 8.2. Some of the nonlinear functions of variables that can be
handled by certain solvers are discussed in Chapter 18.

7.3 Logical and conditional expressions

The values of arithmetic expressions can be tested against each other by comparison
operators:

equal to
<> nOI equal 10

< less than
<= less than or equal to
> greater than
>= greater than or equal to

The result ofa comparison is either "true" or "false". Thus T > 1 is true if the parame­
ter T has a value greater than I, and is false otherwise; and

sum {i in ORIG} supply[il = sum {j in DEST} demand[j]

is true if and only if total supply equals total demand.
Comparisons are one example of AMPL's logical expressions, which evaluate to true

or false. Set membership tests using in and wi thin, described in Section 5.4, are
another example. More complex logical expressions can be built up with logical opera­
tors. The and operator returns true if and only if both its operands are true, while or
returns true if and only if at least one of its operands is true; the unary operator not
returns fal se for true and true for false. Thus the expression

T >= 0 and T <= 10

is only true if T lies in the interval [0, 10]. while the following from Section 5.5,

i in MAXREQ or n_min[i] > 0

is true if i is a member of MAXREQ, or n_min [i) is positive, or both. Where several
operators are used together, any comparison, membership or arithmetic operator has
higher precedence than the logical operators; and has higher precedence than or, while
not has higher precedence than either. Thus the expression

not i in MAXREQ or n_min[il > 0 and n_min[i] <= 10

SECTION 7.3 LOGICAL AND CONDITIONAL EXPRESSIONS 115

is interpreted as

(not (i in MAXREQ» or «n_min(i] > 0) and (n_min(i] <= 10»

Alternatively, the not in operator could be used:

i not in MAXREQ or n_min[i] > 0 and n_min[i] <= 10

The precedences are summarized in Table 7-1, which also gives alternative forms.
Like + and *, the operators or and and have iterated versions. The iterated or is

denoted by exis ts, and the iterated and by forall. For example, the expression

exists {i in ORIG} demand[i] > 10

is true if and only if at least one origin has a demand greater than 10, while

forall {i in ORIG} demand[i) > 10

is true if and only if every origin has demand greater than 10.
Another use for a logical expression is as an operand to the conditional or i f- then­

else operator, which returns one of two different arithmetic values depending on
whether the logical expression is true or false. Consider the two collections of inventory
balance constraints in the multiperiod production model of Figure 5-3:

subject to BalanceD {p in PROD} :
Make[p,first[WEEKS)] + invO[p]

= Sell[p,first(WEEKS)] + Inv[p,first(WEEKS)];

subject to Balance {p in PROD, t in WEEKS : ord(t) > 1}:
Make[p,t] + Inv[p,prev(t)] = Sell[p,t] + Inv[p,t];

The BalanceO constraints are basically the Balance constraints with t set to
first (WEEKS). The only difference is in the second term, which represents the previ­
ous week's inventory; it is given as invO [p] for the first week (in the BalanceO con­
straints) but is represented by the variable Inv [p, prev (t)] for subsequent weeks (in
the Balance constraints). We would like to combine these constraints into one declara­
tion, by having a term that takes the value invO [pI when t is the first week, and takes
the value Inv [p, prev (t)] otherwise. Such a term is written in AMPL as:

if t = first (WEEKS) then invO[p] else Inv[p,prev(t)]

Placing this expression into the constraint declaration, we can write

subject to Balance {p in PROD, t in WEEKS} :
Make[p,t] +

(if t = first (WEEKS) then invO[p] else Inv[p,prev(t)])
= Sell[p,t] + Inv[p,t];

This form communicates the inventory balance constraints more concisely and directly
than two separate declarations.

The genera] form of a conditional expression is

if 1I then b else c

116 PARAMETERS AND EXPRESSIONS CHAPTER 7

where a is a logical expression. If a evaluates to true, the conditional expression takes the
value of b; if a is false, the expression takes the value of c . If c is zero, the else c part
can be dropped. Most often band c are arithmetic expressions, but they can also be string
or set expressions, ~o long as both are expressions of the same kind. Because then and
else have lower precedence than any other operators, a conditional expression needs to
be parenthesized (as in the example above) unless it occurs at the end of a statement.

AMPL also has an if-then-else for use in programming: like the conditional state­
ments in many programming languages, it executes one or another block of statements
depending on the truth of some logical expression. We describc it with other AMPL pro­
gramming features in Chapter 13. The if-then-else that we have described here is
not a statement, but rather an expression whose va lue is conditionally determined. It
therefore belongs inside a declaration, in a place where an expression would normally be
evaluated.

7.4 Restrictions on parameters

If T is intended to represent the number of weeks in a multi period model. it should be
an integer and greater than 1. By including these conditions in T's declaration,

param T > 1 integer;

you instruct AMPL to reject your data if you inadvertently set T to I:

error processing param T:

or to 2.5:

failed check: param T = 1
is not> 1;

error processing param T :
failed check: param T = 2.5

is not an integer;

AMPL will not send your problem instance to a solver as long as any errors of this kind
remain.

In the declaration of an indexed collection of parameters, a simple restriction such as
integer or >= 0 applies to every parameter defined. Our examples often use this
option to specify lhal vectors and arrays are nonnegati ve:

pararn demand {DEST,PROD} >= OJ

If you include dummy indices in the indexing expression, however, you can use them to
specify a differenL restriction for each parameter:

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

SECTION 7.4 RESTRICTIONS ON PARAMETERS 117

The effect of these declarations is to define a pair of parameters f_max [j I >=

f_min [j I for every j in the set FOOD.
A restriction phrase for a parameter declaration may be the word integer or

binary or a comparison operator followed by an arithmetic expression. While
integer restricts a parameter to integral (whole-number) values, binary restricts it to
zero or one. The arithmetic expression may refer to sets and parameters previously
defined in the model, and to dummy indices defined by the current declaration. There
may be several restriction phrases in the same declaration, in which case they may
optionally be separated by commas.

In special circumstances, a restriction phrase may even refer to the parameter in
whose declaration it appears. Some multiperiod production models, for example, are
defined in terms of a parameter cumulative_market [p, t] that represents the
cumulative demand for product p in weeks 1 through t. Since cumulative demand does
not decrease, you might try to write a restriction phrase like this:

param cumulative_market {p in PROD, t in 1 .. T}
>= cumulative_rnarket(p,t-ll; # ERROR

For the parameters cumulative_market (p, 1] , however, the restriction phrase will
refer to cumulati ve_market [p, 0 I, which is undefined; AMPL will reject the decla­
ration with an error message. What you need here agajn is a conditional expression that
handles the first period specially:

param cumulative_market {p in PROD, t in 1 .. T}
>= if t = 1 then 0 else cumulative_market(p,t-1];

The same thing could be written a little more compactly as

param cumulative_market {p in PROD, t in 1 .. T}
>= if t > 1 then cumulative_market[p,t-1];

since "else 0" is assumed. Almost always, some form of if-thEn-else expression
is needed to make this kind of self-reference possible.

As you might suspect from this last example, sometimes it is desirable to place a more
complex restriction on the model's data than can be expressed by a restriction phrase
within a declaration. This is the purpose of the check statement. For example, in the
transportation model of Figure 3-1 a, total supply must equal total demand:

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand(j];

The multicommodity version, in Figure 4-1, uses an indexed check to say that total sup­
ply must equal total demand for each product:

check {p in PROD}:
sum {i in ORIG} supply[i,p] = sum {j in DEST) demand(j,p];

Here the restriction is tested once for each member p of PROD. If the check fails for any
member, AMPL prints an error message and rejects all of the data.

You can think of the check statement as specifying a kind of constraint, but only on
the data. The restriction clause is a logical expression, which may use any previously

118 PARAMETERS AND EXPRESSIONS CHAPTER 7

defined sets and parameters as well as dummy indices defined in the statement's indexing
expression. After the data values have been read, the logical expression must evaluate to
true; if an indexing expression has been specified, the logical expression is evaluated sep­
arately for each assignment of set members to the dummy indices, and must be true for
each.

We strongly recommend the lise of restriction phrases and check statements to vali­
date a model 's data. These features will help you to catch data errors at an early slage,
when they are easy to fix. Data errors not caught will , at best, cause errors in the genera­
tion of the variables and constraints, so that you will get some kind of error message from
AMPL. In other cases, data e rrors lead to the generation of an incorrect linear program. If
you are fortunate, the incorrect LP will have a meaningless optimal solution, so that -
possibly after a good deal of effort - you will be able to work backward to find the error
in the data. At worst, the incorrect LP will have a plausible solution, and the error will go
undetected.

7.S Computed parameters

ft is seldom possible to arrange that the data values available to a model are precisely
the coefficient values required by the objective and consLraints. Even in the simple pro­
duction model of Figure 1-4. for example, we wrote the constraint as

sum {p in PROD) (l/rate(p]) * Make[p] <= avail ;

because production rates were g iven in tons per hour, while the coefficient of Make [p]
had to be in hours per ton. Any parameter expression may be used in the constraints and
objective. but the expressions are best kept simple. When more complex expressions are
needed, the model is usually easier to understand if new, computed parameters are
defined in tenns of the data parameters.

The declaration of a computed parameter has an assignment phrase. which resembles
the restriction phrase described in the previous section exccpt for the use of an = operator
to indicate that the parameter is being set equal to a certain expression, rather than merely
being restricted by an inequality. As a first example. suppose that the data values pro­
vided to the multicommodity transportation model of Figure 4-1 consist of the tOlal
demand for each product, together wilh each destination's share of demand. The destina­
tions' shares are percentages between zero and 100, but their sum over all destinations
might not exact ly equal 100%, because of rounding and approximation. Thus we declarc
data parameters to represent the shares. and a computed parameter equal to their sum:

param share {DEST} >= 0, <= 100;
param tot_sh = sum {j in DEST) share[j];

We can then declare a data parameter to reprc!o.clll lOtal demands. and a computed param­
etcr thai equals demand at each deMination:

SECTION 7.5 COMPUTED PARAMETERS 119

param tot_dem {PROD} >= 0;
param demand {j in DEST, p in PROD}

= share[j] * tot_dem[p] / tot_sh;

The division by tot_sh acts as a correction factor for a sum not equal to 100%. Once
demand has been defined in this way, the model can use it as in Figure 4-1:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORlG} Trans[i,j,p] = demand[j,p];

We could avoid computed parameters by substituting the formulas for tot_sh and
demand [j ,p) directly into this constraint:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORlG} Trans[i,j,p]

= share[j] * tot_dem{p] / sum {k in DEST} share[k);

This alternative makes the model a little shorter, but the computation of the demand and
the structure of the constraint are both harder to follow.

As another example. consider a scenario for the multiperiod production model (Figure
4-4) in which minimum inventories are computed. Specifically. suppose that the inven­
tory of product p for week t must be at least a certain fraction of market [p, t + 1), the
maximum that can be sold in the following week. We thus use the following declarations
for the data to be supplied:

param frac > 0;
param market {PROD,l .. T+l} >= 0;

and then declare

param mininv {p in PROD, tin O .. T} = frac * market[p,t+l];
var lnv {p in PROD, tin O .. T} >= mininv[p,t);

to define and use parameters mininv [p, t] that represent the minimum inventory of
product p for week t. AMPL keeps all = definitions of parameters up to date throughout
a session. Thus for example if you change the value of frac the values of all the
rnininv parameters automatically change accordingly.

If you define a computed parameter as in the examples above, then you cannot also
specify a data value for it. An attempt to do so will result in an error message:

mininv was defined in the model
context: param »> mininv «< bands 2 3000

However, there is an alternative way in which you can define an initial value for a param­
eter but allow it to be changed later.

If you deline a parameter using the defaul t operator in place of =, then the parame­
ter is initialized rather than defined. Its value is taken from the value of the expression to
the right of the defaul t operator, but does not change if the expression's value later
changes. Initial values can be overridden by dal.a statements, and they also may be
changed by subsequent assignment statements. This feature is most useful for writing
AMPL scripts that update certajn values repeatedly, as shown in Section 13.2.

120 PARAMETERS AND EXPRESSIONS CHAPTER 7

If you define a paramete r using the operator defaul t in place of =, then you can
specify values in data statements to override the ones that would otherwise be computed.
For instance, by declaring

pararn mininv {p in PROD, t in O .. T)
default frac * market[p,t+l];

you can allow a few exceptional minimum inventories to be specified as part of the data
for the model, either in a list:

param mininv . -
bands 2 3000
coils 2 2000
co i ls 3 2000

or in a table:

param market : 1 2 3 4 : =
bands 3000
coils 2000 2000

(AMPL uses " . " in a data statement to indicate an omitted entry, as explained in ChapLer
9 and A.12.2.)

The expression that gives the default value of a parameter is evaluated only when the
parameter' 5 value is first needed, such as when an objective or constraint that uses the
parameter is processed by a so l ve command.

In most :;; and d e f au l t phrases, the operator is followed by an arithmetic expression
in previously defined sets and parameters (but not variables) and currently defined
dummy indices. Some parameters in an indexed collection may be given a computed or
default value in terms of others in the same collection, however. As an example. you can
smooth out some of the variation in the minimum inventories by defining the mininv
parameter to be a running average like this:

param mininv {p in PROD, t i n O .. T) =
if t = 0 then invO[p]

else 0 . 5 * {mininv[p,t-l] + frac * market[p ,t+l) 1 ;

The values of min i nv for week 0 are set explicitly to the initial inventories, while the
values for each subsequent week t are defined in terms of the previous week's values.
AMPL permits any " recursive" definition of this kind, but will signal an error if it detects
a circular refe rence that causes a parameter' s value to depend directly or indirectly on
itself.

You can use the phrases defined in thi s section together with the restriction phra~es of
the previous section, to further check the values that are computed. For example the dec­
laration

param mininv {p in PROD, t i n O .. T}
:;; frac * market[p,t+l], >= 0 ;

SECTION 7.6 RANDOMLY GENERATED PARAMETERS 121

will cause an error to be signaled if the computed value of any of the mininv parameters
is negative. This check is triggered whenever an AMPL session uses mininv for any
purpose.

7.6 Randomly generated parameters

When you're testing out a model , especially in the early stages of development, you
may find it convenient to let randomly generated data stand in for actual data to be
obtained later. Randomly generated parameters can also be useful in experimenting with
alternative model formulations or solvers.

Randomly generated parameters are like the computed parameters introduced in the
preceding section, except that their defining expressions are made random by use of
AMPL's built-in random number generation functions listed in Table A-3. As an example
of the simplest case, the individual parameter avail representing hours avai lable in
steel.mod may be defined to equal a random function:

param avail_mean> 0 ;
param avail_variance> 0, < avail_mean / 2;

param avail = max (Normal (avail_mean, avail_variance), O)i

Adding some indexing gives a multi-stage vers ion of this model:

param avail {STAGE} =
max (Normal (avail_mean, avail_variance), 0);

For each stage s, this gives avail [s I a different random value from the same random
distribution. To specify stage-dependent random distributions, you would add indexing
to the mean and variance parameters as well :

param avail_mean {STAGE} > Oi
param avail_variance {s in STAGE} > 0, < avail_mean[s] / 2;

param avail {s in STAGE} =
max(Normal(avail_mean[s), avail_variance[s]), 0) i

The max (... ,0) expression is included to handle the rare case in which the normal di stri­
bution wi th a positive mean returns a negative value.

More general ways of randomly computing parameters arise naturally from the pre­
ceding section 's examples. In the multicommodity transportation problem, you can
define random shares of demand:

param share {DEST} = Uniform(O,lOO);
param tot_sh = sum (j in DEST) share[j]i

param tot_dem {PROD) >= Oi
pararn demand {j in DEST, p in PROD}

= share[j} * tot_dem[p) / tot_shi

122 PARAMETERS AND EXPRESSIONS CHAPTER 7

Parameters tot_sh and demand then also become random, because they are defined in
terms of random parameters. In the multi period production model , you can define the
demand quantities market [p, t] in terms of an initial value and a random amount of
increase per period:

param marketl {PROD} >= Oi
param max_iner {PROD} >= 0;

par am market {p in PROD, tin 1 .. T+l} =
if t = 1 then rnarketl[p]

else Uniform(O,max_incr) * market[p,t-lli

A recursive definition of this kind provides a way of generating simple random processes
over time.

All of the AMPL random functions are based on a uniform random number generator
with a very long period. When you start AMPL or give a reset command, however, the
generator is reset and the • 'random" values are the same as before. You can request dif­
ferent values by changing the AMPL option randseed to some integer other than its
default value of I ; the command for this purpose is

option randseed 11;

where n is some integer value. Nonzero values give sequences that repeat each time
AMPL is reset. A value of 0 requests AMPL to pick a seed based on the current value of
the system clock, resulting (for practical purposes) in a different seed at each reset.

AMPL's reset data command, when applied to a randomly computed parameter,
also causes a new sample of random values to be determined. The use of this command
is discussed in Section 11.3.

7.7 Logical parameters

Although parameters normally represent numeric values, they can optionally be used
to stand for true-false values or for character strings.

The current version of AMPL does not support a full-nedged "logical" type of param­
eter that wouid stand for only the values true and faise, but a parameter of type binary
may be used to the same effect. As an illustration, we describe an application of the pre­
ceding inventory example to consumer goods. Certain products in each week may be
specially promoted, in which case they require a higher inventory fraction. Using param­
eters of type binary, we can represent this situation by the following declarations:

param fr_reg > 0;
param fr-pro > fr_reg;

regular inventory fraction
fraction for promoted items

param promote {PROD,l .. T+l} binary;
param market {PROD,l .. T+l} >= 0;

SECTION 7.8 SYMBOLIC PARAMETERS 123

The binary parameters promote [p, t] are 0 when there is no promotion, and I when
there is a promotion. Thus we can define the minimum-inventory parameters by use of
an if-theo-else expression as follows:

param mininv {p in PROD, t in O .. T}
(if promote[p,t] = 1 then fr-pro else fr_reg)

* market[p,t+l} i

We can also say the same thing more concisely:

param mininv {p in PROD, t in O .. T}
{if promote[p,t] then fr-pro else fr_reg) * market[p,t+l]i

When an arithmetic expression like promote [p, t) appears where a logical expression
is required, AMPL interprets any nonzero value as true, and zero as false. You do need to
exercise a litt le caution to avoid being tripped up by this implicit conversion. For exam­
ple, in Section 7.4 we used the expression

if t = 1 then 0 else cumulative_rnarket[p,t-l]

If you accidentally write

if t then 0 else cumulative_market[p,t-l] # DIFFERENT

it's perfectly legal, but it doesn't mean what you intended.

7.8 Symbolic parameters

You may permit a parameter to represent character string values, by including the
keyword symbolic in its declaration. A symbolic parameter's values may be strings or
numbers,just like a set's members, but the string values may not participate in arithmetic.

A major use of symbolic parameters is to designate individual set members that are to
be treated specially. For example. in a model of traffic flow , there is a set of intersec­
tions, two of whose members are designated as the entrance and exit. Symbolic parame­
ters can be used to represent these two members:

set INTER;

pararn entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

In the data statements, an appropriate string is assigned to each symbolic parameter:

set INTER := abc d e f 9 ;

param entr := a
param exit : = 9 i

These parameters are subsequently used in defining the objective and constraints; the
complete model is developed in Section 15.2.

124 PARAMETERS AND EXPRESSIONS CHAPTER 7

Another use of symbolic parameters is to associate descriptive strings with set mem­
bers. Consider for example the set of "origins" in the transportation model of Figure
3-1 a. When we introduced this set at the beginning of Chapter 3, we described each orig­
inating city by means of a 4-character string and a longer descriptive string. The short
strings became the members of the AMPL set ORIG, while the longer strings played no
further role. To make both available, we could declare

set ORIGi
param orig_narne {ORIG} symbolic;
param supply {ORIG} >= 0;

Then in the data we could specify

pararn : ORIG, orig_name
GARY "Gary, Indiana"
CLEV "Cleveland, Ohio"
PITT "Pittsburgh, Pennsylvania"

supply :=
1400
2600
2900

Since the long strings do not have the fonn of AMPL names, they do need to be quoted.
They still play no role in the model or the resulting linear program, but they can be
retrieved for documentary purposes by the display and printf commands described
in Chapter 12.

Just as there are arithmetic and logical operators and functions, there are AMPL string
operators and functions for working with string values. These features are mostly used in
AMPL command scripts rather than in models, so we defer their description to Section
13.7.

Exercises

7-1. Show how the multicomrnodity transportation model of Figure 4-1 could be modified so that
it applies the following restrictions to the data. Use either a restri ction phrase in a set or pararn
declaration, or a check statement, whichever is appropriate.

- No city is a member of both ORIG and DE ST.

- The number of cities in DEST must be greater than the number in ORIG.

- Demand does not exceed 1000 at anyone city in DE ST.

- TOLaI supply for each product at all origins must equal tmal demand for that product at all des-
tinations.

- Total supply for all products at all origins must equal total demand for all products at all desti­
nations.

- Total supply of all products al an origin must not exceed total capacity for all shipments from
that origin.

- Total demand for all products at a destination must not exceed total capacity for all shipments
to that destination.

7-2. Show how the multi period production model of Figure 4-4 cou ld be modified so that it
applies the following restrictions to the data.

SECTION 7.B SYMBOLIC PARAMETERS 125

- The number of weeks is a positive integer greater than I.

- The initial inventory of a product does not exceed the IOtal market demand for that product
over all weeks.

- The inventory cost for a product is never more than 10% of the expected revenue for that prod­
uct in anyone week.

- The number of hours in a week is between 24 and 40. and does not change by more than 8
hours from one week 10 the next.

- For each product. the expected revenue never decreases from one week to the next.

7-3. The solutions to the following exercises involve the use of an if-then-else operator to
formulate a constraint.

(a) In the example of the constraint Balance in Section 7.3, we used an expression beginning

if t = first (WEEKS) then ...

Find an equivalent expression that uses the func tion ord (t) .

(b) Combine the Diet_Min and Diet_Max constraints of Figure 5-1'5 diet model into one con­
straint declaration.

(c) In the multicommodity transportation model of Figure 4-1, imagine that there is more demand
at the destinations than we can meet from the supply produced at the origins. To make up the dif­
ference. a limitcd number of additional tons can be purchascd (rather than manufactured) for ship­
ment at certain origins.

To model thi s situation, suppose that we declare a subset of origins,

set BUY_ORIG within ORIG;

where the additional tons can be bought. The relevant data values and decision variables could be
indexed over thi s subset:

param buy_supply {BUY_ORIG,PROD} >= 0;
param buy_cost {BUY_ORIG,PROD} > 0;

available for purchase
purchase cost per ton

var Buy {i in BUY_ORIG, p in PROD) >= 0, <= buy_supply[i,p];
'* amount to buy

Revise the objective function to include the purchase costs. Revise the Supply constraints to say
that, for each origin and each product. IOtal tons shipped out must equal tons of supply from pro­
duction plus (if applicable) tons purchased.

(d) Formulate the same model as in (c), but with BUY_ORIG being the sct of pairs (i, p) such
that product p can be bought at origin i.

7-4. This exercise is concerned wilh the following sets and parameters from Figure 4-1:

set ORIGi
set DEST;
set PROD;

* origins
i destinations
products

param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} > 0;

(a) Write param declarations, using the = operator. to compute parameters having the following
definitions:

- prod_supply [p] is the total supply of product p at all origins.

126 PARAMETERS AND EXPRESSIONS CHAPTER 7

- des t_demand (j) is the total demand for all products at destination j.

- true_limi t [i, j , p] is the largest quantity of product p thaI can be shipped from i to j
- that is, the largest va lue that does not exceed limi t [i, j], or the suppl y of pat i, or the
demand for p a l j.

- max_supply [p] is the largest supply of product p available at any origin.

- max_diff [p] is the largest difference, over all combinations of origins and destinations,
between the supply and demand for product p.

(b) Write set declarations, using the = operator, to compute these sets:

- Products p whose demand is at least SOO at some destination j.

- Products p whose demand is at least 250 at all destinations j.

- Products p whose demand is equal to 500 at some destination j.

7-5. AMPL parameters can be defined to contain many kinds of series, especially by using recur­
sive definitions. For example, we can make s [j 1 equal the sum of the firs t j integers, for j from
1 to some given limit N, by writing

param N;
param s {j in 1. . N} sum {jj in 1..j} jj;

or. using a formula for the sum,

param s {j in 1. .N} j* (j+l) 12 ;

or. using a recursive definition,

param s {j in 1 .. N} = if j = 1 then 1 else s[j-l] + j;

This exercise asks you to play with some other possibilities.

(a) Define fact [n) to be n factorial, the product of the first n integers. Give both a recursive
and a nonrecursive definition as above.

(b) The Fibonacci numbers are defined mathematically by 10 = 11 = I and In = In-l + In-2.
Usi ng a recursive declaration. define fib [n] in AMPL to equal the n-th Fibonacci number.

Use another AMPL declaration to verify that the 11 -th Fibonacci number equals the closest integer
to ('/, + y, {5) "/{5.

(c) Here's another recursive definition, called Ackermann's function, for positive integers i and):

A(i , O) = i + I
A(O,j + I) = A(I,j)

A(i+ I.j+ I) =A(A(i,j+ I),))

Using a recursive declaration, define ack [i, j] in AMPL so that it will equal AU, j). Use
display to print ack (0, 0] , ack [1, 1], ack [2 J 2] and so forth. What difficulty do you
encounter?

(d) What are the values odd [i] defined by the following odd declaration?

param odd {i in 1 .. N} =
if i = 1 then 3 else

min {j in odd[i-l]+2
not exists {k in 1

odd(i-l]*2 by 2:
i-l} j mod odd[k] = O} j;

Once you've figured it out, create a simpler and more erticient declaration that gives a set rather
than an array of these numbers.

SECTION 7.8 SYMBOLIC PARAMETERS 127

(e) A "tree" consists of a collection of nodes. one of which we designate as the " root" . Each
node except the root has a unique predecessor node in the tree, such that if you work backwards
from a node 10 il s predecessor, then to il s predecessor's predecessor. and so forth , you always
eventually reach the root. A Iree can be drawn like this, with the root at the left and an arrow from
each node to its successors:

We can store the Slntcture of a tree in AMPL selS and parameters as follows:

set NODES;
param Root symbolic in NODES ;
param pred {i in NODES diff {Root}} symbolic in NODES diff {i};

Every node i, except Root , has a predecessor pred [i J.
The depth of a node is the number of predecessors that you encounter on tracing back to the root ;
the depth of the rOOl is O. Give an AMPL definition for depth [i] that correctly computes the
depth of each node i. To check your answer, apply your definition to AMPL dara for the tree
depicted above; after reading in the data, use display to view the parameter depth.

An error in the data could give a tree plus a di sconnected cycle, like thi s:

If you enter such data, what will happen when you try to di splay depth?

8
Linear Programs: Variables,

Objectives and Constraints

The best-known kind of optimization model, which has served for all of our examples
so far, is the linear program. The variables of a linear program take values from some
continuous range; the objective and constraints must use only linear functions of the vari­
ables. Previous chaplers have described these requirements informally or implicitly; here
we will be more specific.

Linear programs are particularly important because they accurately represent many
practical applications of optimization. The simplicity of linear functions makes linear
models easy to formulate. interpret, and analyze. They are also easy to solve; if you can
express YOUT problem as a linear program, even in thousands of constraints and variables,
then you can be confident of finding an optimal solution accurately and quickJy.

This chapter describes how variables are declared, defines the expressions that AMPL
recognizes as being linear in the variables, and gives the rules for declaring linear objec­
tives and constraints. Much of the material on variables, objectives and constraints is
basic to other AMPL models as well, and will be used in laler chaplers.

Because AMPL is fundamentally an algebraic modeling language, this chapter concen­
trates on features for expressing linear programs in terms of algebraic objectives and con­
straints. For linear programs that have certain special structures, such as networks, AMPL
offers alternative notations that may make models easier to write, read and solve. Such
special struclures are among the topics of Chapters 15 through 17.

8,1 Variables

The variables of a linear program have much in common with its numerical parame­
ters. Both are symbols that stand for numbers. and that may be used in arithmetic expres­
sions. Parameter values are supplied by the modeler or computed from other values.

130 LINEAR PROGRAMS; VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

while the values of variables are determined by an optimizing algorithm (as implemented
in one of the packages that we refer to as solvers).

Syntactically, variable declarations are the same as the parameter declarations defined
in Chapter 7, except that they begin with the keyword var rather than par am. The
meaning of qualifying phrases within the declaration may be different, however, when
these phrases are applied to variables rather than to parameters.

Phrases beginning with >= or <= are by far the most common in declarations of vari­
ables for linear programs. They have appeared in all of our examples, beginning with the
production model of Figure 1-4:

var Make {p in PROD} >= 0, <= market[p]i

This declaration creates an indexed collection of variables Make [p] , one for each mem­
ber p of the set PROD; the rules in this respect are exactly the same as for parameters.
The effect of the two qualifying phrases is to impose a restriction, or constraint, on the
permiss ible values of the variables. Specifically, >; 0 implies that all of the variables
Make [pI must be assigned nonnegative values by the optimizing algorithm, while the
phrase <; market [pI says that, for each product p, the value given to Make [pI may
not exceed the value of the parameter market [p I.

[n general, either >= or <= may be followed by any arithmetic expression in previ­
ously defined sets and parameters and currently defined dummy indices. Most linear pro­
grams are formulated in such a way that every variable must be nonnegative; an AMPL

variable declaration can specify non negativity either directly by >= 0, or indirectly as in
the diet model of Figure 5-1:

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

var Buy {j in FOOD} >= f_min[j], <= f_max[j];

The values following >;:: and <= are lower and upper bounds on the variables. Because
these bounds represent a kind of constraint, they could just as well be imposed by the
constraint declarations described later in this chapter. By placing bounds in the var dec­
laration instead, you may be able to make the model shorter or clearer, although you will
not make the optimal solution any different or easier to find. Some solvers do treat
bounds specially in order to speed up their algorithms, but with AMPL all bounds are
identified automatically, no matter how they are expressed in your model.

Variable declarations may not use the comparison operators <, > or <> in qualifying
phrases. For linear programming it makes no sense to constrain a variable to be, say, < 3,
since it could always be chosen as 2.99999 ... or as close to 3 as you like.

An = phrase in a variable declaration gives rise to a definition, as in a parameter dec­
laration. Because a variable is being declared, however, the expression to the right of the
;:: operator may contain previously declared variables as well as sets and parameters. For
example, instead of writing the complicated objective from the multi-period production
model of Figure 6-3 (s tee 1 T3 . mod) as

SECTION 8. 1 VARIABLES

maXlmlze Total Proflt:
sum {p in PROD, t in l .. T}

(sum {a in AREA[pj} revenue[p,a,tj*Sell[p,a,t] -
prodcost[p]*Make[p,t] - invcost[p]*Inv[p,t]) j

131

you could instead define variables to represent the total revenues, production costs, and
inventory costs:

var Total~Revenue =
sum {p in PROD, t in 1 .. T}

sum {a in AREA[p]} revenue[p,a,tJ * Sell[p,a,tJ;
var Total Prod~Cost =

sum {p in PROD, tin 1 .. T} prodcost[pj * Make[p,t]j
var Total Inv~Cost

sum {p in PROD, t in 1. .T} invcost[pj * Inv(p,tj ;

The objective would then be the sum of these three defined variables:

maximize Total_Profit :
Total_Revenue - Total_Prod_Cost - Total_Inv_Cost;

The structure of the objective is clearer this way. Also the defined variables are conve­
niently available to a display statement to show how the three main components of
profit compare:

ampl : display Total_ Revenue, Total_ Prod_ Cost, Total_ Inv_ Cost;
Total_Revenue = 801385
Total Prod_Cost = 285643
Total_Inv_Cost = 1221

Declarations of defined variables like these do not give rise to additional constraints in
the resulting problem instance. Rather, the linear expression to the right of the = is sub­
stituted for every occurrence of the defined variable in the objective and constraints.
Defined variables are even more useful for nonlinear programming, where the substitu­
tion may be only implicit, so we will return to this topic in Chapter 18.

1£ the expression to the right of the::: operator contains no variables, then you are
merely defining variables to be fixed to values given by the data. In that case you should
use a par am declaration instead. On the other hand, if you only want to fix some vari­
ables temporarily while developing or analyzing a model, then you should leave the dec­
larations unchanged and instead fix them with the fix command described in Section
11.4.

A : = or defaul t phrase in a variable declaration gives initial values to the indi­
cated variables. Variables not assigned an initial value by : = can also be assigned initial
values from a data file. Initial values of variables are normally changed - ideally to
optimal values - when a solver is invoked. Thus the main purpose of initial values of
variables is to give the solver a good starting solution. Solvers for linear programming
can seldom make good use of a starting solution, however, so we defer further discussion
of this topic to Chapter 18 on nonlinear programming.

Finally, variables may be declared as integer so that they must take whole number
values in any optimal solution, or as binary so that they may only take the values 0 and

132 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

1. Models that contain any such variables are integer programs, which are the topic of
Chapter 20.

8.2 Linear expressions

An arithmetic expression is lill ear in a given variable if, for every unit increase or
decrease in the variable, the value of the expression increases or decreases by some fixed
amount. An expression that is linear in all its variables is called a linear expression.
(Strictly speaking, these are affine expressions, and a linear expression is an affine
expression with constant term zero. For simplicity. we will ignore this distinction.)

AMPL recognizes as a linear expression any sum of terms of the form

cOlIStarit-expr
variable-ref
(collstanl-expr) * variable-ref

provided that each COflstafll-expr is an arithmetic expression that contains no variables,
while var-ref is a reference (possibly subscripted) to a variable. The parentheses around
the constant-expr may be omitted if the result is the same according to the rules of opera­
tor precedence (Table A-I). The following examples. from the constraints in the mulli­
period production model of Figure 6-3. are all linear expressions under this definition:

avail[t]
Make[p, t] + Inv[p, t-l]
sum {p in PROD} {l/rate[p]) * Make[p,t]
sum {a in AREA[p]} Sell[p,a,t] + Inv[p,t]

The model 's objective,

sum {p in PROD, t in 1 . . T)
(sum (a in AREA[pJ) revenue[p,a,t] * Sell[p,a,t] -

prodcost[p] * Make[p,t) - invcost[p] * Inv[p,t])

is also linear because subtraction of a term is the addition of its negative, and a sum of
sums is itself a sum.

Various kinds of expressions are equivalent to a sum of terms of the forms above, and
are also recognized as linear by AMPL. Division by an arithmetic expression is equiva­
lent to multiplication by its inverse, so

{l/rate[p]) * Make[p,tj

may be written in a linear program as

Make[p,t] I rate[p]

The order of multiplications is irrelevant, so the variable-ref need not come at the end of
a term ; for instance,

revenue[p,a,t] * Sell[p,a,t]

SECTION 8.2 LINEAR EXPRESSIONS 133

is equivalent to

Sell{p,a,t1 It revenue{p,a,t]

As an example combining these principles, imagine that revenue [p, a, t] is in dollars
per metric ton. while Sell remains in tons. Lf we define conversion factors

0 . 90718474; # metric tons per ton
tons per metric ton

Ihen bOlh

sum {a in AREA{p]} mt t It revenue[p,a,t1 It Sell(p,a,tJ

and

sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t1 / t_mt

are linear expressions for total revenue.
To continue our example, if costs are also in dollar!o, per melric ton, the objective

could be written as

or as

mt_t It sum {p in PROD, t in 1 .. T}
(sum {a in AREA[p]} revenue[p,a,t] It Sell[p,a,t] -

prodcost[p] It Make[p,t1 - invcost[p] It Inv[p,t])

sum {p in PROD, tin 1 .. T}
{sum {a in AREA[p]} revenue[p,a,tl It Sell[p,a,t] -

prodcost[p] It Make[p,t] - invcost[p] * Inv[p,t]) / t_mt

Multiplication and division distribute over any summation to yield an equivalent linear
sum of terms. Notice that in the first form , mt_t multiplies the entire sum {p in
PROD, t in 1 .. T}, while in Ihe second t _mt divides only Ihe summand Ihal follows
sum (p in PROD, t in 1 .. T), because Ihe / operalor has higher precedence Ihan Ihe
sum operator. In these examples the effect is the same. however.

Finally, an if-then-else operator produces a linear result if the expressions fol ­
lowing then and else are both linear and no variables appear in the logical expression
between if and else. The following example appeared in a constraint in Section 7.3:

Make[j,t] +

(if t = first (WEEKS) then invO[j] else Inv[j,prev(t)])

The variables in a linear expression may not appear as the operands to any other opera­
tors, or in the arguments to any functions. This rule applies to iterated operators like
max, min, abs, forall, and exists, as well as " and standard numerical functions
like sqrt, log, and cos.

To summarize, a linear expression may be any sum of terms in the forms

134 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS

consumt-exp'
l'fIr-ref
(COl/Sllmf-expr) * {linear-ex"r)
(/illear-expr) * (coIISfaflt-expr)
(linear-expr) / (colIsrallt-expr)
if logical-expr then linear-expr else linear-expr

CHAPTER 8

where COlIswllI-expr is any arithmetic expression that contains no references to variables,
and lillear-expr is any other (simpler) linear expression. Parentheses may be omitted if
the result is the same by the rules of operator precedence in Table A-I. AMPL automati­
cally performs the transformations that convert any such expression to a simple sum of
lincar terms.

8_3 Objectives

The declaration of an objective function consists of one of the keywords minimize
or maximize, a name, a colon, and a linear expression in previously defined sets,
parameters and variables. We have seen examples such as

minimize Total_Cost: sum {j in FOOD} cost{j] * Buy[j];

and

maximize Total Profit:
sum {p in PROD, tin l .. T}

(sum {a in AREA[p]} revenue[p,a,t] * Sell[p,a,t] -
prodcost[p] * Make[p,t] - invcost[p] * Inv[p,t]);

The name of the objective plays no further role in the model, with the exception of certain
"columnwise" declarations to be introduced in Chapters I 5 and 16. Within AMPL com­
mands, the objective's name refers to its value. Thus for example after solving a feasible
instance of the Figure 2-1 diet model we could issue the command

ampl: display {j in FOOD} 100 * cost{jj * Buy{jj / Total_ Cost;
lOO*cost[j]*Buy[j] / Total_Cost [*] :=

BEEF 14 . 4845
CHK 4.38762

FISH 3.8794
HAM 24.4792
MCH 16.0089
MTL 16.8559
SPG 15.6862
TUR 4.21822

to show the percentage of the total cost spent on each food.
Although a particular linear program must have one objective function, a model may

contain more than one objective declaration. Moreover, any minimize or maximize
declaration may define an indexed collection of objective functions, by including an

SECTION 8.3 OBJECTIVES 135

indexing expression after the objective name. In these cases, you may issue an
objective command, before typing solve, to indicate which objective is to be opti­
mized.

As an example, recall that when trying to solve the model of Figure 2-1 with the data
of Figure 2-2, we found that no solution could satisfy all of the constraints; we subse­
quently increased the sodium (NA) limit to 50000 to make a feasible solution possible. It
is reasonable to ask: How much of an increase in the sodium limit is really necessary to
permit a feasible solution? For this purpose we can introduce a new objective equal to
the total sodium in the diet:

minimize Total_NA: sum {j in FOOD} amt["NA",j) * BUy[j]i

(We create this objective only for sodium, because we have no reason to minimize most
of the other nutrients.) We can solve the linear program for total cost as before, since
AMPL chooses the model 's first objective by default :

ampl : model diet.mod;
ampl: data diet2a.dat;
ampl: display n_max["NA"];
n_max['NA') = 50000

ampl : minimize Total_ NA: swn {j in FOOD} amt["NA",j] * Buy[j];
ampl : solve;
MINOS 5 . 5: optimal solution found.
13 iterations, objective 118 . 0594032
Objective = Total_Cost

The solver tells us the minimum cost, and we can also use display to look at the total
sodium, even though it's not currently being minimized:

ampl: display Total_ NA;
Total_NA = 50000

Next we can use the objective command to switch the objective to minimization of
total sodium. The solve command then re-optimizes with thi s alternative objective, and
we display Total_Cos t to determine the resulting cost:

ampl: objective Total_ NA;

ampl: solve;
MINOS 5.5: optimal solution found .
1 iterations, objective 48186

ampl : display Total_ Cost;
Total_Cost = 123 . 627

We see that sodium can be brought down by about \800, though the cost is forced up by
about $5.50 as a result. (Healthier diets are in general more expensive, because they
force the solution away from the one that minimizes costs.)

As another example, here's how we could experiment with different optimal solutions
for the office assignment problem of Figure 3-2. First we solve the original problem:

136 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS

ampl : model transp.mod; data assign. datI solve;
CPLEX 8 . 0 . 0 : optimal solution; objective 28
24 dual simplex iterations (0 in phase I)

ampl: option display_ leol 1000, omit_ zero_ rows 1;
ampl: option display_ eps .000001;

ampl: display Total_ Cost,

CHAPTER 8

ampl? {i in ORIG, j in DEST} costei,j] • Trans[i,j};
Total_Cost = 28

cost[i.j]*Trans[i,j] : =
Coullard Cl18 6
Daskin 0241 4
Hazen C246 1
Hopp 0237 1
Iravani Cl38 2
Linetsky C250 3
Mehrotra 0239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C251 3
White M239 1

To keep the objective value at this optimal level while we experiment, we add a con­
straint that fixes the expression for the objective equal to the current value, 28:

amp1 ,
ampl?
ampl?

subject to Stay_ Optimal:
sum {i in ORIG, j in DEST}

cost[i,j] • Trans[i,j} • 28;

Next, recall that cos t [i, j J is the ranking that person i has given to office j, while
Tr ans [i, j J is set to I if it' s optimal to put person i in office j, or 0 otherwise. Thus

sum {j in DEST} cost[i,j] * Trans[i,j]

always equals the ranking of person i for the office to which i is assigned. We use this
expression to declare a new objective function:

ampl: minimize PreE_ of (t in ORIG):
ampl? sum (j in DEST) cost{i,i] • Trans[i,j};

Thi s statement creates, for each person i , an objective Pref_o f [i) that minimizes the
ranking of i for the room that i is assigned. Then we can select anyone person and opti­
mize his or her ranking in the assignment:

ampl : objective Pref_of[WCou~~ardwJ;
ampl : Bolve;
CPLEX 8 . 0 . 0 : optimal solution; objective 3
3 simplex iterations (0 in phase I)

Looking at the new assignment, we see that the original objective is unchanged, and that
the selected individual' s situation is in fact improved, although of course at the expense
of others:

SECTION 8.4 CONSTRAINTS

ampl : disp~ay Tota~_Cost,
ampl? (i in ORIG, j in DEST) cost[i,jj * Trans[i,j};
Total_Cost = 28

cost[i , j] *Trans[i , j]
Coullard D2 41 3
Daskin D237 1
Hazen C2 46 1
Hopp C251 5
Iravani C13B 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhan e Cl1B 5
White M23 9 1

137

We were able to make this change because there are several optimal solutions to the origi­
nal total-ranking objective. A solver arbitrarily returns one of these, but by use of a sec­
ond objective we can force it toward others.

8.4 Constraints

The simplest kind of constraint declaration begins with the keywords subj ect to, a
name, and a colon. Even the subj ect to is optional; AMPL assumes that any declara­
tion not beginning with a keyword is a constraint. Following the colon is an algebraic
description of the constraint, in terms of previously defined sets. parameters and vari­
ables. Thus in the production model introduced in Figure 1-4, we have the following
constraint imposed by limited processing time:

sub jec t to Time :
s um {p in PROD} (l/rate[p]) * Make(p) <= avail ;

The name of a constraint, like the name of an objective, is not used anywhere else in an
algebraic model, though it figures in alternative " columnwise" formulations (Chapter
16) and is used in the AMPL command environment to specify the constraint's duaJ value
and other associated quantities (Chapter 14).

Most of the constraints in large linear programming models are defined as indexed
collections, by giving an indexing expression after the constraint name. The constraint
T ime, for example, is generalized in subsequent examples to say that the production time
may not exceed the time available in each processing stage s (Figure 1-6a):

subject to Time {s in STAGE} :
sum {p in PROD} (l/rate[p , s)) * Make(p] <= avail[s);

or in each week t (Figure 4-4):

138 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

subject to Time {t in l .. T}:
sum (p in PROD) (l/rate(p]) * Make[p,t1 <= avail(t]i

Another constraint from the latter example says that production, sales and inventories
must balance for each product p in each week t:

subject to Balance {p in PROD, t in 1 .. T} :
Make[p,t] + Inv[p,t-l] = Sell[p,t] + Inv[p,t];

A constraint declaration can specify any valid indexing expression, which defines a set
(as explained in Chapters 5 and 6); there is one constraint for each member of this set.
The constraint name can be subscripted, so that Time [1] or Balance [p, t+ 1] refers
to a particular constraint from an indexed collection.

The indexing expression in a constraint declaration should specify a dummy index
(like s, t and p in the preceding examples) for each dimension of the indexing set. Then
when the constraint corresponding to a particular indexing-set member is processed by
AMPL, the dummy indices take their values from that member. This use of dummy
indices is what pennits a single constraint expression to represent many constraints; the
indexing expression is AMPL's translation of a phrase such as "for all products p and
weeks I :;; 1 to T ' that might be seen in an algebraic statement of the model.

By using more complex indexing expressions, you can specify more precisely the
constraints to be included in a modeL Consider, for example. the following variation on
the production time constraint:

subject to Time {t in 1 . . T: avail[t] > OJ:
sum {p in PROD} (l/rate[p]) * Make[p,t] <= avail[t];

This says that if avail [t} is specified as zero in the data for any week t, it is to be
interpreted as meaning "no constraint on time available in week t" rather than "limit of
zero on time available in week t". In the simpler case where there is just one Time con­
straint not indexed over weeks, you can specify an analogous conditional definition as
follows:

subject to Time {if avail> O} :
stun {p in PROD} (l/rate[p]) * Make[p] <= avail;

The pseudo-indexing expression {i f avail> O} causes one constraint, named Time,
to be generated if the condition avail> 0 is true, and no constraint at all to be gener­
ated if the condition is false. (The same notation can be used to conditionally define
other model components.)

AMPL's algebraic description of a constraint may consist of any two linear expres­
sions separated by an equality or inequality operator:

Jinear-expr <=
Jinear-expr =
lillear-expr >=

linear-e:cpr
lillear-expr
/inear-expr

While it is customary in mathematical descriptions of linear programming to place all
terms containing variables to the left of the operator and all other terms to the right (as in
constraint Time), AMPL il11po~es no such requirement (as seen in constraint Balance).

SECTION 8.4 CONSTRAINTS 139

convenience and readability should determine what terms you place on each side of the
operator. AMPL takes care of canonicaliL.ing constraints, such as by combining linear
terms involving the same variable and moving variables from one side of a constraint to
the other. The expand command described in Section 1.4 shows the canonical forms of
the constraints.

AMPL also allows double-inequality constraints such as the following from the diel
model of Figure 2-1 :

subject to Diet (i in NUTR):
n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];

This says Ihat Ihe middle expression, Ihe amounl of nUlrienl i supplied by all foods, must
be greater Ihan or equal 10 n_min [i J and also less than or equal 10 n_max [i J. The
permissible forms for a constraint of this kind are

conSI-expr <= fillear-expr <= COIISI-expr
cons/-expr >= Jinear-expr >= COIISf -expr

where each cOlls!-expr must contain no variables. The effect is to give upper and lower
bounds on Ihe value of the linear-expr. If your model requires variables in the left-hand
or right-hand const-expr, you must define two different constraints in separate declara­
tions.

For most applications of linear programming, you need not worry about the fonn of
the constraints. If you simply write the constraints in the most convenient way, they will
be recognized as proper linear constraints according to the rules in this chapter. There do
exist situations, however, in which your choice of formulation will determine whether
AMPL recognizes your model as linear. Imagine that we want to further constrain the
production model so that no product p may represent more than a certain fraction of total
production. We define a parameter max_frac to represent the limiting fraction; the
conslrainl Ihen says Ihal produclion of p divided by 10lal produclion must be less Ihan or
equal to max_frac:

subject to Limit {p in PROD}:
Make[p] I sum {q in PROD) Make[q] <= max_frac;

This is not a linear constraint to AMPL, because its left-hand expression contains a divi­
sion by a sum of variables. But if we rewrite it as

subject to Limit {p in PROD} :
Make[p] <= max_frac * sum {q in PROD) Make[q];

then AMPL does recognize it as linear.
AMPL simplifies constraints as it prepares the model and data for handing to a solver.

For example, it may eliminate variables fixed at a value, combine single-variable con­
straints with the simple bounds on the variables, or drop constraints that are implied by
other constrainL You can normally ignore this presolve phase, but there are ways to
observe its effects and modify its actions, as explained in Section 14.1.

140 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER B

Exercises

8·1. In the diet model of Figure 5-1, add a : = phrase to the var declaration (as explained in Sec­
tion 8.1) to initialize each variable to a value midway between its lower and upper bounds.

Read this model into AMPL along with the data from Figure 5-2. Using display commands,
determine which constraints (if any) the initial so lution fail s to sati sfy, and what total cost this solu­
tion gives. Is the total cost morc or less than the optimal total cost?

8-2. This exercise asks you to reformulate various kinds of constraints to make them linear.

(a) The following constraint says that the inventory Inv [p, t] for product p in any period t must
not exceed the smallest one-period production Make [p, t) of product p:

subject to Inv_Limit {p in PROD, tin 1 .. T} :
Inv[p,t] <= min {tt in 1 .. T} Make[p,tt);

This constraint is not recognized as linear by AMPL. because it applies the min operator to vari­
ables. Formulate a linear constraint that has the same effect.

(b) The following constraint says that the change in total inventories from one period to the next
may not exceed a certain parameter max_change:

subject to Max_Change {t in 1 .. T}:
abs(sum {p in PROD} Inv[p,t-l) - sum {p in PROD} Inv[p,t)

<= max_change;

This constraint is not linear because it applies the abs function to an expression involving vari­
ables. Formulate a linear constraint that has the same effect.

(c) The following constraint says that the ratio of total production to total inventory in a period may
not exceed max_inv_ratio:

subject to Max_Inv_Ratio {t in 1 .. T}:
(sum (p in PROD) Inv[p,t) / (sum {p in PROD} Make[p,t)

<= max_inv_ratio;

This constraint is not linear because it divides one sum of variables by another. Formulate a linear
constraint that has the same effect

(d) What can you say about formulation of an alternative linear constraint for the following cases?

- In (a), min is replaced by max.

- In (b), <= max_change is replaced by >= min_change.

- In (c), the parameter max_inv_ratio is replaced by a new variable, Ratio [tJ .

8-3. This exercise deals with some more possibilities for usi ng more than one objective function
in a diet model. Here we consider the model of Figure 5-1, together with the data from Figure 5-2.

Suppose that the costs are indexed over stores as well as foods:

set STORE:
param cost {STORE, FOOD} > 0;

A separate objective function may then be defined for each store:

minimize Total_Cost {s in STORE}:
sum {j in FOOD} cost[s,jj * Buy[j];

Consider the following data for three stores:

-
SECTION 8.4 CONSTRAINTS 141

set STORE :"" "A&P"

pararn cost: BEEF
MA&P" 3.19
JEWEL 3.09

VONS 2.59

JEWEL VONS

CHK FISH
2.59 2.29
2 .79 2.29
2 .99 2.49

HAM
2.89
2.59
2.69

MCH
1. 89
1. 59
1. 99

MTL
1. 99
1. 99
2.29

SPG
1. 99
2 . 09
2 . 00

TUR :=

2.49
2.30
2.69

Us ing the objective command, find the lowest-cost diet for each store. Which store offers the
lowest total cost?

Consider now an additional objective that represents total packages purchased. regardless of cost:

minimize Total_Number:
sum {j in FOOD} Buy[jj i

What is the minimum value of this objective? What are the costs at the three stores when this
objective is minimized? Explain why you would expect these costs to be higher than the costs
computed in (a).

8-4. This exercise relates to the assignment example of Section 8.3.

(a) What is the best-ranking office that you can assign to each individua1, given that the total of the
rankings must stay at the optimal value of 28? How many different optimal assignments do there
seem to be, and which individuals get different offices in different assignments?

(b) Modify the assignment example so that it will find the best-ranking office that you can assign to
each individual, given that the total of the rankings may increase from 28, but may not exceed 30.

(c) After making the modification suggested in (b), the person in charge of assigning offices has
tried again to minimize the objective Pref_of ["Coullard"]. This lime, the reported solution
is as follows:

ampl: display Total_ Cost,
ampl? (i in ORIG, j in DEST) cost{i,j]*Trans{i,j];
Total_Cost = 30

cost[i,jj*Trans[i,j] :=

Coullard M239 1
Oaskin 0241 4
Hazen C246 1
Hopp C251 2.5
Hopp D237 0.5
Iravani C13S 2
Linetsky C250 3
Mehrotra D239 2
Nelson C140 4
Smilowitz M233 1
Tamhane C118 5
White C251 2.5
White D237 1.5

Coullard is now assigned her first choice, but what is the difficulty with the overall solution? Why
doesn't it give a useful resolution to the assignment problem as we have stated it?

8~5. Return to the assignment version of the transportation model , in Figures 3-1 a and 3-2.

(a) Add parameters wors t (i] for each i in ORIG, and constraints saying that Trans [i , j]
must equal 0 for every combination of i in ORIG and j in DEST such that cos t [i , j I is greater

142 LINEAR PROGRAMS: VARIABLES, OBJECTIVES AND CONSTRAINTS CHAPTER 8

than worst [i]. (Sec the constraint Time in Section 8.4 for a s imjlar example.) In the assign­
ment interpretation of Ihi s model , what do the new constraints mean?

(b) Use the model from (a) 10 show that there is an optimal solution , with the objective equal 10 28,
in which no one gets an office worse than their fifth choice.

(c) Use the model from (a) to show that at least one person must get an office worse than fourth

choice.

(d) Use the model from (a) to show that if you give Nelson his first choice, without any restrictions
on the other individuals' choices, the objective cannot be made smaller than 31. Determine simi­
larly how smailihe objective can be made if each other individual is given first choice.

9
Specifying Data

As we emphasize throughout this book, there is a distinction between an AMPL model
for an optimization problem, and the data values that define a particular instance of the
problem. Chaplers 5 Ihrough 8 focused on the declarations of sels, paramelers, variables,
objectives and constraints that are necessary to describe models. In this chapter and the
next, we take a closer look at the statements that specify the data.

Examples of AMPL data statemellts appear in almost every chapter. These statements
offer several formats for lists and tables of set and parameter values. Some formats are
most naturally created and maintained in a text editing or word processing environment,
while others are easy 10 generale from programs like dalabase systems and spreadsheels.
The display command (Chapter 12) also produces OUlpul in these formats. Wherever
possible, similar syntax and concepts are used for both sets and parameters.

This chapter first explains how AMPL's data command is used, in conjunction with
data statements, to read data values from files such as those whose names end in . dat
Ihroughout our examples. Options 10 Ihe da ta command also allow or force selected
sets and parameters to be read again.

Subsequent sections describe data statements, first for lists and then for tables of set
and parameter data, followed by brief sections on initial values for variables, vaJues for
indexed collections of sets. and default values. A summary of data statement formats
appears in Seclion A.12.

A final section describes the read command, which reads unformatted lists of values
into sets and paramelers. Chapter to is devoled 10 AMPL·s fealures for data slored in
relalional database lables.

9.1 Formatted data: the data command

Declarations like pararn and var, and commands like solve and display, are
executed in model mode, the standard mode for most modeling activity. But model mode
is inconvenient for reading long lists of set and parameter values. Instead AMPL reads its

144 SPECIFYING DATA CHAPTER 9

data statements in a data mode that is initiated by the data command. In its most com­
mon use, this command consists of the keyword da ta followed by the name of a file.
For example,

ampl: data diet.dat;

reads data from a file named diet. dat. Filenames containing spaces, semicolons, or
nonprinting characters must be enclosed in quotes.

While rcading in data mode, AMPL treats white space, that is, any sequence of space,
tab. and "newline" characters, as a single space. Commas separating strings or numbers
are also ignored. Judicious use of these separators can help to arrange data into easy-to­
read li sts and tables; our examples use a combination of spaces and newlines. If data
statements are produced as output from other data management software and sent directly
to AMPL, however, then you may ignore visual appearance and use whatever format is
convenient.

Data files often contain numerous character strings, representing set members or the
values of symbolic parameters. Thus in data mode AMPL does not, in general, require
strings to be enclosed in quotes. Strings that include any character other than letters, dig­
its, underscores. period, + and - must be quoted, however, as in the case of A&P. You
may use a pair of either single quotes (' A&P') or double quotes (" A&P"), unless the
string contains a quote, in which case the other kind of quote must surround it
(" DOMINICK'S") or the surrounding quote must be doubled within it
(' DOMINICK' , S').

A string that looks like a number (ror example" +1" or "3e4") must also be quoted,
to distinguish it from a set member or parameter value that is actually a number. Num­
bers that have the same internal representation are considered to be the same, so that for
example 2,2.00,2 . eO and O. 02E+2 all denote the same set member.

When AMPL finishes reading a file in data mode, it nonnally revelts to whatever
mode it was in before the data command was executed. Hence a data file can itself con­
tain data conunands that read data from other files. If the last data statement in a data
file lacks its ternlinating semicolon, however, then data mode persists regardless of the
previous mode.

A data command with no filename puts AMPL into data mode, so subsequent input
is taken as data statements:

ampl: model dietu.mod;
ampl: data;
ampl data: set MINREQ := A Bl B2 C CAL;
ampl data: set MAXREQ := A NA CAL;
ampl data: display NUTR;
set NUTR := A B1 82 C CAL NA;

ampl:

AMPL leaves data mode when it sees any statement (like display) that does not begin
with a keyword (like set or param) that begins a data statement. The model com­
mand. with or withollt filename, also causes a return to model mode.

SECTION 9.2 OATA IN LISTS 145

Model components may be assigned values from any number of data files. by using
multiple data commands. Regardless of the number of files, AMPL checks that no com­
ponent is assigned a value more than once, and duplicate assignments are flagged as
errors. In some situations, however, it is convenient to be able to change the data by issu­
ing new data statements; for example, after solving for one scenario of a model, you
may want to modify some of the data by reading a new data file that corresponds to a sec­
ond scenario. The data values in the new file would normally be treated as erroneous
duplicates. but you can tell AMPL to accept them by first giving a reset da ta or
upda t e data command. These alternatives are described in Section 11.3, along with
the use of reset data to resample randomly-computed parameters. and of let to
directly assign new set or parameter values.

9.2 Data in lists

For an unindexed (scalar) parameter, a data statement assigns one value:

param avail : = 40;

Most of a typical model's parameters are indexed over sets. however, and their values are
specified in a variety of lists and tables that are introduced in this section and the next,
respectively.

We start with sets of simple one-dimensional objects, and the one-dimensional collec­
tions of parameters indexed over them. We then turn to two-dimensional sets and param­
eters, for which we have the additional option of organizing the data into "slices". The
options for two dimensions are then shown to generalize readily to higher dimensions, for
which we present some three-dimensional examples. Finally, we show how data state­
ments for a set and the parameters indexed over it can be combined to provide a more
concise and convenient representation.

Lists of one-dimensional sets and parameters

For a parameter indexed over a one-dimensional set like

set PROD ;
param r ate {PROD} > 0;

the specification of the set can be simply a listing of its members:

set PROD : = bands coils plat e ;

and the parameter's specification may be virtually the same except for the addition of a
value after each set member:

param r a te : = bands 200 coils 140 plate 160 i

The parameter specification could equally well be written

146 SPECIFYING OATA

param rate :=

bands 200
coils 140
plate 160

since extra spaces and line breaks are ignored.

CHAPTER 9

If a one-dimensional set has been declared with the attribute ordered or
circular (Section 5.6). then the ordering of its members is taken from the data state­
ment that defines it. For example, we specified

set WEEKS := 27sep 040ct 110ct 180ct ;

as the membership of the ordered set WEEKS in Figure 5-4.
Members of a set must all be different: AMPL will warn of duplicates:

duplicate member coils for set PROD
context : set PROD := bands coils plate coils »>; «<

Also a parameter may not be given more than one value for each member of the set over
which it is indexed. A violation of this rule provokes a similar message:

rater'hands'] already defined
context: param rate := bands 200 bands 160 »> i «<

The context bracketed by »> and «< isn ' t the exact point of the error, but the message
makes the situation clear.

A set may be specified as empty by giving an empty list of members; simply put the
semicolon right after the: = operator. A parameter indexed over an empty set has no data
associated wi th it.

Lists of two-dimensional sets and parameters

The extension of data lists to the two-dimensional case is largely straightforward, but
with each set member denoted by a pair of objects. As an example, consider the follow­
ing sets from Figure 6-2a:

set ORIG;
set DEST;

origins
destinations

set LINKS within {ORIG,DEST}; # transportation links

The members of ORIG and DEST can be given as for anyone-dimensional sets:

set ORIG := GARY CLEV PITT;
set DEST := FRA DET LAN WIN STL FRE LAF ;

Then the membership of LINKS may be specified as a list of tuples such as you would
find in a model 's indexing expressions,

set LINKS :=
(GARY,DET) (GARY,LAN) (GARY,STL) (GARY,LAF) (CLEV,FRA)
(CLEV,DET) (CLEV, LAN) (CLEV, WIN) (CLEV,STL) (CLEV,LAF)
(PITT,FRA) (PITT,WIN) (PITT,STL) (PITT,FRE)

SECTION 9.2 DATA IN LISTS 147

or as a list of pairs, wilhoutlhe parentheses and commas:

set LINKS .-
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WIN
CLEV STL CLEV LAF PITT FRA PITT WIN
PITT STL PITT FRE

The order of members within each pair is significant - the first must be from ORIG, and
the second from DEST - but the pairs themselves may appear in any order.

An alternative, more concise way to describe this set of pairs is to list all second com­
ponents that go with each flrst component:

set LINKS : =
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE

It is also easy to list all first components that go with each second component:

set LINKS :=
(*, FRA) CLEV
(*, WIN) CLEV
(*,STL) GARY

PITT (*,DET) GARY CLEV
PITT (*,LAF) GARY CLEV
CLEV PITT ;

(*,LAN) GARY CLEV
(*,FRE) PITT

An expression such as (GARY, *) or (* ,FRA), resembling a pair but with a component
replaced by a *, is a data template. Each template is followed by a list, whose entries are
substituted for the * to generate pairs; these pairs together make up a slice through the
dimension of the set where the * appears. A tuple without any *'s, like (GARY, DET),
is in effect a template that specifies only itself, so it is not followed by any values. At the
other extreme, in the table that consists of pairs alone,

set LINKS : =
GARY DET GARY LAN GARY STL GARY LAF
CLEV FRA CLEV DET CLEV LAN CLEV WIN
CLEV STL CLEV LAF PITT FRA PITT WIN
PITT STL PITT FRE

a default template (* , *) applies to all entries.
For a parameter indexed over a two-dimensional set, the AMPL list formats are again

derived from those for sets by placing parameter values after the set members. Thus if we
have the parameter cos t indexed over the set LINKS:

pararn cost {LINKS} >= 0;

then the set data statement for LINKS is extended to become the following pararn data
statement for cos t:

pararn cost :=
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
PITT STL 28 PITT FRE 99

148 SPECIFYING DATA CHAPTER 9

Lists of slices through a set extend similarly, by placing a parameter value after each
implied set member. Thus, corresponding to our concise data statement for LINKS:

set LINKS : =
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE

there is the following statement for the values of cost:

param cost : =

[GARY,*] DET 14 LAN 11
[CLEV,*] FRA 27 DET 9
[PITT,*] FRA 24 WIN 13

STL 16
LAN 12
STL 28

LAF 8
WIN 9
FRE 99

STL 26 LAF 17

The templates are given in brackets to distinguish them from the set templates in paren­
theses, but they work in the same way. Thus a template such as [GARY, *] indicates
that the ensuing entries will be for values of cost that have a first index of GARY. and an
entry such as DET 14 gives cost ["GARY", "DET" J a value of 14.

All of the above appl ies just as well to the use of templates that slice on the ftfst

dimension, so that for instance YOll could also specify parameter cost by:

param cost :=

[*,FRA] CLEV 27 PITT 24
[*,DET] GARY 14 CLEV 9
(*,LAN) GARY 11 CLEV 12
(* ,WIN] CLEV 9 PITT 13
(*, STL] GARY 16 CLEV 26 PITT 28
(*, FRE] PITT 99
(* ,LAF] GARY 8 CLEV 17

You can even think of the list-of-pairs example,

param cost : =

GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8

as also being a case of this form, corresponding to the defaul t template [* , * J.

Lists of higher-dimensional sets and parameters

The concepts underlying data lists for two-dimensional sets and parameters extend
straightforwardly to higher-dimensional cases. The only difference of any note is that

nontrivial slices may be made through more than one dimension. Hence we confine the
presentation here to some illustrative examples in three dimensions, followed by a sketch
of the general rules for the AMPL dma list format (hal are given in Section A.12.

We take our example from Section 6.3, where we suggest a version of the Illulticom­
modity transportation model that defi nes a set of triples and costs indexed over them:

set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;

SECTION 9.2 DATA IN LISTS 149

Suppose that ORIG and DEST are as above. that PROD only has members bands and
coils, and that ROUTES has as members certain triples from {ORIG,DEST, PROD}.
Then the membership of ROUTES can be given most simply by a list of triples, either

set ROUTES . -
(GARY,LAN,coils) (GARY,STL,coils) (GARY,LAF,coils)
(CLEV,FRA,bands) (CLEV, FRA, coils) (CLEV,DET,bands)
(CLEV,DET,coils) (CLEV,LAN,bands) (CLEV,LAN,coils)
(CLEV,WIN,coils) (CLEV,STL,bands) (CLEV,STL,coils)
(CLEV,LAF,bands) (PITT,FRA,bands) (PITT,WIN,bands)
(PITT,STL,bands) (PITT,FRE,bands) (PITT,FRE,coils)

or

set ROUTES .-
GARY LAN coils GARY STL coils GARY LAF coils
CLEV FRA bands CLEV FRA coils CLEV DET bands
CLEV DET coils CLEV LAN bands CLEV LAN coils
CLEV WIN coils CLEV STL bands CLEV STL coils
CLEV LAF bands PITT FRA bands PITT WIN bands
PITT STL bands PITT FRE bands PITT FRE coils

Using templates as before, but with three items in each template, we can break the speci­
fication into slices through one dimension by placing one * in each template. In the fol­
lowing example, we slice through the second dimension:

set ROUTES : =
(CLEV, * ,bands) FRA DET LAN STL LAF
(PITT,',bands) FRA WIN STL FRE

(GARY,*,coils) LAN STL LAF
(CLEV, *, coils) FRA DET LAN WIN STL
(PITT,*,coils) FRE ;

Because the set contains no members with origin GARY and product bands, the template
(GARY, • ,bands) is omitted.

When the set's dimension is more than two, the slices can also be through more than
one dimension. A slice through two dimensions, in particular, naturally involves placing
two * 's in each template. Here we slice through both the first and third dimensions:

set ROUTES .-
(*,FRA,*) CLEV bands CLEV coils PITT bands
(*, DET, *) CLEV bands CLEV coils
(*,LAN,*) GARY coils CLEV bands CLEV coils
(*, WIN, *) CLEV coils PITT bands
(*, STL, *) GARY coils CLEV bands CLEV coils PITT bands
(*, FRE, *) PITT bands PITT coils
(*,LAF,*) GARY coils CLEV bands

Since these templates have two * 's, they must be followed by pairs of components, which
are substituted from left to right to generate the set members. For instance the template
(• , FRA, *) followed by CLEV bands specifies that (CLEV, FRA, bands) is a mem­
ber of the set.

150 SPECIFYING DATA CHAPTER 9

Any of the above forms suffices for giving the values of parameter cos t as well. We
could write

param cost · -
[CLEV, *, bands] FRA 27 DET 9 LAN 12 STL 26 LAF 17
[PITT.*.bandsJ FRA 24 WIN 13 STL 28 FRE 99

[GARY,*,coils) LAN 11 STL 16 LAF 8
[CLEV,·,coils] FRA 23 DET 8 LAN 10 WIN 9 STL 21
(PITT,*,coils] FRE 81

or

param cost · -
(*,*,bandsl CLEV FRA 27 CLEV DET 9 CLEV LAN 12

CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WIN 13 PITT STL 28 PITT FRE 99

[*,*,coilsl GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WIN 9 CLEV STL 21 PITT FRE 81

or

param cost : =

CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27
CLEV FRA coils 23 CLEV LAF bands 17 CLEV LAN bands 12
CLEV LAN coils 10 CLEV STL bands 26 CLEV STL coils 21
CLEV WIN coils 9 GARY LAF coils 8 GARY LAN coils 11
GARY STL coils 16 PITT FRA bands 24 PITT FRE bands 99
PITT FRE coils 81 PITT STL bands 28 PITT WIN bands 13

By placing the *'s in different positions within the templates, we can slice onc-
dimensionally in any of three different ways, or two-dimensionally in any of three differ-
ent ways. (The template [*, * , * I would specify a three-dimensional Est like

param cost · -
CLEV DET bands 9 CLEV DET coils 8 CLEV FRA bands 27

as already shown above.)

More generally, a template for an n-dimensional set or parameter in li st form must
have n entries. Each entry is either a legal set member or a *. Templates for sets are
enclosed in parentheses (like the tuples in set-expressions) and templates for parameters
are enclosed in brackets (like the subscripts of parameters). Following a template is a
series of items, each item consisting of one set member for each *, and additionally one
parameter value in the case of a parameter template. Each item defines an n-tuple, by
substituting its set members for the *s in the template; either this tuple is added to the set
being specified, or the parameter indexed by this tuple is assigned the value in the item.

A template applies to all items between it and the next template (or the end of the data
statement). Templates having different numbers of *s may even be used together in the

SECTION 9.2 DATA IN LISTS 151

same data statement, so long as each parameter is assigned a value only once. Where no
template appears, a template of all *s is assumed.

Combined lists of sets and parameters

When we give data statements for a set and a parameter indexed over it, like

set PROD := bands coils plate;
pararn rate : = bands 200 coils 140 plate 160 ;

we are specifying the set's members twice. AMPL lets us avoid this duplication by
including the set's name in the param data statement :

pararn: PROD: rate := bands 200 coils 140 plate 160 ;

AMPL uses this statement to determine both the membership of PROD and the values of
rate.

Another common redundancy occurs when we need to supply data for several param­
eters indexed over the same set, such as rate, profi t and market all indexed over
PROD in Figure 1-4a. Rather than write a separate data statement for each parameter,

pararn rate := bands 200
param profit := bands 25
param market : = bands 6000

coils 140
coils 30
coils 4000

plate 160
plate 29
plate 3500

we can combine these statements into one by listing all three parameter names after the
keyword par am:

param : rate profit market : =
bands 200 25 6000 coils 140 30 4000 plate 160 29 3500 ;

Since AMPL ignores extra spaces and line breaks, we have the option of rearranging this
information into an easier-la-read table:

pararn :
bands
coils
plate

rate
200
140
160

profit
25
30
29

market :=

6000
4000
3500

Either way, we still have the option of adding the indexing set's name to the statement,

pararn: PROD:
bands
coils
plate

rate
200
140
160

profit
25
30
29

market :=

6000
4000
3500

so that the specifications of the set and all three parameters are combined.
The same rules apply to lists of any higher-dimensional sets and the parameters

indexed over them. Thus for our two-dimensional example LINKS we could write

152 SPECIFYING DATA CHAPTER 9

param : LINKS , cost : =
GARY DET 14 GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 27 CLEV DET 9 CLEV LAN 12 CLEV WIN 9
CLEV STL 26 CLEV LAF 17 PITT FRA 24 PITT WIN 13
PITT STL 28 PITT FRE 99

to specify the membership of LINKS and the values of the parameter cos t indexed over
it, or

param: LINKS: cost limit :=

GARY DET 14 1000
GARY LAN 11 800
GARY STL 16 1200
GARY LAF 8 1100
CLEV FRA 27 1200
CLEV DET 9 600
CLEV LAN 12 900
CLEV WIN 9 950
CLEV STL 26 1000
CLEV LAF 17 800
PITT FRA 24 1500
PITT WIN 13 1400
PITT STL 28 1500
PITT FRE 99 1200

to specify the values of cos t and 1 imi t together. The same options apply when tem­
plates are used, making possible further alternatives such as

param : LINKS , cost . -
[GARY, *] DET 14 LAN 11 STL 16 LAF 8
[CLEV , *] FRA 27 DET 9 LAN 12 WIN 9 STL 26 LAF 17
[PITT, *] FRA 24 WIN 13 STL 28 FRE 99

and

param : LINKS , cost limit .-
[GARY,*] DET 14 1000

LAN 11 800
STL 16 1200
LAF 8 1100

[CLEV,*] FRA 27 1200
DET 9 600
LAN 12 900
WIN 9 950
STL 26 1000
LAF 17 800

[PITT,*] FRA 24 1500
WIN 13 1400
STL 28 1500
FRE 99 1200

Here the membership of the index ing set is specified along with the two parameters; for
example. the template [GARY, *] followed by the set member DET and the values 14

SECTION 9.2 DATA IN LISTS 153

and 1000 indicates that (GARY, DET) is to be added to the set LINKS, that
cost [GARY, DETJ has the value 14, and that limit [GARY, DETJ has the value
1000.

As our illustrations suggest, the key to the interpretation of a param statement that
provides values for several parameters or for a set and parameters is in the first line,
which consists of param followed by a colon, then optionally the name of an indexing
set fo llowed by a colon, then by a list of parameter names terminated by the ,= assign­
ment operator. Each subsequent item in the list consists of a number of set members
equal to the number of *s in the most recent template and then a number of parameter
values equal to the number of parameters listed in the first line.

Normally the parameters listed in the first line of a param statement are all indexed
over the same set. This need not be the case, however, as seen in the case of Figure 5-1.
For this variation on the diet model , the nutrient restrictions are given by

set MINREQ ;
set MAXREQ;

param n_min {MINREQ} >= o·
param n_max {MAXREQ} >= 0;

so that n_min and n_max are indexed over sets of nutrients that may overlap but that are
not likely to be the same.

Our sample data for this model specifies:

set MINREQ := A 61 62 C CAL
set MAXREQ := A NA CAL ;

pararn : n_min n_max : =
A 700 20000
C 700
61 0
62 0
NA 50000
CAL 16000 24000

Each period or dot (.) indicates to AMPL that no value is being given for the correspond­
ing parameter and index. For example. since MINREQ does not contain a member NA.
the parameter n_min [NA] is not defined; consequently a . is given as the entry for NA
and n_min in the data statement. We cannot simply leave a space for this entry, because
AMPL will take it to be 50000: data mode processing ignores all extra spaces. Nor
should we put a zero in this entry; in that case we will get a message like

error processing pararn n_min :
invalid subscript n_min['NA'] discarded.

when AMPL first tries to access n_rnin. usually at the first solve.
When we name a sel in the first line of a param statement. the set must not yet have a

value. If the specification of parameter data in Figure 5-1 had been given as

154 SPECIFYING DATA

param: NUTR: n_min n_max : =
A 700 20000
C 700
B1 0
B2 0
NA 50000
CAL 16000 24000

AMPL would have generated the error message

dietu.dat, line 16 (offset 366) :
NUTR was defined in the model

context : param : NUTR »> : «<

because the declaration of NUTR in the model,

set NUTR = MINREQ union MAXREQi

defines it already as the union ofMINREQ and MAXREQ.

9.3 Data in tables

CHAPTER 9

The table format of data, with indices running along the left and top edges and values
corresponding to pairs of indices, can be more concise or easier to read than the list for­
mal described in the previous section. Here we describe tables first for two-dimensional
parameters and then for slices from higher-dimensional ones. We also show how the COT­

responding multidimensional sets can be specified in tables that have entries of + or -
rather than parameter value entries.

AMPL also supports a convenient extension of the table format, in which more than
two indices may appear along the left and top edge. The rules for specifying such tables
are provided near the end of this section.

Two-dimensional tables

Data values for a parameter indexed over two sels, such as the shipping cost data from
the transportation model of Figure 3-1 a:

set ORIG ;
set DEST;
param cost {ORIG,DEST} >= 0;

are very naturally specified in a table (Figure 3-1 b):

param cost : FRA DET
GARY 39 14
CLEV 27 9
PITT 24 14

LAN WIN
11 14
12 9
17 13

STL
16
26
28

FRE
82
95
99

LAF :=
8

17
20

SECTION 9.3 DATA IN TABLES 155

The row labels give the tirst index and the column labels the second index , so that for
example cost ["GARY", "FRA" J is set to 39. To enable AMPL to recognize this as a
table, a colon must follow the parameter name, while the : = operator follows the list of
column labels.

For larger index sets, the columns of tables become impossible to view within the
width of a single screen or page. To deal with this situation, AMPL offers several alterna­
tives. which we illustrate on the small table above.

When only one of the index sets is uncomfortably large, the table may be transposed
so that the column labels correspond to the smaller set:

param cost (tr) :

GARY CLEV PITT : =
FRA 39 27 24
DET 14 9 14
LAN 11 12 17
WIN 14 9 13
STL 16 26 28
FRE 82 95 99
LAF 8 17 20

The notation (tr) after the parameter name indkates a transposed table, in which the
column labels give the first index and the row labels the second index . When both of the
index sets are large, either the table or its transpose may be divided up in some way.
Since line breaks are ignored, each row may be divided across several lines:

param cost: FRA DET LAN WIN
STL FRE LAF :=

GARY 39 14 11 14
16 82 8

CLEV 27 9 12 9
26 95 17

PITT 24 14 17 13
28 99 20

Or the table may be divided columnwise into several smaller ones:

param cost: FRA DET LAN WIN :=
GARY 39 14 11 14
CLEV 27 9 12 9
PITT 24 14 17 13

STL FRE LAF .-
GARY 16 82 8
CLEV 26 95 17
PITT 28 99 20

A colon indicates the start of each new sub-table; in this example, each has the same row
labels, but a different subset of the column labels.

In the alternative formulation of this model presented in Figure 6-2a, cos t is not
indexed over all combinations of members of ORIG and DEST, but over a subset of pairs
from these sets :

156 SPECIFYING DATA

set LINKS within {ORIG,DEST};
pararn cost {LINKS} >= 0;

CHAPTER 9

As we have seen in Section 9.2, the membership of LINKS can be given concisely by a
li st of pairs:

set LINKS : =
(GARY,*) DET LAN STL LAF
(CLEV,*) FRA DET LAN WIN STL LAF
(PITT,*) FRA WIN STL FRE

Ralhcr than being given in a similar list, the values of cost can be given in a table li ke
this:

param cost: FRA DET LAN WIN STL FRE LAF . -
GARY 14 11 16 8
CLEV 27 9 12 9 26 17
PITT 24 13 28 99

A cost value is given for all pairs that exist in LINKS, while a dot (.) serves as a
place-holder for pairs that are not in LINKS. The dot can appear in any AMPL table 10
indicate " no value specified here".

The set LINKS may itself be given by a table that is analogous to the one for cost:

set LINKS: FRA DET LAN WIN STL FRE LAF : =

GARY + + + +
CLEV + + + + + +
PITT + + + +

A + indicates a pair that is a member of the set, and a - indicates a pair that is not a mem­
ber. Any of AMPL' s table formats for specifyi ng parameters can be used for sets in this
way.

Two-dimensional slices of higher-dimensional data

To provide data for parameters of mOfe than two dimensions, we can specify the va l­
ues in two-dimensional s lices that are represented as tables_ The rules for using slices are
much the same as for lists_ As an example. consider again the three-dimensional parame­
ter cos t defined by

set ROUTES within {ORIG,DEST,PROD};
param cost {ROUTES} >= 0;

The values for this parameter that we specified in li st format in the previous section as

param cost . -
(*, *, bands] CLEV FRA 27 CLEV DET 9 CLEV LAN 12

CLEV STL 26 CLEV LAF 17 PITT FRA 24
PITT WIN 13 PITT STL 28 PITT FRE 99

[*,*,coils] GARY LAN 11 GARY STL 16 GARY LAF 8
CLEV FRA 23 CLEV DET 8 CLEV LAN 10
CLEV WIN 9 CLEV STL 21 PITT FRE 81

SECTION 9.3

can instead be written in table format as

param cos t : =

[*,*,bandsl: FRA
CLEV 27
PITT 24

[*,*,coilsl: FRA
GARY
CLEV 23
PITT

DET
9

DET

8

LAN WIN
12

13

LAN WIN
11
10 9

STL
26
28

STL
16
21

DATA IN TABLES 157

FRE LAF . -
17

99

FRE LAF :=

8

81

Since we are working with two-dimensional tables, there must be two *'s in the tem­
plates. A table value's row label is substituted for the first *, and its column label for the
second. unless the opposite is specified by (tr) right after the template. You can omit
any rows or columns that would have no significant entries, such as the row for GARY in
the [*, * , bands 1 table above.

As before, a dot in the table for any slice indicates a tuple that is not a member of the
table.

An analogous table to specify the set ROUTES can be constructed by putting a +
where each number appears:

set ROUTES :=

(*,*,bandsl: FRA DET LAN WIN STL FRE LAF :=

CLEV + + + + +
PITT + + + +

(*,*,coils) : FRA DET LAN WIN STL FRE LAF :=

GARY + + +
CLEV + + + + +
PITT +

Since the templates are now set templates rather than parameter templates, they are
enclosed in parentheses rather than brackets.

Higher-dimensional tables

By putting more than one index to the left of each row or at the top of each column,
you can describe multidimensional data in a single table rather than a series of slices.
We'll continue with the three-dimensional cost data to illustrate some of the wide variety
of possibilities.

By putting the first two indices, from sets ORIG and DEST, to the left, with the third
index from set PROD at the top, we produce the following three-dimensional table of the
costs:

158 SPECIFYING DATA CHAPTER 9

param cost: bands coils :=
CLEV FRA 27 23
CLEV DET 8 8
CLEV LAN 12 10
CLEV WIN 9
CLEV STL 26 21
CLEV LAF 17
PITT FRA 24
PITT WIN 13
PITT STL 28
PITT FRE 99 81
GARY LAN 11
GARY STL 16
GARY LAF 8

Putting only the first index to the left, and the second and third at the top, we arrive
instead at the following table, which for convenience we break into two pieces:

param cost: FRA DET LAN WIN STL FRE LAF
bands bands bands bands bands bands bands . -

CLEV 27 9 12 26 17
PITT 24 13 28 99

FRA DET LAN WIN STL FRE LAF
coils coils coils coils coils coils coils : =

GARY 11 16 8
CLEV 23 8 10 9 21
PITT 81

In general a colon must precede each of the table heading lines, while a : = is placed only
atier the last heading line.

The indices arc taken in the order that they appear, first at the left and then at the top,
if no indication is given to the contrary. As with other tables, you can add the indicator
(tr) to transpose the table, so that the indices are still taken in order but first from the
top and then from the left:

param cost (tr) , CLEV CLEV CLEV CLEV CLEV CLEV
FRA DET LAN WIN STL LAF :=

bands 27 8 12 26 17
coils 23 8 10 9 21

PITT PITT PITT PITT GARY GARY GARY
FRA WIN STL FRE LAN STL LAF : =

bands 24 13 28 99
coils 81 11 16 8

Templates can also be used to specify more precisely what goes where. For multidimen­
sional tables the template has two symbols in it, * to indicate those indices that appear at
the left and : to indicate those that appear at the top. For example the template
[* I : I *] gives a representation in which the first and third indices are al the left and the
second is at the top:

SECTION 9.3 DATA IN TABLES 159

pararn cost : =
[..... , : , } , FRA DET LAN WIN STL FRE LAF . -

CLEV bands 27 9 12 26 17
CLEV coils 23 8 10 9 21
PITT bands 24 13 28 99
PITT coils 81
GARY coils 11 16 8

The ordering of the indices is always preserved in tables of this kind. The third index is
never correctly placed before the first, for example, no maller what transposition or tem­
plates are employed.

For parameters of four or more dimensions, the ideas of sl icing and multidimensional
tables can be applied together provide an especially broad choice of table formats. If
cost were indexed over ORIG, DEST, PROD, and 1 .. T, for instance, then the templates
[* , : ,bands, * I and [*, : ,coils, * I could be used to specify two slices through
the third index, each specified by a multidimensional table with two indices at the left and
one at the top.

Choice of format

The arrangement of slices to represent multidimensional data has no effect on how the
data values are used in the model, so you can choose the most convenient format. For the
cost parameter above, it may be appealing to slice along the third dimension, so that the
data values are organized into one shipping-cost table for each product. Alternatively,
placing all of the origin-product pairs at the left gives a particularly concise representa­
tion. As another example, consider the revenue parameter from Figure 6-3:

set PROD;
set AREA {PROD}:
pararn T > 0;

products
market areas for each product
number of weeks

param revenue {p in PROD, AREA[p). 1 .. T) >= 0;

Because the index set AREA [p I is potentially different for each product p, slices through
the first (PROD) dimension are most attractive. In the sample data from Figure 6-4, they
look like this:

param T := 4 :
set PROD := bands coils
set AREA [bands I := east north
set AREA[coils) := east west export

param revenue :=
[bands] : 1 2 3 4 . -

east 25 . 0 26.0 27.0 27.0
north 26 .5 27.5 28.0 28.5

[coils,""', *]: 1 2 3 4 :=

east 30 35 37 39
west 29 32 33 35
export 25 25 25 28

160 SPECIFYING DATA CHAPTER 9

We have a separate revenue table for each product p, with market areas from AREA [p]
labeling the rows, and weeks from 1 .. T labeling the columns.

9.4 Other features of data statements

Additional features of the AMPL data format are provided to handle special situations.
We describe here the data statements that specify default values for parameters, that
define the membership of individual sets within an indexed collection of sets, and that
assign initial values to variables.

Default values

Data statements must provide values for exactly the parameters in your model. You
will receive an error message if you give a value for a nonexistent parameter:

error processing param cost:
invalid subscript cost['PITT', 'DET', 'coils') discarded .

or if you fail to give a value for a parameter that does exist:

error processing objective Total_Cost :
no value for cost['CLEV', 'LAN', ' coils']

The error message appears the first time that AMPL tries to use the offending parameter,
usually after you type solve.

If the same value would appear many times in a data statement, you can avoid speci­
fying it repeatedly by including a defaul t phrase that provides the value to be used
when no explicit value is given. For example, suppose that the parameter cost above is
indexed over all possible triples:

set ORIG;
set DEST;
set PROD;

par am cost {ORIG,DEST,PROD} >= 0 ;

but that a very high cost is assigned to routes that should not be used. This can be
ex pressed as

param cost default 9999 . -
[* , * , bands J : FRA DET LAN WIN STL FRE LAF :=

CLEV 27 9 12 26 17
PITT 24 13 28 99

(*.*.coilsJ: FRA DET LAN WIN STL FRE LAF :=

GARY 11 16 8
CLEV 23 8 10 9 21
PITT 81

SECTION 9.4 OTHER FEATUAES OF DATA STATEMENTS 161

Missing parameters like cost ["GARY' , • FRA" , "bands' l, as well as those explic­
itly marked "omitted " by use ofa dot (like cost ["GARY" , "FRA", "coils"]), are
given the value 9999. In total , 24 values of 9999 are assigned.

The default feature is especially useful when you want all parameters of an
indexed collection to be assigned the same value. For instance, in Figure 3-2, we apply a
transportation model to an assignment problem by setting all supplies and demands to I.
The model declares

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

but in the data we give only a default value:

param supply default 1 ;
param demand default 1 ;

Since no other values are specified, the default of I is automatically assigned to every ele­
ment of supply and demand.

As explained in Chapter 7, a parameter declaration in the model may include a
defaul t expression. This offers an alternative way to specify a single default value:

param cost {ORIG, DEST, PROD} >= 0, default 9999;

If you just want to avoid storing a lot of 9999's in a data file, however, it is better to put
the default phrase in the data statement. The default phrase should go in the
model when you want the default value to depend in some way on other data. For
instance, a different arbitrarily large cost could be given for each product by specifying :

param huge_cost {PROD} > 0;
param cost {ORIG, DEST, P in PROD) >= 0, default huge_cost(p];

A discussion of defaul t's relation to the = phrase in param statements is given in
Section 7.5.

Indexed collections of sets

For an indexed collection of sets, separate data statements specify the members of
each set in the collection. In the example of Figure 6-3, for example, the sets named
AREA are indexed by the set PROD:

set PROD; # products
set AREA {PROD}; # market areas for each product

The membership of these sets is given in Figure 6-4 by:

set PROD : = bands coils
set AREA(bandsl := east north;
set AREA[coils] : = east west export

Any of the data statement formats for a set may be used with indexed collections of selS.
The only difference is that the set name followin g the keyword set is subscripted.

162 SPECIFYING DATA CHAPTER 9

As for other sets, you may specify one or morc members of an indexed collection to
be empty, by giving an empty list of elements. If you want to provide a data statement
only for those members of an indexed collection that are not empty, define the empty set
as the default value in the model:

set AREA (PROD) default ();

Otherwise you will be warned about any set whose data statement is not provided.

Initial values for variables

You may optionally assign initial values to the variables of a model, usi ng any of the
options for assigning values to parameters. A variable's name stands for its value, and a
constraint's name stands for the associated dual variable's value. (See Section 12.5 for a
short explanation of dual variables.)

Any param data statement may specify initial values for variables. The variable or
constraint name is simply used in place of a parameter name, in any of the formats
described by the previous sections of this chapter. To help clarify the intent, the keyword
var may be substituted for param at the start of a data statement. For example, the fol­
lowing data table gives initial values for the variable Trans of Figure 3-1a:

var Trans:
GARY
CLEV
PITT

FRA
100
900
100

DET
100
100
900

LAN
BOO
100
100

WIN
100
500
500

STL
100
500
100

FRE
500
200
900

LAF .-
200
200
200

As another example, in the model of Figure 1-4, a single table can give values for the
parameters rate, prof i t and market, and initial values for the variables Make:

param:
bands
coils
plate

rate
200
140
160

profit
25
30
29

market
6000
4000
3500

Make .-
3000
2500
1500

All of the previously described features for default values also apply to variables.
Initial values of variables (as well as the values of expressions involving these initial

values) may be viewed before you type solve, using the display, print or printf
commands described in Sections 12.1 through 12.4. Initial values are also optionally
passed to the solver, as explained in Section 14.1 and A.18.I. After a solution is
returned, the variables no longer have their initial values, but even then you can refer to
the initial values by placing an appropriate suffix after the variable's name, as shown in
Section A. I I.

The most common use of initial values is to give a good starting guess to a solver for
nonlinear optimization, which is discussed in Chapter 18.

SECTION 9.5 READING UNFORMATTED DATA: THE READ COMMAND 163

9.5 Reading unformatted data: the read command

The read command provides a particularly simple way of getting values into AMPL,
given that the values you need are listed in a regular order in a file. The file must be
unforllllllled in the sense that it contains nothing except the values to be read - no set or
parameter names, no colons or : = operators.

In its simplest form, read specifies a list of parameters and a file from which their
values are to be read. The values in the file are assigned to the entries in the list in the
order that they appear. For example, jf you want to read the number of weeks and the
hours available each week for our si mple produclion model (Figure 4·4),

param T > 0;
param avail {i .. T} >= 0;

from a file week_data. txt containing

4
40 40 32 40

then you can gi ve the command

read T, avail[l], avail[2], avail[3], avail{4] <week_data. txt;

Or you can use an indexing expression to say the same thing more concisely and gener­
ally:

read T, {t in l .. T} avail[t] <week_data. txt ;

The notation < filename specifies the name of a file for reading. (Analogously, > indi­
cales writing to a file; see A.IS.)

In general, the read command has the form

read item-list < filename ;

with the item-list being a comma-separated list of items that may each be any of the fol­
lowing:

{larameter
{ indexing } parameter
{ indexing } (item-list

The first two are used in our example above, while the third allows for the same indexing
to be applied to several items. Using the same production example, to read in values for

param prodcost {PROD} >= 0;
par am invcost {PROD} >= 0;
par am revenue {PROD,l .. T} >= 0;

from a file organized by parameters, you could read each parameter separately:

read {p in PROD} prodcost[p] < cost_data;
read {p in PROD} invcost[p) < cost_data;
read {p in PROD, t in 1 .. T} revenue[p,t] < cost_data;

164 SPECIFYING DATA CHAPTER 9

reading from file cost_data first all the production costs. then all the inventory costs,
and then all the revenues.

If the data were organized by product instead, you could say

read {p in PROD}
(prodcost [p], invcost [p], {t in 1.. T} revenue [P, t])

<cost_data;

to read the production and inventory costs and the revenues for the first product, then for
the second product, and so forth.

A parenthesized item-list may itself contain parenthesized item-lists, so that if you
also want to read

param market (PROD,l .. T) >= 0;

from the same file at the same time, you could say

read {p in PROD} (prodcost[p], invcost[p],
{t in 1 .. T} (revenue[p,t], market[p,t]») <cost_data;

in which case for each product you would read the two costs as before, and then for each
week the product' s revenue and market demand.

As our descriptions suggest, the form of a read statement's item-list depends on how
the data values are ordered in the file. When you are reading data indexed over sets of
strings that, like PROD, are not inherently ordered, then the order in which values are read
is the order in which AMPL is internally representing them. If the members of the set
came directly from a set data statement, then the ordering will be the same as in the data
statement. Otherwise, it is best to put an ordered or ordered by phrase in the
model's set declaration to ensure that the ordering is always what you expect; see Sec­
tion 5.6 for more about ordered sets.

An alternative that avoids knowing the order of the members in a set is to specify
them explicitly in the file that is read. As an example, consider how you might use a
read statement rather than a data statement to get the values from the cost parameter
of Section 9.4 that was defined as

param cost {ORIG,DEST,PROD} >= 0, default 9999;

You could set up the read statement as follows:

param ntriples integer;
param ic symbolic in ORIG;
param jc symbolic in DEST;
param kc symbolic in PROD;

read ntriples, {1 .. ntriples}
(ie, jc, kc, cost[ic,jc,kc]) <cost_data;

The corresponding file cost_data must begin something like (his:

SECTION 9.5 READING UNFORMATTED DATA: THE READ COMMAND 165

18
CLEV FRA bands 27
PITT FRA bands 24
CLEV FRA coils 23

with 15 more entries needed to give all 18 data values shown in the Section 9.4 example.
Strings in a file for the read command that include any character other than letters.

digits. underscores, period, + and - must be quoted. just as for data mode. However, the
read statement itself is interpreted in model mode, so if the statement refers to any par­
ticular string, as in, say,

read {t in 1 .. T} revenue ["bands", t];

that string must be quoted. The filename following < need not be quoted unless it con­
tains spaces, semicolons, or nonprinting characters.

If a read statement contains no < filename, values are read from the current input
stream. Thus if you have typed the read command at an AMPL prompt, you can type
the values at subsequent prompts until all or the listed items have been assigned values.
For example:

ampl :
ampl?
ampl?
ampl:
avail
1 40

read T, {t in 1 .. T} avail etl;
4
40 40 32 40
display avail;
['I ,=
2 40 3 32 4 40

The prompt changes from amp 1 ? back to ampl, when all the needed input has been
read.

The filename" -" (a literal minus sign) is taken as the standard input of the AMPL
process; this is useful for providing input interactively.

Further uses of read within AMPL scripts. to read values directly from script files or
to prompt users for values at the command line, are described in Chapter 13.

All of our examples assume that underlying sets such as ORIG and PROD have
already been assigned values, through data statements as described earlier in this chapter,
or through other means such as database access or assignment to be described in later
chapters. Thus the read statement would normally supplement rather than replace other
input commands. It is particularly useful in handling long files of data that are generated
for certain parameters by programs outside of AMPL.

Exercises

9-1 . Section 9.2 gave a variety of data ... tatements for a three-dimensional ,et. ROUTES. Con·
struct some other alternatives for thi s SCI as follow'):

166 SPECIFYING OAT A

(a) Use templates that look like (CLEV, FRA, *).

(b) Use templates that look like (* , * , bands). with the li st format.

(e) Use templates that look like (CLEV, * 1*)' with the table formal.

CHAPTER 9

(d) Specify some of the set's members using templates with one 1<, and some using templates with
two *'5.

9-2. Rewrite the production model daHl of Figure 5-4 so that it consists of just three data state·
ments arranged as follows:

The set PROD and parameters rate. invO, prodcost and invcost are given in one table.

The set WEEKS and parameter avail are given in one table.

The parameters revenue and market arc given in one tab le.

9-3. For the assignment problem whose data is depicted in Figure 3-2. suppose that the only infor­
mation you receive about people's preferences for offices is as follows:

Coullard M239 M233 D241 D237 D239
Duskin D237 M233 M239 D241 D239 C246 CI40
Hazen C246 D237 M233 M239 C250 C25 1 D239
Hopp D237 M233 M239 D241 C251 C250
lravani D237 C I38 CI18 D241 D239
Linetsky M233 M239 C250 C25 1 C246 D237
Mehrotra D237 D239 M239 M233 D241 Cl18 C251
Nelson D237 M233 M239
Smilowitl. M233 M239 D239 D241 C251 C250 D237
Tamhane M239 M233 C251 C250 CI18 CJ38 D237
White M239 M233 D237 C246

This means that, for example, Coullard's first choice is M239, her second choice is M233, and so
on through her fifth choice, D239, but she hasn't given aJ1Y preference for the other offices.

To use thi s information with the transportation model of Figure 3-la as explained in Chapter 3, you
must set cost ["Coullard", "M239"] to I , cost ["Coullard", "M233"] to 2, and so
forth. For an office not ranked, such as C246, you can set cost ["Coullard", "C246"] to 99,
to indicate that it is a highly undesirable ass ignment.

(a) Using the li st format and a default phrase, convert the information above to an appropriate
AMPL data statement for the parameter cos t.

(b) Do the same. but with a table format.

9 -4. Sections 9.2 and 9.3 gave a variety of data statements for a three-dimensional parameter,
cost, indexed over the set ROUTES of triples. Construct some Olher alternatives for this parame­
ter as follows:

(a) Use templates that look like [CLEV, FRA, *] .
(b) Use templates that look like [*, * ,bands]. employing the Ji st formal.

(c) Use templates that look like [CLEV, • , *1, employing the table format.

(d) Spec ify some of the parameter values using templates with one·, and some using templates
with two · 'so

9-5. For the three-dimensional parameter revenue of Figure 6-4, construct alternative data
statements as follows:

SECTION 9.5 READING UNFOAMATIED DATA: THE READ COMMAND

(a) Use templates that look like [* , eas t, * 1 , employing the table fomlat.

(b) Use templates that look like [* , * , 1], employing the table formal.

(c) Use templates that look like [bands, * ,1].

9-6. Given the following declarations,

set ORIG;
set DEST;
var Trans {ORIG, DEST) >= 0;

167

how could you li se a data statement to assign an initial value of 300 10 all of the Trans variables?

10
Database Access

The structure of indexed data in AMPL has much in common with the structure of the
relational tables widely used in database applications. The AMPL table declaration lets
you take advantage of this similarity to define expl icit connections between sets, parame­
ters, variables, and expressions in AMPL, and relational database tables maintained by
other software. The read table and write table commands subsequently use

these connections to import data values into AMPL and to export data and solution values
from AMPL.

The relational tables read and written by AMPL reside in files whose names and loca­
tions you specify as part of the table declaration. To work with these files, AMPL
relies on table halldlers, which are add-ons that can be loaded as needed. Handlers may
be provided by the vendors of solvers or database software. AMPL has built-in handlers
for two simple relational table formats useful for experimentation, and the AMPL web site
provides a handler that works with the widely ava ilable oose interface.

This chapter begins by showi ng how AMPL entities can be put into correspondence
with the columns of relational tables, and how the same cOITespondences can be
described and implemented by use of AMPL's table declaration. Subsequent sections
present basic features for reading and writing external relational tables, additional rules
for handling complications that arise when reading and writing the same table. and mech­
anisms for writing a series of tables or columns and for reading spreadsheet data. The
final section briefly describes some standard and built-in handlers.

10.1 General principles of data correspondence

Consider the following declarations from diet. mod in Chapter 2 , defining the set

FOOD and three parameters indexed over it:

170 OATABASE ACCESS

set FOOD ;
p aram cost { FOOD } > 0 ;
param f min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];

A relational table giving values for these components has four columns:

FOOD cost f_min f_max
BEEF 3 . 19 2 10
CHK 2 . 59 2 10
FISH 2 . 29 2 10
HAM 2 . 89 2 10
MCH 1. 89 2 10
MTL 1. 99 2 10
SPG 1. 99 2 1 0
TUR 2 . 49 2 1 0

CHAPTER 10

The column headed FOOD lists the members of the AMPL set also named FOOD. This is
the table's key column; entries in a key column must be unique, like a set's members, so
that each key value identifies exactly one row. The column headed c o s t gives the val­
ues of the like-named parameter indexed over set FOOD; here the value of
cos t ["BEEF" J is specified as 3.19, cos t ["CHK" J as 2.59, and so forth. The
remaining two columns give values for the other two parameters indexed over FOOD.

The table has eight rolVS of data, one for each set member. Thus each row contains all
of the table's data corresponding to one member - one food, in this example.

In the context of database software, the table rows are often viewed as data records,
and the columns as fields within each record. Thus a data entry form has one entry field
for each column. A form for the diet example (from Microsoft Access) might look like
Figure 10-1. Data records, one for each table row, can be entered or viewed one at a lime
by using the controls at the bottom of the form.

3.19

2

10

Record: ..!!.l!J I

Figure 10-1: Access data entry form.

SECTION 10.1 GENERAL PRINCIPLES OF DATA CORRESPONDENCE 171

Parameters are not the only entities indexed over the set FOOD in this example. There
are also the variables:

var Buy {j in FOOD} >= f_min[j] I <= f_max[j] i

and assorted result expressions that may be displayed:

ampl: model diet.mod;
ampl: data diet2a.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 118.0594032

ampl: display Buy, Buy.rc, {j in FOOD} Buy[j]/f~max[j];
Buy Buy.rc Buy[j I/Cmax[j I : =

BEEF 5.36061 8.88178e-16 0.536061
CHK 2 1.18884 0.2
FISH 2 1.14441 0.2
HAM 10 -0.302651 1
MCH 10 -0 . 551151 1
MTL 10 -1. 3289 1
SPG 9.30605 0 0.930605
TUR 2 2.73162 0 . 2

All of these can be included in the relational table for values indexed over FOOD:

FOOD cost f_min f_max Buy BuyRC BuyFrac
BEEF 3.19 2 10 5.36061 8.88178e-16 0.536061
CHK 2.59 2 10 2 1.18884 0.2
FISH 2.29 2 10 2 1.14441 0.2
HAM 2.89 2 10 10 -0.302651 1
MCH 1. 89 2 10 10 -0.551151 1
MTL 1. 99 2 10 10 -1 . 3289 1
SPG 1. 99 2 10 9 . 30605 0 0.930605
TUR 2.49 2 10 2 2.73162 0.2

Where the first four columns would typically be read into AMPL from a database, the last
three are results that would be written back from AMPL to the database. We have
invented the column headings BuyRC and BuyFrac, because the AMPL expressions for
the quantities in those columns are typically not valid column headings in database man­
agement systems. The table declaration provides for input/output and naming distinc­
tions such as these, as subsequent sections will show.

Other entities of diet. mod are indexed over the set NUTR of nutrients: parameters
n_min and n_max, dual prices and other values associated with constraint Diet, and
expressions involving these. Since nutrients are entirely distinct from foods, however,
the values indexed over nutrients go into a separate relational table from the one for
foods. It might look like this:

172 DATABASE ACCESS CHAPTER 10

NUTR n_min n_max NutrDual
A 700 20000 0
B1 700 20000 0
B2 700 20000 0.404585
C 700 20000 0
CAL 16000 24000 0
NA 0 50000 -0.00306905

As this example suggests, any model having more than one indexing set will require more
than one relational table to hold its data and results. Databases that consist of multiple
tables are a standard feature of relational data management, to be found in all but the sim­
plest "flat file" database packages.

Entities indexed over the same higher-dimensional set have a similar correspondence
to a relational table, but with one key column for each dimension. In the case of Chapter
4's steel T. mod, for example, the following parameters and variables are indexed over
the same two-dimensional set of product-time pairs:

set PROD; # products
param T > 0; # number of weeks

param market {PROD,! .. T} >= 0;
param revenue {PROD,! .. T} >= 0;
var Make {PROD,l .. T} >= 0;
var Sell {p in PROD, t in l .. T} >= 0, <= market[p,t];

A corresponding relational table thus has two key columns, one containing members of
PROD and the other members of 1 .. T, and then a column of values for each parameter
and variable. Here's an example, corresponding to the data in steel T. dat:

PROD TIME market revenue Make Sell
bands 1 6000 25 5990 6000
bands 2 6000 26 6000 6000
bands 3 4000 27 1400 1400
bands 4 6500 27 2000 2000
coils 1 4000 30 1407 307
coils 2 2500 35 1400 2500
coils 3 3500 37 3500 3500
coils 4 4200 39 4200 4200

Each ordered pair of items in the two key columns is unique in this table, just as these
pairs are unique in the set {PROD, 1 .. T}. The market column of the table implies,
for example, that market ["bands" , 1 J is 6000 and that market ["coils" , 3 J is
3500. From the first row, we can also see that revenue["bands",lJ is 25,
Make ["bands" , 1 J is 5990, and Sell ["bands" , 1J is 6000. Again various names
from the AMPL model are used as column headings, except for TIME. which must be
invented to stand for the expression 1 .. T. As in the previous example, the column head­
ings can be any idel1ljoers acceptable to the database software. and the table declara­
tion will take care of the corrc!o.pondences to AMPL names (as explained below).

SECT10N 10.1 GENERAL PR1NC1PLES OF DATA CORRESPONDENCE 173

AMPL entities that have sufficiently similar indexing generally fit into the same rela­
tionaltable. We could extcnd the steelT .mod table, for instance, by adding a column
for values of

var Inv {PROD,O .. T} >= 0;

The table would then have the following layout:

PROD TIME market revenue Make Sell Inv
bands 0 10
bands 1 6000 25 5990 6000 0
bands 2 6000 26 6000 6000 0
bands 3 4000 27 1400 1400 0
bands 4 6500 27 2000 2000 0
coils 0 0
coils 1 4000 30 1407 307 1100
coils 2 2500 35 1400 2500 0
coils 3 3500 37 3500 3500 0
coils 4 4200 39 4200 4200 0

We use " . " here to mark table entries that correspond to values not defined by the
model and data. There is no market ["bands" • 0 1 in the data for this model, for
example, although there does exist a value for Inv ["bands" • 0 1 in the results. Data­
base packages vary in their handling of "missing" entries of this sort.

Parameters and variables may also be indexed over a set of pairs that is read as data
rather than being constructed from one-dimensional sets. For instance, in the example of
transp3 . mod from Chapter 3, we have:

set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # actual units to be shipped

A corresponding relational table has two key columns corresponding to the two compo­
nents of the indexing set LINKS, plus a column each for the parameter and variable that
are indexed over LINKS:

ORIG DEST cost Trans
GARY DET 14 0
GARY LAF 8 600
GARY LAN 11 0
GARY STL 16 800
CLEV DET 9 1200
CLEV FRA 27 0
CLEV LAF 17 400
CLEV LAN 12 600
CLEV STL 26 0
CLEV WIN 9 400
PITT FRA 24 900
PITT FRE 99 1100
PITT STL 28 900
PITT WIN 13 0

174 DATABASE ACCESS CHAPTER 10

The structure here is the same as in the previous example, There is a row in the table
only for each origin-destination pair that is actually in the set LINKS, however, rather
than for every possible origin-destination pair.

10.2 Examples of table-handling statements

To transfer information between an AMPL model and a relational table, we begin with
a table declaration that establishes the correspondence between them. Certain details
of this declaration depend on the software being used to create and maintain the table. In
the case of the four-column table of diet data defined above, some of the possibilities are
as fo llows:

• For a Microsoft Access table in a database file diet . moo:

table Foods IN "ODBC" "diet.mdb" :
FOOD <- [FOOD], cost, f_min, f_max;

• For a Microsoft Excel range from a workbook file diet . xIs:

table Foods IN "ODBC" "diet . xIs":
FOOD <- [FOOD], cost, f_min, f_max;

• For an ASCII text table in file Foods . tab:

table Foods IN:
FOOD <- [FOOD], cost, f_min, f_max;

Each table declaration has two parts. Before the colon, the declaration provides gen­
eral information. First comes the table name - Foods in the examples above - which
will be the name by which the table is known within AMPL. The keyword IN states that
the default for all non-key table columns will be read-only; AMPL will read values ill
from these columns and will not write out to them.

Details for locating the table in an external database fi le are provided by the character
strings such as "ODBC" and" diet. moo", with the AMPL table name (Foods) provid­
ing a default where needed:

• For Microsoft Access, the table is to be read from database file
diet. moo using AMPL's ODBC handler. The table's name within the data­
base file is taken to be Foods by default.

• For Microsoft Excel, the table is to be read from spreadsheet file
diet. xIs lIsing AMPL's OOSC handler. The spreadsheet range containing
the table is taken to be Foods by default.

• Where no details are given, the table is read by default from the ASCII text
fi le Foods . tab using AMPL's built-in text table handler.

SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS 175

IIIl Foods : Table I!!lIiIEJ
FOOD cost f min f max

~ - 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2.89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1.99 2 10
TUR 2.49 2 10

*
Record: ..!i1.J.:.J I _ 1,,1_*1 of 8

Figure 10-2: Access relational table.

In general, the format of the character strings in the table declaration depends upon the
table handler being used. The strings required by the handlers used in our examples are
described briefly in Section 10.7, and in detail in online documentation for specific table
handlers.

After the colon, the table declaration gives the details of the correspondence
between AMPL entities and relational table columns. The four comma-separated entries
correspond to four columns in the table, starting with the key column distinguished by
surrounding brackets [... J. In this example, the names of the table columns (FOOD,
cos t, f_min, f_max) are the same as the names of the corresponding AMPL compo­
nents. The expression FOOD <- [FOOD] indicates that the entries in the key column
FOOD are to be copied into AMPL to define the members of the set FOOD.

The table declaration only defines a correspondence. To read values from columns
of a relational table into AMPL sets and parameters, it is necessary to give an explicit

read table

command.
Thus, if the data values were in an Access relational table like Figure 10-2, the

table declaration for Access could be used together with the read table command
to read the members of FOOD and values of cos t, f_min and f_max into the corre­
sponding AMPL set and parameters:

176 DATABASE ACCESS CHAPTER 10

X Mlc.osoll EHcel Diet Mis "~EJ

I ~ tie ~dot 'fi<w tnsort .",mat look Qot. I!r:ndow WU! tie<!

I D~lIIalliH~~ j,~e,~ •
ArioI • 10 B I II • ~. A ~ - = FOOD

A B C D E F G ~

..!.I

J

130",=115.32

Figure 10-3: Excel worksheet range.

ampl: mode~ diet.mod;
ampl: table Foods IN "ODBC" "diet.mdb":
ampl? FOOD <- {FOOD}, cost, f _ min, f _ max;
ampl, read table FOods;
ampl, display cost, f _min, f _ l1J8.X;

cost f_min f_max : =

BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2 . 89 2 1 0
MCH 1. 89 2 10
MTL 1 . 99 2 10
SPG 1. 99 2 10
TUR 2 . 49 2 10

(The display command confi rms that the database val ues were read as intended.) If
the data va lues were instead in an Excel worksheet range like Figure 10-3, the values
would be read in the same way, but using the table declaration for Excel:

ampl:
ampl:
ampl?
ampl :

model diet . mod;
table Foods IN nODBe" "diet.xls":

FOOD <- {FOOD], cost, f _min, f _max;
read table Foods;

SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS

A nd if the values were in a file Foods _ tab containing a text table like this:

arnpl.tab 1 3
FOOD cost f_min f_max
BEEF 3.19 2 10
CHK 2.59 2 10
FISH 2.29 2 10
HAM 2 . 89 2 10
MCH 1. 89 2 10
MTL 1. 99 2 10
SPG 1. 99 2 10
TUR 2 . 49 2 10

the declaration for a text table would be used:

ampl : modeI diet.mod;
ampl : tabIe Foods IN: FOOD <- (FOOD], cost, f _min, f _ max;
ampl : read table Foods;

177

Because the AMPL table name Foods is the same in all three of these examples, the
read table command is the same for all three: read table Foods . In general, the
read table command only specifies the AMPL name of the table to be read. All infor­
mation about what is to be read, and how it is to be handled, is taken from the named
table's definition in the table declaration.

To create the second (7-column) relational table example of the previous section, we
could use a pair of table declarations:

table ImportFoods IN "ODBC" "diet _mdb " "Foods" :
FOOD < - (FOOD], cost, f_min, f_max;

table ExportFoods OUT "OOBC" "diet.mdb" "Foods" :
FOOD <- [FOOD) , Buy, Buy _rc - BuyRC,
{j in FOOD} Buy[j]/f_max(j] - BuyFrac;

or a single table declaration combining the input and output infonnation:

table Foods "ODBC" "diet . mdb" : {FOOD] IN, cost IN,
f_min IN, f_max IN, Buy OUT, Buy _rc - BuyRC OUT,
(j in FOOD) Buy[jl / f_max[j] - BuyFrac OUT;

These examples show how the AMPL table name (such as ExportFoods) may be dif­
ferent from the name of the corresponding table within the external file (as indicated by
the subsequent string" Foods"). A number of other useful options are also seen here:
IN and OUT are associated with indi vidual columns of the table. rather than with the
whole table; [FOOD] IN is used as an abbreviat ion for FOOD <- [FOOD]; columns of
the table are assoc iated with the values of variables Buy and expressions Buy _ rc and
Buy[j] ICmax[j]; Buy . rc - BuyRC and {j in FOOD} Buy[j] ICmax[j] -
BuyFrac associate an AMPL expression (to the left of the - operator) with a database
column heading (to the right).

To write meaningful results back to the Access database, we need to read all of the
diet model's data, then solve, and then give a wri te table command. Here' s how it

178 DATABASE ACCESS CHAPTER 10

all might look using separate table declarations to read and write the Access table
Foods:

arnpl ,
ampl:
ampl?
ampl:
ampl?
arnpl,
ampl:
ampl:
ampl:
ampl,
ampl:
ampl?
ampl?
ampl?
ampl :

model diet • mod;
table ImportFoods IN HODSC" "diet.mdb" "Foods":

FOOD <- [FOOD}, cost, f _min, f _ max;
table NUtrs IN HODSC" "diet.mdb": NUTR <- [NUTR],

n_min, n _ mAX;

table Amts IN HODSC" "diet.mdb": [NUTR, FOOD], arne;
read table ImportFoodsl
read table RUtrsl
read table Amts;
solve;
table EXportFoods OUT HODBC" "diet.mdb" "Foods":

FOOD <- [FOOD],

Buy, Buy. rc - BuyRC,
{j in FOOD} Buy{j]/f_1D4X{j1 - BuyFrac;

write table ExportFoods;

and here is an alternative usi ng a si ngle declaration to both read and write Foods:

amp 1 ,
ampl :
ampl?
ampl?
ampl?
ampl:
ampl?
ampl:
ampl:
ampl:
ampl:
ampl,
amp 1 ,

model diet .mod;
table Foods "ODBC" "diet.mdb":

{FOOD} IN, cost IN, f _min IN, f _ mAX IN,
Buy OUT, Buy. rc - BuyRC OUT,
{j in FOOD} Buy{j} / f _ mAX{j} - BuyFrac OUT;

table NUtrs IN HODBcn ndiet.mdb n :
NUTR <- (NUTR), n_ min, n_mAX;

table Amts IN "ODBC" "diet .mdb": {NUTR, FOOD], arnt;
read table Foods;
read table NUtrs;
read table Amts;
solve;
write table Foods;

Either way, the Access table Foods would end up having three additional columns, as
seen in Figure lO-4.

The same operations are handled si milarly for other types of database files. In gen­
eral, the actions of a wri te table command are determined by the previously declared
AMPL table named in the command, and by the status of the external file associated with
the AMPL table through its table declaration. Depending on the circumstances, the
wri te table command may create a new external file or table, overwrite an existing
table, overwrite certain columns within an existing table, or append columns to an exist­
ing table.

The table declaration is the same for multidimensional AMPL entities, except that
there must be more than one key column specifi ed between brackets [and]. For the
steel production example discussed previously, the correspondence to a relational table
could be set up like this:

r SECTION 10.2 EXAMPLES OF TABLE-HANDLING STATEMENTS 179

10 5.360613811 3.05311 E-16 0.536061381
CHK 10 2 1.18884058
FISH 2.29 2 10 2 1.144407502
HAM 2.89 2 10 10 -0.30265132
MCH 1.89 2 10 10 -0.5511509
MTL 1.99 2 10 10 -1 .32890026
SPG 1.99 2 10 9.306052856 -2.0123E-15

2.49 2 10 2 2.731619778

Figure 10-4: Access relational table with output columns.

table Steel Prod "ODBC" "steel.mdb":
[PROD, TIME], market IN, revenue IN,
Make OUT, SellOUT, Inv OUT;

Here the key columns PROD and TIME are not specified as IN. This is because the
parameters to be read in , market and revenue, are indexed in the AMPL model over
the set (PROD, 1 .. T), whose membership would be specified by use of other, simpler
tables. The read table Steel Prod command merely uses the PROD and TIME

entries of each database row to determine the pair of indices (subscripts) that are to be
associated with the market and revenue entries in the row.

OUf transportation example also involves a relational table for two-dimensional enti­
ties, and the associated table declaration is similar:

table TransLinks "ODBC" "trans. xIs " "Links" :
LINKS <- [ORIG, DEST], cost IN, Trans OUT;

The difference here is that LINKS, the AMPL set of pairs over which cost and Trans
are indexed, is part of the data rather than being determined from simpler sets or parame­
ters. Thus we write LINKS <- [ORIG, DEST], to request that pairs from the key
columns be read into LINKS at the same time that the corresponding values are read into
cost. This distinction is discussed further in the next section.

As you can see from even our simple examples so far, table statements tend to be
cumbersome to type interactively. Instead they are usually placed in AMPL programs, or
scripts, which are executed as described in Chapter 13. The read table and wri te
table statements may be included in the scripts as well. You can define a table and

180 OAT ABASE ACCESS CHAPTER 10

then immediately read or write it, as seen in some of o ur examples, but a script is often
more readable if the complex table statements are segregated from the statements that
read and write the tables.

The rest of this chapter will concentrate on table ~tatemems. Complete sample
scripts and Access or Excel files for the diet. production, and transportation examples can
be obtained from the AMPL web si te.

10.3 Reading data from relational tables

To use an external relational table for reading only, you should employ a table dec­
laration that specifics a read/write status of IN. Thus it should have the general form

table table-name IN string-list ('f'I :

key-spec, data-spec, daIa-spu,

where the optional siring-lisl is specific to the database type and access method bei ng
used. (In the interest of brevity, most subsequent examples do not show a string-list.)
The key-spec names the key columns, and the data -spec gives the data columns. Data
values are subsequently read from the table into AMPL entities by the command

read table rable- ,wllle i

which determines the values to be relld by referring to the table declamtion that defined
table-flame.

Reading parameters only

To assign values from data columns to like-named AMPL parameters, it suffices to
give a bracketed list of key columns and then a list of data columns. The simples t case,
where there is only one key column, is exemplified by

table Foods IN: [FOOD], cost, f_min, f _max;

This indicates that the relational table has four columns, comprising a key column FOOD
and data columns cost, f_min and f_max. The data columns are associated with
parameters cost, f_min and f_max in the current AMPL model. Since there is only
one key column, all of these parameters mu st be indexed over one-dimensional sets.

When the command

read table Foods

is executed, the relational table is read one row at a time. A row' s entry in the key col­
umn is inlerpreted as a subscript to each of the parameters, and these subscripted parame­
ters are assigned the row' s entries from the associated data columns. For example, if the
relationa l table is

SECTION 10.3 READING DATA FROM RELATIONAL TABLES 181

FOOD cost f _min f_max
BEEF 3 . 19 2 10
CHK 2 . 59 2 10
FISH 2 . 29 2 10
HAM 2 . 89 2 10
MCH 1.89 2 10
MTL 1.99 2 10
SPG 1. 99 2 10
TUR 2.49 2 10

processing the first row assigns the values 3.19 to parameter cos t ['BEEF' 1, 2 to
f min ['BEEF' 1, and 10 to f_max ['BEEF' 1; processing the second row assigns
2.59 to cos t ['CHK' J, 2 to f_min ['CHK' J, and 10 to f_max ['CHK' J; and so
forth through the six remaining rows.

At the time that the read table command is executed, AMPL makes no assump­
tions about how the parameters are declared; they need not be indexed over a set named
FOOD, and indeed the members of their indexing sets may not yet even be known. Only
later, when AMPL first uses each parameter in some computation, does it check the
entries read from key column FOOD to be sure that each is a valid subscript for that
parameter.

The situation is analogous for multidimensional parameters. The name of each data
column must also be the name of an AMPL parameter, and the dimension of the
parameter's indexing set must equal the number of key columns. For example, when two
key columns are listed within the brackets:

table SteelProd IN : [PROD, TIMEl, market, revenue ;

the listed data columns, market and revenue, must correspond to AMPL parameters
market and revenue that are indexed over two-dimensional sets.

When read table Steel Prod is executed, each row's entries in the key columns
are interpreted as a pair of subscripts to each of the parameters. Thus if the relational
table has contents

PROD TIME
bands 1
bands 2
bands 3
bands 4
coils 1
coils 2
coils 3
coils 4

market
6000
6000
4000
6500
4000
2500
3500
4200

revenue
25
26
27
27
30
35
37
39

processing the first row will assign 6000 to market ['bands' , 1 J and 25 to
revenue [, bands' , 1] ; processing the second row will assign 6000 to
market ['bands' ,2 J and 26 to revenue ['bands' , 2 J ; and so forth through all
eight row s. The pairs of subscripts given by the key column entries must be valid for
market and revenue when the values of these parameters are first needed by AMPL,
but the parameters need not be declared over sets named PROD and TIME. (1n fact, in the

182 DATABASE ACCESS CHAPTER 10

model rrom which this example is taken, the parameters are indexed by {PROD, 1 . . T}
where T is a previously defined parameter.)

Since a relational table has only one collection of key columns, AMPL applies the
same subscripting to each of the parameters named by the data columns. These parame­
ters are thus usually indexed over the same AMPL sel. Parameters indexed over similar
sets may also be accommodated in one database table, however, by leaving blank any
entries in rows corresponding to invalid subscripts. The way in which a blank entry is
indicated is specific to the database software being used.

Values of un indexed (scalar) parameters may be supplied by a relational table that has
one row and no key columns, so that each data column contains precisely one value. The
corresponding table declaration has an empty key-spec, [], For example, to read a
value for the parameter T that gives the number of periods in steel T. mod, the table
declaration is

table Steel Periods IN : [], T ;

and the corresponding relational table has one column, also named T, whose one entry is
a positive integer.

Reading a set and parameters

It is often convenient to read the members of a set from a table's key column or
columns, at the same time that parameters indexed over that set are read from the data
columns. To indicate that a set shou ld be read from a table, the key~spec in the table
declaration is written in the form

sel~l1ame <- [key~col-spec, key-col-spec, ...]

The <- symbol is intended as an arrow pointing in the direction that the information is
moved, from the key columns to the AMPL set.

The si mplest case involves reading a one-dimensional set and the parameters indexed
over it, as in this example for diet. mod:

table Foods IN : FOOD <- (FoodName], cost, f_min, f_max;

When the command read table Foods is executed, all entries in the key column
FoodName of the relational table are read into AMPL as members of the set FOOD, and
the entries in the data columns cos t, f_min and f_max are read into the like-named
AMPL parameters as previously described, If the key column is named FOOD like the
AMPL set, the appropriate table declaration becomes

table Foods IN : FOOD <- [FOOD], cost, f_min, f_max;

In this special case only, the key~spec can also be written in the abbreviated form
[FOOD] IN.

An analogous syntax is employed for reading a multidimensional set along with
parameters indexed over it. In the case of transp3 . mod, for instance, the table dec­
laration could be:

SECTION 10.3 READING DATA FROM RELATIONAL TABLES 183

table TransLinks IN: LINKS <- [ORIG, DEST], cost;

When read table TransLinks is executed, each row of the table provides a pair of
entries from key columns ORIG and DEST. All such pairs are read into AMPL as mem­
bers of the two-dimensional set LINKS. Finally. the entries in column cos t are read
into parameter cost in the usual way.

As in our previous multidimensional example. the names in brackets need not corre­
spond to sets in the AMPL model. The bracketed names serve only to identify the key
columns. The name to the left of the arrow is the only one that must name a previously
declared AMPL set; moreover, this set must have been declared to have the same dimen­
sion. or arity, as the number of key columns.

It makes sense to read the set LINKS from a relational table, because LINKS is
specifically declared in the model in a way that leaves the corresponding data to be read
separately :

set ORIG;
set DEST;
set LINKS within {ORIG,DEST};
param cost {LINKS} >= 0;

By contrast, in the similar model transp2 . mod, LINKS is defined in terms of two
one-dimensional sets:

set ORIG;
set DESTi
set LINKS = (ORIG,DEST);
param cost {LINKS} >= 0;

and in transp. mod, no named two-dimensional set is defined at all:

set ORIG;
set DEST;
param cost {ORIG,DEST} >= 0;

In these latter cases, a table declaration would still be needed for reading parameter
cost, but it would not specify the reading of any associated set:

table TransLinks IN: [ORIG, DEST), cost;

Separate relational tables would instead be used to provide members for the one­
dimensional sets ORIG and DEST and values for the parameters indexed over them.

When a table declaration specifies an AMPL set to be assigned members. its list of
data-specs may be empty. In that case only the key columns are read, and the only action
of read table is to assign the key column values as members of the specified AMPL
set. For in~tance, with the statement

table TransLinks IN : LINKS <- [ORIG, DEST);

a subsequent read table statement would cause just the values for the set LINKS to be
read, from the two key columns in the corresponding database table.

184 DATABASE ACCESS CHAPTER 10

Establishing correspondences

An AMPL model 's set and parameter declarations do not necessarily correspond in all
respects to the organization of tables in relevant databases. Where the difference is sub­
stantial, it may be necessary to use the database ' s query language (often SQL) to derive
temporary tables that have the structure required by the model; an example is given in the
discussion of the OOBe handler later in this chapter. A number of common, simple dif­
ferences can be handled directly, however, through features of the table declaration.

Differences in naming are perhaps the most common. A table declaration can asso­
ciate a data column with a differently named AMPL parameter by use of a data-spec of
the form param-name - data-co/-name. Thus, for example, if table Foods were instead
defined by

table Foods IN :
[FOOD), cost, f_min - lowerlim, f_max - upperlim;

the AMPL parameters f_min and f_max would be read from data columns lowerlim
and upperlim in the relational table. (Parameter cost would be read from column
cos t as before.)

A similarly generalized form. index - key-col-name. can be used to associate a kind of
dummy index with a key column. This index may then be used in a subscript to the
optional param-llame in one or more data-specs. Such an arrangement is useful in a
number of situations where the key column entries do not exactly correspond to the sub­
scripts of the parameters that are to receive table values. Here are three common cases.

Where a numbering of some kind in the relational table is systematically different
from the corresponding numbering in the AMPL model , a simple expression involving a
key column index can translate from the one numbering scheme to the other. For exam­
ple, if time periods were counted from 0 in the relational table data rather than from I as
in the model, an adjustment cou ld be made in the table declaration as follows:

table Steel Prod IN: (p - PROD, t - TIME],
market[p,t+l] - market, revenue[p,t+l) - revenue ;

In the second case, where AMPL parameters have subscripts from the same sets but in
different orders, key column indexes must be employed to provide a correct index order.
If market is indexed over {PROD, 1 .. T} but revenue is indexed over {1 .. T,
PROD}. for example, a table declaration to read values for these two parameters should
be written as follows:

table Steel Prod IN : [p - PROD, t - TIME],
market, revenue[t,p] - revenue;

Finally, where the values for an AMPL parameter are divided among several database
columns, key column indexes can be employed to describe the vaJ ues to be found in each
column. For instance, if the revenue values are given in one column for II bands II and
in another column for II coils ", the corresponding table declaration could be written
like this:

r SECTION 10.3 READING DATA FROM RELATIONAL TABLES

table SteelProd IN: [t - TIME],
revenue ["bands" ,t] - revbands,
revenue["coils",t] - revcoilsi

185

It is tempting to try to shorten declarations of these kinds by dropping the - data-co/­
name, 10 produce, say,

table SteelProd IN:
[p - PROD, t - TIME], market, revenue[t,p]; # ERROR

This will usually be rejected as an error, however, because revenue [t, p] is not a
valid name for a relational table column in most database software. lnstead it is neces~
sary to write

table SteelProd IN:
(p - PROD, t - TIME], market, revenue[t,p] - revenue;

to indicate that the AMPL parameters revenue [t, p] receive values from the column
revenue of the table.

More generally, a - synonym will have to be used in any situation where the AMPL
expression for the recipient of a column's data is not itself a valid name for a database
column. The rules for valid column names tend to be the same as the rules for valid com·
ponent names in AMPL models, but they can vary in details depending on the database
software that is being used to create and maintain the tables.

Reading other values

In a table declaration used for input, an assignable AMPL expression may appear
anywhere that a parameter name would be allowed. An expression is assignable if it can
be assigned a value, such as by placing it on the left side of : = in a let command.

Variable names are assignable expressions. Thus a table declaration can specify
columns of data to be read into variables, for purposes or evaluating a previously stored
solution or providing a good initial solution for a solver.

Constraint names are also assignable expressions. Values " read into a constraint" are
interpreted as initial dual values for some solvers, such as MLNOS.

Any variable or constraint name qualified by an assignable suffix is also an assignable
expression. Assignable suffi xes include the predefined. sstatus and. relax as well
as any user·defined suffixes. For example, if the diet problem were changed to have inte­
ger variables, the following table declaration could help to provide useful information
for the CPLEX solver (see Section 14.3):

table Foods IN: FOOD IN,
cost, f_min, f_max, Buy, Buy .priority - prior;

An execution of read table Foods would supply members for set FOOD and values
for parameters cost. f_min and f_max in the usual way, and would also assign initial
values and branching priorities to the Buy variables.

186 DATABASE ACCESS CHAPTER 10

10.4 Writing data to relational tables

To use an external relational table for writing only, you shou ld employ a table dec­
laration that specifies its read/write status to be OUT. The general form of such a declat'a­
tion is

table table-name OUT strillg-lisr"pr :
key-spec, data-spec, clara-spec I

where the optional string-list is specific to the database lype and access method being
used. (Again, most subsequent examples do not include a 5Irhlg-/ist.) AMPL expression
values are subsequent ly written to the table by the command

wri te table table-name i

whjch uses the table declaration that defined table-name to determine the information
to be written.

A table declaration for writing specifies an external file and possibly a relational
table within that file. either explicitly in the strillg-list or implicitly by default rules. Nor­
mally the named external file or table is created if it does not exist, or is overwritten oth­
erwise. To specify that instead certain columns are to be replaced or are to be added to a
table, the table declaration must incorporate one or more data-specs that have
read/write status IN or INOUT, as discussed in Section 10.5. A specific table handler
may also have its own more detailed rules ror determining when files and tables are mod­
ified or overwritten, as explained in its documentation.

The key-specs and data-specs of table declarations for writing external tables super­
ficially resemble those for reading. The range or AMPL expressions allowed when writ­
ing is much broader, however, including essentially all set-valued and numeric-valued
expressions. Moreover, whereas the table rows to be read are those of some existing
table, the rows to be written must be determined from AMPL expressions in some part of
a table declaration. Specifically, rows to be written can be inferred either rrom the
data-specs, using the same conventions as in display commands, or from the key-spec.
Each of these alternatives employs a characteristic table syntax as described below.

Writing rows inferred from the data specifications

If the key-spec is simply a bracketed list of the names of key columns,

[key-col-name, key-col-name. . .. /

the table declaration works much like the display command. It determines the
external table rows to be written by taking the union of the indexing sets stated or implied
in the data-specs. The format of the data-spec list is the same as in display, except
that all of the items listed must have the same dimension.

In the si mplest case, the data-specs are the names of model components indexed over
the same set:

table Foods OUT: [FoodNamel. f _min. Buy. f _max;

SECTION 10.4 WAITING DATA TO RELATIONAL TABLES 187

When wri te table Foods is executed, it creates a key column FoodName and data
columns f_min, Buy. and f_max. Since the AMPL components corresponding (0 the
data columns are all indexed over the AMPL set FOOD, one row is created for each mem­
ber of FOOD. In a representative row, a member of FOOD is written to the key column
FoodName, and the values of f_min, Buy, and f_max subscripted by that member are
written to the like-named data columns. For the data used in the diet example, the result­
ing relational table would be:

FoodName f_min Buy f_max
BEEF 2 5 . 36061 10
CHK 2 2 10
FISH 2 2 10
HAM 2 10 10
MCH 2 10 10
MTL 2 10 10
SPG 2 9.30605 10
TUR 2 2 10

Tables corresponding to higher-dimensional sets are handled analogously, with the num­
ber of bracketed key-column names listed in the key-spec being equal to the dimension of
the items in the data-spec. Thus a table containing the results from steel T . mod could
be defined as

table SteelProd OUT: [PROD, TIME), Make, Sell, lnv ;

Because Make and Sell are indexed over {PROD, 1 .. T}, while Inv is indexed over
{PROD, 0 .. T}, a subsequent wri te table Steel Prod command would produce a
table with one row for each member of the union of these sets:

PROD TIME Make Sell Inv
bands 0 10
bands 1 5990 6000 0
bands 2 6000 6000 0
bands 3 1400 1400 0
bands 4 2000 2000 0
coils 0 0
coils 1 1407 307 1100
coils 2 1400 2500 0
coils 3 3500 3500 0
coils 4 4200 4200 0

Two rows are empty in the columns for Make and Sell, because ("bands", 0) and
("coils" , 0) are not members of the index sets of Make and Sell. We use a" ...
here to indicate the empty table entries, but the actual appearance and handling of empty
entries will vary depending on the database software being used.

If this form is applied to writing suffixed variable or constraint names, such as the
dual and slack values related to the constraint Diet:

table Nutrs OUT: [Nutrient],
Diet.lslack, Diet . ldual, Diet.uslack, Diet.udual; # ERROR

188 DATABASE ACCESS CHAPTER 10

a subsequent wri te table Nutrs command is likely to be rejected, because names
with a " dot" in the middle are not allowed as column names by most database software:

ampl: write table NUtrs;
Error executing "write table" command:

Error writing table Nutrs with table handler ampl.odbc:
Column 2'5 name "Diet . lslack" contains non-alphanumeric

character '.' .

This situation requires that each AMPL expression be followed by the operator - and a
corresponding valid column name for use in the relational table:

table Nutrs OUT: [Nutrient],
Diet.lslack - Ib_slack, Diet.ldual - Ib_dual,
Diet.uslack - ub_slack, Diet.udual - ub_dual ;

This says that the values represented by Diet .lslack should be placed in a column
named lb_slack, the values represented by Diet .ldual should be placed in a col­
umn named Ib_dual. and so forth. With the table defined in this way, a wri te
table Nutrs command produces the intended relational table:

Nutrient lb_slack 1b_dua1 ub_slack ub_dual
A 1256 .29 0 18043 . 7 0
B1 336.257 0 18963 . 7 0
B2 0 0.404585 19300 0
C 982.515 0 18317.5 0
CAL 3794.62 0 4205.38 0
NA 50000 0 0 -0.00306905

The - can also be used with unsuffixed names, if it is desired to assign the dabatase col­
umn a name different from the corresponding AMPL entity.

More general expressions for the values in data columns require the use of dummy
indices, in the same way that they are used in the data-list of a display command.
Since indexed AMPL expressions are rarely valid column names for a database. they
should generally be followed by - dalo-col-llame to provide a valid name for the corre­
sponding relational table column that is to be written. To write a column servings
containing the number of servings of each food to be bought and a column percent
giving the amount bought as a percentage of the maximum allowed, for example. the
table declaration could be given as either

or

table Purchases OUT: [FoodName],
Buy - servings, {j in FOOD} lOO*Buy(j]/f_max[j] - percent;

table Purchases OUT: (FoodName],
{j in FOOD} (Buy[j] - servings,

lOO*Buy[j]/f_max[j] - percent);

Either way, since both data-specs give expressions indexed over the AMPL set FOOD. the
resulting table has one row for each member of that set:

SECTION 10.4 WRITING DATA TO RELATIONAL TABLES 189

FoodName servings percent
BEEF 5.36061 53.6061
CHK 2 20
FISH 2 20
HAM 10 100
MCH 10 100
MTL 10 100
SPG 9.30605 93 . 0605
TUR 2 20

The expression in a data-spec may also use operators like sum that define their own
dummy indices. Thus a table of total production and sales by period for steel T. mod
could be specified by

table Steel Total OUT :
(t in 1. . T) (sum (p

sum {p

[TIME) ,
in PROD} Make[p,t] - Made,
in PROD} Sell[p,t) - Sold);

As a two-dimensional example, a table of the amounts sold and the fractions of demand
met could be specified by

table SteelSales OUT : [PROD, TIME], Sell,
{p in PROD, t in 1 .. T} Sell[p,t]/market(p,t] - FracDemandi

The resulting external table would have key columns PROD and TIME, and data columns
Sell and FracDemand.

Writing rows inferred from a key specification

An alternative form of table declaration specifies that one table row is to be written
for each member of an expl icitly specified AMPL set. For the declaration to work in this
way. the key-spec must be written as

set-spec -> (key-col-spec, key-col-spec, ..]

In contrast to the arrow <- that points from a key-column list to an AMPL set, indicating
values 10 be read into the set. this form uses an arrow -> that points from an AMPL set to
a key column list, indicating information to be written from the set into the key columns.

An explicit expression for the row index set is given by the set-spec, which can be the
name of an AMPL set, or any AMPL set-expression enc losed in braces { }. The key-co/­
specs give the names of the corresponding key columns in the database. Dummy indices,
if needed, can appear either with the set-spec or the key·col-specs, as we will show.

The simplest case of this form involves writing database columns for model compo­
nents indexed over the same one-dimensional set, as in this example for diet. mod:

table Foods OUT : FOOD -> [FoodName], f_min, Buy, f_max;

When write table Foods is executed, a table row is created for each member of the
AMPL set FOOD. in that row, the set member is written to the key column FoodName,
and the values of f_min, Buy, and f_max subscripted by the set member are written to

190 DATABASE ACCESS CHAPTER 10

the like-named data columns. (For the data used in our diet example, the resulling table
would be the same as for the FooclName table given previously in this section .) If the
key column has the same name, FOOD, as the AMPL set. the appropriate table declara­
tion becomes

table Foods OUT : FOOD -> (FOOD}, f_min, Buy. f_max;

In this special case only, the key-spec can also be wri tten in the abbreviated form
[FOOD] OUT.

The use of - with AMPL names and suffixed names is governed by the considerations
previously described, so that the example of diet slack and dual values would be written

table Nutrs OUT : NUTR -> [Nutrient],
Diet.lslack - Ib_slack, Diet.ldual - Ib_dual,
Diet.uslack - ub_slack, Diet.udual - ub_dual;

and wri te table Nutrs would give the same table as previously shown.
More general expressions for the values in data columns require the use or dummy

indices. Since the rows to be written are determined rrom the key-spec. however, the
dummies are also defined there (rather than in the data-specs as in the alternative form
above). To specify a column containing the amount of a food bought as a percentage of
the maximum allowed, for example, it is necessary to write lOO*Buy[j] /f_max[j] ,
which in turn requires that dummy index j be defmed. The definition may appear either
in a set-spec of the form { index-Ii.\·J in seJ-expr }:

table Purchases OUT: {j in FOOD} -> [FoodNameJ,
Buy[j] - servings, lOO*Buy[jJ/f_max[j] - percent;

or in a key-col-spec of the form index - key-col-narne:

table Purchases OUT : FOOD -> [j - FoodName],
Buy[j] - servings, lOO*Buy[jl/f_max[j] - percent;

These two forms are equivalent. Either way. as each row is written. the index j takes the
key column value, which is used in interpreting the expressions that give the values for
the data columns. For our example. the resulting L:1ble, having key column FoodName
and data columns servings and percent, is the same as previously shown. Simi­
larly, the previous example of the table Steel Total could be wrillen as either

or

table SteelTotal OUT: {t in l .. T) -> [TIME],
sum {p in PROD} Make[p,t) - Made,
sum {p in PROD} Sell[p,t) - Sold;

table SteelTotal OUT: {lo .T} -> rt - TIME].
sum {p in PROD} Make[p.t] - Made,
sum {p in PROD} Sell(p.t] - Sold;

The result will have a key column TIME containing the integers 1 through T, and data
columns Made and Sold containing the values of the two summations. (Notice that

r SECTION 10.5 READING AND WRITING THE SAME TABLE 191

since 1 .. T is a set-express ion, rather than the name of a set, it must be included in
braces to be used as a set-spec.)

Tables corresponding to higher-dimensional sets are handled analogously, with the
number of key-col-specs li sted in brackets being equal to the dimension of the set-spec.
Thus a table containing the results from steel T . mod could be defined as

table Steel Prod OUT:
(PROD, 1 .. T) -> [PROD, TIMEI, Make, Sell, Inv;

and a subsequent write table Steel Prod would produce a table of the form

PROD TIME Make Sell Inv
bands 1 5990 6000 0
bands 2 6000 6000 0
bands 3 1400 1400 0
bands 4 2000 2000 0
coils 1 1407 307 1100
coils 2 1400 2500 0
coils 3 3500 3500 0
coils 4 4200 4200 0

This result is not quite the same as the table produced by the previous SteelProd
example, because the rows to be written here correspond explicitly to the members of the
set {PROD, 1 .. T}, rather than being inferred from the indexi ng sets of Make, Sell,
and lnv. In particular, the values of lnv ["bands" , 0 I and lnv ["coils" , 0 I do
not appear in this table.

The options for dummy indices in higher dimensions are the same as in one dimen­
sion. Thus our example SteelSales could be written either using dummy indices
defined in the set-spec:

table SteelSales OUT:
{p in PROD, tin 1 .. T} -> (PROD, TIME],
Sell [p, t] - sold, Sell [p, t] Imarket [p, tl - met;

or with dummy indices added to the key-col·specs:

table SteelSales OUT:
(PROD,l .. T) -> [p - PROD, t - TIME],
Sell[p,t] - sold, Sell[p,tl/market[p,t] - met;

If dummy indices happen to appear in both the set-spec and the key-col-specs, ones in the
key-col-specs take precedence.

10.5 Reading and writing the same table

To read data from a relational table and then write results to the same table, you can
use a pair of table declarations that reference the same file and table names. You may
also be able to combine these declarations into one that specifies some columns to be read

192 DATABASE ACCESS CHAPTER 10

and others to be written. This section gives examples and instructions for both of these
possibilities.

Reading and writing using two table declarations

A single external table can be read by one table declaration and later written by
another. The two table declarations fo llow the rules for reading and writing given
above.

In this situation, however, one usually wallls wri te table to add or rewrite
selected columns, rather than overwriting the entire wblc. This preference can be com­
municated to the AMPL table handler by includ ing input as well as output columns in the
table declaration that is to be used for writing. Columns intended for input to AM PL
can be dist ingui shed from those intended for output to the external table by specifying a
read/write status column by column (rather than for the table as a whole).

As an example, an external table for diet. mod might consist of columns cost,
f_min and f_max containing input for the model, and a column Buy containi ng the
results . If this is maintained as a Microsoft Access table named Diet within a file
diet. mdb, the table declaration for reading data into AMPL could be

table Foodlnput IN "ODBe" "dietl.mdb" "Diet":
FOOD <- [FoodNamel, cost, f_min, f_maxi

The corresponding declaration for writing the results would have a different AMPL table­
name but would refer to the same Access table and file:

table FoodOutput "OOBe" "dietl.mdb" "Diet":
[FoodName], cost IN, f_min IN, Buy OUT, f_max IN;

When read table Foodlnput is executed, only the three columns listed in the
table Foodlnput declaration are read; if there is an existing column named Buy, it is
ignored. Later, when the problem has been solved and wri te table FoodOutput is
executed, only the one column that has read/write status OUT in the table FoodOut­
put declaration is written to the Access table, while the table's other columns are left
unmodified.

Although details may vary with the database software used, the general convention is
that overwriting of an eI1lire ex.isting table or file is intended only when all data columns
in the table declaration have read/write status OUT. Selective rewriting or addition of
columns is intended otherwise. Thus if our AMPL table for output had been declared

table FoodOutput ~ODBC" "dietl.rndb" "Diet";
[FoodName), Buy OUT:

then all of the data columns in Access table Diet would have been deleted by wri te
table FoodOutput, but the alternative

table FoodOutput "ODse" "dietl.mdb" "Diet":
[FoodName], Buy;

r SECTION 10.6 INDEXED COLLECTI ONS OF TABLES AND COLUMNS 193

would have only overwritten the column Buy, as in the example we originally gave, since
there is a data column (namely Buy itself) that does not have read/write starus OUT. (The
default, when no status is given, is INOUT.)

Reading and writing using the same table declaration

In many cases, all of the information for both rcading and writing an external table
can be specified in the same table declaration. The key-spec may use the arrow <- to
read contents of the key columns into an AMPL set, -> to write members of an AMPL set
into the key columns, or <-> to do both. A data-spec may specify readiwrite status IN
for a column that will only be read into AMPL, OUT for a column that will only be written
out from AMPL, or INOUT for a column that will be both read and written.

A read table table-name command reads only the key or data columns that arc
specified in the declaration of rabie-name as being IN or INOUT. A write table
table-name command analogously writes to only the columns that are specified as OUT or
INOUT.

As an example, the declarations defining Foodlnput and FoodOutput above
could be replaced by

table Foods "ODBC" "dietl.mdb" "Diet":
FOOD <- (FoodName], cost IN, f_min IN, Buy OUT, f_max IN;

A read table Foods would then read only from key column FoodName and data
columns cost, f_min and f_max. A later write table Foods would write only to
the column Buy.

10.6 Indexed collections of tables and columns

In some circumstances, it is convenient to declare an indexed collection of tables, or
to define an indexed collection of data columns within a table. This section explains how
indexing of these kinds can be specified within the table declaration.

To illustrate indexed collections of tables, we present a script (Chapter 13) that auto­
matically solves a series of scenarios stored separately. To illustrate indexed collections
of columns, we show how a two-dimensional spreadsheet table can be read.

All of OUf examples of these features make use of AMPL's character-string expres­
sions to generate names for series of files, tables, or columns. For more on string expres­
sions, see Sections 13.7 and A.4.2.

Indexed collections of tables

AMPL table declarations can be indexed in much the same way as sets, parameters,
and other model components. An optional {indexing-expr} follows the table-name:

table table-name {indexing-expr} opt string-list opt : •••

194 DATABASE ACCESS CHAPTER 10

i!i D.etSens . Databa,e I!I~ EJ

IillI rabies I @Queries I
IillI ~~~.E~

§J FOC'ms I 11 Reports I t2 Mocros I 4 Modules I

IITil SensCHK

IiliJ SensFISH

IillI SensHAM !feW]
IITil SensMCH

IUD SensMTL

IITil SensSPG

IITil SensTLR

Figure 10-5: Access database with tables of sensitivity analysis.

One table is defined for each member of the set specified by the illdexillg-expr. Individ­
ual tables in this collection are dcnoted in the usual way, by appending a bracketed sub­
script or subscripts to the table ~/lGme.

As an example, the following declaration defines a collection of AMPL tables indexed
over the set of foods in diet. mo d. each table corresponding to a different database table
in the Access file Die tSens . rndb:

table DietSens {j in FOOD}
OUT "ODBe" "DietSens.mdb" ("Sens" & j) :

[Food], f_min, Buy, f_max;

Following the rules for the standard ODBC table handler, the Access table name, are
given by the third item in the string-list , the string expression (" Sens" & j) . Thus
the AMI'L table DietSens ["BEEF " J is associated with the Access table SensBEEF,
the AMPL table DietSen s ["CHK " J is associated with the Access table SensCHK, and
so forth . The following AMPL script uses these tables to record the optimal diet when
there is a two-for-the-price-of-one sale on each of the food s:

for {j in FOOD} (
let cost[j) : = cost(j) I 2;
solve;
write table DietSen s[j) ;
let cost(j) : = cost(j] * 2;

SECTION 10.6 INDEXED COLLECTIONS OF TABLES AND COLUMNS 195

5.0738881 2
2 10 2 2

7.0164474 10 10 10 10 10
10 10 10 10 10 10
10 10 10 10 10 10

6.6557018 2 2.7655584 9.3060529 9.3060529 9.3060529
2 2 2 2 2 2

Figure 10-6: Alternate Access table for sensitivity analysis.

For the data in diet2a. dat, the set FOOD has eight members, so eight tables are writ­
ten in the Access database, as seen in Figure 10-5. If instead the table declaration were
to give a string expression for the second string in the string-list, which specifies the
Access filename:

table DietSens {j in FOOD}
OUT "ODBe" ("DietSens" & j & ".mdb"):

[Food], f_min, Buy, f_maxi

then AMPL would write eight different Access database files, named
DietSensBEEF . mdb, DietSensCHK. mdb, and so forth, each containing a single
table named (by default) DietSens. (These files must have been created before the
write table commands are executed.)

A string expression can be used in a similar way to make every member of an indexed
collection of AMPL tables correspond to the same Access table, but with a different data­
col-flame for the optimal amounts:

table DietSens {j in FOOD} "OOBC" "DietSens .mdb":
[Food], Buy - ("Buy" & j);

Then running the script shown above will result in the Access table of Figure 10-6. The
AMPL tables in this case were deliberately left with the default read/write status, INOUT.
Had the read/write status been specified as OUT, then each wri te table would have
overwritten the columns created by the previous one.

196 OAT ABASE ACCESS CHAPTER 10

X MIClosoll Excel - Dle l20 Mis 1!I[!] 13
'[I Eie ~dot :&ow insert f2f'mat loois ~. W"ndow 1011!! ~ .dm~

G H J K M N 0 f' ~ 1
2 NUTR BEEF CHK FISH HAM MCH MTL SPG TUR
3 A 60 8 8 40 15 70 25 60
4 B1 10 20 15 35 15 15 25 15
5 B2 15 20 10 10 15 15 15 10
6 C 20 0 10 40 35 30 50 20
7 NA 938 2180 945 278 1182 896 1329 1397
8 CAL 295 770 440 430 315 400 370 450
9

~jl 14 4 ~ ~I Diet J.!.l

Figure 10-7: Two-dimensional AMPL lable in Excel.

Indexed collections of data columns

Because there is a natural correspondence between data columns of a relational table
and indexed collections of entities in an AMPL model , each data-spec in a table decla­
ration normally refers to a different AMPL parameter, variable, or expression. Occasion­
ally the values for one AMPL entity are split among multiple data columns, however.
Such a case can be handled by defining a collection of data columns, one for each mem­
ber of a specified indexing set.

The most common use of this feature is to read or write two-dimensional tables. For
example, the data for the parameler

param amt {NUTR, FOOD} >= 0 ;

from diet. mod might be represented in an Excel spreadsheet as a table with nutrients
labeling the rows and foods the columns (Figure 10-7). To read this table using AMPL's
external database features. we must regard it as having one key column, under the head­
ing NUTR, and data columns headed by the names of individual foods. Thus we require a
table declaration whose key-spec is one-dimensional and whose data-specs are indexed
over the AMPL set FOOD:

table dietAmts IN "ODBC" "Diet2D.xls":
[i - NUTR] , (j in FOOD] <amt[i,j] - (j»;

The key-spec [i - NUTR] associates the first table column with the set NUTR. The
dala-spec {j in FOOD} < ... > causes AMPL to generate an individual data-spec for each
member of set FOOD. Specifically. for each j in FOOD, AMPL generates the daw-spec
amt [i, j] - (j), where (j) is Ihe AMPL string expression for Ihe heading of the
external table column for food j, and amt [i, j] denotes the parameter to which the val-

r SECTION 10.7 STANDARD AND BUILT·IN TABLE HANDLERS 197

ues in that column are to be written. (According to the convention used here and in other
AMPL declarations and commands, the parentheses around (j) cause it to be interpreted
as an expression for a string; without the parentheses it would denote a column name con­
sisting of the single character j.)

A similar approach works for writing two-dimensional tables to spreadsheets. As an
example. after steel T . mod is solved, the results could be written to a spreadsheet
using the following table declaration:

table Resultsl OUT "ODBe" " steellout.xls" :
{p in PROD} -> [Product],

Inv[p,O] - InvO,
{t in 1 .. T} < Make[p,t] - ('Make' & t),

Sell[p,t] - I'Sell' & t),
Inv[p,t] - ('Inv' & t) >;

or, equivalently, using display-style indexing:

table Results2 OUT "ODBC" "steel2out.xls":
[Product] ,

{p in PROD} Inv[p,O] - InvQ,
{t in 1. . T} < {p in PROD} IMake[p,t] -

Sell[p,t] -
Inv [p, t] -

I 'Make' & t),
I'Sell' & t),
(, Inv' & t)) > i

The key column labels the rows with product names. The data columns include one for
the initial inventories, and then three representing production, sales, and inventories,
respectively, for each period, as in Figure 10-8. Conceptually, there is a symmetry
between the row and column indexing of a two-dimensional table. But because the tables
in these examples are being treated as relational tables, the table declaration must treat
the row indexing and the column indexing in different ways. As a result, the expressions
describing row indexing are substantially different from those describing column index­
ing.

As these examples suggest, the general form for specifying an indexed collection of
table columns is

{illdexing-expr} < daw-spec, data-spec, dow-spec, >

where each data-spec has any of the forms previously given. For each member of the set
specified by the indexing-expr, AMPL generates one copy of each data-spec within the
angle brackets < ... >. The indexing-expr also defines one or more dummy indices that run
over the index set; these indices are used in expressions within the data-specs. and also
appear in string expressions that give the names of columns in the external database.

10.7 Standard and built-in table handlers

To work with external database files, AMPL relies on table handlers. These are add­
ons, usually in the form of shared or dynamic link libraries, that can be loaded as needed.

198 DATABASE ACCESS CHAPTER 10

X MiclOsotl Excel - s!eeI2ou! xis I!lIiIEi
I ~ File Edit View Insert F(il'lMt T oo~ Data Wtndow WB! !jelp - - - - - - -

A I B j C 1 0 E j. F Ii G h H I ;~ 1 Product I 11M) M.kel Selll Invl M.ke2 Sel12 1nv2 Make3

r+ • bands 10 5990 6000 0 6000 6000 0 1400 l'

I~ coils 0 1407 307 1100 1400 2500 0 3500 3~

1.4-
~ e-+ 1-]

~f ~
Ii l ~ ~J ~1l\Resultsl ,(,l(~Sults2/ JJJ I

Figure 10-8: Another two-dimensional Excel table.

AMPL is distributed with a "standard " table handler that runs under Microsoft Windows
and communicates via the Open Database Connectivity (OOBe) application programming
interface; it recognizes relational tables in the formats used by Access, Excel, and any
other application for which an oose driver exists on your computer. Additional handlers
may be supplied by vendors of AMPL or of database software.

In addition to any supplied handlers, minimal ASCII and binary relational table file
handlers arc built into AMPL for testing. Vendors may include other built-in handlers. If
you are not sure which handlers are currently seen by your copy of AMPL, the features
described in A.13 can get you a list of active handlers and brief instruct ions for using
them.

As the introductory examples of this chapter have shown, AMPL communicates with
handlers through the sIring-list in the table declaration. The form and interpretation of
the string-list are specific to each handler. The remainder of this section describes the
string-lists that are recognized by AMPL's standard OOBC handler. Following a general
introduction, specific instructions are provided for the two applications, Access and
Excel, that are used in many of the examples in preceding sections. A final subsection
describes the string-lists recognized by the built-in binary and ASCII table handlers.

Using the standard ODBe table handler

Tn the context of a declaration that begins table table-name ... , the general form of
the string-list for the standard Dose table handler is

"ODBC" "connection-spec" "extenwl-tahle-spec" or" "verbose" "1'/

r
SECTION 10.7 STANDARD AND BUILT-IN TABLE HANDLERS 199

The first string tells AMPL that data transfers using this table declaration should employ
the standard ODBC handler. Subsequent strings then provide directions to that handler.

The second string identifies the external database file that is to be read or written upon
execution of read table table-name or wri te table table-flame commands. There
are several possibilities, depending on the form of the connection-spec and the configura­
tion of oose on your computer.

If the connection-spec is a filename of the form name. ext, where ext is a 3-letter
extension associated with an installed oose driver, then the named fil e is the database
file. This form can be seen in a number of our examples, where filenames of the forms
name .mdb and name . xIs refer to Access and Excel files, respectively.

Other fOfms of connection-spec are more specific to OOBC, and are explained in
online documentation. Information about your computer's configuration of OOBC
drivers, data source names, file data sources, and related entities can be examined and
changed through the Windows ODBC control panel.

The third string normally gives the name of the relational table, within the specified
file, that is to be read or written upon execution of read table or wri te table com­
mands, If the third string is omitted, the name of the relational table is taken to be the
same as the table-name of the containing table declaration. For writing, if the indi­
cated table does not exist, it is created; if the table exists but all of the table
declaration's data-specs have read/write status OUT, then it is overwritten. Otherwise,
writing causes the existing table to be modified; each column written either overwrites an
existing column of the same name, or becomes a new column appended to the table.

Alternatively, if the third string has the special form

"SQL=sql-query "

the table declaration applies to the relational table that is (temporarily) created by a state­
ment in the Structured Query Language, commonly abbreviated SQL Specifically, a rela­
tional table is first constructed by executing the SQL statement given by sql-query, with
respect to the database file given by the second string in the table declaration's string­
list. Then the usual interpretations of the table declaration are applied to the con­
structed table. All columns specified in the declaration should have read/write status IN,

since it would make no sense to write to a temporary table. Nonnally the sql-query is a
SELECT statement, which is SQL's primary device for operating on tables to create new
ones.

As an example, if you wanted to read as data for diet. mod only those foods having
a cost of $2.49 or less, you could use an SQL query to extract the relevant records from
the Foods table of your database:

table cheapFoods IN "OOBe H "diet . mdb"
"SQL=SELECT * FROM Foods WHERE cost <= 2.49":
FOOD <- [FOOD], cost, f_min, f_max;

Then to read the relevant data for parameter arnt, which is indexed over nutrients and
foods, you would want to read only those records that pertained to a food having a cost of

200 DATABASE ACCESS CHAPTER 10

$2.49 or less. Here is one way that an SQL query could be used to extract the desired
records:

option selectAmts "SELECT NUTR, Amts.FOOD, amt "
"FROM Arnts, Foods"

"WHERE Amts.FOOD = Foods.FOOD and cost <= 2 . 49 ";

table cheapAmts IN "DDBe" "diet .mdb" ("SOL=" & $selectAmts):
[NUTR, FOOD], amt;

Here we have used an AMPL option to store the string containing the SQL query. Then
the table declarat ion's thjrd string can be given by the relatively short string expression
"SQL=" & $selectAmts.

The string verbose after the first three strings requests diagnostic messages ~ such
as the DSN= string that ODBe reports using - whenever the containing table declaration
is used by a read table or wri te table command.

Using the standard ODBC table handler with Access and Excel

To set up a relational table correspondence for reading or writing Microsoft Access
fi les, specify the ext in the second string of the string-list as rndb:

" ODBC " "filename. mdb" "external-table-spec" Opl

The fi le named by the second string must exist, though for writing it may be a database
that does not yet contain any tables.

To set up a relational table correspondence for reading or writing Microsoft Excel
spreadsheets, specify the ex! in the second string of the string-list as xls:

"ODBe" "filename. xIs" "external-table-spec " Opl

In this case, the second string identifies the external Excel workbook file that is to be read
or written. For writing, the file specified by the second string is created if it does not
exist already.

The external-table-spec specified by the third string identifies a spreadsheet range.
within the speci tied file, that is to be read or written; if this string is absent, it is taken to

be the wble"IIGme given at the start of the table declaration. For reading, the specified
range must exist in the Excel tile. For writing, if the range does not exist, it is created, at
the upper left of a new worksheet having the same name. If the range exist~ but all of the
table declaration '~ data-specs have read/write Matus OUT. it is overwritten. Otherwise,
writing causes the existing range to be modified. Each column written either overwrites
an existing column of the same name, or becomes a new column appended to the table;
each row writlen either overwrites entries in an ex isting row havi ng the same key column
entries, or becomes a new row appended to the table.

When wriling causes an ex isting range to be extended, rows or columns are added at
the bottom or right of the range, respectively. The cells of added rows or columns must
be empty; otherwise. the atlempt to write the table fail s and (he wri te table command

r
SECTION 10.7 STANDARD AND BUILT-IN TABLE HANDLERS 201

elicits an error message. After a table is successfully written, the corresponding range is
created or adj usted to contain exactly the cells of that table.

Built-in table handlers for text and binary files

For debugging and demonstration purposes, AMPL has built-in handlers for two very
simple relational table formats. These fannals store one table per file and convey equiva­
lent information. One produces ASCII files that can be examined in any text editor, while
the other creates binary files that are much faster to read and write.

For these handlers, the table declaration's string-list contains at most one string.
identifying the external fil e that contains the relational table. If the string has the form

"filename. tab"

the file is taken to be an ASCII text file; if it has the form

"filename. bi t "

it is taken to be a binary file. If no string-list is given, a text file table-name. tab is
assumed.

For reading, the indicated tIle must exist. For writing, if the file does not exist, it is
created. If the file exists but all of the table declaration 's data-specs have read/write
status OUT, it is overwritten. Otherwise, writing causes the existing file to be modified;
each column written either replaces an existing column of the same name, or becomes a
new column added to the table.

The format for the text files can be examined by writing one and viewing the results
in a text edi tor. For example, the following AMPL session,

ampl: model diet.modi
ampl: data diet2a.dati
ampl: solvei
MINOS 5 . 5 : optimal solution found.
13 iterations, objective 118.0594032
ampl: table ResultList OUT nDietO,pt.tab n:
ampl? [FooD1, Buy, Buy.rc, (j in FOOD) Buy[j1/r_max[j]i
ampl: write table ResultListi

produces a file DietOpt . tab with the follow ing content:

arnpl.tab 1 3
FOOD Buy Buy.rc 'Buy[j]/f_max[j]'
BEEF 5.360613810741701 8.881784197001252e-16 0.5360613810741701
CHK 2 1.1888405797101402 0.2
FISH 2 1.1444075021312856 0 . 2
HAM 10 -0.30265132139812223 1
MCH 10 -0.5511508951406658 1
MTL 10 -1.3289002557544745 1
SFG 9.306052855924973 -8.881784197001252e-16 0.9306052855924973
TUR 1.9999999999999998 2 . 7316197783461176 0.19999999999999998

202 DATABASE ACCESS CHAPTER 10

In the first line, ampl . tab identifies this as an AMPL relational table text file , and is fol­
lowed by the numbers of key and non-key columns, respectively. The second line gives
the names of t.he table's columns, which may be any strings. (Use of the - operator to
specify valid column-names is not necessary in this case.) Each subsequent line gives the
values in one table row; numbers are written in full precision, with no special formatting
or alignment.

11
Modeling Commands

AMPL provides a variety of commands like model, solve, ·and display that tell
the AMPL modeling system what to do with models and data. Although these commands
may use AMPL expressions, they are not part of the modeling language itself. They are
intended to be used in an environment where you give a command, wait for the system to
display a response. then decide what command to give next. Commands might be typed
directly, or given implicitly by menus in a graphical user interface like the ones available
on the AMPL web site. Commands also appear in scripts, the subject of Chapter 13.

This chapter begins by describing the general principles of the command environ­
ment. Section 11.2 then presents the commands that you are likely to use most for setting
up and solving optimilalion problems. .

After solving a problem and looking at the results, the next step is often to make a
change and solve again. The remainder of thjs chapter explains the variety of changes
that can be made without restarting the AMPL session from the begirll1ing. Section 11.3
describes commands for re-reading data and modifying specific data values. Section 11.4
describes facilities for completely deleting or redefining model components, and for tem­
porarily dropping constraints, fixing variables, or relaxing integrality of variables. (Con­
venient commands for examining model information can be found in Chapter 12, espe­
cially in Section 12.6,)

11.1 General principles of commands and options

To begin an interactive AMPL session, you must start the AMPL program, for example
by typing the command amp l in response to a prompt or by selecting it from a menu or
clicking on an icon. The startup procedure necessarily varies somewhat from one operat­
ing system to another; for details, you should refer to the sy~lel11-specific instructions that
come with your AMPL software.

204 MODELING COMMANDS CHAPTER 11

Commands

If you arc using a text-based interface, after starling AMPL, the first thing you should
see is AMPL's prompt:

arnpl,

Whenever you see this prompt, AMPL is ready to read and interpret what you type. As
with most command interpreters. AMPL waits until you press the "enter" or "return"
key, then processes everything you typed on the line.

An AMPL command ends with a semicolon. If you enter one or more complete com­
mands on a line, AMPL processes them, prints any appropriate messages in response. and
issues the ampl: prompt again. If you end a line in the middle of a command, you are
prompted to continue it on the next line; you can tell that AMPL is prompting you to con­
tinue a command, because the prompt ends with a question mark rather than a colon:

ampl: display (1 in ORIG, j in DEST)
ampl? sum (p in PROD) Trans{i,j,p];

You can type any number of characters all a line (up to whatever limit your operating sys­
tem might impose), and can continue a command on any number of lines.

Several commands use filenames for reading or writing information. A filename can
be any sequence of printing characters (except for semicolon i and quotes" or ') or any
sequence of any characters enclosed in matching quotes. The rules for correct filenames
are determined by the operating system, however, not by AMPL. For the examples in this
book we have used filenames like diet. mod that are acceptable to almost any operating
system.

To conclude an AMPL session, type end or qui t.
If you are running AMPL from a graphical interface, the details of your interaction

will be different, but the command interface is likely to be accessible, and in fact is being
used behind the scenes as well, so it's well worth understanding how to use it effectively.

Options

The behavior of AMPL commands depends not only on what you type directly, but on
a variety of options for choosing alternative solvers, controlling the display of results, and

• the like.
Each option has a name, and a value that may be a number or a character ~tring. For

example, the options promptl and prompt2 are strings that specify the prompts. The
option display_width has a numeric value, which says how many characters wide
the output produced by the display command may be.

The option command displays and sets option values. If option is followed by a
list of option names, AMPL replies with the current values:

SECTION 11.1 GENE~L PRINCIPLES OF COMMANDS AND OPTIONS

ampl: option promptl, dis~lay_width;
option prompt! 'ampl: ';
option display_width 79;
ampl:

A * in an option name is a "wild card" that malches any sequence of characters:

ampl: option prom * ;
option promptl 'ampl: '.
option prompt2 'ampl? ';
ampl:

The command option *, or just optio;]. alone, li sts all current options and values.

205

When option is followed by a name and a value, it resets the named option to the
specified value. In the following example we change the prompt and the display width,
and then verify that the latter has been changed:

ampl : option pramptl nA> ., display_ width 60;
A> option display_ width;
option display_ width 60;
A>

You can specify any string value by surrounding the string in matching quotes .. ' or
" ... " as above; the quotes may be omitted if the string looks like a name or number.
Two consecutive quotes (, , or " ") denote an empty string, which is a meaningful value
for some options. At the other extreme, If you want to spread a long string over several
lines, place the backslash character \ at the end of each intermediate line.

When AMPL starts, it sets many options to initial, or default , values. The promptl
option is initialized to ' amp 1 : ',for instance, so prompts appear in the standard way.
The display_width option has a default value of 79. Other options, especially ones
that pertain to particular solvers, are initially unset:

ampl : option cplex_options;
option cplex_options "; #not defined

To return all options to their default value\, use the command reset options.
AMPL maintains no master list of valid options, but rather accepts any new option that

you define. Thus if you mis-type an option name, you will most likely define a new
option by mi stake, as the following example demonstrates:

ampl: option display_ wdith 60;
ampl: option display_ w*;
option display_wdith 60;
option display_width 79;

The option statement also doesn' t check to see if you have assigned a meaningful value
to an option. You will be informed of a value error only when an option is used by some
subsequent command. In these respects, AMPL options are much like operating system or
shell "environment variables." In fact you can use the seuings of environment variables
to override AMPL's option default';~ see your ~ystem-spcc ific documentation for details.

206 MODELING COMMANDS CHAPTER '1

11.2 Setting up and solving models and data

To apply a solver to an instance of a model, the examples in this book use model,
da t a , and solve commands:

amp l : model diet.mod; data diet .dat; solve;
MINOS 5 . 5 : optimal solution f ound .
6 iterations, o bjective 88 . 2

The mode l command names a file that contains model declarations (Chapters 5 through
8), and the da ta command names a file that contains data values for model components
(Chapter 9). The s olve command causes a description of the optimization problem to
be sent to a solver, and the results to be retrieved for examination. This section takes a
closer look at the main AMPL features for setting up and solving models. Features for
subsequently changing and re-solving models are covered in Section 11.4.

Entering models and data

AMPL maintains a "current" model, which is the onc that will be sent to the solver if
you type solve. At the beginning of an interactive session, the current model is empty.
A mode l command reads declarations from a fLie and adds them to the current model: a
da ta command reads data statements from a file to supply values for components
already in the current model. Thus you may use several mode l or da ta commands to

build up the description of an optimization problem, reading different parts of the model
and data from different files.

You can also type parts of a model and its data directly at an AMPL prompt. Model
declarations such as pararn, var and subj ect to act as commands that add compo~
nents to the current model. The data statements of Chapter 9 also act as commands,
which supply data values for already defined components such as sets and parameters.
Because model and data statements look much alike. however, you need to tell AMPL
which you will be typing. AMPL always starts out in " model mode": the statement
data (without a filename) switches the interpreter to '·data mode" , and the statement
model (without a filename) switches it back. Any command (like optio n , s o lve or
subj ec t t o) that does not begin like a data statement also has the effect of switching
data mode back to model mode.

If a model declares more than one objective function, AMPL by default passes all of
them to the solver. Most solvers deal only with one objective function and usually select
the first by default. The objec t ive command lets you select a single objective func­
tion to pass (0 the solver; it consists of the keyword ob jec t i v e followed by a name
from a min i mi ze or maximi z e declaration:

objec tive To tal_Number ;

If a model has an indexed collection of objectives. you must supply a subscript to indicate
which one is to be chosen:

objective Total_Cost ["A& P"] i

SECTION 11 .2 SETTING UP AND SOLVING MODELS AND DATA 207

The uses of multiple objectives are illustrated by two examples in Section 8.3.

Solving a model

The solve command sets in motion a series of activi ties. First, it causes AMPL to
generate a specific optimization problem from the model and data that you have suppl ied.
If you have neglected to provide some needed data, an error message is printed; you will
also get error messages if your data values violate any restrictions imposed by qualifica­
tion phrases in var or param declarations or by check statements. AMPL waits to ver­
ify data restrictions until you type solve, because a restriction may depend in a compli­
cated wayan many different data values. Arithmetic errors like dividing by zero are also
caught at this stage.

After the optimizat ion problem is generated, AMPL enters a " presolve" phase that
tries to make the problem easier for the solver. Sometimes presolve so greatly reduces
the ~ize of a problem that it become substantially easier to solve. Normally the work of
presolve goes on behind the scenes, however, and you need not be concerned about it. In
rare cases, presolve can substantially affect the optimal values of the variables - when
there is more than one optimal solut ion - or can interfere with other preprocessing rou­
ti nes that are built into your solver software. Also presolve sometimes detects that no
fea~ible solution is possible, and so does not bother sending your program to the solver.
For example. if you drastically reduce the availability of one resource in 5 tee14 . mod,
then AMPL produces an error message:

ampl: model stee14.mod;
ampl: data stee14.dat;
ampl: let avail['reheat'] := 10;
ampl: solve;
presolve: constraint Time['reheat'] cannot hold:

body <= 10 cannot be >= 11.25; difference = -1.25

For these cases you should consult the detailed description of presolve in Section 14.1.
The generated optimization problem, as possibly modified by presolve, is finally sent

by AMPL to the solver of your choice. Every version of AMPL is distributed with some
default solver that will be used automatically if you give no other instructions; type
option solver to see its name:

ampl: option solver;
option solver minos ;

If you have more than one solver, you can switch among them by changing the solver
option:

ampl: model steelT.mod; data steelT.dat;
ampl: solve;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033

208 MODELING COMMANDS

ampl : reset;

ampl : model steelT.mod;
amp l : data steelT.dat;

ampl : option solver cplex;

ampl: solve;
CPLEX 8.0.0 : optimal solution ; objective 515033
16 dual simplex iterations (0 in phase I)

ampl : reset;

ampl : model steelT.mod;
ampl : data steelT.dat;

ampl : option solver snopt;

ampl: solve;
SNOPT 6 . 1-1 : Optimal solution found .
15 iterations, objective 515033

CHAPTER 11

In this example we reset the problem between solves, so that the solvers are invoked with
the same initial conditions and their performance can be compared. Without reset, infor­
mation about the solution found by one solver would be passed along to the next one,
possibly giving the latter a substantial advantage. Passing information from one so lve
to the next is most useful when a series of similar LPs are to be sent to the same solver;
we discuss this case in more detail in Section 14.2.

Almost any solver can handle a linear program, although those specifically designed
for linear programming generally give the best performance. Other kinds of optimization
problems, such as nonlinear (Chapter 18) and integer (Chapter 20), can be handled only
by solvers designed for them. A message such as "ignoring integrality" or " can ' t han­
dle nonlinearities" is an indication that you have not chosen a solver appropriate for your
model.

If your optimi zation problems are not too difficult , you should be able to use AMPL
without referring to instructions for a specific solver: set the solver option appropri­
ately, type solve, and wait for the results.

If your solver takes a very long time to return with a solution, or returns to AMPL
without any " optimal solution" message, then it 's time to read further. Each solver is a
sophisticated collection of algorithms and algorithmic strategies, from which many com­
binations of choices can be made. For most problems the solver makes good choices
automatically, but you can also pass along your own choices through AMPL options. The
details may vary with each solver, so for more information you must look to the solver­
specific instructions that accompany your AMPL software.

Tf your problem takes a long time to optimize, you will want some evidence of the
sol ver's progress to appear on your screen. Directi ves for thi s purpose are also described
in the solver-specific instructions.

SECTION 11.3 MODIFYING DATA 209

11.3 Modifying data

Many modeling projects involve ~olving a series of problem instances, each defined
by somewhat different data. We describe here AMPL's facilities for resetting parameter
values whi le leaving the model as is. They include commands for resetting data mode
input and for resampling random parameters, as well as the let command for directly
assigning new values.

Resetting

To delete the current data for several model components, without changing the current
model itself, use the reset data command, as in:

reset data MINREQ, MAXREQ, amt, n_min, n_max;

You may then use data commands to read in new values for these sets and parameters.
To delete a ll data, type reset data.

The update data command works similarly, but does not actually delete any data
until new values are assigned. Thus if you type

upda te da t.a MINREQ, MAXREQ, amt, n_min, n_max;

but you on ly read in new values for MINREQ, amt and n_min, the previous values for
MAXREQ and n_max will remain. II' instead you used reset data, MAXREQ and
n_max would be without values, and you would get an error message when you next
tried to solve.

Resampling

The reset data command also acts to resample the randomly computed parameters
described in Section 7.6. Continuing with the variant of stee14 . mod introduced in
that section, if the definition of parameter avai 1 is changed so that its value is given by
a random function:

param avail_mean {STAGE} >= 0;
param avail_variance {STAGE} >= 0;

par am avail (s in STAGE}
Normal (avail_mean[s] , avail_variance[s]);

with corresponding data:

param avail_mean := reheat 35 roll 40
param avail_variance := reheat 5 roll 2

then AMPL will lake new samples from the Normal distribution after each reset
data. Different samples result in different solutions. and hence in different optimal
objective values:

210 MODELING COMMANDS

ampl : model stee14r.mod;
ampl: data stee14r.dat;
ampl : solve;
MINOS 5 . 5 : optimal solution found .
3 iterations, objective 187632 . 2489

ampl: display avail;
reheat 32.3504

roll 43 . 038;

ampl : reset data avail;
ampl : solve;
MINOS 5 . 5 : optimal solution found .
4 iterations, objective 158882 . 901

ampl : display avail;
reheat 32 . 0306

roll 32 . 6855;

CHAPTER 11

Only reset data has this effect; if you issue a reset command then AMPL' s random
number generator is reset, and the values of avail repeat from the beginning. (Section
7.6 explains how to reset the generator's "seed" to get a different sequence of random
numbers.)

The let command

The let command also permits you to change particular data values while leaving
the model the same, but it is more convenient for small or easy-to-describe changes than
reset data or update data. You can use it , ror example, to solve the diet model of
Figure 5-1 , trying out a series of upper bounds f_max [.. CHK" J on the purchases of
food CHK:

ampl : model dietu.mod;
ampl: data dietu.dat;

ampl: solve;
MINOS 5 . 5 : optimal solution found .
5 iterations, objective 74.27382022

ampl : let f _ max[NCHKN} :- 11;
ampl : solve;
MINOS 5 . 5 : optimal solution found .
1 iterations, objective 73 . 43818182

ampl : let f _ Inax["CHK"} := 12;
ampl : solve;
MINOS 5 . 5 : optimal solut i on found .
o iterations, objective 73 . 43818182

Relaxing the bound to 11 reduces the cost somewhat, but further relaxation apparently
has no benelit.

SECTION 11.3 MODIFYING DATA 211

An indexing expression may be given after the keyword let, in which case a change
is made for each member of the specified indexing set. You could use this feature to
change all upper bounds to 8:

let (j in FOOD) Cmax[j] ,= 8;

or to increase all upper bounds by 10 percent:

let (j in FOOD) Cmax[j] ,= 1.1 * Cmax[j];

In general this command consists of the keyword let. an indexing expression if needed,
and an assignment. Any sct or parameter whose declaration does not define it using an =
phrase may be specified to the left of the assignment's: = operator, while to the right
may appear any appropriate expression that can currently be evaluated.

Although AMPL does not impose any restrictions on what you can change using let,
you should take care in changing any set or parameter that affects the indexing of other
data.

For example, after solving the multiperiod production problem of Figures 4-4 and 4-5,
it might be tempting to change the number of weeks T from 4 (as given in the original
data) to 3:

ampl : ~et T := 3;
ampl : Bo~ve;

Error executing "solve" command:
error processing param avail:

invalid subscript avail[4] discarded.
error processing param market:

2 invalid subscripts discarded:
market ['bands' ,4 J
market['coils' ,4]

error processing param revenue:
2 invalid subscripts discarded :
revenue['bands' ,4J
revenue['coils' ,4]

error processing var Sell('coils',l]:
invalid subscript market['bands',41

The problem here is that AMPL still has current data for 4th-week parameters such as
avail [4], which has become invalid with the change ofT to 3. [f you want to properly
reduce the number of weeks in thc linear program while using the same data, you must
declare two parameters:

param Tdata integer> OJ
param T integer <= Tdata;

Use 1 .. Tdata for indexing in the param declarations, while retaining 1 .. T for the
variables, objective and constraints; then you can use let to change T as you like.

You can also usc the let command to change the current values of variables. This is
sometimes a convenient feature for exploring an alternative solution. For example, here

212 MODELING COMMANDS

ceil (xl
floor (xl
precision(x.n)
round(x, 11)

round (x)

trunc(x,flj
trunc{x)

ceili ng of x (next higher integer)
floor of x (next lower integer)

x rounded to n significant digits
x rounded to II digits past the decimal point
x rounded to the nearest integer
x truncated to II digits past the decimal point
x truncated to an integer (fractional part dropped)

Table 11-1: Rounding functions.

CHAPTER 11

is what happens when we solve for the optimal diet as above, then round the opti mal
solution down to the next lowest integer number of packages:

ampl: model dietu.mod; data dietu.dat; solve;
MINOS 5 . 5: optimal solution found.
S iterations, objective 74.27382022

ampl: let (j in FOOD) Buy[j] := Eloor(Buy[j});
ampl: display Total_ Cost, n_mln, Diet_ Min.slack;;
Total_Cost = 70.8

n_min Diet_Min. slack :=
A 700 231
B1 0 580
B2 0 475
C 700 - 40
CAL 16000 -640

Because we have used let to change the values of the variables, the objective and the
slacks are automatically computed from the new, rounded values. The cost has dropped
by about $3.50, but the solution is now short of the requirements for C by nearly 6 per­
cent and for CAL by 4 percent.

AMPL provides a variety of rounding functions lhat can be used in lhis way. They are
summarized in Table II- I.

11.4 Modifying models

Severa! commands are provided to help you make limited changes to lhe current
model, without modifying the model file or issuing a full reset. This section describes
commands that completely remove or redefine model components, and that temporarily
drop constraints, fix variables. or relax integrality restrictions on variables.

SECTION 11.4 MODIFYING MODELS 213

Removing or redefining model components

The delete command removes a previously declared model component, provided
that no other components use it in their declarations. The form of the command is simply
delete followed by a comma-separated list of names of model components:

ampl: model dietobj.mod;
ampl: data dietobj.dat;
ampl : delete Total_ NUmber l Diet_ Min;

Normally you cannot delete a set, parameter, or variable, because it is declared for use
later in the model; but you can delete any objective or constraint. You can also specify a
component "name" of the form check 11 to delete the nth check statement in the cur­
rent model.

The purge command has the same form, but with the keyword purge in place of
delete. It removes not only the listed components, but also all components that depend
on them either directly (by referring to them) or indirectly (by referring to their depen­
dents). Thus for example in diet. mod we have

param f_min {FOOD} >= 0;
param f_max {j in FOOD} >= f_min[j];
var Buy {j in FOOD} >= f_min[j], <= f_max[j];
minimize Total_Cost: sum {j in FOOD} cost[jj * Buy[jj;

The command purge f_min deletes parameter f_min and the components whose dec­
larations refer to f_min, including parameter f_max and variable Buy. It also deletes
objective Total_Cost, which depends indirectly on f_min through its reference to
Buy.

If you're not sure which components depend on some given component, you can use
the xref command to find out:

ampl : xrsf f _ min;
4 entities depend on f_min:
f_max
Buy
Total_Cost
Diet

Like delete and purge, the xref command can be applied to any list of model com­
ponents.

Once a component has been removed by delete or purge, any previously hidden
meaning of the component's name becomes visible again. Arter a constraint named
prod is deleted, for instance, AMPL again recogni.les prod as an iterated mulliplication
operator (Table 7-1).

If there is no previously hidden meaning, the name of a component removed by
delete or purge becomes again unused, and may subsequently be declared as the
name of any new component of any type. If you only want to make some relatively lim­
ited modifications to a declaration, however, then you will probably find redeclare to
be more convenient. You can change any component's declaration by writing the key-

T CNOl6cICO DE MONT~~~

214 MODELING COMMANDS CHAPTER 11

word redeclare followed by the complete revised declaration that you would like to
substi tute. Looking again at diet . mod, for example,

ampl: redeclare param f _ min {FOOD} > 0 integer;

changes only the validity conditions on f_min. The declarations of all componenrs that
depend on f_min are left unchanged, as are any values previously read for f_min.

A list of all component types to which delete, purge, xref, and redeclare
may be applied is given in A.IS.S.

Changing the model: fix, unfix; drop, restore

The simplest (but most drastic) way to change the model is by issuing the command
reset, which expunges all of the current model and data. Following reset, you can
issue new model and data commands to sel up a different optimization problem; the
effect is like typing qui t and then restarting AMPL, except that options are not reset to
their default values. If your operating system or your graphical environment for AMPL
allows you to edit files while keeping AMPL active, reset is valuable for debugging and
experimentation; you may make changes to the model or data files, type reset, then
read in the modified files. (If you need to escape from AMPL to run a text editor, you can
use the shell command described in Section A.21.1.)

The drop command instructs AMPL to ignore certain constraints or objectives of the
current model. As an example, the constraints of Figure 5-1 initially include

subject to Diet_Max {i in MAXREQ} :
sum {j in FOOD} amt(i,j] * Buy(jJ <= n_max[iJ;

A drop command can specify a particular one of these constraints to ignore:

drop Diet_Max("CAL"J;

or it may specify all constraints or objectives indexed by some set:

drop {i in MAXNOT} Diet_Max[ili

where MAXNOT has previously been defined as some subset of MAXREQ. The entire col­
lection of constraints can be ignored by

drop {i in MAXREQ} Diet_Max[ili

or more simply:

drop Diet_Max;

In general, this command consists of the keyword drop, an optional indexing expression,
and a constraint name that may be subscripted. Successive drop commands have a
cumulative effect.

The restore command reverses the effect of drop. It has the same syntax, except
for the keyword restore.

SECTION 11.4 MODIFYING MODELS 215

The fix command fixes specified variables at their current value~, as if there were a
constraint that the variables must equal these values; the unf ix command reverses the
effect. These commands have the same syntax as drop and restore, except that they
name variables rather than constraints. For example, here we initialize all variables of
our diet problem to their lower bounds, fix all variables representing foods that have more
than 1200 mg of sodium per package, and optimize over the remaining variables:

ampl: let (j in FOOD) Buy[j} := f _ min[j};
ampl: fix {j in FOOD: amt["NA",j} > 1200) Buy[j1;
ampl: solve;
MINOS 5.5: optimal solution found.
7 iterations, objective 86.92
Objective = Total_Cost['A&P']

ampl: display (j in FOOD) (Buy[j1.1b,Buy{j1,amt{"NA",j1);
Buy[j] .lb Buy[j] arnt ['NA', j] : =

BEEF 2 2 938
CHK 2 2 2180
FISH 2 10 945
HAM 2 2 278
MCH 2 9.42857 1182
MTL 2 10 896
SPG 2 2 1329
TUR 2 2 1397

Rather than setting and fixing the variables in separate statements, you can add an assign­
ment phrase to the fix command:

ampl: fix (j in FOOD: amt{"NA",j1 > 1200) Buy[j1 := f _min[j1;

The unfix command works in the same way, to reverse the effect of fix and optionally
also reset the val ue of a variable.

Relaxing integrality

Changing option relax_integrali ty from its default of 0 to any nonzero value:

option relax_integrality 1;

tells AMPL to ignore all restrictions of variables to integer values. Variables declared
integer get whatever bounds you specified for them, while variables declared
binary are given a lower bound of zero and an upper bound of one. To restore the inte­
grality restrictions, set the relax_integrali ty option back to O.

A variable's name followed by the suffix . relax indicates its current integrality
relaxation status: 0 if integrality is enforced, nonzero otherwise. You can make use of
this suffix to relax integrality on selected variables only. For example,

let Buy['CHK'] . relax = 1

relaxes integrality only on the variable Buy ['CHK' 1, while

216 MODELING COMMANDS CHAPTER 11

let {j in FOOD: f_min[j] > allow_frac} Buy[j] .relax : = 1 ;

relaxes integrality on all Buy variables for foods that have a minimum purchase of at
least some cutoff parameter allow_frac.

Some of the solvers that work with AMPL provide their own directives for re laxing
integrality , but these do not necessarily have the same effect as AMPL's
relax_integrality option or . relax suffix . The di stinction is due to the effects
of AMPL's problem simplification, or presolve, stage (Section 14. 1). AMPL drops inte­
grality restrictions before the prcsolve phase, so that the solver receives a true continuous
relaxation of the original integer problem. If the relaxation is performed by the solver,
however, then the integrality restrictions are still in e ffect during AMPL's presolve phase,
and AMPL may perform some additional tightening and simplification as a result.

As a si mple example, suppose that diet model variable declarations are written to
allow the food limits f_max to be adjusted by selling an additional parameter, scale:

var Buy {j in FOOD} integer >= f_min[j}, <= scale * f_max(j);

In our example of Figure 2-3, all of the f_max values are 10; suppose that also we set
scale to 0.95. First, here are the results of solving the unre laxed problem:

ampl: option relAX_ integrality;
option relax_integrality 0;

ampl : let scale :- 0.95;
ampl: solve;
CPLEX 8 . 0.0 : optimal integer solution; objective 122.89
6 MIP simplex iterations
o branch-and-bound nodes

When no relaxation is specified in AMPL, presolve sees that all the variables have upper
limits of 9.5, and since it knows that the variables must take integer va lues, it rounds
these limits down to 9. Then these limits are sent to the solver, where they remain even if
we specify a solve,. directive for integrality relaxation:

ampl : option cplex_ options 'relax';
ampl: solve;
CPLEX 8 . 0 . 0: relax
Ignoring integrality of 8 variables.
CPLEX 8.0.0: optimal solution; objective 120.2421057
2 dual simplex iterations (0 in phase IJ

ampl: display Buy;
Buy [*J :=

BEEF 8.39898
CHK 2

FISH 2
HAM 9
MCH 9
MTL 9
SPG 8.93436
TUR 2

SECTION 11 .4 MODIFYING MODELS 217

If instead option relax_integrali ty is set to I, presolve leaves the upper limits at

9.5 and sends those to the solver, with the result being a less constrained problem and
hence a lower objective value:

ampl : option reIaK_ integraIity 1;
ampl : solve;
CPLEX 8.0.0 : optimal solution; objective 119.1507545
3 dual simplex iterations (0 in phase I)

ampl: disl'lay Buy;
Buy [* I : =

BEEF 6 . 8798
CHK 2

FISH 2
HAM 9.5
MCH 9.5
MTL 9.5
SPG 9.1202
TUR 2

Variables that were at upper bound 9 in the previous solution are now at upper bound 9.5.
The same situation can arise in much less obvious circumstances. and can lead to

unexpected results. In general, the optimal value of an integer program under AMPL's
relax_integrali ty option may be lower (for minimization) or higher (ror maxi­
mization) than the optimal value reported by the solver's relaxation directi ve.

12
Display Commands

AMPL offers a rich variety of commands and options to help you examine and report
the results of optimization. Section 12.1 introduces display. the most convenient com­
mand for arranging set members and numerical values into lists and tables; Sections 12.2
and 12.3 provide a detailed account of display options that give you more control over
how the lists and tables are arranged and how numbers appear in them. Section 12.4
describes print and printf, two related commands that are useful for preparing data
to be sent to other programs, and for formatting simple reports.

Although our examples are based on the display of sets. parameters and variables -
and expressions involving them - you can use the same commands to inspect dual val­
ues, slacks, reduced costs, and other quantities associated with an optimal solution; the
rules for doing so are explained in Section 12.5.

AMPL also provides ways to access modeling and solving information. Section 12.6
describes features that can be useful when, for example, you want to view a parameter's
declaration at the command-line, display a particular constraint from a problem instance,
list the values and bounds of all variables regardless of their names, or record timings of
AMPL and solver activities.

Finally. Section 12.7 addresses general facilities for manipulating output of AMPL
commands. These include features for redirection of command output, logging of output,
and suppression of error messages.

12.1 Browsing through results: the display command

The easiest way to examine data and result values is to type display and a descrip­
tion of what you want to look at. The display command automatically formats the val­
ues in an intuitive and familiar arrangement; as much as possible, it uses the same list and
table formats as the data statements described in Chapter 9. Our examples use parameters
and variables from models defined in other chapters.

220 DISPLAY COMMANDS CHAPTER 12

As we wi ll describe in more detail in Section 12.7, it is possible to capture the output
of display commands in a file , by adding >Jilellame to the end of a display com­
mand; this redirection mechanism applies as well lO most other commands that produce
output.

Displaying sets

The contents of sets are shown by typing display and a list of set names. This
example is taken from the model of Figure 6-2a:

ampl: display ORIG, DEST, LINKS;
set ORIG := GARY CLEV PITT:
set DEST ;= FRA DET LAN WIN STL FRE LAF:
set LINKS :=
(GARY,DET)
(GARY,LAN)
(GARY, STL)

(GARY,LAF)
(CLEV, FRA)
(CLEV,DET)

(CLEV,LAN)
(CLEV,WIN)
(CLEV,STL)

(CLEV,LAF)
(PITT,FRA)
(PITT, WIN) ;

(PITT,STL)
(PITT,FRE)

If you specify the name of an indexed collection of sets, each set in the collection is
shown (from Figure 6-3):

ampl: display PROD, AREA;
set PROD : = bands coils;
set AREA [bands] := east north;
set AREA[coils] := east west export;

Particular members of an indexed collection can be viewed by subscripting. as in
display AREA ["bands"].

The argument of display need not be a declared set; it can be any of the expres­
sions described in Chapter 5 or 6 that evaluate to sets. For example. you can show the
union of all the sets AREA [p]:

ampl : display union {p in PROD} AREA{p};
set union (p in PROD} AREA(p] : = east north west export;

or the set of all transportation links on which the shipping cost is greater than 500:

ampl: display {(i,j) in LINKS: cost{i,j} * Trans[i,j] > SOD}}
set {(i,j) in LINKS : cost[i,j]*Trans[i,j} > SOD} :=

(GARY,STL) (CLEV,DET) (CLEV,WIN) (PITT,FRA) (PITT,FRE)
(GARY,LAF) (CLEV, LAN) (CLEV,LAF) (PITT,STL);

Because the membership of thi s set depends upon the current values of the variables
Trans [i, j] , you could not refer to it in a model, but it is legal in a display com­
mand, where variables are treated the same as parameters.

Displaying parameters and variables

The display command can show the value of a scaJar model component:

SECTION 12.1

ampl: display P;
T = 4

BROWSING THROUGH RESULTS: THE DISPLAY COMMAND

or the values of individual components from an indexed collection (Figure 1-6b):

ampl : display avail["rebeat"} , avail[Hroll"};
avail('reheat'] = 35
avail['roll'] = 40

or an arbitrary expression:

ampl: display sin(l) - 2 + cos(l) -2;
sin(1)~2 + cos(1)~2 = 1

221

T he maj or use of display, however, is to show whole indexed collections of data. For
"'one-dimensional" data - parameters or variables indexed over a si mple set - AMPL
uses a column format (Figure 4-6b):

ampl: display avail;
avail [*] :=
reheat 35

roll 40

For "'two-dimensional" parameters or variables - indexed over a set of pairs or two
simple sets - AMPL forms a li st for small amounts of data (Figure 4- 1):

arnpl , display supply;
supply :=
CLEV bands 700
CLEV coils 1600
CLEV plate 300
GARY bands 400
GARY coils 800
GARY plate 200
PITT bands BOO
PITT coils 1800
PITT plate 300

or a table for larger amounts:

ampl: display demand;

demand [*, *]
bands coils plate :=

DET 300 750 100
FRA 300 500 100
FRE 225 850 100
LAF 250 500 250
LAN 100 400 0
STL 650 950 200
WIN 75 250 50

222 DISPLAY COMMANDS CHAPTER 12

You can control the choice between formats by setting option display_Ieol, which is
described in the next section .

A parameter or variable (or any other model entity) indexed over a set of ordered pairs
is also considered to be a two-dimensional object and is displayed in a si milar manner.
Here is the display for a parameter indexed over the set LINKS that was displayed earlier
in this section (from Figure 6-2a):

ampl : display cost;
cost . -
CLEV DET 9
CLEV FRA 27
CLEV LAF 17
CLEV LAN 12
CLEV STL 26
CLEV WIN 9
GARY DET 14
GARY LAF 8
GARY LAN 11
GARY STL 16
PITT FRA 24
PITT FRE 99
PITT STL 28
PITT WIN 13

This, too, can be made 10 appear in a table format, as the next section will show.
To display values indexed in three or more dimensions, AMPL again forms lists for

small amounts of data. Multi-dimensional entities more often involve data in large quan­

tities. however, in which case AMPL "slices" the values into two-dimensional tables, as
in the case of this variable from Figure 4-6:

ampl: display Trans;
Trans [CLEV,"', *]

bands coils plate : =
DET 0 750 0
FRA 0 0 0
FRE 0 0 0
LAF 0 500 0
LAN 0 400 0
STL 0 50 0
WIN 0 250 0

[GARY,"',*]
bands coils plate :=

DET 0 0 0
FRA 0 0 0
FRE 225 850 100
LAF 250 0 0
LAN 0 0 0
STL 650 900 200
WIN 0 0 0

SECTION 12.1 BROWSING THROUGH RESULTS: THE DZSPLAY COMMAND 223

(PITT,'*,'*]
bands coils plate :=

DET 300 0 100
FRA 300 500 100
FRE 0 0 0
LAF 0 0 250
LAN 100 0 0
STL 0 0 0
WIN 75 0 50

At the head of the first table, the template [CLEV, * , * 1 indicates that the slice is
through CLEV in the first component, so the entry in row LAF and column coils says
that Trans ["CLEV " , "LAF " , "coils"] is 500. Since the first index of Trans is
always CLEV, GARY or PITT in this case, there are three slice tables in all. But AMPL
does not always sl ice through the lirst component; it picks the slices so that the display
will contain the fewest possible tables.

A display of two or more components of the same dimensionality is always presented
in a list format, whether the components are one-dimensional (Figure 4-4):

ampl , display invO, prodcost, invcost;
invO prodcost invcost : =

bands 10 10 2.5
coils 0 11 3

or two-dimensional (Figure 4-6):

ampl : display rate, make_ cost, Malee;
rate make_cost Make :=

CLEV bands 190 190 0
CLEV coils 130 170 1950
CLEV plate 160 185 0
GARY bands 200 180 1125
GARY coils 140 170 1750
GARY plate 160 180 300
PITT bands 230 190 775
PITT coils 160 180 500
PITT plate 170 185 500

or any higher dimension . The indices appear in a list to the left , with the last one chang­
ing most rapidly.

As you can see from these examples, display normally arranges row and column
labels in alphabetical or numerical order, regardless of the order in which they might have
been given in your data file. When the labels come from an ordered set, however, the
original ordering is honored (Figure 5-3):

224 DISPLAY COMMANDS

ampl :
avail
27sep
Q40ct
110ct

display I1vaili
[* J ,=
40
40
32

180ct 40

CHAPTER 12

For this reason, it can be worthwhile to declare certain sets of your model to be ordered,
even if their orderi ng plays no expl icit role in your formulation.

Displaying indexed expressions

The display command can show the value of any arithmetic expression that is
valid in an AMPL model. Single-valued ex pressions pose no difficulty, as in the case of
these three profit components from Figure 4-4:

ampl: displa.y swn (p in PROD, t in 1.. T) revenue[p,t1*Sell[p,t},
ampl? sum (p in PROD,t in 1. .T) prodcost[plwMI1Ke{p,tj,
ampl? swn (p in PROD,t in 1 •• T) invcost[p}*Inv{p,t}i
sum{p in PROD, t in 1 TJ revenue[p,tJ*Sell[p,t] = 787810
sum{p in PROD, t in 1 TJ prodcost[p]*Make[p,t] = 269477
sum{p in PROD, t in 1 TJ invcost[p]*Inv[p,t) = 3300

Suppose, however, that you want to see all the individual values of revenue [P, t] *
Sell [p, tJ. Since you can type display revenue, Sell 10 displ"y the separate
values o f revenue [p, tJ and Sell [p, tJ, you might want to ask for the products of
these vaJues by Iyping:

ampl: display revenue * Sell;
syntax error
context: display revenue »> * «< Sell;

AMPL does not recognize this kind of array arithmetic. To display an indexed collection
of expressions, you must specify the indexing explic itly:

ampl: display (p in PROD1 tin 1 •• T) revenue[P1t}*Sell[P1t};
revenue [P, t] *Sell [P, t] [* 1*] (tr)

bands coils :=

1 150000 9210
2 156000 87500
3 37800 129500
4 54000 163800

To apply the same indexing to two or more expressions, enclose a list of them in paren­
theses after the indexing expression:

SECTION 12.1 BROWSING THROUGH RESULTS: THE DISPLAY COMMAND

ampl:
ampl?

disp~ay (p in PROD, tin 1 .. T)
(revenue(p,t}~Sell(p,t), prodcost{p}~Make(p,t});

bands 1
bands 2
bands 3
bands 4
coils 1
coils 2
coils 3
coils 4

revenue[p,t]*Sell[p,t] prodcost[p] *Make[p, t] :=
150000 59900
156000 60000

37800 14000
54000 20000

9210 15477
87500 15400

129500 38500
163800 46200

225

An indexing expression followed by an expression or parenthesized li st of express ions is
treated as a single display item, which specifies some indexed collection of values. A
display command may contain one of these items as above, or a comma-separated li st
of them.

The presentation of the values for indexed expressions follows the same rules as for
individual parameters and variables. In fact, you can regard a command like

display revenue, Sell

as shorthand for

amp1, display (p in PROD, t in 1. .T) (revenue(p,t},Sell(p,t});
revenue[p,tl Sell [p, tJ .-

bands 1 25 6000
bands 2 26 6000
bands 3 27 1400
bands 4 27 2000
coils 1 30 307
coils 2 35 2500
coils 3 37 3500
coils 4 39 4200

If you rearrange the indexing expression so that t in 1 .. T comes flrst, however, the
rows of the li st are instead sorted first on the members of 1 .. T:

ampl: display (t in 1 . . T, pin PROD) (revenue{p,t],Sell{p,t]);
revenue[p,t] Sell [p, tJ :=

1 bands 25 6000
1 coils 30 307
2 bands 26 6000
2 coils 35 2500
3 bands 27 1400
3 coils 37 3500
4 bands 27 2000
4 coils 39 4200

This change in the default presentation can only be achieved by placing an explicit index­
ing expression after display.

226 DISPLAY COMMANDS CHAPTER 12

In addition to indexing individual display items, you can specify a set over which the
whole display command is indexed - that is, you can ask that the command be exe­
cuted once for each member of an indexing sel. This feature is particularly useful for
rearranging slices of multidimensional tables. When, earlier in this section, we displayed
the three-dimensional variable Trans indexed over {ORIG, DEST, PROD}, AMPL
chose to slice the values through members of ORIG to produce a series of two­
dimensional tables.

What if you want to display slices through PROD? Rearranging the indexing expres­
sion , as in our previou s example, will not reliably have the desired effect; the display
command always picks the smallest indexing set, and where lhere is lTIore than one that is
smallest, it does not necessarily choose the first. Instead, you can say explicitly that you
want a separate display for each p in PROD:

ampl: display (p in PROD):
ampl? (i in ORIG, j in DEBT) Trans{i,j,p};
Trans(i,j, 'bands'] [*,*] (tr)

CLEV GARY PITT :=

DET 0 0 300
FRA 0 0 300
FRE 0 225 0
LAF 0 250 0
LAN 0 0 100
STL 0 650 0
WIN 0 0 75

Trans[i,j, 'coils'] (* , *] (tr)
CLEV GARY PITT :=

DET 750 0 0
FRA 0 0 500
FRE 0 850 0
LAF 500 0 0
LAN 400 0 0
STL 50 900 0
WIN 250 0 0

Trans[i,j,'plate'j [*,*] (tr)
CLEV GARY PITT : =

DET 0 0 100
FRA 0 0 100
FRE 0 100 0
LAF 0 0 250
LAN 0 0 0
STL
WIN

o
o

200
o

o
50

As this example shows, if a display command specifies an indexing expression right at
the beginning, followed by a colon, the indexing set applies to the whole command. For

SECTION 12.2 FORMATTING OPTIONS FOA D:rSPLAY 227

display_1eol
display_transpose
display_width
gutter_width
omit_zero_cols
omit_zero_rows

maximum elements for a table to be displayed in li st format (20)
transpose tables if rows - columns < display_transpose (0)
maximum line width (79)
separation between lable columns (3)
if not 0, omit all-zero columns from displays (0)
if nOlO, omit all -zero rows from displays (0)

Table 12-1: Formatting options for display (with default values).

each member of the set, the expressions following the colon are evaluated and displayed
separately.

12.2 Formatting options for display

The display command uses a few simple ru les for choosing a good arrangement of
data. By changing several options. you can control overall arrangement, handling of zero
values, and line width. These options are summarized in Table 12- 1, with default values
shown in parentheses.

Arrangement of lists and tables

The display of a one-dimensional parameter or variable can produce a very long list,
as in this example from the scheduling model of Figure 16-5:

ampl : display r equired ;
required [*) : =
Fri1 100
Fri2 78
Fri3 52
Mon1 100
Mon2 78
Mon3 52
Sat1 100
Sat2 78
Thu1 100
Thu2 78
Thu3 52
Tue1 100
Tue2 78
Tue3 52
Wed1 100
Wed2 78
Wed3 52

228 DISPLAY COMMANDS CHAPTER 12

The option display _lcol can be used to request a morc compact format:

amp1, option display_ leol 0;
amp1, display required;
required 1'1 : =
Fril 100 Monl 100 Sat! 100 Thu2 78 Tue2 78 Wed2 78
Fri2 78 Mon2 78 Sat2 78 Thu3 52 Tue3 52 Wed3 52
Fri3 52 Mon3 52 Thul 100 Tuel 100 Wedl 100

The one-column list format is used when the number of values 10 be displayed is less than
or equal to display_leal, and the compact format is used otherwise. The default for
display_lcol is 20; set it to zero to force the compact format, or to a very large nUI11 -

ber to force the list formal.
Multi-dimensional displays are affected by option display_leal in an analogous

way. The one-column li st format is used when the number of values is less than or equal
to display_lcol, while the appropriate compact fo rmat - in this case, a table - is
used otherwise. W e showed an example of the difference in the previous section, where
the display for supply appeared as a list because it had only 9 va lues, while the display
for demand appeared as a table because its 2 1 values exceed the default selling of 20 for
option display_leal.

Since a parameter or variable indexed over a set of ordered pairs is al so considered to
be two-dimensional, the value of display_leal affects its display as well. Here is the
table format for the parameter eas t indexed over the set LINKS (from Figure 6-2a) that
was displayed in the preceding section:

ampl: option display_ leol 0;
ampl: display cost;

cost [*,*] (tr)
CLEV GARY PITT ,=

DET 9 14
FRA
FRE
LAF
LAN
STL
WIN

27

17
12
26

9

8
11
16

24
99

28
13

A dot (.) entry indicates a nonexistent combi nation in the index set. Thus in the GARY
column of the table, there is a dot in the FRA row because the pair (GARY, FRA) is not a
member of LINKS; no east ["GARY " , "FRA" I is defined for this problem. On the
other hand, LINKS does contain the pair (GARY, LAF) , and eas t ["GARY" , "LAF" 1
is shown as 8 in the table.

In choosing an orientation for tables, the display command by default favors rows
over columns; that is, if the number of columns would exceed the number of rows, the
table is transposed. Thus the table for demand in the previous section has rows labeled
by the first coordinate and columns by the second, because it is indexed over DEST w ith

SECTION 12.2 FOAMATIING OPTIONS FOA DrSPLAY 229

7 members and then PROD with 3 members. By contrast, the table for cost has columns
labeled by the ftfst coordinate and rows by the second, because it is indexed over ORIG
with 3 members and then DEST wi th 7 members. A transposed table is indicated by a
(tr) in its first line.

The transposition status of a table can be reversed by changing the
display_transpose option. Positive values tend to force transposition:

ampl: option disp~ay_tranBpoBe 5;
ampl, disp~ay demand;
demand [* , *] (tr)

DET FRA FRE LAF LAN STL WIN : =
bands 300 300 225 250 100 650 75
coils 750 500 850 500 400 950 250
plate 100 100 100 250 0 200 50

while negative values tend to suppress it:

ampl , option disp~ay_transpose -5;
ampl: diBP~4Y cost;
cost [*, *]

DET FRA FRE LAF LAN STL WIN :=

CLEV 9 27 17 12 26 9
GARY 14 8 11 16
PITT 24 99 28 13

The rule is as follow s: a table is transposed only when the number of rows minus the
number of columns would be less than display_transpose. At its default value of
zero, display_transpose gives the previously described default behavior.

Control of line width

The option display_width gives the maximum number of characters on a line
generated by display (as seen in the model of Figure 16-4):

ampl: option disp~ay_widtb 50, diBp~ay_~col 0;
ampl: display required;

required [*1 : =
Fril 100 Mon3 52 Thu3 52 Wed2 78
Fri2 78 Satl 100 Tuel 100 Wed3 52
Fri3 52 Sat2 78 Tue2 78
Monl 100 Thul 100 Tue3 52
Mon2 78 Thu2 78 Wedl 100

When a table would be wider than display_width. it is cut vertically into two or
more tables. The row names in each table are the same, but the columns are different:

230 DISPLAY COMMANDS CHAPTER 12

ampl : option display_ widtb 50; display cost;
cost (*, *J

C1l8 C138 C140 C246 C250 C251 0237 0239 ; =

Coullard 6 9 8 7 11 10 4 5
Daskin 11 8 7 6 9 10 1 5
Hazen 9 10 11 1 5 6 2 7
Hopp 11 9 8 10 6 5 1 7
Iravani 3 2 8 9 10 11 1 5
Linetsky 11 9 10 5 3 4 6 7
Mehrotra 6 11 10 9 8 7 1 2
Nelson 11 5 4 6 7 8 1 9
Smilowitz 11 9 10 8 6 5 7 3
Tamhane 5 6 9 8 4 3 7 10
White 11 9 8 4 6 5 3 10

0241 M233 M239 . -
Coullard 3 2 1
Daskin 4 2 3
Hazen 8 3 4
Hopp 4 2 3
Iravani 4 6 7
Linetsky 8 1 2
Mehrotra 5 4 3
Nelson 10 2 3
Smilowitz 4 1 2
Tamhane 11 2 1
White 7 2 1

If a table 's column headings are much wider than the values, display introduces
abbreviations to keep all columns together (Figure 4-4):

ampl: option display_ width 40;
ampl: display {p in PROD, t in 1 .. T} (revenue[p,t}*Sell[p ,t),
ampl? prodcost[p}*Make[p,t], invcost[p]*Inv[p,t});
$1 revenue[p,t]*Sell[p,t]
$2 = prodcost[pl*Make[p,tl
$3 invcost[p]*Inv[p,tj

bands 1
bands 2
bands 3
bands 4
coils 1

2
3

coils
coils
coils 4

$1 $2
150000 59900
156000 60000

37800 14000
54000 20000

9210 15477
87500 15400

129500 38500
163800 46200

$3
o
o
o
o

3300
o
o
o

: =

On the other hand, where the headings are narrower than the values, you may be able to
squeeze more on a line by reducing the opt ion gutter_width - the number of spaces
between columns - from its default value of 3 to 2 or I .

SECTION 12.2 FORMATTING OPTIONS FOR DISPLAY 231

Suppression of zeros

In some kinds of linear programs that have many more variables than conslraints,
most of the variables have an optimal value of zero. For instance in the assignment prob­
lem of Figure 3-2, the optimal va lues of all the variables form this table, in which there is
a single I in each row and each column:

ampl: display Trans;

Trans [* , * 1
CllS C13S C140 C246 C250 C251 0237 0239 0241 M233 M239

Coullard 1 0 0 0 0 0 0 0 0 0 0
Daskin 0 0 0 0 0 0 0 0 1 0 0
Hazen 0 0 0 1 0 0 0 0 0 0 0
Hopp 0 0 0 0 0 0 1 0 0 0 0
Iravani 0 1 0 0 0 0 0 0 0 0 0
Linetsky 0 0 0 0 1 0 0 0 0 0 0
Mehrotra 0 0 0 0 0 0 0 1 0 0 0
Nelson 0 0 1 0 0 0 0 0 0 0 0
Smilowitz 0 0 0 0 0 0 0 0 0 1 0
Tamhane 0 0 0 0 0 1 0 0 0 0 0
White 0 0 0 0 0 0 0 0 0 0 1

By setting omit_zero_rows to I, all the zero values are suppressed, and the list
comes down to the entries of interest:

ampl : display Trans;

Trans : =

Coullard C11S 1
Daskin 0241 1
Hazen C246 1
Hopp 0237 1
Iravani C13S 1
Linetsky C250 1
Mehrotra 0239 1
Nelson C140 1
Smilowitz M233 1
Tamhane C251 1
White M239 1

If the number of nonzero entries is less than the value of display_leol, the data is
printed as a list, as it is here. If the number of nonzeros is greater than display_leal,
a table formal would be used, and the ami t_zero_raws option would only suppress
table rows that contain all zero entries.

For example, the display of the three-dimensional vruiable Trans from earlier in {hi s
chapter wou ld be condensed to the following:

232 DISPLAY COMMANDS CHAPTER 12

ampl: display Trans;
Trans (CLEV, 1<, *]

bands coils plate : =
DET 0 750 0
LAF 0 500 0
LAN 0 400 0
STL 0 50 0
WIN 0 250 0

[GARY,*,*)
bands coils plate :=

FRE 225 850 100
LAF 250 0 0
STL 650 900 200

[PITT, *, *]
bands coils plate :=

DET 300 0 100
FRA 300 500 100
LAF 0 0 250
LAN 100 0 0
WIN 75 0 50

A corresponding option ami t_zero_cols suppresses all-zero columns when set to I,
and would eliminate two columns from Trans [CLEV, * , *] .

12.3 Numeric options for display

The numbers in a table or list produced by display are the result of a transforma­
tion from the computer's internal numeric representation to a string of digits and sym­
bols. AMPL's options for adjusting thi s transformation are shown in Table 12-2. In this
section we first consider options that affect only the appearance of numbers, and then
options that affect underlying solution values as well.

display_eps smallest magnitude displayed differently from zero (0)

display-precision digits of precision to which displayed numbers are rounded: full pre­
cision if 0 (6)

display_round digits left or (if negative) right of decimal place 10 which displayed
numbers are rounded, overriding display-precision (tl tI)

solution-precision digits of precision to which solution va lues are rounded; full preci­
sion if 0 (0)

solution_round digits left or (ifnegalive) right of decimal place to which solution
values are rounded, overriding solution-precision (tl tI)

Table 12·2: Numeric options for display (with default values).

SECTION 12.3 NUMERIC OPTIONS FOR DISPLAY 233

Appearance of numeric values

In all of our examples so far, the display command ~hows each numerical value to
the same number of significant digits:

ampl: display (p in PROD, t in l •• T) Make[p,t] / rate[p];
Make[p,t]/rate[p] [*,*] (tr)

bands coils . -
1 29.95 10.05
2 30 10
3 20 12
4 32.1429 7.85714

ampl: display (p in PROD, tin l • • T) prodcost[p]*Make[p,t];
prodcost [pI *Make [p, tl [*, *1 (tr)

bands coils :=
1 59900 15477
2 60000 15400
3 40000 18480
4 64285.7 12100

(see Figures 6-3 and 6-4). The default is to use six significant digits, whether the result
comes out as 7.857 14 or 64285.7. Some numbers seem to have fewer dig its. but only
because trail ing zeros have been dropped; 29.95 represents the number that is exactly
29.9500 to six digits, for example, and 59900 represents 59900.0.

By changing the option display-precision to a value other than six, you can
vary the number of significant di gits reported:

ampl : option display-precision 3;
ampl : display Make['bands',4] / rate['bands'] ,
ampl? prodcost['bands'] * Make[' bands',4];
Make['bands' ,41/rate['bands'l = 32.1
prodcost['bands' I *Make['bands' ,4] = 64300

ampl: option display-precision 9;
ampl: display Make['bands',4] / rate['bands'],
ampl? prodcost{ ' bands'] * Make['bands',4];
Make['bands',4]/rate['bands'] = 32.1428571
prodcost('bands']*Make['bands' ,4J = 64285.7143

ampl : option display-precision 0;
ampl : display Make['bands ' ,4] / rate['bands '],
ampl? prodcost['bands'] * Make['bands',4];
Make['bands' ,4]/rate['bands'] = 32.14285714285713
prodcost['bands'l*Make['bands' ,4] = 64285.71428571427

In the last example. a display-precision of 0 is interpreted specially; it tells
display to represent numbers as exactly as possible, using however many digit.;; arc
necessary. (To be precise, the di splayed number is the shortest decimal representati on
that, when correctly rounded to the computer's representation. gives the value exactly as
stored in the computer.)

234 DISPLAY COMMANDS CHAPTER 12

Displays to a given precision provide the same degree of useful information about
each number, but they can look ragged due to the varying numbers of digits after the dec­
imal point. To specify rounding to a fixed number of decimal places, regard less of the
resulting precision. you may set the option display_round. A nonnegative value
specifies the number of digits to appear after the decimal point:

ampl: option display_ round 2;
ampl : display (p in PROD, tin 1 .. T) Make[p,t} l rate[p};
Make[p, tl /rate[pl [*, *1 (tr)

bands coils :=
1 29.95 10 . 05
2 30.00 10.00
3 20.00 12.00
4 32.14 7 . 86

A negative value indicates rounding before the decimal point. For example, when
display_round is -2, all numbers are rounded to hundreds:

ampl : option display_ round -2;
ampl: display {p in PROD, t in l .. T} prodcost[p]*Make{p,t};
prodcost(p] *Make[p, t] [*,*] (tr)

bands coils :=
1 59900 15500
2 60000 15400
3 40000 18500
4 64300 12100

Any integer value of display_round overrides the effect of displaYJ)recision.
To turn off display_round, set it to some non-integer such as the empty string ' '.

Depending on the solver you employ, you may find that some of the solut ion values
that ought to be zero do not always quite come out that way. For example, here is one
solver's report of the objective function terms cost (i, j) * Trans (i, j) for the
assignment problem of Section 3.3:

ampl : option amit_ zero_ rows 1;
ampl : display {i in ORIG, j in DEST} cost{i,j) * Trans{i,j);
cost(i,j]*Trans[i,j] :=

eoullard ellS 6
Coullard 0241 2.05994e-17
Daskin 0237 1
Hazen C246 1
Hopp 0237 6.86647e-18
Hopp 0241 4

9 lilies omitted
White C246 2 . 7465ge-17
White C251 -3 . 43323e-17
White M239 1

SECTION 12.3 NUMERIC OPTIONS FOR DISPLAY 235

Minuscule values like 6.86647e-18 and -3.43323e- 17 have no significance in the context
of (his problem; they would be zeros in an exact solution, but come out slight ly nonzero
as an artifact of the way that the solver's algorithm interacts with the computer's repre­
sentation of numbers.

To avoid viewing these numbers in meaningless precision, you can pick a reasonable
sett ing for display_round - in this case 0, si nce there are no digits of interest after
the decimal point:

ampl: option display_ round 0;
ampl : display {i in ORIG, j in DEST} cost[i,j} * Trans[i,j};
cost[i,j]*Trans[i,j] :=

Coullard CllB 6
Coullard 0241 0
Daskin 0237 1
Hazen C246 1
Hopp 0237 0
Hopp 0241 4
Iravani CllB 0
Iravani C13B 2
Linetsky C250 3
Mehrotra 0239 2
Nelson C138 0
Nelson C140 4
Smilowitz M233 1
Tamhane C1l8 -0
Tamhane C251 3
White C246 0
White C251 -0
White M239 1

The small numbers are now represented only as 0 if positive or -0 if negative. If you
want to suppress their appearance entirely, however, you must set a separate option,
display_eps:

ampl: option display_ eps 1e-10;
ampl: display (i in ORIG, j in DEST) cast[i,j] * Trans[i,j];
cost[i, j] *Trans [i, j] : =
Cou11ard C11B 6
Daskin 0237 1
Hazen C246 1
Hopp
Iravani
Linetsky
Mehrotra
Nelson
Smilowitz
Tamhane
White

0241
C138
C250
0239
C140
M233
C251
M239

4
2
3
2
4
1
3
1

236 DISPLAY COMMANDS CHAPTER 12

Any value whose magnitude is less than the value of display_eps is tremed as an
exact zero in all output of display.

Rounding of solution values

The options display-precision, display_round and display_eps affect
only the appearance of numbers, not their actual values. You can see this if you try to
display the sel of all pairs of i in ORIG and j in DEST thaI have a positive value in the
preceding table, by comparing cos t [i, j 1 *Trans [i, j 1 to 0:

ampl: display {i in ORIG, j in DEST: cost{i,j}*Trans[i,j} > ali
set {i in ORIG, j
(Coullard,CllB)
(Coullard, D241)
(Daskin,D237)
(Hazen,C246)
(Hopp,D237)
(Hopp,D241)

in DEST: cost[i,j]*Trans[i,j] > O} :=
(Iravani,CI1B) (Smilowitz,M233)
(Iravani,C138) (Tamhane,C251)
(Linetsky,C250) (White,C246)
(Mehrotra,D239) (White,M239)
(Nelson, C13B)
(Nelson,C140) ;

Even though a value like 2.05994e-17 is treated as a zero for purposes of display, it
tesls greater than zero. You could fix this problem by changing> 0 above 10, say, > 0.1.
As an alternative, you can set the option solution_round so that AMPL rounds the
solution values 10 a reasonable precision when they are received from the solver:

ampl: option solution_ round 10;
ampl: solve;
MINOS 5.5: optimal solution found.
40 iterations, objective 28

ampl: display {i in ORIG, j in DEST: cost{j,jJ~Trans{i,jJ > OJ;
set {i in ORIG, j in DEST: cost[i,jj*Trans[i,jj > O} :=

(Coullard,Cl18) (Iravani,C138) (Smilowitz,M233)
(Daskin,D237) (Linetsky,C250) (Tamhane,C251)
(Hazen,C246) (Mehrotra,D239) (White,M239)
(Hopp,D241) (Nelson,C140);

The options solution-precision and solution_round work in the same way
as display-precision and display_round, except that they are applied only to
solution values upon return from a solver, and they permanently change the returned val­
ues rather than only their appearance.

Rounded values can make a difference even when they are not near zero. As an
example, we first use several display options to get a compact listing of the fractional
solution to the scheduling model of Figure 16-4:

ampl: model sched.mod;
ampl: data sched.dati

ampl: solvei
MINOS 5.5: optimal solution found.
19 iterations, objective 265 . 6

SECTION 12.3

ampl : option display_ width 60;
ampl : option display_ leol 5;

ampl : option display_ eps le-10;
ampl : option omit _ zero_ rows 1;
ampl : display Work;
Work [* I :=

10 28 . 8 30 14 . 4 71 35 . 6
18 7 . 6 35 6.8 73 28
24 6 . 8 66 35.6 87 14.4

NUMERIC OPTIONS FOR DrSPLAY 237

106 23.2 123 35.6
109 14.4
113 14.4

Each value Work [j] represents the number of workers assigned to schedule j. We can
get a quick practical schedule by roundi ng the fractional va lues up to the next highest
integer; using the ceil functjon to perfonn the rou nding, we see that the total number of
workers needed should be:

ampl : display sum {j in SCHEDS} eeil(Work[j});
sum{j in SCHEDS} cei1(Work[jl I = 273

If we copy the numbers from the preceding table and round them up by hand, however,
we fi nd that they only sum to 27 1. The source of the difficulty can be seen by displaying
the numbers to full precision:

ampl : option display_ eps 0;
ampl : option display-precision 0;

ampl : display Work;
Work [*] :=

10 28.799999999999997
18 7 . 599999999999998
24 6 . 79999999999999
30 14.40000000000001
35 6 . 799999999999995
55 -4 . 939614313857677e-15
66 35.6
71 35 . 599999999999994

73 28 . 000000000000018
87 14 . 399999999999995
95 -5.876671973951407e-15

106 23.200000000000006
108 4.685288280240683e-16
109 14.4
113 14 . 4
123 35 . 59999999999999

Half the problem is due to the minuscule positive value of Work [108] , which was
rounded up to I. The other half is due to Work [73] : although it is 28 in an exact solu­
tion, it comes back from the solver with a slight ly larger value of 28.{){)()(}{}{){)o 18,
so it gets rounded up to 29.

The easiest way to ensure that our arithmetic works correctly in this case is again to
set solution_round before solve:

ampl: option solution_ round 10;
ampl : solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6

ampl: display sum (j i n SCHEDS) ceil(Work[j});
sum{j in SCHEDS} ceil(Work(j]) = 271

238 DISPLAY COMMANDS CHAPTER 12

We picked a value of 10 for solution_round because we observed that the slight
inaccuracies in the solver's values occurred well past the 10th decimal place.

The effect of solution_round or solution--precision applies to all values
returned by the solver. To modify only certain values, use the assignment (let) com­
mand described in Section 11.3 together with the rounding functions in Table 11 -1.

12.4 Other output commands: print and printf

Two additional AMPL conunands have much the same syntax as display. but do
not automatically fonnat their output. The print command does no formatti ng at all ,
while the print f command requi res an explicit description of the desired formatting.

The print command

A print command produces a single line of output:

ampl :
ampl?
ampl?
787810

print sum (p in PROD, t in
sum {p in PROD, t in
sum (p in PROD, t in

269477 3300

1. _T)

1. . T}
1. _T}

revenue[p , t1*Sell[p,t1,
prodcost[p1*Make[p,t1,
invcost[p1*Inv[p,t1J

ampl: print (t in looT, p in PROD) Make[p,t1 ;
5990 1407 6000 1400 1400 3500 2000 4200

or, if fo llowed by an indexing expression and a colon, a line of output for each member of
the index set:

ampl: print (t in looT) : (p i n PROD) Make[p,t1;
5990 1407
6000 1400
1400 3500
2000 4200

Printed entries are normally separated by a space, but option print_separator can
be used to change this. For instance, you might set print_separator to a tab for
data to be imported by a spreadsheet; to do this, type option print_separator
"--7 " , where --7 stands for the result of pressing the lab key.

The keyword print (with optional indexing expression and colon) is followed by a
print item or comma-separated list of print items. A print item can be a value, or an
indexing expression followed by a value or parenthesized list of values. Thus a print item
is much like a display item, except that only individual values may appear; although you
can say display rate, you must explicitly specify print {p in PROD} rate [p].
Also a set may not be an argument to print, although its members may be:

SECTION 12.4

ampl: print PROD;
syntax error

OTHER OUTPUT COMMANDS: PUNT AND PRINT!'

context: print »> PROD; «<

ampl: print (p in PROD) (p, rate[p});
bands 200 coils 140

239

Unlike display, however, print allows indexing to be nested within an indexed item:

ampl: print (p in PROD) (p, rate(p], (t in 1 .. T) Make(p,t]);
bands 200 5990 6000 1400 2000 coils 140 1407 1400 3500 4200

The representation of numbers in the output of print is governed by the
print-precision and print_round options, which work exactly like the
display-precision and display_round options for the display command.
Init ially printJ)recision is 0 and print_round is an empty string, so lhm by
default print uses as many digits as necessary to represent each value as precisely as
possible. For the above examples, print_round has been set to 0, so that the numbers
are rounded to integers.

Working interactively, you may find print useful for viewing a few values on your
screen in a morc compact format than display produces. With output redirected to a
file, print is useful for writing unformatted results in a form convenient for spread­
sheets and other data analysis tools. As with display. just add >jilellame to the end of
the print command.

The printf command

The syntax of printf is exactly the same as that of print. except that the first
print item is a character string that provides formatting instructions for the remaining
items:

ampl ,
ampl?
Total

printf "Total revenue is $%6.2f.\n H ,

sum (p in PROD, tin 1 .. T) revenue(p,t]~Sell(p,t];
revenue is $787810.00.

The format string contains two types of objects: ordinary characters, which are copied to
the output, and conversion specifications, which govern the appearance of successive
remaining prim items. Each conversion specification begins with the character % and
ends with a conversion character. For example, %6 .2 f specifies conversion to a decimal
representation at least six characters wide with two digits after the decimal point. The
complete rules are much the same as for the printf function in the C programming lan­
guage; a summary appears in Section A.16 of the Appendix.

The output from printf is not automatically broken into lines. A line break must
be indicated explicitly by the combi nation \n, representi ng a "newline" character. in the
format string. To produce a series of lines. use the indexed version of printf:

240 DISPLAY COMMANDS

amp1,
ampl?
ampl?

1
2
3
4

printf (t

sum {p

sum {p

159210.00
243500.00
167300.00
217800.00

in l • • T}: ~%3i%12.2f%12.2f\nH, t,
in PROD} revenue[p,t]*Sell[p,t},
in PROD} prodcost{p1*Make{p,t};

75377.00
75400.00
52500.00
66200.00

CHAPTER 12

This printf is executed once for each member of the indexing set precedi ng the colon;
for each t in 1 . . T the format is appl ied agai n, and the \n character generates another
line break.

The printf command is mainl y useful , in conjunction with redirec tion of output to
a fil e, for print ing short summary repons in 11 readable format. Because the number of
conversion specifications in the format string must match the number of va lues being
printed , printf cannol conveniently produce tables in which the number of ilems on a
line may vary from run to run, such as a table of all Make {P, t] values.

12.5 Related solution values

Sets, parameters and variables are the most obvio us Lhings to look at in interpreting
the solution o f a linear program, but AMPL also provides ways of examjning objectives,
bounds, slacks. dual prices and reduced costs associated with the optimal solution.

As we have shown in numerous examples already, AMPL dis tinguishes the various
values associated with a model component by use of " qualified" names that consist of a
variable or constraint identitler, a dot (.), and a predefined "suffi x" stting. For instance,
the upper bounds fo r the variable Make are called Make. ub, and the upper bound for
Make ["coils" , 2] is written Make [" coils" , 2] . ub. (Note that the suffix comes
after the subscript.) A qual ified name can be used like an unquali fied one, so that
display Make. ub prints a table of upper bounds on the Make variables, while
display Make, Make . ub prints a list of the optimal va lues and upper bounds.

Objective functions

The name of the objecti ve function (from a minimize or maximize declaration)
refers to the objective's value computed fro m the current values of the variables. Thi s
name can be used to represent the optimal object ive value in display. print, or
printf:

ampl : print 100 * Total_ Profit /
ampl? sum (p in PROD1 tin 1 •• T) revenue[P1t] * Sell[p,t];
65.37528084182735

If the current model declares several objective funct ions, you can refer to any of them,
even though on ly one has been optimi led.

SECTION 12.5 AELA TEO SOLUTION VALUES 241

Bounds and slacks

The suffixes . lb and . ub on a variable denote its lower and upper bounds, while
. slac k denotes the difference of a variable's value frolll it s nearer bound. Here's an
example from Figure 5-1 :

amp1 , display Buy.lb, Buy, BUy·ub, Buy. slack;
Buy . 1b Buy Buy . ub Buy . slack : =

BEEF 2 2 10 0
CHK 2 10 10 0
FISH 2 2 10 0
HAM 2 2 10 0
MCH 2 2 10 0
MTL 2 6 . 23596 10 3 . 76404
SPG 2 5 . 258 43 10 3 . 25843
TUR 2 2 10 0

The reported bounds are those that were sent to the solver. Thus they include not only the
bounds specified in > = and < = phrases of var declarations, but al so certain bounds that
were deduced from the constraints by AMPL' s presolve phase. Other suffixes let you
look at the original bounds and at additional bounds deduced by presolve; see the discus­
sion of pre solve in Section 14.1 for details .

Two equal bounds denote a fixed variable, which is normally eliminated by presolve.
Thus in the planning model of Figure 4-4. the constraint I nv[p, 0) ; invO [p) fixes
the initial inventories:

ampl : display (p in PROD)
I nv(p , OI . 1b i nvO(p)

band s 10 10
coils 0 0

(Inv{p,O}.lb,invO{p},Inv{p,O}.ub);
Inv(p , O) .ub , ;

10
o

In the production-and-transportation model of Figure 4-6, the constraint

sum {i in ORIG} Trans[i,j,p] = d emand[j,p]

leads presolve to fix three variables at zero, because demand ["LAN " , "plate "} is
zero:

ampl : display (i in ORIG)
ampl? (Trans {i, "LAN", "plate"} .lb, Trans {1, "LAN", Hplate"} . ub);

Trans[i, 'LAN', 'plate'] . lb Trans{i, ' LAN', 'plate'] .ub : =
CLEV 0 0
GARY
PITT

o
o

o
o

As this example suggests , presolve's adjustments to the bounds may depend on the data
as well as the structure of the constraints.

The concepts of bounds and slacks have an analogous interpretation for the con­
straints of a model. Any AMPL constraint can be put into the standard form

242 DISPLAY COMMANDS CHAPTER 12

lower bound S body s: upper boul/d

where the body is a sum of all terms involving variables, while the lower hOllnd and
upper boulld depend only on the data. The suffixes . lb, . body and . ub give the cur­
rent va lues of these three parts of the constraint. For example, in the diet model of Figure
5-1 we have the declarations

subject to Diet_Min {i in MINREQ}:
sum {j in FOOD} amt[i,j} * Buy[j] >= n_Min[iJ;

subject to Diet_Max (i in MAXREQ) :
sum {j in FOOD} amt[i,j] * Buy[j) <= n_Max[i];

and the followin g constraint bounds:

ampl: disp~ay Diet_ Min.lb, Diet_ Min. body, Diet_ Min.ubi
Diet_Min.lb Diet_Min.body Diet_Min.ub : =

A 700 1013.98 Infinity
81 a 605 Infinity
B2 a 492.416 Infinity
C 700 700 Infinity
CAL 16000 16000 Infinity

ampl: display Diet_ Max.lb, Diet_ Max. body, Diet_ Max.ub;
Diet_Max . lb Diet_Max.body Diet_Max.ub

A -Infinity 1013.98 20000
CAL -Infinity 16000 24000
NA -Infinity 43855.9 50000

Naturally, <= constraints have no lower bounds, and >= constraints have no upper
bounds; AMPL uses -Infinity and Infinity in place of a number to denote these
cases. Both the lower and the upper bound can be finite, if the constraint is specified with
two <= or >= operators; see Section 8.4. For an = constraint the two bounds are the
same.

The suffix. slack refers to the difference between the body and the nearer bound:

ampl: display Diet_ Min.slack;
Diet_Min.slack [*] :=

A 313.978
B1 605
B2 492.416

C 0
CAL 0

For constraints that have a single <= or >= operator, the slack is always the difference
between the; t!xpre~sion ~ to the left and right of the operator, even jf there are variables on
both sides. The constraints that have a slack of zero are the ones that are truly constrain­
ing at the optimal solution.

SECTION 12.5 RELATED SOLUTION VALUES 243

Dual values and reduced costs

Associated with each constraint in a linear program is a quantity variously known as
the dual variable, marginal value or shadow price. In the AMPL command environment,
these dual values are denoted by the names of the constraints, without any qualifying suf­
fix. Thus for example in Figure 4-6 there is a collection of constraints named Demand:

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans(i,j,p] = demand(j,p];

and a table of the dual values associated with these constraints can be viewed by

amp 1 , display Demandi
Demand [*, *]

bands coils plate :=
DET 201 190 . 714 199
FRA 209 204 211
FRE 266.2 273.714 285
LAF 201. 2 198.714 205
LAN 202 193.714 0
STL 206.2 207.714 216
WIN 200 190.714 198

Solvers return optimal dual values to AMPL along with the optimal values of the "pri­
mal" variables. We have space here only to sum marize the most common interpretation
of dual values; the extensive theory of duality and applications of dual variables can be
found in any textbook on linear programmjng.

To start with an example, consider the constraint Demand ["DET", "bands"]
above. If we change the value of the parameter demand ["DET" , "bands" 1 in this
constraint, the optimal value of the objective function Total_Cos t changes accord­
ingly. If we were to plot the optimal value of Total_Cos t versus all possible values of
demand ["DET" , "bands" L the result would be a cost "curve" that shows how over­
all cost varies with demand for bands at Detroit.

Additional computation would be necessary to determine the entire cost curve, but
you can learn something about it from the optimal dual values. After you solve the linear
program using a panicular value of demand ["DET" , "bands" 1 , the dual price for the
constraint tells you the slope of the cost curve, at the demand's current value. In our
example, reading from the table above, we find that the slope of the curve at the current
demand is 201. This means that total production and shipping cost is increasing at the
rate of $20 I for each extra ton of bands demanded at DET, or is decreasing by $20 I for
each reduction of one ton in the demand.

As an example of an inequality, consider the following constraint from the same
model:

subject to Time (i in ORIG):
sum {p in PROD) (l/rate[i,p]) * Make[i,p] <= avail[i];

244 DISPLAY COMMANDS

optimal
objective

constant term

Figure 12·1: Piecewise-linear plot of objective function.

Here it is revealing to look at the dual values together with the slacks:

ampl: display Time, Time.slack;
Time Time. slack . -

CLEV -1522.86 0
GARY -3040 0
PITT 0 10 . 5643

CHAPTER 12

Where the slack is positive, the dual value is zero. Indeed, the positive slack implies that
the optimal solut ion does not use all of the time avai lable at PITT; hence changing
avail [" PITT"] somewhat does not affect the optimum. On the other hand, where the
slack is zero the dual va lue may be significant. In the case of GARY the value is -3040,
implying that the total cost is decreasing at a rate of $3040 for each extra hour available
at GARY, or is increasing at a rate of $3040 for each hour lost.

In general , if we plot the optimal objective versus a constraint's constant term, the
curve will be convex piecewise-linear (Figure 12-1) for a minimization, or concave
piecewi se-linear (the same, but upside-down) for a maximi zation.

In terms of the standard form lower bound $ body $ upper bound introduced previ­
ously, the optimal dual values can be viewed as follows. If the slack of the constraint is
positive, the dual value is zero. If the slack is zero, the body of the constraint must equal
one (or both) of the bounds, and the dual value pertains to the equaled bound or bounds.
Specifically, the dual value is the slope of the plot of the objective versus the bound, eval­
uated at the current value of the bound; equivalently it is the rate of change of the optimal
objective with respect to the bound value.

A nearly identical analys is applies to the bounds on a variable. The role of the dual
value is played by the variable's so-called reduced cost, which can be viewed from the
AMPL command environment by usc of the suffix. re. As an example, here are the
bounds and reduced costs for the variables in Figure 5- 1:

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 245

ampl: display Buy ~ lb, Buy, Buy.ub, Buy.re;
Buy.lb Buy Buy . ub Buy . rc : =

BEEF 2 2 1 0 1 . 73663
CHK 2 10 10 -0 . 853371
FISH 2 2 10 0 . 255281
HAM 2 2 10 0 . 69876 4
MCH 2 2 10 0.2 46573
MTL 2 6 . 23596 10 0
SPG 2 5 . 25843 10 0
TUR 2 2 10 0 . 343483

Since Buy ["MTL" I has slack with both its bounds, its reduced cost is zero.
Buy ["HAM"] is at its lower bound, so its reduced cost indicates that total cost is increas­
ing at about 70 cents per unit increase in the lower bound, or is decreasing at about 70
cents per unit decrease in the lower bound. On the other hand, Bu y ["CHK " I is at its
upper bound, and its negative reduced cost indicates that total cost is decreasing at about
85 cents per unit increase in the upper bound, or is increasing at about 85 cents per unit
decrease in the upper bound.

If the cUlTent value of a bound happens to lie right at a breakpoint in the relevant
curve - one of the places where the slope changes abruptly in Figure 12-1 - the objec­
tive will change at one rate as the bound increases, but at a different rate as the bound
decreases. In the extreme case either of these rates may be infinite, indicating that the lin­
ear program becomes infeasible if the bound is increased or decreased by any further
amount. A solver reports only one optimal dual price or reduced cost to AMPL, however,
which may be the rate in either direction, or some value between them.

In any case, moreover, a dual price or reduced cost can give you only one slope on the
piecewise-linear curve of objective va lues. Hence these quantities should only be used as
an initial guide to the objective's sensitivity to certain variable or constraint bounds. If
the sensitivity is very important to your application, you can make a series of runs with
different bound settings; see Section 11.3 for ways to quickly change a small part of the
data. (There do exist algorithms for finding part or all of the piecewise-linear curve,
given a linear change in one or more bounds, but they are not directly supported by the
current version of AMPL.)

12.6 Other display features for models and instances

We gather in this section various utility commands and other features for displaying
infonnation about models or about problem instances generated from models.

Two commands let you review an AMPL model from the command-line: show lists
the names of model components and displays the definitions of individual components,
while xre f lists all components that depend on a given component. The expand com­
mand displays selected objectives and constraints that AMPL has generated from a model
and data, or analogous information for variables. AMPL's "generic" names for variables,

246 DISPLAY COMMANDS CHAPTER 12

constraints, or objectives permit listings or tests that apply to all variables, constraints, or
objectives.

Displaying model components: the show command:

By itself, the show command lists the names of all components of the current model:

ampl: model multmip3.mod;
ampl : show;
parameters:
sets : DEST
variables :
constraints:
objective :
checks: one,

demand feost limit rnaxserve minload supply veost
ORIG PROD

Trans Use
Demand Max_Serve

Total_Cost
called check 1 .

This display may be restricted to components of one or more types:

ampl : show
variables :
ampl : show
objective :

varSi
Trans Use

obj, constr;
Total_Cost

constraints : Demand

Multi Supply

Multi Supply

The show command can also display the declarations of individual components, saving
you the trouble of looking them up in the model file:

ampl: show Total_ Cost;
minimize Total_Cost : sum{i in ORIG, j in DEST, p in PROD}
vcost[i,j,pj*Trans[i,j,p) + sum{i in ORIG, j in DEST}
fcost[i,jj*use(i,jj;
ampl: show veost, feast, Trans;
param vcost{ORIG, DEST, PROD} >= 0;
param fcost{ORIG, DEST} >= 0;
var Trans {ORIG, DEST, PROD} >= 0;

If an item following show is the name of a component in the current model, the declara­
tion of that component is displayed. Otherwise, the item is interpreted as a component
type according to its first letter or two; see Section A.19.1. (Displayed declarations may
differ in inessential ways from their appearance in your model file, due to transformations
that AMPL perfonns when the model is parsed and translated.)

Since the check statements in a model do not have names, AMPL numbers them in
the order that they appear. Thus to see the third check statement you would type

ampl: show eheek 3;
check{p in PROD} :

sum{i in ORIG} supply[i,p] == sum{j in DEST} demand(j,p];

By itself, show checks indicates the number of check stalemcnls in the model.

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 247

Displaying model dependencies: the xref command

The x ref command li sts all model components that depend on a spec ified compo­
nent , either directly (by referring to it) or indirectly (by referring to its dependents). If
more than one component is given, the dependents are listed separately for each. Here is
an example from mul tmip3 . mod:

ampl : xref demand, Trans;
2 entities depend on demand:
check 1
Demand
5 entities depend on Trans :
Total_Cost
Supply
Demand
Multi
Min_ Ship

In general , the command is simpl y the keyword x ref followed by a comma-separated
list of any combination of set, parameter, variable, objective and constraint names.

Displaying model instances: the expand command

Tn checking a model and its data for correctness, you may want to look at some of the
specific constraints that AMPL is generating. The expand command di splays all con­
straints in a given indexed collection or specific constraints that you identify:

ampl : model nltrans.mod;
ampl : data nltrans.dat;
ampl : expand Supply;
subject to Supply(' GARY '] :

Trans [' GARY' , 'FRA ']
Trans ['GARY', 'LAN ']
Trans ['GARY', 'STL']
Trans ['GARY' , 'LAF']

subject to Supply['CLEV'] :
Trans [' CLEV' , 'FRA']
Trans('CLEV', 'LAN']
Trans ('CLEV', 'STL']
Trans ['CLEV', 'LAF']

subject to Supply['PITT'] :
Trans ('PITT' , ' FRA']
Trans ['PITT' , 'LAN ']
Trans ['PITT' , 'STL')
Trans['PITT', 'LAF']

+ Trans['GARY', 'DET' J +
+ Tra ns('GARY','WIN'] +
+ Trans('GARY', 'PRE'] +

1400 ;

+ Trans['CLEV', 'DET'] +
+ Trans ['CLEV' I 'WIN'] +
+ Trans['CLEV','FR£'] +

2600;

+ Trans [' PITT', 'DET'] +
+ Trans ['PITT' , 'WIN'] +
+ Trans['PITT', 'FRE'] +

2900;

(See Figures 18-4 and 18-5.) The ordering of terms in an expanded constraint does not
necessarily correspond to the order of the symbolic terms in the constraint 's declaration.

Objectives may be expanded in the same way:

248 DISPLAY COMMANDS

ampl: expand Total_ Cost;
minimize Total_Cost:

CHAPTER 12

39'Trans['GARY', 'FRA'I/(l - Trans['GARY', 'FRA'1/500) + 14'
Trans{'GARY', 'DET']/(l - Trans['GARY', 'DET'}/IOOO) + 11*
Trans['GARY', 'LAN'I/(l - Trans['GARY', 'LAN'1/1000) + 14'
Trans['GARY','WIN'I/(l - Trans['GARY','WIN'1/1000) + 16'

15 lines omitted
Trans['PITT', 'FRE'1/(l - Trans['PITT'. 'FRE'1/S00) + 20*
Trans [' PITT', 'LAF' I I (1 - Trans [' PITT', 'LAF' I 19 00);

When expand is applied to a variable, it lists all of the nonzero coefficients of that
variable in the linear terms of objectives and conslraints:

ampl : expand Trans;
Coefficients of Trans['GARY', 'FRA'] :

Supply ['GARY' I 1
Demand ['FRA'] 1
Total_Cost 0 + nonlinear

Coefficients of Trans ['GARY' , 'DET'] :
Supp1y['GARY'1 1
Demand ['DET' I 1
Total_Cost 0 + nonlinear

Coefficients of Trans('GARY', 'LAN'] :
Supply ['GARY' I 1
Demand['LAN'] 1
Total_Cost 0 + nonlinear

Coefficients of Trans['GARY', 'WIN']:
Supply ['GARY' I 1
Demand ['WIN'] 1
Total_Cost 0 + nonlinear

J 7 terms omitted

When a variable also appears in nonlinear expressions within an objective or a constraint.
the term + non 1 inear is appended to represent those expressions.

The command expand alone produces an expansion of all variables, objectives and
constraints in a model. Since a single expand command can produce a very long listing.
you may want to redirect its output to a file by placing >filename at the end as explained
in Section 12.7 below.

The formatting of numbers in the expanded output is governed by the options
expandJ)recision and expand_round, which work like the display
command's display-precision and display_round described in Section 12.3.

The output of expand reflects the "modeler's view" of the problem; it is based on
the model and data as they were initially read and translated. But AMPL's presolve phase
(Section 14.]) may make significant simplifications to the problem before it is sent to the
solver. To see the expansion of the "solver's view" of the problem following presolve.
use the keyword solexpand in place of expand.

SECTION 12.6 OTHER DISPLAY FEATURES FOR MODELS AND INSTANCES 249

Generic synonyms for variables, constraints and objectives

Occasionally it is useful to make a listing or a test that applies to all variables, con­
straints, or objectives. For this purpose, AMPL provides automatically updated parame­
tcr, that hold the numbers of variables, constraints, and objectives in the currently gener­
atcd problem instance:

_nvars
_ncons
_nobjs

number of variables in the current problem
number of constraints in the current problem
number of objectives in the current problem

Correspondingly indexed parameters contain the AMPL names of all the components:

_varname(1 .. _nvars}
_conname(1 .. _neons}
_objname{1 . . _nobjs)

names of variablc5. in the current problem
names of constra ints in the current problem
names of objectives in the current problem

Finally, the following synonyms for the components are made available:

_var{l .. _nvars)
_con (1 .. _ncons)
_obj {1 .. _nobjs}

synonyms for va ri 'lbles in the current problem
synonyms for constraints in the current problem
synonyms for object ives in the current problem

These synonyms let you refer to components by number, rather than by the usual indexed
names. Using the variables as an example, _ var [5] refers to the fifth variable in the
problem, _ var [5] . ub to its upper bound, _ var [5] . rc to its reduced cost, and so
fonh, while _varnarne [5] is a string giving the variable's truc AMPL name. Table A-
13 lists all of the generic synonyms for sets, variables. and the like.

Generic names are useful for tabulating properties of all variables. where the variables
have becn defined in several different var declarations:

ampl: model net3.mod
ampl: data net3.dat
ampl: solve;
MINOS 5.5: optimal solution found.
3 iterations, objective 1819

ampl: display (j in l •• _ nvarsl
ampl? (_ varname[j) , _ var{j) , _ var{j}. ub, _ var[j} .re);

_varname[jJ _var[jJ _var[j] .ub _var[j] .re
1 " PO_Ship ['NE' I" 250 250 -0.5
2 "PO_Ship ['SE' I " 200 250 -1.11022e-16
3 "OW_Ship ['NE', 'BOS' l" 90 90 0
4 "OW_Ship ['NE', 'EWR' l" 100 100 -l.1
5 "OW_Ship [, NE' , 'BWI' 1 " 60 100 0
6 "OW_Ship ['SE', 'EWR' I" 20 100 2 . 22045e-16
7 "OW_Ship [, SE' , 'BWI' 1 " 60 100 2.22045e-16
8 "DW_Ship ['SE' , 'ATL' 1 " 70 70 0
9 "DW_Ship [, SE' , 'Meo' 1 " 50 50 0

: =

250 DISPLAY COMMANDS CHAPTER 12

Another use is to li st all variables having some property, such as being away from the
upper bound in the optimal solution :

ampl: display (j in 1. "_ nvars:
ampl? _ var[jj < _ var[j}.ub - O.OOOOl) _ varname[j};
_varname[j] [*J :=

2 "PD_Ship ['SE' I "
5 "OW_Ship ['NE' , 'BWI' I "
6 "OW_Ship [, SE' , 'EWR' I "
7 "OW_Ship [, SE' , 'BWI' I "

The same comments apply to constraints and objectives. More precise formatting of this
information can be obtained with printf (12.4, A.16) instead of display.

As in the case of the expand command, these parameters and genetic synonyms
reflect the modeler's view of the problem; their values are determined from the model
and data as they were initially read and translated. AMPL' s pre solve phase may make sig­
nificant simplifications to the problem before it is sent to the solver. To work with
parameters and generic synonyms that reflect the solver's view of the problem following
presolve, replace _ by _s in the names given above; for example in the case of variables,
use _snvars, _svarname and _svar.

Additional predefined sets and parameters represent the names and dimensions (ari­
ties) of the model components. They are summarized in A.19.4.

Resource listings

Changing option show_stats from its default of 0 to a nonzero value requests sum­
mary statistics on the size of the optimization problem that AMPL generates:

ampl: model steelT.mod;
ampl : data BteelT.dat;
ampl : option show_ stats ~;
ampl : solve;

Presolve eliminates 2 constraints and 2 variables.
Adjusted problem :
24 variables, all linear
12 constraints, all linear; 38 nonzeros
1 linear objective; 24 nonzeros.

MINOS 5.5: optimal solution found.
15 iterations, objective 515033

Additional lines report the numbers of integer and variables and nonlinear components
where appropriate.

Changing option times from its default of 0 to a nonzero value requests a summary
of the AMPL translator's time and memory requirements. Similarly, by changing option
gentimes to a nonzero value, you can get a detailed summary of the resources that
AMPL's genmod phase consumes in generating a model instance.

SECTION 12.7 GENERAL FACILITIES FOR MANIPULATING OUTPUT 251

When AMPL appears to hang or takes much more time than expected, the display pro­
duced by gentimes can help associate the difficulty with a parlicular model compo­
nent. Typically, some parameter, variable or constraint has been indexed over a set far
larger than intended or anticipated, with the result that excessive amounts of time and
memory are required.

The limings given by these commands apply only to the AMPL translator, not to the
solver. A variety of predefined parameters (Table A-14) let you work wilh both AMPL
and solver times. For example, _solve_ time always equals total CPU seconds
required for the most recent solve command, and _ampl_ time equals total CPU sec­
onds for AMPL excluding time spent in solvers and other external programs.

Many solvers also have directives for requesting breakdowns of the solve time. The
specifics vary considerably, however, so information on requesting and interpreting these
timings is provided in the documentation of AMPL's links to individual solvers, rather
than in Lhis book.

12.7 General facilities for manipulating output

We describe here how some or all of AMPL's output can be directed to a file, and how
the volume of warning and error messages can be regulated.

Redirection of output

The examples in this book all show the outputs of commands as they would appear in
an interactive session, with typed commands and printed responses alternating. You may
direct all such output to a file instead, however, by adding a > and the name of the file:

amp l : display ORIG, DEST, PROD >multi.out;
amp l : display supply >multi.out;

The first command that specifies >multi. out creates a new file by that name (or over­
writes any existing file of the same name). Subsequent commands add to the end of the
file, until the end of the session or a matching c lose command:

ampl : close mu~ti.out;

To open a file and append output to whatever is already there (rather than overwriting),
use » instead of >. Once a file is open, subsequent uses of > and » have the same
effecl.

Output logs

The l og _ fil e option instructs AMPL to save subsequent commands and responses
to a file. The option ' s value is a string that is interpreted as a filename:

a mpl : option log_£i~e 'multi.t~~;

252 DISPLAY COMMANDS CHAPTER 12

The log fil e collects all AMPL statements and the output that they produce, with a few
exceptions described below. Setting log_file to the empty string:

ampl : option log_ file ";

turns off writing to the file ; the empty string is the default value for this option.
When AMPL reads from an input file by means of a model or data command (or an

include command as defined in Chapter 13), the statements from that file are not nor­
mally copied to the log file. To request that AMPL echo the contents of input files,
change option log_mode l (for input in model mode) or log_data (for input in data
mode) from the default value of 0 to a nonzero value.

When you invoke a solver, AMPL logs at least a few lines summarizing the objective
value, solution status and work required. Through solver-specific directives, you can typ­
ically request additional solver output such as logs of iterations or branch-and-bound
nodes. Many solvers automatically send all of their output to AMPL's log file, but this
compatibility is not universal. If a solver's output does not appear in your log file, you
should consult the supplementary documentation for that solver's AMPL interface; possi­
bly that solver accepts nonstandard directives for diverting its output to files.

Limits on messages

By specifying opt i on eexit 11 , where fl is some integer, you determine how AMPL
handles error messages. If 11 is not zero, any AMPL statement is terminated after it has
produced abs (n) error messages; a negative value causes only the one statement to be
terminated, while a positive value results in termination of the entire AMPL session. The
effect of this option is most often seen in the use of model and data statements where
something has gone badly awry, like using the wrong file:

ampl : option eexit -3;
ampl : model diet.mod;
ampl : data diet.mod;
diet .mod, line 4 (offset 32) :

expecte d ; ([: or symbol
context: pa ram cost »> { «< FOOD} > 0;

diet .mod, line 5 (offset 56) :
expected ; ([: or symbol

context : param f_min »> { «< FOOD} >= 0;

diet.mod, line 6 (offset 81) :
expected ; ([: or symbol

context : param f_max »> { «< j in FOOD} >= f~in(j];

Bailing ou t a f ter 3 warnings .

The default value for eexi t is - 10. Setting it to 0 causes all error messages to be dis­
played.

The eex i t setting also applies to infeasibility warnings produced by AMPL's prc­
solve phase after you type solve. The number of these warnings is simultaneously lim-

seCTION 12.7 GENERAL FACILITIES FOR MANIPULATING OUTPUT 253

ited by the value of option presolve_warnings, which is typically set to a smaller
value; the default is 5.

An AMPL data statement may specify value~ that corre~pond to illegal combinations
of indices. due to any number of mistakes such as incorrect index sets in the model.
indices in the wrong order, misuse of (tr). and typing errors. Similar errors may be
caused by let statements that change the membership of index sets. AMPL catches these
errors after solve is typed. The number of invalid combinations displayed is limited to
the value of the option bad_subscripts, whose default value is 3.

13
Command Scripts

You will probably find that your most intensive use of AMPL's command environ­
Incnt occurs during the initial development of a model, when the results are unfamiliar
and changes are frequent. When the formulation eventually settles down, you may find
yourself typing the same series of commands over and over to solve for different collec­
tion[.. of data. To accelerate this process. you can arrange to have AMPL read often-used
sequences of commands from files or to repeat command sequences automatically, deter­
mining how to proceed and when to stop on the basis of intermediate results.

A scripl is a sequence of commands, captured in a file, to be used and fe-used.
Scripts can contain any AMPL commands, and may include programming language con­
structs like for, repeat, and if to repeat statements and perform them conditionally.
In effect. these and related commands let you write small programs in the AMPL com­
mand language. Another collection of commands permit stepping through a script for
observation or debugging. This chapter introduces AMPL command scripts, using for­
matted printing and sensitivity analysis as examples.

AMPL command scripts are able to work directly with the sets of character strings that
are central to the definjtion of models. A for statement can specify commands to be
executed once for each member of some set, for example. To support scripts that work
with strings. AMPL provides a variety of string functions and operators. whose use is
described in the last section of this chapter.

13.1 Running scripts: include and commands

AMPL provides several commands that cause input to be taken frol11 a file. The com­
mand

include filellame

is replaced by the contents of the named file. An include can even appear in the mid­
dle of some other statement, and does not require a terminating semicolon.

256 COMMAND SCRIPTS CHAPTER 13

The model and data commands that appear in most of our examples are special
cases of include that put the command interpreter into model or data mode before
reading the specified file. By contrast, include leaves the mode unchanged. To keep
things simple, the examples in thi s book always assume that model reads a file of model
declarations, and that data reads a file of data values. You may use any of model,
data and include to read any file, however; the only difference is the mode that is set
when reading starts. Working with a small model , for example, you might find it conve­
nient to store in one file all the model declarations, a data command, and all the data
statements; either a model or an include command could read this file to set up both
model and data in one operation.

As an illustration, if the file dietu . run contains

model dietu.mod ;
data dietu.dat;
solve;
option display_1col 5;
option display_round 1 ·
display Buy;

then including it will load the model and data, run the problem, and display the optimal
values of the variables:

ampl: include dietu.runi
MINOS 5 . 5: optimal solution found.
6 iterations, objective 74 . 27382022

Buy [*J : =
BEEF 2 . 0 FISH 2 . 0 MCH 2.0

CHK 10 . 0 HAM 2 . 0 MTL 6 . 2
SPG 5 . 3
TUR 2.0

When an included file itself contains an include, model or data command, reading
of the first file is suspended while the contents of the contained file are included. In this
example, the command include dietu. run causes the subsequent inclusion of the
files dietu. mod and dietu. dat.

One particularly useful kind of include file contains a list of option commands
that you want to run before any other commands, to modify the default options. You can
arrange to include such a fil e automatically at startup; you can even have AMPL write
such a file automatically at the end of a session, so that your option settings will be
restored the next time around. Details of thi s arrangement depend on your operating sys­
tem; see Sections A.14.1 and A.23.

The statement

commands filename

is very similar to include, but is a true statement that needs a terminating semicolon
and can only appear in a context where a statement is legal.

To illustrate commands, consider how we might perfonn a simple sensitivity analy­
sis on the multi -period production problem of Section 4.2. Only 32 hours of production

SECTION 13.1 RUNNING SCRIPTS: I NCLUDE AND COMMANDS 257

time are avai lable in week 3, compared to 40 hours in the other weeks. Suppose that we
want to see how much extra profit could be gained for each extra hour in week 3. We can
accomplish th is by repeatedly solving, displaying the solu tion values, and increasing
avail [3] :

ampl : model steeIT.mod;
ampl : data steeIT.dat;

ampl : solve;
MINOS 5 . 5 : optimal solution found .
15 iterations, objective 515033
ampl : display Total_ Profit >steeIT. sens;
ampl : option display_ leol 0;
ampl : option amit_ zero_ rows 0;
ampl : display Make >steeIT.sens;
ampl : display Sell >steeIT.sens;
ampl : option display_ leol 20;
ampl : option omit_ zero_ rows 1;
ampl : display Inv >steeIT.sens;

ampl: let avail{3] := avail{3] + 5;
ampl : solve;
MINOS 5 . 5 : optimal solution found .
1 iterations, objective 53 2 033
ampl: display Total_ Profit >steeIT.sens;
ampl : option display_ leol 0;
ampl : option omit_ zero_ rows 0;
ampl : display Make >steeIT.sens;
ampl : display Sell >steelT.sens;
ampl : option display_ leol 20;
ampl : option amit_ zero_ rows 1;
ampl : display Inv >steeIT . sens;

ampl : let avail{3] := avail{3] + 5;
ampl : s o l v e ;
MINOS 5 . 5 : optimal sol ution found .
1 iterat ions, objective 549033
ampl :

To continue trying values of avail [3] in steps of 5 up to say 62, we must complete
another four sol ve cycles in the same way. We can avoid having to type the same com­
mands over and over by creating a new file containing the commands to be repeated:

solve;
display Total_Profit >steelT.sens;
option display_lcol 0;
option omit_zero_rows 0;
display Make >steelT . sens;
display Sell >steelT . sens;
option display_ lcol 20;
option omit_zero_rows 1 ;
d i splay Inv >steelT.sens;
let avail[3] : = avail[3] + 5 ;

258 COMMAND SCRIPTS CHAPTER 13

If we caB this file steel T. sal, we can execute all the commands in it by typing the
single line commands steelT . sal:

ampl: model steelT.mod;
ampl: data steelT.dat;
ampl: commands steelT.sa~;
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
ampl: commands steelT.sal;
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
ampl: commands steelT.sal;
MINOS 5 . 5 : optimal solution found.
1 iterations, objective 549033
ampl: commands steelT.sal;
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl :

(All output from the display command is redirected to the file steel T. sens,
although we could just as well have made it appear on the screen.)

]n this and many other cases, you can substitute include for commands. In gen­
eral it is best to use conunands within command scripts. however, to avoid unexpected
interactions with repeat. for and if statements.

13.2 Iterating over a set: the for statement

The examples above still require that some command be typed repeatedly. AMPL pro­
vides looping commands that can do this work automatically, with various options to
determine how long the looping should continue.

We begin with the for statement, which executes a statement or collection of state­
ments once for each member of some set. To execute our mUlti-period production prob­
lem sensi tivity analysis script four times, for example, we can use a single for statement
followed by the command that we want to repeat:

ampl: model steelT.modi
ampl: data steelT.dati
ampl: for {l •• 4} commands steelT.sali
MINOS 5.5: optimal solution found.
15 iterations, objective 515033
MINOS 5.5: optimal solution found.
1 iterations, objective 532033
MINOS 5.5: optimal solution found.
1 iterations, objective 549033
MINOS 5.5: optimal solution found.
2 iterations, objective 565193
ampl:

SECTION 13.2 ITERATING OVER A SET: THE FOR STATEMENT 259

The expression between fo r and the command can be any AMPL indexing expression .
As an alternative to taking the commands from a separate file, we can write them as

the body of a f o r statement, enclosed in braces:

model steelT . mod ;
data steel T . dat;

for (l. . 4) (
solve;
display Total_Profit >steelT . sens;
option displ ay_lcol 0;
option omit_zero_rows 0;
disp lay Make >steelT . sens ;
disp lay Sell >steel T . sens ;
option d i splay_lcol 20 ;
option omit_zer o_rows 1 ;
display Inv >steelT . sens ;
let avail[3] := avail[3] + 5 ;

If this script is stored in steel T. s a 2, then the whole iterated sensitivity analysis is car­
ried out by typing

ampl: commands steelT.s42

This approach tends to be clearer and easier to work with, particularly as we make the
loop more sophisticated. As a first example. consider how we would go about compiling
a table of the objective and the dual value on constraint Time [3] , for successive values
of a v ai1(3). A script for this purpose is shown in Figure 13-1. Afterthe model and
data are read, the script provides additional declarations for the table of values:

set AVAI L3 ;
p a r am avail3_obj {AVAIL3} ;
param avail3_dual {AVAIL3};

The set AVAIL3 will contain all the different values for ava il [3] that we want to try;
for each such value a, avai13_ o b j [a] and a vai13_dual [a] will be the associ­
ated objective and dual values. Once these are set up, we assign the set value to
AVAI L3 :

let AVAIL3 ,= avail[3) . . avail [3) + 15 by 5 ;

and then use a for loop to iterate over this set :

for {a in AVAIL3} {
let avail[3] : = a;
solve;
let avail3_obj [aJ : = Total_Profit;
let avail3_dual[a] : = Time[3] . dual;

We see here that a for loop can be over an arbitrary set, and that the index running over
the set (a in this case) can be used in statements wilhjn the loop. After the loop is com-

260 COMMAND SCRIPTS

model steelT.mod;
data steelT . dat;
option solver_fisg 0;

set AVAIL3;
param avai13_obj {AVAIL3}:
param avai13_dual {AVAIL3};
let AVAIL) : = avail(3] .. avail[3] + 15 by 5;

for (a in AVAIL3) (
let avail[3] : = a;
solve ;
let avai13_obj[a] : = Total_Profit ;
let avai13_dual[a] : = Time(3] . dual ;

display avai13_obj, avai13_dual;

Figure \3-1: Parameter sensiti vity script (steelT . sa3).

CHAPTER 13

plete. the desired table is produced by displaying avai13_obj and avai 13_du a l, as
shown at the end of the script in Figure 13- 1. I f this script is stored in 5 teel T . sa3.
then the desired results are produced with a single command:

ampl : commands steelT.sa3;
avai13_ob j avai13_dual : =

32 515033 3400
37 532033 3400
42 549033 3400
47 565193 2980

Ln this example we have suppressed the messages from the solver, by including the com·
mand option solver_rnsg 0 in the script.

AMPL' s for loops are also convenienl for generating formatted tables. Suppose that
after solving the multi·period production problem, we want to di splay sales both in tons
and as a percentage of the market limit. We could use a display command to produce
a table like this:

amp1,
ampl?

display (t in 1 .. T, p in PROD)

1 bands
1 coils
2 bands
2 coils
3 bands
3 coils
4 bands
4 coils

(Sell[p,t), lOO*Sell[p,t}/market[p,t});
Sell [p, tl 100'Sell [p, tl/market [p, tl ,=

6000 100
307 7.675

6000 100
2500 100
1400 35
3500 100
2000 30.7692
4200 100

SECTION 13.2 ITERATING OVER A SET: THE FOR STATEMENT 261

By writing a script that uses the printf command (A.16), we can create a much more
effective table:

ampl: commands steelT.tabl;
SALES bands
week 1 6000 100.0%
week 2 6000 100.0%
week 3 1399 35 . 0%
week 4 1999 30.8%

coils
307 7 . 7%

2500 100 . 0%
3500 100.0%
4200 100.0%

The scripl to write this table can be as short as two printf commands:

printf U\n%s%14s%17s\n U, "SALES", "bands", ucoils u;
printf (t in 1 .. T) , "week %d%9d%7 . If%%%9d%7 . If%%\n'', t,

Sell ["bands" , t], 100*Sell ["bands" , t] Irnarket ["bands" , t] ,
Sell ["coils" , t], 100*Sell ("coils", t] Irnarket ("coils", t] ;

This approach is undesirably restrictive, however, because it assumes that there will
always be two products and that they will always be named coils and bands. In fact
the printf statement cannot write a table in which both the number of rows and the
number of columns depend on the data, because the number of entries in its fonnat string
is always fi xed.

A more general script for generating the table is shown in Figure 13-2. Each pass
through the "outer" loop over {1 .. T} generates one row of the table. Within each
pass, an "inner" loop over PROD generates the row' s product entries. There are more
printf statements than in the previous example, but they are shorter and simpler. We
use several statements to write the contents of each line; printf does not begin a new
line except where a newline (\n) appears in its format string.

Loops can be nested to any depth, and may be iterated over any set that can be repre­
sented by an AMPL set expression. There is one pass through the loop for every member
of the set, and if the set is ordered - any set of numbers like 1 .. T, or a set declared
ordered or circular - the order of the pa'\ses is determined by the ordering of the
set. If the set is unordered (like PROD) then AMPL chooses the order of the passes, but

printf -\nSALES";
printf {p in PROD}: "%14s p;
printf "\n-;
for (t in 1 .. T) {

printf "week %d", t;
for (p in PROD) {

printf "%9d", Sell [p, tl;
printf "%7 .If%%", 100 * Sell [p, tl/market [p, tl;

printf "\n";

Figure 13-2: Generating a formatted sales table with nested loops (steel T. tab1) .

262 COMMAND SCRIPTS CHAPTER 13

the choice is the same every time; the Figure 13-2 script relies on this consistency to
ensure that a ll of the entries in one column of the table refer to the same product.

13.3 Iterating subject to a condition: the repeat statement

A second kind of looping construct, the repeat statement, conti nues iterating as
long as some logical condition is sat isfied.

Returning to the sensitivity analysis example, we wish to take advantage of a property
of the dual value on the constraint Time [3]: the additional profit that can be rea lized
from each extra hour added to avail [3] is at most Time [3] . dual. When
avail [31 is made sufficiently large, so that there is morc third-week capacity than can
be used, the associated dual value falls to zero and further increases in avail [3] have
no effect on the optimal solutioll.

We can specify that looping should SLOP once the dual value fall s to zero, by writing a
repeat statement that has one of the following forms:

repeat while Time[3] .dual > 0 (...) ;

repeat until Time [3] . dual = 0 (...);

repeat (...) while Time[3] .dual > 0;
repeat (...) until Time[3] .dual 0;

The loop body, here indicated by (...), must be enclosed in braces. Passes th rough the
loop continue as long as the while condition is true, or as long as the until condition
is fal se. A condition that appears before the loop body is tested before every pass ; if a
while condition is false or an until condition is true berore the first pass, then the
loop body is never executed. A condi tion that appears after the loop body is tested after
every pass. so that the loop body is executed at least once in this case. If there is no
while or until condition, the loop repeals indefinitely and must be terminated by
other means, li ke the break statement described below.

A complete script using repeat is shown in Figure 13-3. For this particu lar applica­
tion we choose the until phrase that is placed after the loop body, as we do not want
Time [3] . dual to be tested until after a solve has been executed in the first pass.
Two other features of thi s sctipt are worth noting, as they are relevant to many scripts of
this kind.

At the beginning of the script. we don't know how many passes the repeat state­
ment will make through the loop. Thus we cannot determine AVAIL3 in advance as we
did in Figure 13-1. Instead, we declare it initially to be the empty set:

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avai13_dual (AVAIL3);

and add each new value of avail [3] to it after solving:

SECTION 13.3 ITERATING SUBJECT TO A CONDITION: THE REPEAT STATEMENT

model steelT.mod;
data steelT . dat;

option solution-precision 10;
option solver_msg 0;

set AVAIL3 default I};
param avai13_obj {AVAIL3};
param avai13_dual {AVAIL3};
param avai13_step := 5;

repeat (
solve ;
let AVAIL3 := AVAIL3 union {avail[3]};
let avai13_obj [avail[3]] := Total_Profit;
let avai13_dual[avail[3]] := Time[3] .dual;
let avail[3] : = avail[3] + avail3_step;

until Time[3] .dual = 0;

display avai13_obj, avail3_dual;

Figure 13-3: Script for recording sensitivity (s teel T . sa4).

let AVAIL3 := AVAIL3 union {avail[3]};
let avail3_obj (avail [3]] := Total_Profit;
let avail3_dual[avail(3]] := Time[3] . dual;

263

By adding a new member to AVAIL3, we also create new components of the parameters
avail3_obj and avai13_dual that are indexed over AVAIL3, and so we can pro­
ceed to assign the appropriate values to these components. Any change to a set is propa­
gated to all declarations that use the set, in the same way that any change to a parameter
is propagated.

Because numbers in the computer are represented with a limited number of bits of
precision, a solver may return values that differ very slightly from the solution that would
be computed using exact arithmetic. Ordinarily you don't see this, because the dis­
play command rounds values to six significant digits by default. For example:

ampl: model steelT.mod; data steelT.dat; solve;
ampl: display Make;
Make (*, *] (tr)

bands coils :=
1 5990 1407
2 6000 1400
3 1400 3500
4 2000 4200

Compare what is shown when rounding is dropped. by setting display-precision
to 0:

264 COMMAND SCRIPTS

ampl: option display-precision 0,
ampl: display Make;
Make [* I *] (tr)

1
2
3
4

bands
5989.999999999999
6000
1399.9999999999995
1999.9999999999993

coils
1407.0000000000002
1399.9999999999998
3500
4200

CHAPTER 13

These seemingly tiny differences can have undesirable effects whenever a script makes a
comparison that uses values returned by the solver. The rounded table wou ld lead you to
believe that Make ["coils" ,2] >::;: 1400 is true, for example, whereas from the sec­
ond table you can see that really it is false.

You can avoid this kind of surprise by writing arithmetic tests more carefully; instead
ofuntilTime[3].dual = O,forinstance,youmight sayuntilTime[3].dual
<= 0 . 0000001. Alternatively, you can round all solution values that are returned by
the solver, so that numbers that are supposed to be equal really do come out equai. The
statement

option solution-precision 10;

toward the beginning of Figure 13-3 has this effect; it s tates that solution values are to be
rounded to 10 significant digits. This and related rounding options are discussed and
illustrated in Section 12.3.

Note finally that the script declares set AVAIL3 as default {} rather than ; {}.
The former allows AVAIL3 to be changed by let commands as the script proceeds,
whereas the latter permanently defines AVAIL3 to be the empty set.

13,4 Testing a condition: the if-then-else statement

In Section 7.3 we described the conditional (if-then-else) expression, which pro­
duces an arithmetic or set value that can be used in any expression context. The i f­
then-else statement uses the same syntactic form to conditionally control the execu­
tion of statements or groups of statements.

In the simplest case, the if statement evaluates a condition and takes a specified
action i r the condition is true:

if Make["coils" ,2] < 1500 then printf "under 1500\n";

The action may also be a se ries of commands grouped by braces as in the for and
repea t commands:

if Make["coils",2] < 1500 then {
printf "Fewer than 1500 coils in week 2.\n";
let rnarket["coils",2] := market ["coils" ,2] '* 1.1;

SECTION 13.4 TESTING A CONDITION: THE l:F-THEN-I:LSE STATEMENT

An optional else specifies an alternative action that also may be a single command:

if Make[Rcoils",2] < 1500 then {
printf RFewer than 1500 coils in week 2 . \n~:

let market["coi1s",21 := market["coils",2] * 1 . 1;

else
printf "At least 1500 coils in week 2. \n" ;

or a group of commands:

if Make["coils ",2] < 1500 then
printf ~under 1500\n";

else {
printf "at least 1500\n ":
let market["coils",2] := market["coils",21 * 0 . 9;

265

AMPL executes these commands by first evalualing the logical expression following if.
If the expression is true. the command or commands following then are executed. If the
expression is false. the command or commands following else, if any, are executed.

The if command is most useful for regulating the flow of control in scripts. [n Fig­
ure 13-2, we could suppress any occurrences of 100% by placing the statement that prints
Sell (p, tl Imarket (p, tl inside an if:

if Sell[p,t] < market[p,t] then
printf "%7 .lfU", 100 * Sell [p, t] Imarket [p, t];

else
printf --- ";

In the script of Figure 13-3, we can use an if command inside the repeat loop to test
whether the dual value has changed since the previous pass through the loop, as shown in
the script of Figure [3-4. This loop creates a table that has exactly one entry for each dif­
ferent dual value discovered.

The statement following then or else can itself be an if statement. In the format­
ting example (Figure [3-2), we could handle both 0% and 100% specially by writing

if Sell[p,t] < market[p,t] then
if Se11[p,t] = 0 then

printf " .
else

printf '%7 .1f%%", 100 * Sel1[p,t]/market[p,t];
else

printf " --- ":

or equivalently, but perhaps more clearly,

if Sell[p,t] = 0 then
printf " ";

else if Sell[p,t] < market[p,tJ then
printf "%7.1f%%", 100 * Sell(p,t)/market[p,t]:

else
printf " i

266 COMMAND SCRIPTS

model steelT.modi data steelT.dati
option solution-precision 10; option solver_ffisg 0;

set AVAIL3 default {};
param avai13_obj {AVAIL3};
param avai13_dual {AVAIL3};

let avail [3] ,= 1;
param avai13_step : = 1;
param previous_dual default Infinity;

repeat while previous_dual > 0 {
solve;
if Time [3 J . dual < previous_dual then {

let AVAIL3 : = AVAIL3 union {avail[3]};
let avai13_obj [avail [3 J] : = Total_Profi t j

let avai13_dual[avail[3]] : = Time[3] .dual;
let previous_dual : = Time(3) . dual;

let avail[3] : = avail[3] + avai13_stepi

display avai13_obj, avai13_dual ;

Figure 13-4: Testing conditions within a loop (steel T. sa5).

In all cases, an else is paired with the closest preceding available if .

13.5 Terminating a loop: break and continue

CHAPTER 13

Two other statements work with looping statements to make some scripts easier to
write. The continue statement terminates the current pass through a for or repeat
loop; all further statements in the current pass are skipped, and execution continues with
the test that controls the start of the next pass (if any). The break statement completely
terminates a for or repeat loop. sending control immediately to the statement follow­
ing the end of the loop.

As an example of both these commands, Figure 13-5 exhibits another way of writing
the loop from Figure 13-4, so that a table entry is made only when there is a change in the
dual value associated with avail (3]. After solving, we test to see if the new dual
value is equal to the previous one:

if Time[3] .dual = previous_dual then continue;

If it is, there is nothing to be done for this value of avail [3], and the continue
statement jumps to the end of the Clirrent pass; execution resumes with the next pass,
starting at the beginning of the loop.

After adding an entry to the table, we test to see if the dual value has fallen to lero:

SECTION 13.5

model steelT . mod;
data steelT . dat;

TERMINATING A LOOP: BREAK AND CONTINUE;

option solution~recision 10;
option solver_msg 0;

set AVAIL3 default {};
param avail3_obj {AVAIL3};
param avail3_dual {AVAIL3};

let avail[3] := OJ
param previous_dual default Infinity;

repeat {
let avail[3] := avail[3] + 1;
solve;
if Time[3] . dual = previous_dual then continue;

let AVAIL3 : = AVAIL3 union {avail[3]}j
let avai13_obj [avail[3]] := Total_Profitj
let avai13_dual[avail[3]] : = Time[3] .dual;

if Time(3] . dual = 0 then break;

let previous_dual : = Time[3] .dual;

display avail3_obj, avail3_dual;

Figure 13-5: Using break and continue in a loop (steel T. sa7).

if Time [3] .dual = 0 then break;

267

If it has, the loop is done and the break statement jumps out; execution passes to the
display command that follows the loop in the script. Since the repeat statement in
this example has no while or until condition, it relies on the break statement for
termination.

When a break or continue lies within a nested loop, it applies only to the inner­
most loop. This convention generally has the desired effect. As an example, consider
how we could expand Figure 13-5 to perform a separate sensitivity analysis on each
avail [t I. The repea t loop would be nested in a for {t in 1 .. T} loop, but the
continue and break statements would apply to the inner repeat as before.

There do ex ist situations in which the logic of a script requires breaking out of multi­
ple loops. In the script of Figure 13-5, for instance. we can imagine that instead of stop­
ping when Time [3) . dual is zero,

if Time[3] .dual = 0 then break;

we want to stop when Time [t] . dual falls below 2700 for any t. It might seem that
one way to implement this criterion is:

for {t in 1. .T }
if Time[t] . dual < 2700 then breakj

268 COMMAND SCRIPTS CHAPTER 13

This statement does not have the desired effect, however, because break applies only 10

the inner for loop that contains it, rather than to the outer repeat loop as we desire. In
such situations, we can give a name to a loop, and break or continue can specify by
name the loop to which it should apply. Using this feature, the outer loop in our example
could be named sens_loop:

repeat sens_loop {

and the test for termination inside it could refer to its name:

for {t in 1 .. T}
if Time[t] .dual < 2700 then break sens_loop;

The loop name appears right after repeat or for, and after break or continue.

13.6 Stepping through a script

I f you think that a script might not be doing what you want it to, you can tell AMPL to
step through it one command at a time. This facility can be used to provide an elemen­
tary form of "symbolic debugger" for scripts.

To step through a script that does not execute any other scripts. reset the option
single_step to I from its default value of O. For example, here is how you might
begin stepping through the script in Figure 13-5:

amp! : option s i ngle_ step 1;
ampl : commands steelT .sa7J
steelT .sa7,2(18) data ...
<2>ampl :

The expression steel T. sa 7 , 2 (18) gives the filename , line number and character
number where AMPL has stopped in its processing of the script. It is followed by the
beginning of the next command (data) to be executed . On the next line you are returned
to the ampl: prompt. The <2> in front indicates the level of input nesting; " 2" means
that execution is within the scope of a corrunands statement that was in tum issued in the
original input stream.

At this point you may use the step command to execute individual commands of the
script. Type step by itself to execute one command,

<2>arnpl: step
stee!T.sa7:4(36) option
<2>ampl : s t ep
steelT.sa7:5(66) option
<2>ampl: step
steelT.sa7:11(167) let ...
<2>ampl:

SECTION 13.6 STEPPING THROUGH A SCRIPT 269

If step is followed by a number. that number of commands will be executed. Every
command is counted except those having to do with model declarations, such as model
and p aram in this example.

Each s t ep returns you to an AMPL prompt. You may continue stepping until the
script ends, but at some point you will want to display some values to see if the script is
working. This sequence captures one place where the dual value changes:

<2>ampl : display avail[3], Time[3].dual, previous_ dual;
avail [3] = 22
Time[3] . dual = 3620
previous_dual = 3620

<2>ampl : step
steelT . sa7 : 17(317)
<2>ampl : step
steelT . sa7 , 15(237)
<2>ampl : step
steel T . sa7 : 16(270)
<2>ampl : step
steelT . sa7 , 17(2BO)
<2>ampl : step
stee l T . sa7 ,1 9(33 l)

continue

let ...

solve ...

if ...

l et ...
<2>ampl : display avail [3], Time[3].dual, previous_ dual;
avail [3] = 23
Time[3] . dual = 3500
previous_dual = 3 620
<2>ampl :

Any series of AMPL commands may be typed while single-stepping. After each com­
mand, the <2 >ampl prompt returns to remind you that you are still in this mode and may
use s tep to continue executing the script.

To help you step through lengthy compound commands (for , repe at, or i f)
AMPL provides several alternatives to 5 tep. The next command steps past a com­
pound command rather than into it. If we had started at the beginning. each nex t would
cause the next statement to be executed; in the case of the r epea t . lhe entire command
would be executed, stopping again only at the display command on line 28:

ampl : option single_ step 1;
ampl : commands steelT.sa7;
steelT . sa7 : 2(18) data ...
<2>ampl : next
steelT . sa7 : 4(36) option
<2>ampl: next
steelT.sa7:5(66) option
<2>ampl: next
steelT . sa7 : 11(167) let ...
<2>ampl : next
steelT . sa7 : 14(225) r epeat ...
<2>ampl : next
steelT . sa7 : 28(539) display ...
<2>ampl :

270 COMMAND SCRIPTS CHAPTER 13

Type next n to step past n commands in this way.
The commands skip and skip n work like step and step n, except that they skip

the next I or 11 commands in the script rather than executing them.

13.7 Manipulating character strings

The ability to work with arbitrary sets of character strings is one of the key advan­
tages of AMPL scripting. We describe here the string concatenation operator and several
functions for building up string-valued expressions that can be used anywhere that set
members can appear in AMPL statements. Further details are provided in Section AA.2,
and Table A-4 summarizes all of the string function s.

We also show how string expressions may be used to specify character strings that
serve purposes other than being set members. This feature allows an AMPL script to, for
example, write a different file or set different option values in each pass through a loop,
according to information derived from the contents of the loop indexing sets.

String functions and operators

The concatenation operator & takes two strings as operands, and returns a string con­
sisting of the left operand followed by the right operand. For example, given the sets
NUTR and FOOD defined by diet . mod and diet2 . dat (Figures 2-1 and 2-3), you
could use concatenation to define a set NUTR_FOOD whose members represent nutrient­
food pairs:

ampl : mode~ diet.mod;
ampl: data diet2.dat;
ampl : disp~ay NUTR, FOOD;
set NUTR ,= A B1 B2 C NA CAL:
set FOOD ,= BEEF CHK FISH HAM MCH MTL SPG TUR:
ampl: set NUTR_ FOOD := setof {i in NUTR,j in FOOD} i « « j;
ampl: disp~ay NUTR_ FOOD;
set NUTR_FOOD : =
A_BEEF B1_BEEF B2_BEEF C_BEEF NA_BEEF CAL_BEEF
A_CHK B1_CHK B2_CHK C_CHK NA_CHK CAL_CHK
A_FISH
A_HAM
A_MCH
A_MTL
A_SPG
A_TUR

B1_FISH
B1_HAM
B1_MCH
B1_MTL
B1_SPG
Bl_TUR

B2_FISH
B2_ HAM
B2_MCH
B2_MTL
B2_SPG
B2_TUR

C_FISH
C_HAM
C_MCH
C_ MTL
C_SPG
C_TUR

NA_FISH
NA_HAM
NA_MCH
NA_MTL
NA_SPG
NA_TUR

CAL_FISH
CAL_HAM
CAL_MCH
CAL_MTL
CAL_SPG
CAL_TUR :

This is not a set that you would normally want to define, but it might be useful if you
have to read data in which strings like" B2_BEEF" appear.

SECTION 13.7 MANIPULATING CHARACTER STRINGS 271

Numbers that appear as arguments to & are automatically converted to strings. As an
example, for a multi-week model you can create a set of generically-named periods
WEEKI, WEEK2 , and so forth , by declaring:

param T integer> 1 ;
set WEEKS ordered = setof {t in 1 .. T} "WEEK" & t i

Numeric operands to & are always converted to full precision (or equivalently, to %. Og
format) as defined in Section A.16. The conversion thus produces the expected results
for concatenation of numerical constants and of indices that run over sets of integers or
constants, as in our examples. Full precision conversion of computed fractional values
may sometimes yield surprising results, however. The following variation on the preced­
ing example would seem to create a set of members WEEKO . 1, WEEKO . 2, and so forth:

param T integer> 1;
set WEEKS ordered = setof {t in 1. _ T} "WEEK" & 0 . 1 *t i

But the actual set comes out differently :

ampl: let T := 4;
ampl : display WEEKS;
set WEEKS : =

WEEKO.l
WEEKO.2

WEEKO . 30000000000000004
WEEKO . 4;

Because 0.1 cannot be stored exactly in a binary representation. the value of O. 1 * 3 is
slightly different from 0.3 in "full" precision. There is no easy way to predict this
behavior, but it can be prevented by specifying an explicit conversion using sprintf.
The sprintf function does format conversions in the same way as printf (Section
A.16), except that the resulting formatted string is not sent to an output stream. but
instead becomes the function's return value. For our example. "WEEK" & 0 . 1 * t could
be replaced by sprintf ("WEEK%3 .1f" , 0.1 *t) .

The length string function takes a string as argument and returns the number of
characters in it. The match function takes two string arguments, and returns the first
position where the second appears as a substring in the ftrst. or zero if the second never
appears as a substring in the first. For example:

ampl: display {j in FOOD} (length(j), match(j,nHn));
length(j) match(j, 'H') ,=

BEEF 4 0
CHK 3 2
FISH 4 4
HAM 3 1
MCH 3 3
MTL 3 0
SPG 3 0
TUR 3 0

The substr function takes a string and one or two integers as arguments. It returns a
substring of the first argument that begins at the position given by the second argument; it

272 COMMAND SCRIPTS CHAPTER 13

has the length given by the third argument, or extends to the end of the string if no third
argument is given. An empty string is returned if the second argument is greater than the
length of the first argument, or if the third argument is less than I.

As an example combining severaJ of these functions, suppose that you want to use the
model from diet . mod but to supply the nutrition amount data in a table like this:

param: NUTR_ FOOD, amt_nutr :=
A_BEEF 60
B1 - BEEF 10
CAL BEEF 295 -
CAL CHK 770 -

Then in addition to the declarations for the parameter amt used in the model ,

set NUTR;
set FOOD;
param arnt {NUTR, FOOD} >= 0;

you would declare a set and a parameter to hold the data from the " nonstandard " table:

set NUTR_FOOD;
param amt_nutr {NUTR_FOOD} >= 0;

To use the model, you need to write an assignment of some kind to get the data from set
NUTR_FOOD and parameter amt_nutr into sets NUTR and FOOD and parameter amt.
One solution is to extract the sets ftrst, and then convert the parameters:

set NUTR setof {ij in NUTR_FOOD}
substr(ij,l,rnatch(ij, "_")-1);

set FOOD setof {ij in NUTR_FOOD}
substr(ij,match(ij, "_n)+l);

param amt (i in NUTR, j in FOOD) = amt_nutr[i & "_" & j];

As an alternative, you can extract the sets and parameters together with a script such as
the following:

param iNUTR symbolic;
param jFOOD symbolic;
param upos > 0;
let NUTR ,= ();
let FOOD ,= ();
for (ij in NUTR_FOODl

let upos := match(ij, "_");
let iNUTR := substr(ij,l,upos-l);
let jFOOD : = substr(ij,upos+l);
let NUTR := NUTR union (iNUTR);
let FOOD : = FOOD union {jFOOD);
let amt [iNUTR, jFOOD) : = amt_nutr [ij 1;

Under either alternative, errors such as a missing "_" in a member of NUTR_FOOD are
eventually signaled by error messages.

SECTION 13.7 MANIPULATING CHARACTER STRINGS 273

AMPL provides two other functions , sub and gsub, that look for the second argu­
ment in the first, like match, but that then substitute a third argument for either the first
occurrence (sub) or all occurrences (gsub) found. The second argument of all three of
these function s is actually a regular expressiol/.~ if it contains certain special characters, it
is interpreted as a pattern that may match many sub-strings. The pattern" "B [0- 9] + _ ",
for example, matches any sub-string consisting of a B fo llowed by one or more digits and
then an underscore, and occurring at the beginning of a string. Details of these features
are given in Section AA.2.

String expressions in AMPL commands

String-valued expressions may appear in place of literal strings in several contexts: in
filenames that are part of commands, including model, data, and commands, and in
fi lenames following > or » to specify redirection of output; in values assigned to AMPL
options by an option command~ and in the string-list and the database row and column
names specified in a table statement. In all such cases, the string expression must be
identified by enclosing it in parentheses.

Here is an example involving filenames. This script uses a string expression to spec­
ify files for a data statement and for the redirection of output from a display state­
ment:

model diet . mod ;
set CASES = 1 .. 3 ;
for (j in CASES) (

reset data;
data ("diet " & j & ".dat");
solve;
display Buy> ("diet" & j & ". out") ;

The result is to solve diet . mod with a series of different data fi.les dietl. dat,
diet2 . dat, and diet3 . dat, and to save the solution to files dietl . out,
diet2 . out, and diet3. out. The value of the index j is convelted automatically
from a number to a string as previously explained.

The following script uses a string expression to specify the value of the option
cplex_options, which contains directions for the CPLEX solver:

model sched.mod;
data sched.dat;
option solver cplex;
set OIR! = {"primal", "dual"} i
set DIR2 = {"primalopt", "dualopt"};
for {i in DIRl, j in DIR2} {

option cplex_options (i & " " & j) i

solve;

274 COMMAND seRI PTS CHAPTER 13

The loop in this script solves the same problem four limes, each using a different pairing
of the directives primal and dual with the directives primalopt and dualopt.

Examples of the use of string expressions in the table statement, to work with mul­
tiple database files, tables, or columns, are presented in Section 10.6.

14
Interactions with Solvers

This chapter describes in more detail a variety of mechanisms used by AMPL to con­
trol and adjust the problems sent to solvers, and t.o extract and interpret information
returned by them. One of the most important is the presolve phase. which performs sim­
plifications and transformations that can often reduce the size of the problem actually
seen by the solver; this is the topic of Section 14.1. Suffixes on model components per­
mit a variety of useful information to be returned by or exchanged with advanced solvers,
as described in Sections 14.2 and 14.3. Named problems enable AMPL scripts to manage
multiple problem instances within a single model and carry out iterative procedures that
alternate between very different models, as we show in Sections 14.4 and 14.5.

14.1 Presolve

AMPL' s presolve phase attempts to simplify a problem instance after it has been gen­
erated but before it is sent to a solver. It runs automatically when a solve command is
given or in response to other commands that generate an instance. as explained in Section
A. 1S.I . Any simplifications that presolve makes are reversed after a solution is returned,
so that you can view the solution in terms of the original problem. Thus presolve nor­
mally proceeds s ilently behind the scenes. Its effects are only reported when you change
option show_sta t s from its default value of 0 to 1:

ampl : model steelT.mod; data steelT.dat;
ampl : option show_ stats 1;
ampl : solve;
Presolve eliminates 2 constraints and 2 variables .
Adjusted problem :
24 variables, all linear
12 constraints, all linear ; 38 nonzeros
1 linear objective; 24 nonzeros .

MINOS 5 . 5 : optimal solution found .
15 iterations, objective 515033

276 INTERACTIONS WITH SOLVERS CHAPTER 14

You can determine which variables and constraints presolve eliminated by testing, as
explained in Section 14.2, to see which have a status of pre:

ampl: print (j in 1. "_ nvars:
ampl? _ var[jJ.status : ~pre8): _ varname{j};
Inv['bands', 0)
Inv['coils', 0]

ampl : print {i in l .. _ ncons:
ampl? _ can[ll.status = "pre n }: _ conname[i};
Ini t_Inv (, bands']
Init_Inv('coils']

You can then use show and display to examine the eliminated components.
In this section we introduce the operations of the presolve phase and the options for

controlling it from AMPL. We then explain what presolve does when it detects that no
feasible solution is possible. We will not try to explain the whole presolve algorithm,
however; one of the references at the end of this chapter contains a complete description.

Activities of the presolve phase

To generate a problem instance, AMPL first assigns each variable whatever bounds are
specified in its var declaration, or the special bounds -Infinity and Infinity
when no lower or upper bounds are given. The presolve phase then tries to use these
bounds together with the linear constraints to deduce tighter bounds that are still satisfied
by all of the problem's feasible solutions. Concurrently, presolve tries to use the tighter
bounds to detect variables that can be fixed and constraints that can be dropped.

Presolve initially looks for constraints that have only one variable. Equalities of this
kind fix a variable, which may then be dropped from the problem. Inequalities specify a
bound for a variable, which may be folded into the existing bounds. In the example of
steel T . mod (Figure 4-4) shown above, presolve eliminates the two constraints gener­
ated from the declaration

subject to Initial {p in PROD}: Inv[p,O] = invO [p];

along with the two variables fix ed by these constraints.
Presolve continues by seeking constraints that can be proved redundant by the current

bounds. The constraints eliminated from dietu. mod (Figure 5-1) provide an example:

ampl: model dietu.mod; data dietu.dat;
ampl: option show_ stats 1;
ampl : solve;

Presolve eliminates 3 constraints.
Adjusted problem:
8 variables, all linear
5 constraints, all linear; 39 nonzeros
1 linear objective; 8 nonzeros .

MINOS 5.5: optimal solution found.
S iterations, objective 74.27382022

r SECTION 14.1 PRESOLVE 277

ampl: print (i in ~ .• _ nconB:
ampl? _ con[i}.statuB = "pre"): _ conname{i1i
Diet_Min [, B1' 1
Diet_Min [, B2 ' J
Diet_Max ['A']

On further investigation, the constraint Diet_Min ['Bl f] is seen to be redundant
because it is generated from

subject to Diet_Min {i in MINREQ} :
sum {j in FOOD} amt[i,j] * Buy[j] >= n_min[il i

with n_min ['B1 ' 1 equal to zero in the data. Clearly this is satisfied by any combina­
tion of the variables, since they all have nonnegative lower bounds. A less trivial case is
given by Diet_Max [, A' l , which is generated from

subject to Diet_Max (i in MAXREQ}:
sum {j in FOOD} amt[i,j) * Buy(j] <= n_max[i];

By setting each variable to its upper bound on the left-hand side of this constraint, we geL
an upper bound on the total amount of the nutrient that any solution can possibly supply.
In particular, for nutrient A:

ampl : display sum (j in FOOD) amt['A',j} * f _ max[j};
sum{j in FOOD} amt['A' ,j]*f_max[j] = 2860

Since the data file gives n_max [, A '] as 20000, this is another constraint that canllot
possibly be violated by the variables.

Following these tests, the first part of presolve is completed. The remainder consists
of a series of passes through the problem, each attempting to deduce still tighter variable
bounds from the current bounds and the linear constraints. We present here only one
example of the outcome, for the problem instance generated from rnul ti . mod and
mul ti . da t (Figures 4-1 and 4-2):

ampl: model multi.mod;
ampl: data multi.dat;
ampl: option show_stats 1;
ampl: solve;

Presolve eliminates 7 constraints and 3 variables .
Adjusted problem :
60 variables, all linear
44 constraints, all linearj 165 non zeros
1 linear objective; 60 nonzeros.

MINOS 5.5: optimal solution found.
41 iterations, objective 199500

ampl: print (j in 1 .• _ nvars:
ampl? _ var.status[j) = "pre"}: _ varname[j};
Trans ['GARY', 'LAN', 'plate']
Trans ['CLEV', 'LAN', 'plate']
Trans['PITT', 'LAN', 'plate']

278 INTERACTIONS WITH SOLVEAS CHAPTER 14

ampl : print (1 in 1 •. _ Dcons:
ampl? _ conliJ.status = "pre H

): _ conname[i}i
Demand ['LAN' , I plate']
Multi ['GARY', 'LAN' I
Multi ['GARY' , ' WIN' I
Multi ['CLEV', 'LAN' I
Multi [' CLEV' , 'WIN' I
Multi['PITT', 'LAN' I
Multi['PITT', 'WIN' I

We can see where some of the simplifications come from by expanding the eliminated
demand constraint:

ampl: expand Demand{'LAN','plate'};
subject to Demand[' LAN', 'plate'] :

Trans['GARY', 'LAN', 'plate'] + Trans['CLEV', 'LAN', 'plate'] +
Trans['PITT', 'LAN' , 'plate'] = OJ

Because demand [I LAN ' , , p la t e'] is zero in the data, this constraint forces the sum
of three nonnegative variables to be zero, as a result of which all three must have an
upper limit of zero in any solution. Since they already have a lower limit of zero, they
may be fixed and the constraint may be dropped. The other eliminated constraints all
look like this:

ampl : expand MUlti ['GARY', 'LAN'];
subject to Multi['GARY' , 'LAN'] :

Trans ['GARY ', 'LAN' , ' b ands'] + Trans ['GARY' I 'LAN', ' coils ' J +
Trans['GARY ' , 'LAN', ' plate'] <= 625;

They can be dropped because the sum of the upper bounds of the variables on the left is
less than 625 . These variables were not originally given upper bounds in the problem,
however. Instead, the second part of presolve deduced their bounds. For this simple
problem, it is not hard to see how the deduced bounds ari se: the amount of any product
shipped along anyone link cannot exceed the demand for that product at the destination
of the link. In the case of the destinations LAN and WtN, the total demand for the three
products is less than the limit of 625 on total shipments from any origin, making the
total-shipment constraints redundant.

Controlling the effects of presolve

For more complex problems, presol ve's eliminations of variables and constraints may
not be so easy to explain, but they can represent a substantial fraction of the problem.
The time and memory needed to sol ve a problem instance may be reduced considerably
as a result. In rare cases, presol ve can also substantially affect the optimal values of the
variables - when there is more than one optimal solution - or interfere with other pre­
processing routines that are built into your sol ver software. To tum off presolve entirely,
set option presolve to 0; to turn off the second part only, set it to l. A higher value for
thi s option indicates the max imum number of passes made in part two of presol ve; the
default is 10.

SECTION 14.1 PRESOLVE 279

Following presolve, AMPL saves two sets of lower and upper bounds on the variables:
ones that renect the tightening of the bounds implied by constraints that presolve elimi­
nated, and ones that reflect further tightening deduced from constraints that presolve
could not eliminate. The problem has the same solution with either set of bounds, but the
overall solution time may be lower with one or the other, depending on the optimization
method in use and the specifics of the problem.

For continuous variables, nonnally AMPL passes to solvers the first set of bounds, but
you can instruct it to pass the second set by changing option var_bounds to 2 from its
default value of I. When active-set methods (like the simplex method) are applied, the
second set tends to give rise to morc degenerate variables, and hence more degenerate
iterations that may impede progress toward a solution.

For integer variables, AMPL rounds any fractional lower bounds up to the next higher
integer and any fractional upper bounds down to the next lower integer. Due to inaccura­
cies of finite-precision computation, however, a bound may be calculated to havc a value
that is just slightly different from an integer. A lower bound that should be 7, for exam­
ple, might be calculated as 7.00000000001, in which case you would not want the bound
to be rounded up to 8! To deal with this possibility, AMPL subtracts the value of option
presol ve_inteps from each lower bound, and adds it to eaeh upper bound, before
rounding. If increasing this setting to the value of option presolve_intepsmax
would make a difference to the rounded bounds of any of the variables, AMPL issues a
warning. The default values of presol ve_inteps and presol ve_intepsmax are
I.De-6 and I.De-5, respectively.

You can examine the first set of presolve bounds by using the suffixes .lbl and
. ubl, and the second set by .lb2 and. ub2. The original bounds, whieh are sent to the
solver only if presolve is turned off, are given as .lbO and. ubO. The suffixes .lb and
. ub give the bound values currently to be passed to the solver, based on the current val­
ues of options presol ve and var_bounds.

Detecting infeasibility in presolve

If presolve detennines that any variable's lower bound is greater than its upper bound.
then there can be no solution satisfying all the bounds and other constraints, and an error
message is printed. For example, here's what would happen to steel3 .mod (Figure
I-Sa) if we changed market ["bands" 1 to 500 when we meant 5000:

ampl : model stee13.modi
ampl : data stee13.dati
ampl: let market{ ftbands ft 1 := 500i
ampl: solvei
inconsistent bounds for var Make('bands'J :

lower bound = 1000 > upper bound = 500;
difference = 500

This is a simple case, because the upper bound on variable Make [II bands "] has clearly
been reduced below the lower bound. Presolve's more sophisticated tests can also find

280 INTERACTIONS WITH SOLVERS CHAPTER 14

infeasibi lities thai are not due to any onc variable. As an example. consider the constraint
in this model:

subject to Time: sum {p in PROD} l/rate[p)*Make[p] <= avail;

If we reduce the value of avail to 13 hours, presolve deduces that this constraint can't
possibly be satisfi ed:

ampl: let market{~bands·l := 5000,
ampl: let avail := 13;
ampl: solve;
presolve: constraint Time cannot hold :

body <= 13 cannot be >= 13 . 2589 ; difference = -0.258929

The " body" of constraint Time is sum {p in PROD} l/rate [pJ *Make [pJ, the
pan that contains the variables (see Section 12,5), Thus, given the value of avail that
we have set, the constraint places an upper bound of 13 on the value of the body expres­
sion. On the other hand, if we set each variable in the body expression equal to its lower
bound, we get a lower bound on the value of the body in any feasible solution:

ampl : display sum {p in PROD} 1/rate[p]*Make[p}.lb2;
surn(p in PROD) 1/rate[p)*(Make[p] ,lb2) = 13.2589

The statement from presolve that body <= 13 cannot be >= 13,2589 is thus repon­
ing that the upper bound on the body is in conflict with the lower bound, implying that no
solution can satisfy all of the problem's bounds and constraints.

Presolve reports the difference between its two bounds for constraint Time as
-0.258929 (to six digits). Thus in this case we can guess that 13.258929 is, approxi­
mately, the smallest value of avail that allows for a feasible solution, which we can
veri fy by ex peri ment:

ampl : let avail := 13.258929;
ampl: solve;
MINOS 5.5: optimal solution found.
o iterations, objective 61750.00214

If we make avai 1 just slightly lower, however, we again get the infeasibility message:

ampl : let avail := 13.258928;
ampl : solve;
presolve: constraint Time cannot hold:

body <= 13.2589 cannot be >= 13.2589;
difference = -S.7142ge-07

Setting $presolve_eps >= 6.86e-07 might help .

Although the lower bound here is the same as the upper bound to six digits, it is greater
than the upper bound in full preci sion, as the negative value of the difference indicates.

Typing solve a second time in this situation tells AMPL to override presolve and
send the seemingly inconsistent deduced bounds to the solver:

SECTION 14.1

ampl: solve;
MINOS 5.5: optimal solution found .
a iterations, objective 61749 . 99714

amp1: option display-precision 10;

ampl: display commit, Make;
commit Make : =

bands 1000 999 . 9998857
coils 500 500
plate 750 750

PAESOLVE 281

MINOS declares that it has found an optimal Solulion, though with Make ["bands" 1
being slightly less than its lower bound commi t ["bands " l! Here MINOS is applying
an internal tolerance that allows small infeasibilities to be ignored; the AMPUMINOS doc­
umentation explains how this tolerance works and how it can be changed. Each solver
applies feasibility tolerances in its own way, so it 's not surprising that a different solver
gives different results:

ampl : option solver cplex;
ampl: option send_ statuses 0;

amp1: solve;
CPLEX 8.0.0: Bound infeasibility column 'xl'.
infeasible problem.
1 dual simplex iterations (0 in phase I)

Here CPLEX has applied its own presolve routine and has detected the same infeasibility
that AMPL did. (You may see a few additional lines about a "suffix" named dunbdd;
this pertains to a direction of unboundedness that you can retrieve via AMPL' s solver­
defined suffix feature described in Section 14.3.)

Situations like this come about when the implied lower and upper bounds on some
variable or constraint body are equal, at least for all practical purposes. Due to impreci­
sion in the computations, the lower bound may come out slightly greater than the upper
bound. causing AMPL's presolve to report an infeasible problem. To circumvent this dif­
ficulty, you can reset the option presol ve_eps from its default value of 0 to some
small positive value. Differences between the lower and upper bound are ignored when
they are less than this value. If increasing the current presol ve_eps value to a value
no greater than presolve_epsmax would change presolve's handling of the problem,
then presolve displays a message to this effect, such as

Setting $presolve_eps >= 6.86e-07 might help .

in the example above. The default value of option presol ve_eps is zero and
pre sol ve_epsmax is 1.0e-5.

A related situation occurs when imprecision in the computations causes the implied
lower bound on some variable or constraint body to come out slightly lower than the
implied upper bound. Here no infeasibility is detected, but the presence of bounds that
are nearly equal may make the solver's work much harder than necessary. Thus when-

282 INTERACTIONS WITH SOLVERS CHAPTER 14

ever the upper bound minus the lower bound on a variable or constraint body is positive
but less than the value of option presol ve_f ixeps, the variable or constraint body is
fixed at the average of the two bounds. If increasing the value of presolve_fixeps
to at Illost the value of presol ve_f ixepsrnax would change the results of presolve. a
message to this effect is displayed.

The number of separate messages displayed by presolve is limited to the value of
presol ve_warnings. which is 5 by default. Increasing option show_s tats to 2
may elicit some additional information about the presolve run, including the number of
passes that made a difference to the results and the values to which presolve_eps and
presol ve_inteps would have to be increased or decreased 1O make a difference.

14.2 Retrieving results from solvers

In addition to the solution and related numerical values, it can be useful to have cer­
tain symbolic information about the results of solve commands. For example, in a
script of AMPL commands, you may want to test whether the most recent solve encoun­
tered an unbounded or infeasible problem. Or, after you have solved a linear program by
the simplex method. you may want to use the optimal basis partition to provide a good
start for solving a related problem. The AMPL-soiver interface permits solvers to return
these and related kinds of status information that you can examine and use.

Solve results

A solver fini shes its work because it has identified an optimal solution or has encoun­
tered some other terminating condition. In addition to the values of the variables. the
solver may set two built-in AMPL parameters and an AMPL option that provide informa­
tion about the outcome of the optimization process:

ampl: model diet_mod;
ampl: data diet2.dat;

ampl: display solve_ result_ num, solve_ result;
solve_result nurn = -1
solve_result '?'

ampl: solve;
MINOS 5.5: infeasible problem.
9 iterations

ampl: display solve_ result_ num, solve_ result,
solve __ result_nurn = 200
solve_result = infeasible

r
SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS

ampl : option solv6_ result_ table;
option solve_result table '\
o solved\
100 solved?\
200 infeasible\
300 unbounded\
400 limit\
500 failure\
, ;

283

At the beginning of an AMPL sess ion , sol ve_resul t_nurn is -1 and
sol ve_resul t is '?' . Each solve command resets these parameters, however, so
that they describe the sol ver's status at the end of its run, solve_result_num by a
number and so l ve_r esult by a character string. The solve_result_table
option lists the possible combinations, which may be interpreted as follows:

sol ve_resul t vaJues

number string interpretation

0- 99 solved optimal solution found

100-199 solved? optimal solution indicated. but error likely
200-299 infeasible constraims cannot be sati sfied
300-399 unbounded objective can be improved without limit
400-499 limit stopped by a limit that you SCI (such as on iteralions)
500-599 failure stopped by an error condition in the sol ver

Normally thi s status information is used in scripts, where it can be tested to di stinguish
among cases that must be handled in different ways. As an example. Figure 14-1 depicts
an AMPL script for the diet model that reads the name of a nutrient (from the standard
input, using the filename - as explained in Section 9.5), a starting upper limit for that
nutrient in the diet, and a step size for reducing the limit. The loop continues running
until the limit is reduced to a point where the problem is infeasible, at which point it
prints an appropriate message and a table of solutions previously found . A representative
run looks like this:

ampl: commands diet.run;
<l>ampl? NA
<l>ampl? 60000
<l>arnpl? 3000
--- infeasible at 48000 ---

51000
54000
57000
60000

N_obj
115 . 625
109 . 42
104 . 05
101. 013

N_dual
-0 . 0021977
-0 . 00178981
-0.00178981

7 . 03757e-19

Here the limit on sodium (NA in the data) is reduced from 60000 in steps of 3000, until
the problem becomes infeasible at a limit of 48000.

The key statement of diet . run that tests for infeasibility is

284 INTERACTIONS WITH SOLVERS

model diet . mod ;
data diet2 . dat ;

param N symbolic in NUTR;
param nstart > 0;
param nstep > 0 i

CHAPTER 14

read N, nstart, nstep <- # read data interactively

set N_MAX default {};
param N_obj {N_MAX};
param N_dual {N_MAX};
option solver_ffisg 0;

for {i in nstart .. 0 by -nstep} {
let n_max[N] : = i ·
solve;
if solve_result = " infeasible" then {

printf "--- infeasible at %d ---\n\n " , i;
break;

let N_MAX : = N_MAX union til;
let N_obj[i] : = Total_Cost;
let N_dual[il : = Diet[N] .dual ;

Figure 14-1: Sensitivity analysis with infeasibility test (diet . run).

if solve_result = " infeasible" then {
printf "--- infeasible at %d ---\n\n", i;
break ;

The if condition could equivalently be written 200 <= solve_result_nurn < 300 .
Normally you will want to avoid this latter alternative, since it makes the script more
cryptic. It can occasionally be useful, however, in making fine distinctions among differ­
ent solver termination conditions. For example, here are some of the values that the
CPLEX solver sets for different optimality conditions:

sol ve_resul t_num message at termination

o optimal solution
1 primal has unbounded optimal face
2 optimal integer solution
3 optimal integer solution within mipgap or absmipgap

The value of sol ve_resul t is "solved" in aU of these cases, but you can test
solve_result_num if you need to distinguish among them. The interpretations of
solve_result_num are entirely solver-specific: you' ll have to look al a particular
solver's documentation to see which values il returns and what they mean.

AMPL' s solver interfaces arc set up to display a few lines like

SECTION 14.2

MINOS 5 . 5: infeasible problem .
9 iterations

RETRIEVING RESULTS FROM SOLVERS 285

to summarize a solver nm that has fini shed. If you are running a script that executes
solve frequently, these messages can add up to a lot of output; you can suppress their
appearance by setting the option sol ver_rnsg to O. A built-in symbolic parameter,
sol ve_rnessage, still always contains the most recent solver return message, even
when display of the message has been turned off. You can display thi s parameter to ver­
ify its value:

ampl: display solve_message;
solve_message = 'MINOS 5 . 5 : infeasible problem . \
9 iterations'

Because solve_message is a symbolic parameter, its value is a character string. It is
most useful in scripts, where you can use character-string functions (Section 13.7) to test
the message for indications of optimality and other outcomes.

As an example, the test in diet . run could also have been written

if match (solve_message, "infeasible") > 0 then {

Since return messages vary from one solver to the next, however, for most situations a
test of sol ve_resul t will be simpler and less solver-dependent.

Solve results can be returned as described above only if AMPL's invocation of the
solver has been successful. Invocation can fail because the operating system is unable to
find or execute the specified solver, or because some low-level error prevents the solver
from attempting or completing the optimization. Typical causes include a misspelled
sol ver name, improper installation or licensing of the solver, insufficient resources, and
termination of the solver process by an execution fault ("core dump") or a " break" from
the keyboard . In these cases the error message that foll ows solve is generated by the
operating system rather than by the solver, and you might have to consult a system guru
to track down the problem. For example, a message like can't open at 8 8 71. n l
usually indicates that AMPL is not able to write a temporary fil e; it might be trying to
write to a disk that is full , or to a directory (folder) for which you db not have write per­
mission. (The directory for temporary file s is specified in option TMPDIR.)

The built-in parameter sol ve_exi tcode records the success or failure of the most
recent solver invocation. Initially - I , it is reset to 0 whenever there has been a successful
invocation, and to some system-dependent nonzero value otherwise:

ampl : reset;
ampl : display Bolve_ exitcode;
solve_exitcode = -1

ampl: model diet .mod;
amp1: data diet2.dat;
ampl : option solver xplex;
ampl: solve;
Cannot invoke xplex; No such file or directory

286 INTERACTIONS WITH SOLVERS

ampl: display Bolv9_exitcode;
solve_exitcode = 1024
ampl : display solve_result, solve_ result_ num;
solve_result = '?'
solve_result_num = -1

CHAPTER 14

Here the failed invocation , due to the misspe lled solver name xplex, is reflected in a
positive sol ve_exi tcode value. The status parameters sol ve_resul t and
sol ve_resul t_num are also reset to their initial values I ?' and -l.

Ir solve_exitcode exceeds the value in option solve_exitcode_max, then
AMPL aborts any currently executing compound statements (include, conunands,
repeat, for, if), The default value of solve_exitcode_max is 0, so that AMPL
normally aborts compound statements whenever a solver invocation fails. A script that
sets solve_exitcode_max to a higher value may test the value of
sol ve_exi tcode, but in general its interpretation is not consistent across operating
systems or solvers.

Solver statuses of objectives and problems

Sometimes it is convenient to be able to refer to the solve result obtained when a par­
ticular objective was most recently optimized. For this purpose, AMPL associates with
each built-in solve result parameter a "status" suffix:

built-in parameter suffix

solve_resul t . resul t
solve_result_num .result_num
solve_message . message
solve_exitcode .exitcode

Appended to an objective name, this suffix indicates the value of the corresponding
built-in parameter at the most recent solve in which the objective was current.

As an example. we consider again the multiple objectives defined for the assignment
model in Section 8.3:

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost(i,j] * Trans[i,jj;

minimize Pref_of {i in ORIG):
sum (j in DEST) cost(i,j] * Trans(i,j];

After minimi zing three of these objectives. we can view the solve status values for all of
them:

ampl: model transp4.mod; data assign.dati solve;
CPLEX B.O.O: optimal solution; objective 2B
24 dual simplex iterations (O in phase I)
Objective = Total_Cost

-
SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS

ampl : objective Prer_ or{'Coullard'};
ampl : solve;
CPLEX 8 . 0 . 0 : optimal solut i on ; objective 1
3 simplex iteratio n s (0 in phase Il
ampl : objective Pref_ or['Hazen');
ampl : solve;
CPLEX 8 . 0 . 0 : optimal solution; objective 1
5 simplex iterations (0 in phase I)

ampl : display Total_ Cost.result, PreE_ oE.result;
Total_Cost . result = solved

Pref_of . resul t [*] : =
Coullard solved

Daskin .? '

Hazen solved
Hopp '? '

Iravani '? '
Linetsky '? '
Mehrotra '? '

Nelson '? I

Smilowitz ' ? '
Tamha ne ' ? '

White '? '

287

For the objectives that have not yet been used, the . r esu l t suffix is unchanged (at its
initial value of ' ?' in this case).

These same suffixes can be applied to the " problem" names whose use we describe
later in this chapter. When appended to a problem name. they refer to the most recent
optimization carried out when that problem was current.

Solver statuses of variables

In addition (0 providing for return of the overall status of the optimization process as
described above, AMPL lets a solver return an individual status for each variable. This
feature is intended mainly for reporting the basis status of variables after a linear program
is solved either by the simplex method, or by an interior-point (barrier) method followed
by a " crossover" routine. The basis status is also relevant to solutions returned by cer­
tain nonlinear solvers, notably MINOS, that employ an extension of the concept of a basic
solution .

In addition to the variables declared by var statements in an AMPL model , solvers
also define "slack" or " anificial " variables that are associated with constraints. Solver
statuses for these laner variables are defined in a similar way. as explained later in this
section. Both variables and constraints also have an "AMPL status" that distinguishes
those in the current problem from those that have been removed from the problem by pre­
sol ve or by commands such as drop. The interpretation of AMPL statuses and their rela­
tionship to solver slatuses are discussed at the end of this section.

288 INTERACTIONS WITH SOLVERS CHAPTER 14

The major use of solver status values from an optimal basic solution is to provide a
good slarting point for the next optimization run . The option send_s ta tuses, when
left at its default value of 1. instructs AMPL to include statuses with the information about
variables sent to the solver at each solve. You can see the effect of this feature in
almost any sensitivity analysis that fe-solves after making some small change to the prob­
lem.

As an example, consider what happens when the multi -period production example
from Figure 6-3 is solved repeatedly after increases of five percent in the availability of
labor. With the send_statuses option set to 0, the solver reports about 18 iterations
of the dual simplex method each time it is run :

ampl: model steelT3.mod;
ampl: data steelT3.dat;
ampl: option send_ statuses 0;
ampl: solve;
CPLEX 8.0.0 : optimal solution; objective 514521 . 7143
18 dual simplex iterations (0 in phase I)
ampl: let (t in 1 •• T) avail{t] := 1.05 * avail{t];
ampl : solve;
CPLEX 8 . 0.0: optimal solution; objective 537104
19 dual simplex iterations (0 in phase I)
ampl : let (t in 1 •• T) avail{t] := 1.05 * svail{t];
ampl: solve;
CPLEX 8 . 0 . 0: optimal solution; objective 560800.4
19 dual simplex iterations (0 in phase I)
ampl : let (t in 1 •• T) avail{t] := 1.05 * avail{t];
ampl : solve;
CPLEX 8.0.0: optimal solution; objective 585116 . 22
17 dual simplex iterations (0 in phase I)

With send_statuses left at its default value of I, however, only the first solve
takes 18 iterations. Subsequent runs take a few iterations at most:

ampl : model steelT3.mod;
ampl: data steelT3.dat;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 514521.7143
18 dual simplex iterations (0 in phase I)
ampl: let (t in 1 .. T) avail{t] := 1.05 * avail{t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 537104
1 dual simplex iterations (0 in phase I)
ampl: let (t in 1 •• T) avail{t] := 1.05 * avail{t];
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 560800.4
o simplex iterations (0 in phase I)
ampl: let (t in 1 .. T) svail{t1 := 1.05 * avail{t1;
ampl: solve;
CPLEX 8.0.0: optimal solution; objective 585116.22
1 dual simplex iterations (0 in phase I)

r
SECTION 14.2 RETRIEVING RESULTS FROM SOLVERS 289

Each solve after the first automatically uses the variables' basis statuses from the previ­
ous solve to construct a starting point that turns out to be only a few iterations from the
optimum. In the case of the third sol vet the previous basis remains optimal; the solver
thus confirms optimality immediately and reports taking 0 iterations.

The following discussion explains how you can view, interpret, and change status val­
ues of variables in the AMPL environment. You don't need to know any of this to use
optimal bases as starting points as shown above, but these features can be useful in cer­
tain advanced circumstances.

AMPL refers to a variable's solver status by appending. sstatus to its name. Thus
you can print the statuses of variables with display. At the beginning of a session (or
after a reset). when no problem has yet been solved. all variables have the status
none:

ampl: model diet.mod;
ampl: data diet2a.dat;

ampl: display Buy.sstatuB;
Buy.sstatus [*J : =

BEEF none
CHK none

FISH none
HAM none
MCH none
MTL none
SPG none
TUR none

After an invocation of a simplex method solver, the same display lists the statuses of
the variables at the optimal basic solution:

ampl: solve;
MINOS 5.5: optimal solution found .
13 iterations, objective 118.0594032

ampl: display Buy.sstatus;
Buy. 55 ta tus [*] : =
BEEF bas

CHK low
FISH low

HAM upp
MCH upp
MTL upp
SPG bas
TUR low

Two of the variables, Buy ['BEEF'] and Buy [, SPG') . have status bas, which means
they are in the optimal basis. Three have status low and three upp, indicating that they
are nonbasic at lower and upper bounds, respectively. A table of the recognized solver
status values is stored in option sstatus_table:

290 INTERACTIONS WITH SOLVERS

ampl: option sstatuB_ table;
option sstatus_table '\
o none no status assigned\
1 bas basic\
2 sup superbasic\
3 low nonbasic <= (normally
4 upp nonbasic >= (normally

CHAPTER 14

=) lower bound\
=) upper bound\

5 equ nonbasic at equal lower and upper bounds\
6 btw nonbasic between bounds\
, ;

Numbers and short strings representing status values arc given in the first two columns.
(The numbers are mainly for communication between AMPL and solvers, though you can
access them by using the suffix. sstatus_num in place of . sstatus.) The entries
in the third column are comments. For non basic variables as defined in many textbook
simplex methods, only the low status is applicable; other nonbasic statuses are required
for the more general bounded-variable simplex methods in large-scale implementations.
The sup status is used by solvers like MINOS to accommodate nonlinear problems. This
is AMPL's standard sstatus_table; a solver may substhute its own table, in which
case its documentation will indicate the interpretation of the table entries.

You can change a variable's status with the let command. This facility is some­
limes useful when you want to re-solve a problem after a small , well-defined change. In
a later section of this chapter, for example, we employ a pattern-cutting model (Figure
14-2a) that contains the declarations

param nPAT integer >= 0 ; # number of patterns
set PATTERNS = 1 .. nPAT; # set of patterns
var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

In a related script (Figure 14-3), each pass through the main loop steps nPAT by one,
causing a new variable Cut [nPAT] to be created. It has an initial solver status of
"none", like all new variables, but it is guaranteed, by the way that the pattern genera­
tion procedure is constructed, to enter the basis as soon as the expanded cutting problem
is re-solved. Thus we give it a status of "bas" instead:

let Cut [nPAT] . sstatus : = "bas";

It turns out that this change tends to reduce the number of iterations in each re­
optimization of the cutting problem. at least with some simplex solvers. Seuing a few
statuses in this way is never guaranteed to reduce the number of iterations, however. Its
success depends on the particular problem and solver, and on their interaction with a
number of complicating factors:

• After the problem and statuses have been modified, the statuses conveyed
to the solver at the next sol ve may not properly define a basic solution .

• Arter the problem has been modified , A~PL's presolve phase may send a
different subset of variables and constraints to the solver (unless option pre­
solve is set to zero). As a result, the statuses conveyed to the solver may

r
SECTION 14.2 AETRIEVING RESULTS FROM SOLVERS

not cOITespond to a useful start ing point for the next solve, and may n01
properly define a basic solution .

• Some solvers, notably MINOS, use the current values as well as the statuses
of the variables in constructing the starting point at the next solve (un less
option reset_initial_guesses is sel to I).

291

Each solver has its own way of adjusting the statuses that it receives from AMPL, when
necessary, to produce an initial basic solution that it can use. Thus some experimentation
is usually necessary to determine whether any particular strategy for modifying the sta­
tuses is useful.

For models that have several var declarations, AMPL's generic synonyms (Section
12.6) for variables provide a convenient way of getting overall summaries of statuses.
For example, using expressions like _var, _varname and _var . sstatus in a dis­
play statement, you can easily specify a table of all basic variables in steel T3 . mod
along with their optimal values:

amp 1 , display {j in 1.. - nvars: _ var [j J . sstatus "bas"}
ampl? (_ varname [j J, _ vllr[j]);

_varname[j) _var[j] : =

1 "Make ['bands', 1]" 5990
2 "Make ('bands' ,2] " 6000
3 "Make ['bands' ,31 " 1400
4 "Make ['bands', 4] n 2000
5 "Make['coils',l]" 1407
6 "Make['coils' , 2]" 1400
7 "Make ['coils', 3]" 3500
8 "Make('coils', 4]" 4200
15 "Inv('coils', 1]" 1100
21 "Se11['bands',31 " 1400
22 "Sell ['bands', 41" 2000
23 "Se11['coils',l]" 307

An analogous listing of all the variables wou ld be produced by the command

display _varname, _var;

Solver statuses of constraints

Implementations of the simplex method typically add one variable for each constraint
that they receive from AMPL. Each added variable has a coefficient of I or - I in its asso­
ciated constraint, and coefficients of 0 in all other constraints. If the associated constraint
is an inequality, the addition is used as a "slack" or "surplus" variable; its bounds are
chosen so that it has the effect of turning the inequality into an equivalent equation. If the
associated constraint is an equality to begin with, the added variable is an "artificial" one
whose lower and upper bounds are both zero.

An efficient large-scale simplex solver gains two advantages from having these · ' logi­
cal" variables added to the "structural" ones that it gets from AMPL: the linear program

292 INTERACTIONS WITH SOLVERS CHAPTER 14

is converted to a simpler form, in which the only inequalities are the bounds on the vari­
ables, and the solver's initialization (or "crash") routines can be designed so that they
find a starting basis quickly. Given any starting basis, a first phase of the simplex method
finds a basis for a feasible solution (if necessary) and a second phase find s a basis for an
optimal solution; the two phases are distinguished in some solvers' messages:

ampl: mode~ steelP.mod;
ampl: data steelP.dat;

ampl: solve;
CPLEX 8.0.0 : optimal solution; objective 1392175
27 dual simplex iterations (0 in phase I)

Solvers thus commonly treat all logical variables in much the same way as the structural
ones, with only very minor adjustments to handle the case in which lower and upper
bounds are both zero. A basic solution is defined by the collection of basis statuses of all
variables, structural and logical.

To accommodate statuses of logical variables, AMPL permits a solver to return status
values corresponding to the constraints as well as the variables. The solver status of a
constraint, written as the constraint name suffixed by . sstatus, is interpreted as the
status of the logical variable associated with that constraint. For example, in our diet
model, where the constraints are all inequalities:

subject to Diet {i in NUTR} :
n_min[i] <= sum {j in FOOD} amt[i,j) * Buy[j] <= n_max[il;

the logical variables are slacks that have the same variety of statuses as the structural vari­
ables:

ampl : model diet.mod;
ampl : data diet2a.dat;

ampl : option show_ stats 1;
ampl : solve;
8 variables, all linear
6 constraints, all linear; 47 nonzeros
1 linear objective; 8 nonzeros.
MINOS 5.5: optimal solution found .
13 iterations, objective 118 . 0594032

ampl: display Buy.sstatus;
Buy.sstatus [*1 :=

BEEF bas
CHK low

FISH low
HAM upp
MCH upp
MTL upp
SPG bas
TUR low

SECTION 14.2

ampl: display Diet . sstatus;
diet.sstatus [*j :=

A bas
81 bas
82 low

C bas
CAL bas

NA upp

RETRIEVING RESULTS FROM SOLVERS 293

There are a total of six basic variables, equal in number to the six constraints (one for
each member of set NUTR) as is always the case at a basic solution. In our transportat ion
model, where the constrai nts are equalities:

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,j] = supply[i] ;

subject to Demand {j in DEST}:
sum (i in ORIG) Trans[i,j] = demand[j]i

the logical variables are arti ficials that receive the status" equ " when nonbasic. Here's
how the statuses for all constraints might be displayed using AMPL's generic constraint
synonyms (analogous to the variable synonyms previously shown):

ampl: model transp.mod;
ampl: data transp.dat ;
ampl: solve;
MINOS 5.5: optimal solution found.
13 iterations, objective 196200

ampl: di Bpl ay _ conname, _ can . slack,
conname _con. slack

1 "Supply['GARY' I" -4.54747e-13
2 "Supply['CLEV' I" 0
3 "Supply[' PITT' I" -4.54747e-13
4 n Demand [, FRA '] " -6. 82121e-13
5 " Demand ['DET' I" 0
6 " Demand [, LAN'] .. 0
7 "Demand ['WIN']" 0
8 " Demand ['STL']" 0
9 "Demand ['FRE')" 0
10 "Demand ['LAF' j" 0

_ con . sstatus;
_con.sstatus :=

equ
equ
equ
bas
equ
equ
equ
equ
equ
equ

One artificial variable, on the constraint Demand ['FRA' I, is in the optimal basis,
though at a slack value of essentially zero like all artificial variables in any feasible solu­
tion. (In fact there must be some artificial variable in every basis for this problem, due to
a linear dependency among the equations in the mode1.)

AMPL statuses

Only those variables, objectives and constrai nts that AMPL actually sends to a solver
can rcceive solver statuses on return. So that you can di<i tingu ish these from componcnts

294 INTERACTIONS WITH SOLVERS CHAPTER 14

that are removed prior to a solve, a separate " AMPL status" is also maintained. You
can work with AMPL statuses much like sol ver statuses, by using the suffix . as ta t u s
in place of . sstatus, and referring to option astatus_ta ble for a summary of the
recognized values:

ampl : option BstatuB_ table;
option astatus table '\
a in normal state (in problem) \
1 drop removed by drop command\
2 pre eliminated b y presolve\
3 fix fixed by fi x command\
4 sub defined vari able, subs t ituted out\
5 unused not used in current problem\

Here' s an example of the most common cases, using one of our diet models:

ampl : model dietu.mod;
amp l: data dietu.dat;
amp l : drop Diet_Min['CAL'};
ampl : fix Buy['SPG'1 := 5;
amp l : fix Buy['CHK'1 := 3;
ampl : solve;
MI NOS 5 . 5 : optimal solution found .
3 iterations , objective 5 4. 76

ampl : display Buy.sstatus;
Buy . astatus [*) : =

BEEF in
CHK f i x

F I SH i n
HAM i n
MCH i n
MTL in
SPG f ix
TUR in

ampl : display Diet_Min.astatus;
Diet_Min . astatus [* J .-

A in
Bl pre
B2 pre

C in
CAL drop

An AMPL status of i n indicates components that are in the problem sent to the solver,
such as variable Buy ['BEEF '] and constraint Di et_Min [, A'] . Three other statuses
indicate components left out of the problem:

• Variables Buy [' CHK'] and Buy [, SPG '] have AMPL status " f i x"
because the fix command was- used to specify their values in the solution.

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES

• Constraint Diet_Min [, CAL'] has AMPL status" drop" because it was
removed by the drop command .

o Constraints Diet_Min ('B1 ' I and Diet_Min ('B2 ' I have AMPL sta­
tliS "pre" because they were removed from the problem by simplifications
performed in AMPL's presolve phase.

295

Not shown here are the AMPL status" unused" for a variable that does not appear in
any objective or constraint, and II sub" for variables and constraints eliminated by substi­
tution <as explained in Section 18.2). The obj ecti ve command, and the problem
commands to be defined later in this chapter, also have the effect of fixing or dropping
model components that are not in use.

For a variable or constraint, you will normally be interested in on ly one of the statuses

at a time: the solver status if the variable or constraint was included in the problem sent
most recently to the solver, or the AMPL stalUs otherwise. Thus AMPL provides the suf­
fix . status to denote the one status of interest:

ampl : display Buy.status, Buy.astatus, Buy.sstatusi

BEEF
CHK
FISH
HAM
MCH
MTL
SPG
TUR

Buy.status Buy.astatus Buy.sstatus
low in low
fix fix none
low in low
low
bas
low
fix
low

in
in
in
fix
in

low
bas
low
none
low

ampl : display Diet_ Min.status, Diet_ Min.astatus,
ampl? Diet_Min.sstatusi

Diet_Min.status Diet_Min . astatus Diet_Min . sstatus : =
A bas in bas
Bl pre pre none
B2 pre pre none
C low in low
CAL drop drop none

In general, flame. status is equal to name. 55 ta tus if name. as tatus is "in ",
and is equal to name . as tatus otherwise.

14.3 Exchanging information with solvers via suffixes

We have seen that to represent values associated with a model component, AMPL
employs various qualifiers or suffixes appended to component names. A suffix consists
of a period or " dot" (.) followed by a (usually short) identifier, so that for example the
reduced cost a~sociated with a variable Buy (j] i ~ written Buy [j] . re, and the reduced

296 INTERACTIONS WITH SOLVERS CHAPTER 14

costs of all such variables can be viewed by giving the command display Buy . re .
There are numerous built-in suffi xes of this kind, summarized in the tables in A. II .

AMPL cannot anticipate all of the values that a solver might associate with model
components, however. The values recognized as input or computed as output depend on
the design of each solver and its algorithms. To provide for open-ended representation of
such values, new suffixes may be defined for lhe duration of an AMPL session. either by
the user for sending values to a solver, or by a solver for returning values.

This section introduces both user-defined and solver-defined suffixes, illustrated by
features of the CPLEX solver. We show how user-defined suffixes can pass preferences
for variable selection and branch direction to an integer programming solver. Sensiti vity
analysis provides an example of solver-defined suffixes that have numeric values, while
infeasibility diagnosis shows how a symbolic (string-valued) suffix works. Reporting a
direction of unboundedness gives an example of a solver-defined suffix in an AMPL
script, where it must be declared before it can be used.

User-defined suffixes: integer programming directives

Most solvers recognize a variety of algorithmic choices or settings, each governed by
a single value that appl ies to the entire problem being solved. Thus you can alter selected
settings by setting up a single string of directives, as in this example applying the CPLEX
solver to an in teger program:

ampl: model multmip3 . mod;
ampl: data multmdp3.dat;

ampl: option solver cplex;
ampl: option cplex_ options 'nodesel 3 varsel 1 backtrack 0.1';

ampl: solve;
CPLEX 8.0.0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0: optimal integer solution; objective 235625
1052 MIP simplex iterations
75 branch-and-bound nodes

A few kinds of solver settings are more complex, however, in that they require separate
values to be set for individual model components. These settings are far too numerous to
be accommodated in a directive slring. Instead the solver interface can be set up to recog­
ni ze new suffixes that the user defines specially for the solver' s purposes.

As an example. for each variable in an integer program, CPLEX recognizes a separate
branching priority and a separate preferred branching direction, represented by an integer
in [0,99991 and in [- J, I] respectively. AMPL's CPLEX driver recognizes the suffixes
. priori ty and . direction as g iving these settings. To use these suffi xes, we
begin by g iving a suffix command to define each one for the current AMPL session:

amp1: suffix priority IN, integer, >= 0, <= 9999;
ampl: suffix direction IN, integer, >- -I, <_ 1;

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 297

The effect of these stalements is to define expressions of the form name . priority and
"ame. direction, where name denotes any variable, objective or constraint of the cur­
rent model. The argument IN specifics that values corresponding to these suffixes are to
be read in by the solver. and the subsequent phrases place restrictions on the values that
will be accepted (much as in a param declaration).

The newly defined suffixes may be assigned values by the let command (Section
I 1.3) or by later declarations as described in Sections A.S, A.9, A. I 0, and A.IS.S. For
our current example we want to use these suffixes to assign CPLEX priority and direction
values corresponding to the binary variables Use [i, j]. Normally such values are cho­
sen based on knowledge of the problem and past experience with similar problems. Here
is one possibility:

ampl,
ampl?
ampl :

Iet {i in ORIG,] ~n DEBT}
Use[i,j}.priority := sum {p in PROD} demand[j,pl;

Iet Use ["GARY", "FRE"l.direction := -1;

Variables not assigned a . priority or . direction value get a default value of zero
(as do all constraintli and objectives in this example), as you can check:

ampl: dispIay Use. direction;

Use.direction [* , * 1 (tr)
CLEV GARY PITT .-

DET 0 0 0
FRA 0 0 0
FRE 0 -1 0
LAF 0 0 0
LAN 0 0 0
STL 0 0 0
WIN 0 0 0

With the suffix values assigned as shown. CPLEX 's search for a solution turns out to
require fewer simplex iterations and fewer branch-and-bound nodes:

ampl: option reset_ lnitiaI_ guesses 1;

ampl: soIve;
CPLEX 8 . 0 . 0: nodesel 3
varsel 1
backtrack 0.1
CPLEX 8.0.0 : optimal integer solution; objective 235625
799 MIP simplex iterations
69 branch-and-bound nodes

(We have set option reset_ini tial_guesses to I so that the optimal solution from
the first CPLEX run won't be sent back to the second.)

Further information about the suffixes recognized by CPLEX and how to determine
the corresponding scLtings can be found in the CPLEX driver documentation. Other
solver interfaces may recognize different li uffixes for different purposes; you'll need to
check separately for each solver you want to use.

298 INTERACTIONS WITH SOLVERS CHAPTER 14

Solver-defined suffixes: sensitivity analysis

When the keyword sensi ti vi ty is included in CPLEX's list of directives, classical
sensitivity ranges arc computed and are returned in three new suffixes, . up, . down, and
. current :

ampl: model steelT. mod; data steelT.dat;
ampl: option solver cplex;
ampl: option cplex_ options 'sensitivity';

ampl: solve;
CPLEX 8.0 . 0: sensitivity
CPLEX 8.0.0: optimal solution; objective 515033
16 dual simplex iterations (0 in phase I)

suffix up OUT;
suffix down OUT;
suffix current OUT;

The three lines at the end of the output from the solve command show the suffix
commands that are executed by AMPL in response to the results from the solver. These
statements are executed automatically; you do not need to type them. The argument OUT
in each command says that these are suffixes whose values wi ll be wri tten out by the
solver (in contrast to the previous example, where the argument IN indicated suffix val­
ues that the solver was to read in).

The sensit ivity suffIXes are interpreted as follows. For variables, suffix . current
indicates the objective function coeffic ient in the current problem, while. down and. up
give the smallest and largest values of the objective coefficient for which the current LP
basis remains optima!:

arnp1, display Sell . down, Sell. curren t, Sell . up;
Sell.down Sell.current Se1l.up :=

bands 1 23.3 25 le+20
bands 2 25 . 4 26 le+20
bands 3 24.9 27 27.5
bands 4 10 27 29 . 1
coils 1 29 . 2857 30 30 . 8571
coils 2 33 35 le+20
coils 3 35 . 2857 37 le+20
coils 4 35.2857 39 1e+20

For constraints, the interpretation is similar except that it applies to a constraint's constant
term (the so-called right-hand-side value):

ampl: display Time.down,
Time.down Time.current

1 37.8071 40
2 37.8071 40
3 25 32
4 30 40

Time. current, Time.up;
Time. up :=
66 . 3786
47.8571
45
62.5

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 299

You can use generic synonyms (Section 12.6) to display a table of ranges for all variables
or constraints, similar to the tables produced by the standalone vers ion of CPLEX. (Val­
ues of -le+2 0 in the. down column and le+20 in the . up column correspond to what
CPLEX call s - inf ini ty and + inf ini ty in its tables.)

Solver-defined suffixes: infeasibility diagnosis

For a linear program that has no feasible solution , you can ask CPLEX to find an irre­
ducible infeasible subsel (or liS): a collection of constraints and variable bounds that is
infeasible but that becomes feasible whcn anyone constraint or bound is removed . If a
small liS exists and can be found, it can provide valuable clues as to the source of the
infeasibility. You turn on the li S finder by changi ng the iisfind directive from its
default va lue of 0 to either I (for a relatively fast version) or 2 (for a slower version that
tends to find a smaller liS).

The following example shows how liS finding might be applied to the infeasible diet
problem from Chaplcr 2. After solve detects that there is no feasible solution, it is
repeated with the directive I iisfind 1':

ampl: model diet.mod; data diet2.dat; option solver cplex;
ampl: solve;
CPLEX 8.0.0: infeasible problem.
4 dual simplex iterations (0 in phase I)
constraint . dunbdd returned
suffix dunbdd OUT;

ampl: option cplex_ options 'iisfind 1';
ampl: solve;
CPLEX 8.0.0: iisfind 1
CPLEX 8.0.0: infeasible problem.
a simplex iterations (0 in phase I)
Returning iis of 7 variables and 2 constraints.
constraint.dunbdd returned

suffix iis symbolic OUT;

option ~is table ' \
0 non not in the iis\
1 low at lower bound\
2 fix fixed\
3 upp at upper bound \
, .

Again, AMPL !>hows any suffix statement that has been executed automatically. Our
interest is in the new suffix named . iis, wh ich is symbolic. or string-valued. An
associated option iis_table, also set up by the solver dri ver and displayed automati­
cally by solve, shows the strings that may be associated with . iis and gives brief
descriptions of what they mean.

You can use display to look at the . iis values that have been returned:

300 INTERACTIONS WITH SOLVERS CHAPTER 14

ampl : display _ varname, _ var.iis, _ connams, _ con.iisi
_varname _var . iis conname _con.iis :=

1 " Buy['BEEF'] " upp "Diet['A') ft non
2 "Buy [I CHK'] " low "Diet (, B1'] " non
3 "Buy('FISH']" low "Diet['B2') " low
4 "Buy[' HAM']" upp "Diet['C'j" non
5 "Buy['MCH'] " non "Diet['NA/ l " upp
6 "Buy['MTL'j" upp "Diet['CAL']" non
7 "Buy['SPG' I" low
8 "Buy['TUR' I" low

This information indicates that the [IS consists of four lower and three upper bounds on
the variables, plus the constraints providing the lower bound on B2 and the upper bound
on NA in the diet. Together these restrictions have no feasible solution, but dropping any
one of them will permit a solution to be found to the remaining ones.

If dropping the bounds is not of interest, then you may want to list only the con­
straints in the 11S. A print statement produces a concise listing:

ampl : print {i in 1 •• _ ncons:
ampl? _ con[i}.iis <> "non"}: _ conname[i};
Diet [' B2' I
Diet['NA ']

You could conclude in this case that, to avoid violating the bounds on amounts pur­
chased, you might need to accept either less vitamin B2 or more sodium, or both, in the
diet. Further experimentation would be necessary to determine how much less or more,
however, and what other changes you might need to accept in order to gain feasibility.
(A linear program can have several irreducible infeasible subsets, but CPLEX's IIS­
finding algorithm detects only one ns at a time.)

Solver-defined suffixes: direction of unboundedness

For an unbounded linear program - one that has in effect a minimum of
- Inf ini ty or a maximum of + Inf ini ty - a sol ver can return a ray of feasible solu­
tions of the form X + ad, where a ;" O. On return from CPLEX, the feasible solution X
is given by the values of the variables, while the direction of unboundedness d is given by
an additional value associated with each variable through the solver-defined suffix
. unbdd.

An application of the direction of unboundedness can be found in a model
trnlocld . mod and script trnlocld . run for Benders decomposition applied to a
combination of a warehouse-location and transportation problem; the model , data and
script are available from the AMPL web sileo We won' t try to describe the whole decom­
position scheme here, but rather concentrate on the subproblem obtained by fi xing the
zero-one variables Build [i], which indicate the warehouses that are to be built, to trial
values build [i]. Tn its dual fOfm, this subproblem is:

r
SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES

var Supply_Price {ORIG} <= 0;
var Demand_Price {DEST};
maximize Dual_Ship_Cost :

301

sum {i in ORIG} Supply_Price [i) * supply[i] * build[i] +
sum {j in DEST} Demand_Price[j] * demand{j];

subject to Dual_Ship {i in ORIG, j in DEST}:
Supply_Price[i] + Demand_Price(j] <= var_cost[i,j];

When al l values bui ld [i] are set 10 zero. no warehouses are built, and the primal sub­
problem is infeasible. As a resull . the dual formulation of the subproblem, which always
has a feasible solution. must be unbounded.

As the remainder of this chapter will explain. we solve a subproblem by collecting its
components into an AMPL " problem" and then directing AMPL to solve only that prob­
lem. When this approach is appl ied to the dual subproblem from the AMPL command­
line, CPLEX returns the direction of unboundedness in the expected way:

ampl : model trnloc~d.mod;
ampl: data trnloc~.dat;
ampl: problem Sub: Supply_ Price, Demand_ Price,
ampl? Dual_ Ship_ cost, Dual_ Ship;
ampl: let (i in ORIG) build[l} := 0;
ampl: option solver cplex, cplex_ options 'presolve 0';
ampl: solve;
CPLEX 8.0.0: presolve a
CPLEX 8 . 0 . 0: unbounded problem.
25 dual simplex iterations (25 in phase Il
variable . unbdd returned
6 extra simplex iterations for ray (1 in phase Il

suffix unbdd OUT;

The suffix message indicates that. unbdd has been created automatically. You can
use this suffix to display the direction of unboundedness, which is simple in this case:

ampl: display Supply_ Price.unbdd;
Supply_Price.unbdd [*] :=

1 -1 4 -1 7 -1 10-1
2 -1 5 -1 8 -1 11-1

13 -1
14 -1

3 -1 6 -1 9 -1 12 -1 15-1

ampl: display Demand_ Price.unbdd;
Demand_Price.unbdd [*] :=

A3 1
A6 1
A8 1
A9 1
B2 1
B4 1

16 -1
17 -1
18 -1

19 -1
20 -1
21 -1

22 -1
23 -1
24 -1

25 -1

Our script for Benders decomposition (trnlocld. run) solves the subproblem repeat­
edly, with differing build [i] values generated from the master problem. After each

302 INTERACTIONS WITH SOLVERS CHAPTER 14

solve, the result is tested for unboundedness and an extension of the master problem is
constructed accordingly. The essentiaJs of the main loop are as follows:

repeat {
solve Sub;
if Dual_Ship_Cost <= Max_Ship_Cost + 0.00001 then break;
if Sub. result = • unbounded " then

let nCUT := nCUT + I:
let cut_type [nCUTl := "ray";
let {i in ORIG}

supply-price[i,nCUT] := Supply_Price[i] .unbdd;
let (j in DEST)

demandJ)rice(j,nCUT] := Demand_Price[j] .unbdd;
else {
let nCUT := neUT + 1;
let cut_type [neUTj : = "point";
let {i in ORIG} supply-price[i,nCUTj : = Supply_Price[i J;
let {j in DEST} demand-price[j,nCUT] := Demand_Price[j] ;

solve Master;
let (i in ORIG) build[iJ ,= Build[i] ;

An attempt to use. unbdd in this context fails , however:

ampl: commands trnloc~d.run;
trnlocld . run, line 39 (offset 931) :

Bad suffix .unbdd for Supply_Price
context: let {i in ORIG} supply-price[i,nCUT] :=

»> Supply_Price[iJ . unbddi «<

The difficulty here is that AMPL scans all commands in the repeat loop before
beginning to execute any of them. As a result it encounters the use of . unbdd before
any infeasible subproblem has had a chance to cause thi s suffix to be defined. To make
this script run as intended, it is necessary to place the statement

suffix unbdd OUTi

in the script before the repeat loop, so that. unbdd is already defined at the time the
loop is scanned.

Defining and using suffixes

A new AMPL suffix is defined by a statement consisting of the keyword suf fix fol­
lowed by a suffu-name and then one or more optional qualifiers that indicate what values
may be associated with the suffix and how it may be used. For example, we have seen
the definition

suffix priority IN, integer, >= 0, < = 9999;

for the suffix priori ty with ill-out, type, and bound qualifiers.

SECTION 14.3 EXCHANGING INFORMATION WITH SOLVERS VIA SUFFIXES 303

The suf f ix statement causes AMPL to recognize suffixed expressions of the form
component-name. suffix-name, where componelll-name refers to any currently declared
variable, constraint, or objective (or problem, as defined in the next section). The defini­
tion of a suffix remains in effect until the next reset command or the end of the current
AMPL session. The suffix-name is subject to the same rules as other names in AMPL.
Suffixes have a separate name space, however, so a suffix may have the same name ali a
parameter, variable. or other model component. The optional qualifiers of the suffix
statement may appear in any order; thei r forms and effects are described below.

The optional type qualifier in a suffix statement indicates what values may be asso­
ciated with the suffixed expressions, with all numeric values being the default:

suffix type

/lone spedfted
integer
binary
symbolic

values allowed

any numeric value
integer numeric values
o or I
character strings listed in option sllffix-1Umle_table

All numeric-valued suffixed expressions have an initial value of O. Their permissible val­
ues Illay be further limited by one or two boulld qualifiers of the form

>= arirh-expr
<= arith-expr

where arith-expr is any arithmetic expression not involving variables.
For each symbolic suffix, AMPL automatically defines an associated numeric suf­

fix, slt}jix-nlfl11e_num. An AMPL option suffix-name_table must then be created to
define a relation between the . slt}jix-Ilame and . suffix-Ilame_nurn values, as in the fo) ­
lowing example:

suffix
option
o
1
2
3

iis symbolic OUT;
iis table '\

non not in the iis\
low at lower bound\
fix fixed\
upp at upper bound\

Each line of the table consists of an integer value, a string value, and an optional com­
ment. Every string value is associated with its adjacent integer value, and with any
higher integer values that are less than the integer on the next line. Assigning a string
value to a . suffix-name expression is equivalent to assigning the associated numeric
value to a . Suffix-Iumle_num expression. The latter expressions are initially assigned the
value 0, and are subject to any type and bound qualifiers as described above. (Normally
the string values of symbolic suffi xes are used in AMPL commands and scripts, while
the numeric values are used in communication with solvers.)

The optional in-out qualifier determines how suffix values interact with the solver:

304 INTERACTIONS WITH SOLVERS CHAPTER 14

ill-olU handling of suffix values

IN written by AMPL before invoking the solver, then read in by solver
OUT written out by solver, then read by AMPL after the solver is fini shed
INOUT both read and wrillen, as for IN and OUT above
LOCAL neither read nor written

INOUT is the default if no ill-out keyword is specified.
We have seen lhat suffixed expressions can be assigned or reassigned values by a let

statement;

let Use["GARY","FRE"j.direction : = -1;

Here just one variable is assigned a suffixed value, but oflen there are suffixed values for
all variables in an indexed collection:

var Use {ORIG,DEST} binaryj
let {i in ORIG, j in DEST}

Use[i,jj .priority := sum {p in PROD} demand[j,p]j

Tn this case the assignment of suffix values can be combined with the variable's declara­
tion:

var Use (i in ORIG, J 1n DEST} binary,
suffix priority sum (p in PROD) demand[j,p]i

In general, one or more of the phrases in a var declaration may consist of the keyword
suffix followed by a previously-defined suffix-name and an expression for evaluating
the associated suffix expressions.

14.4 Alternating between models

Chapter J3 described how "scripts" of AMPL commands can be set up to run as pro­
grams that perform repetitive actions. In several examples, a script solves a series of
related model instances, by including a sol ve statement inside a loop. The result is a
simple kind of sensitivity analysis algorithm, programmed in AMPL's command lan­
guage.

Much more powerful algorithmic procedures can be constructed by using two models.
An optimal solution for one model yields new data for the other, and the two are solved
in alternation in such a way that some termination condition must eventually be reached.
Classic mcthods of column and cut generation, decomposition, and Lagrangian relaxation
are based on schemes of this kind, which are described in detail in references cited at the
end of this chaptcr.

To usc two models in this manner, a script must have some way of switching between
them. Switching can be done with previously defined AMPL features, or more clearly and
efficiently by defining separately-named problems ~md environments.

r
SECTION 14.4 ALTERNATING BETWEEN MODELS 305

We illustrate these possibilities through a script for a basic form of the "roll trim" or
"cutting slock" problem, using a well-known, elementary column-generation procedure.
In the interest of brevity, we give only a sketchy description of the procedure here, while
the references at the end of this chapter provide sources for thorough descriptions. There
are several other examples of generation. decomposition, and relaxation schemes on the
AMPL web site, and we will also use a few excerpts from them later, without showing the
whole models.

In a roll trim problem, we wish to cut up long raw widths of some commodity such as
rolls of paper into a combination of smaller widths that meet given orders with as little
waste as possible. This problem can be viewed as deciding, for each raw-width roll,
where the cuts should be made so as to produce one or more of the smaller widths that
were ordered. Expressing such a problem in terms of decision variables is awkward,
however, and leads to an integer program that is difficult to solve except for very small
instances.

To derive a more manageable model, the so-called Gilmore-Gomory procedure
defines a cutting pattern to be anyone feasible way in which a raw roll can be cut up. A
pattern thus consists of a certain number of rolls of each desired width, such that their
total width does not exceed the raw width. If (as in Exercise 2-6) the raw width is 110",
and there are demands for widths of 20", 45", 50", 55" and 75", then two rolls of 45" and
one of 20" make an acceptable pauern. as do one of 50" and one of 55" (with 5" of
waste). Given this view. the two simple linear programs in Figure 14-2 can be made to
work together to find an efficient cutting plan.

The CUlling optimization model (Figure 14-2a) finds the minimum number of raw
rolls that need be cut, given a collection of known cutting patLerns that may be used. This
is actually a close cousin to the diet model, with the variables representing patterns cut
rather than food items bought, and the constraints enforcing a lower limit on cut widths
rather than nutrients provided.

The pauern generation model (Figure 14-2b) seeks to identify a new pauern that can
be used in the cutting optimization, either to reduce the number of raw rolls needed. or to
determine that no such new pattern exists. The variables of this model are the numbers of
each desired width in the new pattern; the single constraint ensures that the total width of
the pattern does not exceed the raw width. We won't try to explain the objective here,
except to note that the coefficient of a variable is given by its corresponding "duaJ
value" or "dual price" from the linear relaxation of the cutting optimization model.

We can search for a good cutting plan by solving these two problems repeatedly in
alternation. FirM the continuous-variable relaxation of the cutting optimilation problem
generates some dual prices, then the pattern generation problem uses the prices to gener­
ate a new pattern. and then the procedure repeats with the collection of patterns extended
by one. We ~lOp repeating when the pattern generation problem indicates that no new
pattern can lead to an improvement. We then have the best possible solution in terms of
(possibly) fractional numbers of raw rolls cut. We may make one last run of the cutting
optimization model with the integrality restriction restored, to get the best integral solu-

306 INTERACTIONS WITH SOLVERS

param roll_width> 0;

set WIDTHSi

CHAPTER 14

width of raw rolls

set of widths to be cut
param orders {WIDTHS} > 0; # number of each width to be cut

pararn nPAT integer >= 0;
set PATTERNS = 1 .. nPAT;

number of patterns
set of patterns

param nbr {WIDTHS,PATTERNS} integer >= 0;
check {j in PATTERNS}:

sum {i in WIDTHS} i * nbr[i,j] <= roll_width;
defn of patterns: nbr[i,j] = number
of rolls of width i in pattern j

var Cut {PATTERNS} integer >= 0; # rolls cut using each pattern

minimize Number: # minimize total raw rolls cut
sum {j in PATTERNS} Cut[j];

subject to Fill {i in WIDTHS} :
sum {j in PATTERNS} nbr[i,j] * Cut[j) >= orders{il;

for each width, total rolls cut meets total orders

Figure 14-23: Pattern-based model for cutting optimization problem (cut. mod).

pararn price {WIDTHS} default 0.0; # prices from cutting opt
var Use {WIDTHS} integer >= 0;

numbers of each width in pattern
minimize Reduced_Cost:

1 - sum {i in WIDTHS} price[i) * Use[i);

subject to Width_Limit:
sum {i in WIDTHS} i * Use[iJ <= roll_width;

Figure 14-2b: Knapsack model for panern generation problem (cut. mod, continued).

tion using the patterns generated, or we may simply round the fracljonal numbers of rolls
up to the next largest integers if that gives an acceptable result.

This is the Gilmore-Gomory procedure. In terms of our lwo AMPL models, its steps
may be described as follows:

pick initial patterns sufficient to meet demand
repeat

solve the (fractional) CUlling optimization problem
let price [i 1 equal Fi 11 [i 1 . dual for each pallern i
solve the pattern generation problem
if the optimal value is < 0 the n

add a new pattern that cuts Use (i] rolls of each width i
else

find a final integer solution and stop

r SECTION 14.4 ALTERNATING BETWEEN MODELS 307

An easy way to initialize is to generate one pattern for each width, containing as many
copics of that width as will fit inside the raw roll. These patterns clearly can covcr any
demands, though not necessarily in an economical way.

An implementation of the Gilmore-Gomory procedure as an AMPL script is shown in
Figure 14-3 . The file cut . mod contains both the cutting optimization and pattern gener­
ation models in Figure 14-2. Since these models have no variables or constraints in com­
mon, it would be possible to write the script with simple solve statements using alter­
nating objective function s:

repeat {
objective Number;
solve;

objective Reduced_Cost;
solve;

Under this approach. however, every solve would send the solver all of the variables
and constraints generated by both models. Such an arrangement is inefficient and prone
to error, especially for larger and more complex iterative procedures.

We could instead ensure that only the immediately relevant variables and constraints
are sent to the solver, by using fix and drop commands to suppress the others. Then
the outline of our loop would look like this:

repeat {
unfix Cut; restore Fill; objective Number;
fix Use; drop Width_Limit;
solve;

unfix Use; restore Width_Limit; objective Reduced_Costi
fix Cuti drop Fill;
solve;

Before each solve. the previously fixed variables and dropped constraints must aJso be
brought back , by use of unfix and restore. This approach is efficient, but it remains
highly error-prone_ and makes scripts difficult to read.

As an alternative, therefore, AMPL allows models to be di stinguished by use of the
problem statement seen in Figure 14-3:

problem Cutting_Opt: Cut, Number, FilIi
option relax_integrality 1i

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality Oi

The first statement defines a problem named Cutting_Opt that consist<; of the Cut
variables, the Fill constraints, and the objective Number. This statement also makes

308 INTERACTIONS WITH SOLVERS

model cut .mod;
data cut . dat;
option solver cplex, solution_round 6;
option display_lcol 0, display_transpose -10:

problem Cutting_Opt: Cut, Number, Fill:
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

let nPAT := 0;
for (i in WIDTHS) {

let nPAT : = nPAT + 1 ·
let nbr[i,nPAT] : = floor (roll_width/i);
let {i2 in WIDTHS : i2 <> i} nbr[i2,nPAT] := 0 ;

repeat
solve Cutting_Opt;
let {i in WIDTHS} price[i] : = Fill[i] .dual;

solve Pattern_Gen;
if Reduced_Cost < -0.00001 then {

let nPAT := nPAT + 1;
let {i in WIDTHS} nbr[i,nPAT] := Use[i];

else break;

display nbr, Cut ;

option Cuttin9_0pt.relax_integrality 0 ;
solve Cutting_Opt ;
display Cut ;

CHAPTER 14

Figure 14-3: Gilmore-Gomory procedure for cutting-stock problem (cut. run).

Cutting_Opt the current problem; uses of the var, minimize, maximize, sub­
ject to, and option statements now apply [0 this problem only. Thus by setting
option relax_integrali ty to I above, for example, we assure that the integrality
condition on the Cut variables wi ll be relaxed whenever Cutting_Opt is current. In a
similar way, we define a problem Pattern_Gen that consists of the Use variables, the
Width_Limi t constraint, and the objective Reduced_Cos t; this in turn becomes the
current problem. and this time we set relax_integrality to 0 because only integer
solutions to this problem are meaningful.

The for loop in Figure 14-3 creates the initial cutting patterns, after which the main
repeat loop carries out the Gilmore-Gomory procedure as described previously. The
statement

solve Cutting_Opt;

SECTION 14.5

param roll_wid th : = 110 ;
param: WIDTHS: orders . _

20 48
45 35
50 24
55 1 0
75 8

NAMED PROBLEMS

Figure 14-4: Data for cutting-stock model (cut. dat)

309

restores Cutting_Opt as the current problem, along with its environment, and solves
the associated linear program. Then the assignment

let {i in WIDTHS} price[i] := Fill[i] . dual;

transfers the optimal dual prices from Cutting_Opt to the parameters price [i] that
will be used by Pa t tern_Gen. All sets and parameters are global in AMPL, so they can
be referenced or changed whatever the current problem.

The second half of the main loop makes problem Pattern_Gen and its environ­
ment current, and sends the associated integer program to the solver. If the resulting
objective is sufficiently negative. the pattern returned by the Use [iJ variables is added
to the data that will be used by Cutting_Opt in the next pass through the loop. Other­
wise no further progress can be made, and the loop is terminated.

The script concludes with the following statements, to solve for the best integer solu­
tion using all patterns generated:

option Cutting_ Opt. relax_ integrality Oi
so l ve Cutting_Opt;

The expression Cutting_Opt. relax_integrali ty stands for the value of the
relax_integrality option in the Cutting_Opt environment. We discuss these
kinds of names and their uses at greater length in the next section.

As an example of how this works, Figure 14-4 shows data for cutting I 10" raw rolls.
to meet demands of 48,35, 24, 10 and 8 for finished rolls of widths 20, 45, 50, 55 and 75,
respectively. Figure 14-5 shows the output that occurs when Figure 14-3's script is run
with the model and data as shown in Figures 14-2 and 14-4. The best fractional solution
cuts 46.25 raw rolls in five different patterns, using 48 rolls if the fractional values are
rounded up to the next integer. The final solve using integer variables shows how a
collection of six of the patterns can be applied to meet demand using only 47 raw rolls.

14.5 Named problems

As our cutting-stock example has shown. the key to writing a clear and efficient script
for alternating between two (or more) models lies in working with flamed problems that

310 INTERACTIONS WITH SOLVERS

ampl : commands cut.run;

CPLEX 8.0.0 : optimal solution; objective 52 . 1
a dual simplex iterations (0 in phase I)
CPLEX 8 . 0 . 0: optimal integer solution ; objective -0.2
1 MIP simplex iterations
a branch-and-bound nodes
CPLEX 8.0.0 : optimal solution; objective 48.6
2 dual simplex iterations (0 in phase I)
CPLEX 8.0 . 0: optimal integer solution ; objective -0.2
2 MIP simplex iterations
a branch-and-bound nodes
CPLEX 8 . 0 . 0 : optimal solution; objective 47
1 dual simplex iterations (0 in phase I)
CPLEX 8 . 0 . 0 : optimal integer solution; objective -0.1
2 MIP simplex iterations
a branch-and-bound nodes
CPLEX 8.0.0: optimal solution; objective 46 . 25
2 dual simplex iterations (O in phase I)
CPLEX 8.0.0 : optimal integer solution; objective -le-06
8 MIP simplex iterations
a branch-and-bound nodes

nbr [*, *]
1 2 3 4 5 6 7 8 : =

20 5 0 0 0 0 1 1 3
45 0 2 0 0 0 2 0 0
50 0 0 2 0 0 0 0 1
55 0 0 0 2 0 0 0 0
75 0 0 0 0 1 0 1 0

Cut (* I :=

1 0 2 0 3 8 . 25 4 5 5 0 6 17.5

CPLEX 8 . 0 . 0 : optimal integer solution; objective 47
5 MIP simplex iterations
o branch-and-bound nodes

Cut [*] : =

7

1 0 2 0 3 8 4 5 5 0 6 18 7 8 8 8

CHAPTER 14

8 8 7.5

Figure 14-5: Output from execution of Figure 14-3 cutting-stock script.

represent different subsets of model components. Tn this section we describe in more
detail how AMPL's problem statement is employed to define, use, and display named
problems. At the end we also introduce a similar idea, named environments, which facili­
tates switching between collections of AMPL options.

r SECTION 14.5 NAMED PROBLEMS 311

Illustrations in this section are taken from the cutting-stock script and from some of
the other example scripts on the AMPL web si te. An explanation of the logic behind these
scripts is beyond the scope of this book; some suggestions for learning morc are given in
the references at the end of the chapter.

Defining named problems

At any point during an AMPL session, there is a currell1 problem consisting of a list of
variables, objectives and constraints. The currcnt problem is named Initial by
default, and comprises all variables, objectives and constraints defined so far. You can
define other "named" problems consisting of subsets of these components, however, and
can make them current. When a named problem is made current, all of the model compo­
nents in the problem 's subset are made active, while all other variables. objectives and
constraints are made inactive. More precisely, variables in the problem's subset are
unfixed and the remainder are fixed at their current values. Objectives and constraints in
the problem's subset are restored and the remainder are dropped. (Fixing and dropping
are discussed in Section I 1.4.)

You can define a problem most straightforwardly through a problem declaration
that gives the problem's name and its list of components. Thus in Figure 14-3 we have:

problem Cutting_Opt : Cut, Number, Fill;

A new problem named Cutting_Opt is defined, and is specified to contain all of the
Cut variables, the objective Number, and all of the Fill constraints from the model in
Figure 14-2. At the same time, Cutting_Opt becomes the current problem. Any fixed
Cut variables are unfixed, while all other declared variables are fixed at their current val­
ues. The objective Number is restored if it had been previously dropped, while all other
declared objectives are dropped; and similarly any dropped Fill constraints are
restored, while all other declared constraints are dropped.

For more complex models, the list of a problem's components typically includes sev­
eral collections of variables and constraints, as in this example from stochl. run (one
of the examples from the AMPL web site):

problem Sub: Make, Inv, Sell,
Stage2_Profit, Time, Balance2, Balance;

By specifying an indexing-expression after the problem name, you can define an indexed
collection of problems, such as these in mul ti2 . run (another web site example):

problem SubII {p in PROD}: Reduced_Cost[p],
{i in ORIG, j in DEST} Trans[i,j,p],
{i in ORIG} Supply[i,p], {j in DEST} Demand[j ,p];

For each p in the set PROD, a problem SubII [p] is defined. Its components include
the objective Reduced_Cost [p], the variables Trans [i, j, p] for each combina­
tion of i in ORIG and j in DEST, and the constraints Supply [i, pJ and
Demand [j ,p] for each i in ORIG and each j in DEST, respectively.

312 INTERACTIONS WITH SOLVERS CHAPTER 14

A problem declaration's form and interpretation naturally resemble those of other
AMPL statements that specify lists of model components. The declaration begins with the
keyword problem, a problem name not previously used for any other model compo­
nent, an optional indexing expression (to define an indexed collection of problems), and a
colon. Following the colon is the comma-separated list of variables, objectives and con­
straints to be included in the problem. This list may contain items of any of the following
forms, where "component" refers to any variable, objective or constraint:

• A component name, such as Cut or Fill, which refers to all components
having that name.

• A subscripted component name, such as Reduced_Cost [p], which
refers to that component alone.

• An indexing expression followed by a subscripted component name, such
as (i in ORIG) Supply [L p l. which refers to one component for each
member of the indexing set.

To save the trouble of repeating an indexing expression when several components are
indexed in the same way, the problem statement also allows an indexing expression fol­
lowed by a parenthesized list of components. Thus for example the following would be
equivalent:

(i in ORIG) Supplyl [i, pI, (i in ORIG} Supply2 [i,p],
(i in ORIG, j in DEST} Trans{i,j,p] ,
(i in ORIG, j in DEST} Use[i,j,p]

(i in ORIGJ (Supplyl [i, p] , Supply2 [i, p] ,
(j in DEST} (Trans(i,j,p] , Use Ii, j , p]))

As these examples show, the list inside the parentheses may contain any item that is valid
in a component list, even an indexing expression followed by another parenthesized list.
This sort of recursion is also found in AMPL's print command, but is more general
than the list format allowed in display commands.

Whenever a variable, objective or constraint is declared, it is automatically added to
the current problem (or all current problems, if the most recent problem statement spec­
ified an indexed collection of problems). Thus in our cutting-stock example, all of Figure
14-2's model components are first placed by default into the problem Initial; then,
when the script of Figure 14-3 is run, the components are divided into the problems
Cutting_Opt and Pattern_Gen by use of problem statements. As an alternative,
we can declare empty problems and then fill in their members through AMPL declara­
tions. Figure 14-6 (cut2 . mod) shows how this would be done for the Figure 14-2 mod­
els. This approach is sometimes clearer or easier for simpler applications.

Any use of drop/restore or fix/unfix also modifies the current problem. The
drop command has the effect of removing constraints or objectives from the current
problem. while the restore command has the effect of adding constraints or objectives.
Similarly, the fix command removes variables from the current problem and the unfix

SECTION 14.5

problem Cutting_Opt ;

param nPAT integer >= 0, default 0;
param roll_width;
set PATTERNS = 1 .. nPAT;
set WIDTHS;
param orders {WIDTHS} > 0;
param nbr {WIDTHS, PATTERNS} integer >= 0 ;

check {j in PATTERNS}:

NAMED PROBLEMS

sum {i in WIDTHS} i * nbr[i,j] <= roll_width;
var Cut {PATTERNS} >= 0;
minimize Number : sum {j in PATTERNS} Cut[j];
subject to Fill {i in WIDTHS} :

sum {j in PATTERNS} nbr[i,jj * Cut[j] >= orders[i];

problem Pattern_Gen;

param price {\'vIDTHS} ;
var Use {WIDTHS} integer >= 0 ;
minimize Reduced_Cost :

1 - sum {i in WIDTHS} price[ij * Use [i) ;
subject to Width_Limit :

sum {i in WIDTHS} i * Use[i] <= roll_width;

313

Figure 14·6: Alternate definition of named cutting·stock problems (cut2 . mod).

command adds variables. As an example, multil. run uses the following problem
statements:

problem MasterI : Artificial, Weight, Excess, Mu l ti, Convex;
problem SubI : Artif_Reduced_Cost, Trans, Supply, Demand ;

problem MasterII : Total_Cost, Weight, Multi, Convex;
problem SubII : Reduced_Cost, Trans, Supply, Demand;

to define named problems for phases I and II of its decomposition procedure. By con­
trast, mul tila . run specifies

problem Master : Artificial, Weight, Excess, Multi, Convex;
problem Sub: Artif_Reduced_Cost, Trans, Supply, Demand;

to define the problems initially, and then

problem Master;
drop Artificial; restore Total_Cost; fix Excess;

problem Sub;
drop Artif_Reduced_Cost ; restore Reduced_Cost;

when the time comes to convert the problems to a form appropriate for the second phase.
Since the names Mas ter and Sub are used throughout the procedure, one loop in the
script suffices to implement both phases.

314 INTERACTIONS WITH SOLVERS CHAPTER 14

Alternatively. a redeclare problem statement can give a new definition for a
problem. The drop, restore, and fix commands above could be replaced, for
instance, by

redeclare problem Master: Total_Cost, Weight, Multi, Convex:
redeclare problem Sub : Reduced_Cost, Trans, Supply, Demand;

Like other declarations, however, this cannot be used within a compound statement (if.
for or repeat) and so cannot be used in the Inul tila . run example.

A form of the reset command lets you undo any changes made to the definition of a
problem. For example,

reset problem Cutting_Opt;

resets the definition of Cutting_Opt to the li st of components in the problem state­
ment that most recently defined it.

Using named problems

We next describe alternatives for changing the current problem. Any change will in
general cause different objectives and constraints to be dropped, and different variables to
be fixed, with the result that a different optimization problem is generated for the solver.
The values associated with model components are not affected simply by a change in the
current problem, however. All previously declared components are accessible regardless
of the current problem, and they keep the same values unless they are explicit ly changed
by let or data statements, or by a solve in the case of variable and objective values
and related quantities (such as dual values, slacks, and reduced costs).

Any problem statement that refers to only one problem (not an indexed collection
of problems) has the effect of making that problem current. As an example, at the begi n­
ning of the cutting-stock scri pt we want to make first one and then the Olher named prob­
lem current, so that we can adjust certain options in the environments of the problems.
The problem statements in cutl. run (Figure 14-3):

problem Cutting_Opt: Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax_integrality 0 ;

serve both to define the new problems and to make those problems current. The analo­
gous statements in cut2 . run are simpler:

problem Cutting_Opt;
option relax_integrality 1:

problem Pattern_Gen;
option relax_integrality 0;

These statements serve only to make the named problems current, because the problems
have already been defined by problem statements in cut2 .mod (Figure 14-6).

SECTION 14.5 NAMED PROBLEMS 315

A problem statement may also refer to an indexed collection of problems, as in the
mul ti2 . r un example cited previously:

problem SubII {p in PROD} : Reduced_Cost[p],

This form defines potentially many problems, one for each member of the set PROD.
Subsequent problem statements can make members of a collection current one at a time,
as in a loop having the form

for {p in PROD}
problem SubII(p] ;

or in a statement such as problem SubIl [" coils "] that refers to a particular mem­
ber.

As seen in previous examples, the solve statement can also include a problem name,
in which case the named problem is made current and then sent to the solver. The effect
of a statement such as solv e Pat tern_Gen is thus exactly the same as the effect of
problem Pattern_Gen followed by solve.

Displaying named problems

The command consisting of p roblem alone tells which problem is current:

ampl : model cut .mod;
ampl : data cut.dat;
amp l : probl em;

problem Initial ;

ampl : problem Cutting_ opt: Cut, NUmber, Fill;
ampl : problem pattern_ Gen: Use, Reduced_ Cost, Width_ Limit;
ampl : problem;
problem Pattern_Gen;

The current problem is al ways lni tial until Olher named problems have been defined.
The show command can give a list of the named problems that have been defined:

ampl : show problems;
problems : Cutting_Opt

We can also use show to see the variables, objectives and constraints that make up a par­
ticular problem or indexed collection of problems:

ampl : show Cutting_ Opt, Pattern_ Gent
problem Cutting_Opt : Fill, Number, Cut;
problem Pattern_Gen : Width_Limit, Reduced_Cost, Use ;

and use expand to see the explicit objecti ves and constraints of the current problem.
after all data values have been substituted:

316 INTERACTIONS WITH SOLVERS

ampl: expand Pattern_ Gan;
minimize Reduced_Cost:

CHAPTER 14

-O.166667*Use[20] - O. 416667*Use[45] - O.5*Use[50]
- O.5*Use[55] - O.833333*Use[75] + 1;

subject to Width_Limit :
20·Use[20] + 45*Use[45] + 50*Use[50] + 55*Use[55] +

75*Use[75] <= 110;

See Section 12.6 for further discussion of show and expand.

Defining and using named environments

In the same way that there is a current problem at any point in an AMPL session, there
is also a current environment, Whereas a problem is a list of non-fixed variables and
non-dropped objectives and constraints, an environment records the values of all AMPL
options. By naming different environments, a script can easily switch between different
collections of option settings.

In the default mode of operation, which is sufficient for many purposes, the current
environment always has the same name as the current problem. At the start of an AMPL
session the current environment is named Initial, and each subsequent problem
statement that defines a new named problem also defines a new environment having the
same name as the problem. An environment initially inherits all the option settings that
existed when it was created, but it retains new settings that are made while it is current.
Any problem or sol ve statement that changes the current problem also switches to the
correspondingly named environment, with options set accordingly.

As an example, our script for the cutting stock problem (Figure 14-3) sets up the
mode] and data and then proceeds as follows:

option solver cplex, solution_round 6;
option display_1col 0, display_transpose -10;

problem Cutting_Opt : Cut, Number, Fill;
option relax_integrality 1;

problem Pattern_Gen : Use, Reduced_Cost, Width_Limit;
option relax_integrality 0;

Options solver and three others are changed (by the first two option statements)
before any of the problem statements; hence their new settings are inherited by subse­
quently defined environments and are the same throughout the rest of the script. Next a
problem statement defines a new problem and a new environment named
Cutting_Opt, and makes them current. The ensuing option statement changes
relax_integrality to 1. Thereafter, when Cutting_Opt is the current problem
(and environment) in the script , relax_integrality will have the value 1. Finally,
another problem and option statement do much the same for problem (and environ­
ment) Pattern_Gen, except that relax_integrality is set back to 0 in that envi­
ronment.

SECTION 14.5 NAMED PROBLEMS 317

The result of these initial statements is to guarantee a proper setup for each of the sub­
sequent solve statements in the repeat loop. The result of solve Cutting_Opt is to
set the current environment to Cutting_Opt. thereby setting relax~integrality
to I and causing the linear relaxation of the cutting optimization problem to be solved.
Sim ilarly the result of solve Pattern_Gen is to cause the pattern generation problem
to be solved as an integer program. We could instead have used option statements
within the loop to switch the setting of relax_integrali ty, but with thi s approach
we have kept the loop - the key part of the script - as simple as possible.

In more complex situations, you can declare named environments independently of
named problems, by use of a statement that consists of the keyword environ followed
by a name:

environ Master;

Env ironments have their own name space. If the name has not been used previously as
an environment name, it is defined as one and is associated with all of the current option
values. Otherwise, the statement has the effect of making that environment (and its asso­
ciated option values) current.

A previously declared environment may also be associated with the declaration of a
new named problem, by placing environ and the environment name before the colon in
the problem statement:

problem MasterII environ Master: ...

The named environment is then automatically made current whenever the associated
problem becomes current. The usual creation of an environment having the same name
as the problem is overridden in this case.

An indexed collection of environments may be declared in an environ statement by
placing an AMPL indexing expression after the environment name. The name is then
"subscripted " in the usual way to refer to individual environments.

Named environments handle changes in the same way as named problems. If an
option's value is changed while some particular environment is current, the new value is
recorded and is the value that will be reinstated whenever that environment is made cur­
ren t again.

Bibliography

Vasek Chvatal, Linear Programming. Freeman (New York, NY, 1983). A general introduction to
linear programming that has chapters on the c uuing~stock problem sketched in Section 14.4 and on
the Dantzig-Wolfe decomposition procedure that is behind the multi examples cited in Section
14.5.

Marsha ll L. Fisher, " An App licatiom. Oriented Guide to Lagrangian Relaxation." Interfaces IS, 2
(1985) pp. 10-21. An introduction to the Lagrangian re laxation procedures underlying the trn­
loc2 script of Section 14.3.

318 INTERACTIONS WITH SOLVERS CHAPTER 14

Robert Fourer and David M. Gay, "Experience with a Primal Presolve Algorithm." In Large
Scale Optimization: Stale o/the Art, W. W. Hager, O. W. Hearn and P. M. Pardalos, cds., Kluwer
Acadern.jc Publishers (Dordrecht, The Netherlands, 1994) pp. 135-154. A detailed description of
the presolve procedure sketched in Section 14.1.

Robert W. Haessler, "Selection and Design of Heuristic Procedures for Solving Roll Trim Prob­
lems." Management Science 34, 12 (1988) pp. 1460--1471. Descriptions of real cutting-stock
problems, some amenable to the techniques of Section 14.4 and some not.

Leon S. Lasdon, Optimization Theory for Large Systems. Macmillan (New York. NY, 1970),
reprinted by Dover (Mineola, NY, 2(02). A classic source for several of the decomposition and
generation procedures behind the scripts.

15
Network Linear Programs

Models of networks have appeared in several chapters, notably in the transportation
problems in Chapter 3. We now return to the formulation of these models, and AMPL's
features for handling them.

Figure 15-1 shows the sort of diagram commonly used to describe a network problem.
A circle represents a node of the network, and an arrow denotes an arc running from one
node to another. A flow of some kind travels from node to node along the arcs, in the
directions of the arrows.

An endless variety of models involve optimization over such networks. Many cannot
be expressed in any straightforward algebraic way or are very difficult to solve. OUf dis­
cussion starts with a particular class of network optimization models in which the deci­
sion variables represent the amounts of flow on the arcs, and the constraints are limited to
two kinds: simple bounds on the flows, and conservation of flow at the nodes. Models
restricted in this way give rise to the problems known as network linear programs. They
are especially easy to describe and solve. yet are widely applicable. Some of their bene­
fits extend to certain generalizations of the network flow form, which we also touch upon.

We begin with minimum-cost transshipment models, which are the largest and most
intuitive source of network linear programs, and then proceed to other well-known cases:
maximum flow, shortest path. transportation and assignment models. Examples are ini­
tially given in terms of standard AMPL variables and constraints, defined in var and
subject to declarations. In later sections, we introduce node and arc declarations
that permit models to be described more directly in terms of their network structure. The
last section discusses formulating network models so that the resulting linear programs
can be solved most efficiently.

15.1 Minimum-cost transshipment models

As a concrete example, imagine that the nodes and arcs in Figure 15-1 represent cities
and intercity transportation links. A manufacturing plant at the city marked PITf will

320 NETWORK LINEAR PROGRAMS CHAPTER 15

)-",0.'-'.7,,,,1,,,00"--o-{ EWR 120

2.5,250
1.3, 100

450 PllT 120

3.5, 250

2.1, 100

Mea 50

Figure 15-1: A direcled network.

make 450,000 packages of a cenain product in the next week, as indicated by the 450 at
the left of the diagram. The cities marked NE and SE are the northeast and southeast dis­
tribution centers. wh ich receive packages from the plant and transship them to ware­
houses at the cities coded as BOS, EWR, BWI, ATL and Meo. (Frequent flyers will recog­
nize Boston , Newark, Baltimore, Atlanta, and Orlando.) These warehouses require 90,
120, 120, 70 and 50 thousand packages, respectively, as indicaled by the numbers at the
right For each intercity link there is a shipping cost per thousand packages and an upper
limit on the packages that can be shipped, indicated by the two numbers next to the corre­
sponding arrow in the diagram.

The opt imizat ion problem over this network is to find the lowest-cost plan of ship­
ments that uses only the avai lable links, respects the specified capacities. and meets the
requirements at the warehouses. We first model this as a general network flow problem,

and then consider alternatives that special ize the model to the particular situation at hand.
We conclude by introducing a few of the most common variations on the network now

constraints.

A general transshipment model

To write a model for any problem of shipments from city to city, we can start by
defining a set of cities and a set of links. Each link is in turn defined by a start city and an
end city. so we want the set of links 10 be a subset of the set of ordered pairs of cities:

set CITIES;
set LI NKS within (CITIES cross CITIES) ;

SECTION 15.1 MINIMUM·COST TRANSSHIPMENT MODELS 321

Corresponding to each city there is potentially a supply of packages and a demand for
packages:

param supply {CITIES} >= 0;
param demand {CITIES} >= OJ

In the case of the problem described by Figure IS-I , the only nonzero value of supply
should be the one for PITT, where packages are manufactured and supplied to the distri­
bution network. The only nonzero values of demand should be those corresponding to
the five warehouses.

The costs and capacities are indexed over the links:

param cost {LINKS} >= 0;
param capacity {LINKS} >= 0 ;

as are the decision variables, which represent the amounts to ship over the links. These
variables are nonnegative and bounded by the capacities:

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j];

The objective is

m1n1rn1ze Total_Cost :
sum {(i,j) in LINKS} cost[i , j] "* Ship(i,j];

which represents the sum of the shipping costs over all of the links.
It remains to describe the constraints. At each city, the packages supplied plus pack­

ages shipped in must balance the packages demanded plus packages shipped out:

subject to Balance {k in CITIES} :
supply[kl + sum [(i,k) in LINKS} Ship[i,k}

= demand[k] + sum «k,j) in LINKS} Ship[k,jl;

Because the expression

sum « i , k lin LINKS) Ship [i , k I

appears within the scope of definition of the dummy index k, the summation is inter­
preted to run over all cities i such that (i I k) is in LINKS. That is, the summation is
over all links into city k; simjlarly, the second summation is over all links out of k. This
indexing convention. which was explained in Section 6.2, is frequently useful in describ­
ing network balance constraints algebraically. Figures IS-2a and IS-2b display the com­
plete model and data for the particular problem depicted in Figure IS-I.

If all of the variables are moved to the left of the = sign and the constants to the right,
the Balance constraint becomes:

subject to Balance {k in CITIES}:
sum «i,k) in LINKS} Ship[i,kl

- sum «k,j) in LINKS} Ship[k,jl
= demand[k) - supply[k);

This variation may be interpreted as saying that, at each city k, shipments in minus ship­
ments out must equal '<net demand". If no city has both a plant and a warehouse (as in

322 NETWORK LINEAR PROGRAMS CHAPTER 15

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0;
param demand {CITIES} >= 0;

amounts available at cities
amounts required at cities

check : sum {i in CITIES} supply(i] = sum {j in CITIES} demand(j] ;

shipment costs/lOaO packages param cost {LINKS} >= 0;
param capacity {LINKS} >= 0 ; # max packages that can be shipped

var Ship {(i,j) in LINKS} >= 0, <= capacity[i,j] ;
packages to be shipped

mln~m~ze Total_Cost:
sum ({i,j) in LINKS} cost(i,j] * Ship(i,j];

subject to Balance {k in CITIES} :
supply(k] + sum {{i,k} in LINKS} Ship(i,k]

demand(k] + sum (k,j) in LINKS} Ship(k,jj;

Figure 15-2a: General transshipment model (netl. mod).

set CITIES : = PITT NE SE BOS EWR BWl ATL Meo ;

set LINKS ; = (PITT,NE) (PITT,SE)
(NE, BOS) (NE, EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param supply default 0 : = PITT 450

param demand default 0 : =
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;

pararn : cost capacity : =
PITT NE 2 . 5 250
PITT SE 3 . 5 250

NE BOS 1.7 100
NE EWR 0 . 7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0 . 8 100
SE ATL 0.2 100
SE MCO 2.1 100

Figure lS-2b: Data for general transshipment model (netl . da t).

our example). then positive net demand always indicates warehouse ciljes, negative net
demand indicates plant c ities, and zero net demand indicates transshipment cities. Thus
we could have gotten by with just one parameter net_demand in place of demand and
supply, with the sign of net_demand [k] indicating what goes on at city k. Alterna­
tive formulations of this kind are often found in descriptions of network (low models.

r SECTION 15.1 MINIMUM-COST TRANSSHIPMENT MODELS 323

Specialized transshipment models

The preceding general approach has the advantage of being able LO accommodate any
pattern of supplies, demands, and links between cities. For example, a simple change in
the data would suffice to model a plant at one of the distribution centers, or to allow ship­
ment links between some of the warehouses.

The disadvantage of a general formulation is that it fails to show clearly what arrange­
ment of supplies, demands and links is expected, and in fact will allow inappropriate
arrangements. If we know that the situation will be like the one shown in Figure 15- 1,
with supply at one plant, which ships to distribution centers, which then ship to ware­
houses that satisfy demand, the model can be specialized to exhibit and enforce such a
structure.

To show expliciUy that there are three different kinds of cities in the specialized
model, we can declare them separately. We use a symbolic parameter rather than a set to
hold the name of the plant, to specify that only one plant is expected :

param p_city symbolic;
set D_CITY;
set W_CITY;

There must be a link between the plant and each distribution center, so we need a subset
of pairs only to specify which links connect di stribution centers to warehouses:

With the declarations organized in this way, it is impossible to specify inappropriate
kinds of links, such as ones between two warehouses or from a warehouse back to the
plant.

One parameter represents the supply at the plant, and a collection of demand parame­
ters is indexed over the warehouses:

param p_supply >= 0;
param w_demand {W_CITY) >= 0;

These declarations allow supply and demand to be defined only where they belong.
At this juncture, we can define the sets CITIES and LINKS and the parameters

supply and demand as they would be required by our previous model:

set CITIES = {p_city) union D_CITY union W_CITY;
set LINKS = ({p_city) cross D_CITY) union DW_LINKS;

param supply {k in CITIES} =
if k = p_city then p_supply else 0;

param demand {k in CITIES} =
if k in W_CITY then w_demand[kl else 0;

The rest of the model can then be exactly as in the general case, as indicated in Figures
\5-3a and 15-3b.

324 NETWORK LINEAR PROGRAMS

param p_city symbolic;

set D_CITY;
set W_CITY ;
set DW_LINKS within (O_CITY cross W_CITY) ;

CHAPTER 15

param p_supply >= 0; # amount available at plant
param w_ demand {W_CITY} >= 0; # amounts required at warehouses

check: p_supply = sum {k in W_CITY} w_demand[klj

set CITIES = {p_city} union D_CITY union W_CITY;
set LINKS = ({p_city) cross D_CITY) union OW_LINKS;

param supply {k in CITIES} =
if k = p_city then p_supply else 0;

pararn demand {k in CITIES} =
if k in W_CITY then w_demand(k] else 0;

Remainder same as general transshipment model ###

param cost {LINKS} >= 0;
param capacity {LINKS} >= 0;

var Ship {(i,j) in LINKS) >=

m1n1m1ze Total_Cost:

shipment costs/IOaO pacKages
max packages that can be shipped

0, <= capacity[i,jJ ;
packages to be shipped

sum {(i , j) in LINKS} cos t [i , j] * Ship [i , j J ;

subject to Balance {k in CITIES} :
supplYlk] + sum {(i,k) in LINKS] Ship[i,k]

= demandlk] + sum {(k,j) in LINKS] Shiplk,j];

Figure 15-3a: Specialized transshipment model (net2 . mod).

Alternatively, we can maintain references to the different types of cities and links
throughout the model. This means that we must declare two types of costs, capacities and
shipments:

param pd_cost {O_CITY) >= 0;
param dw_cost {OW_LINKS} >= 0;

param pd_cap {D_CITY} >= 0;
param dw_cap {DW_LINKS} >= 0;

var PO_Ship {i in D_CITY} >= 0, <= pd_cap[i);
var DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j);

The "pd" quantities are associated with shipments from the plant to distribution centers;
because they all relate to shipments [rom the same plant . they need only be indexed over
D_CITY. The "dw" quanti lies are associated with shipments from di stribution centers
to warehouses, and so are naturally indexed over OW_LINKS.

The tOlal shipment cost can now be given as the sum of two summations:

SECTION 15.1

param p_city : = PITT;

set D_CITY : = NE SE ;

MINIMUM-COST TRANSSHIPMENT MODELS

set W_CITY : = BOS EWR BWI ATL MCO

set OW_LINKS ,= (NE,BOS) (NE,EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param p_supply := 450

param w_demand : =
BOS 90, EWR 120, BWI 120, ATL 70, MCO 50;

param : cost capacity : =
PITT NE 2.5 250
PITT SE 3.5 250

NE BOS 1.7 100
NE EWR 0 . 7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0 . 8 100
SE ATL 0 . 2 100
SE MCO 2 . 1 100

Figure 15-3b: Data for specialized transshipment model (net2 . dat).

mlnlmlze Total_Cost :
sum {i in D_CITY} pd_cost[i) * PD_Ship[i]

+ sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j] ;

325

Finally, there must be three kinds of balance constraints, one for each k.ind of city. Ship­
ments from the plant to the distribution centers must equal the supply at the plant:

subject to P_Bal: sum {i in D_CITY) PD_Ship[ij = p_supply;

At each distribution center, shipments in from the plant must equal shipments out to all
the warehouses:

subject to D_Bal {i in D_CITY}:
PO_Ship[i] = sum ((i,i) in OW_LINKS) OW_Ship[i,i] ;

And at each warehouse. shipments in from all distribution centers must equal the
demand:

subject to W_Bal {j in W_CITY):
sum {(i,j) in DW_LINKS} DW_Ship[i,jJ = w_demand[j];

The whole model, with appropriate data, is shown in Figures 15-4a and 15-4b.
The approaches shown in Figures 15-3 and 15-4 are equivalent, in the sense that they

cause the same linear program to be solved. The former is more convenient for experi­
menting with different network structures, since any changes affect only the data for the
initial declarations in the model. If the network structure is unlikely to change. however,

326 NETWORK LINEAR PROGRAMS

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);

CHAPTER 15

param p_supply >= 0; # amount available at plant
param w_demand {W_CITY} >= 0; # amounts required at warehouses

check: p_supply = sum {j in W_CITY} w_demand[j];

param pd_cost {D_CITY) >= 0; # shipment costs/lOaD packages
param dw_cost {OW_LINKS} >= 0;

param pd_cap {O_CITY} >= 0; # max packages that can be shipped
pararn dw_cap {DW_LINKS} >= 0;

var PO_Ship {i in D_CITY} >= 0, <= pd_cap[i];
var OW_Ship {(i,j) in OW_LINKS} >= 0, <= dw_cap[i,j];

packages to be shipped

minimize Total_Cost :
sum (i in D_CITY) pd_cost(i] * PD_Ship[i] +
sum {(i,j) in DW_LINKS} dw_cost[i,j] * DW_Ship[i,j];

subject to P_Bal: sum {i in D_CITY} PD_Ship[i) = p_supply;

subject to D_Bal {i in D_C ITY} :
PD~Ship[il = sum {{i,j) in DW~LINKSl DW~Ship[i,jl;

subject to W_Bal {j in W_CITY}:
sum {(i,j) in OW_LINKS} OW_Ship(i,j] = w_demand[j];

Figure 15-4a: Specialized transshipment model, version 2 (net3 . mod).

the laner fonn facilitates alterations that affect only particular kinds of cities, such as the
generalizations we describe next.

Variations on transshipment models

Some balance constraints in a network flow model may have to be inequalities rather
than equations. In the example of Figure 15-4, if production at the plant can sometimes
exceed total demand at the warehouses, we should replace = by <= in the P _Bal con­
straints.

A more substantial modification occurs when the quantity of now that comes out of
an arc does not necessarily equal the quantity that went in. As an example, a small frac­
tion of the packages shipped from the plant may be damaged or stolen before the pack­
ages reach the distribution center. Suppose thal a parameter pd_loss is introduced to
represent the loss rate:

param pd_loss {D_CITY} >= 0, < 1;

Then the balance con~traints at the di!o.lribution centers must be adjusted accordingly:

SECTION 15. 1 MINIMUM-COST TRANSSHIPMENT MODELS

set D_CITY := NE SE ;

set W_CITY : = BOS EWR BWI ATL MCO

set OW_LINKS ,= (NE,BOS) (NE, EWR) (NE,BWI)
(SE,EWR) (SE,BWI) (SE,ATL) (SE,MCO);

param p_supply := 450

param w_demand :=
BOS 90, EWR 120, BWI 120, ATL 70, MCO SO;

param : pd_cost pd_cap : =
NE 2.S 2S0
SE 3.S 2S0 ;

param : dw_cost dw_cap :=
NE BOS 1.7 100
NE EWR 0 . 7 100
NE BWI 1.3 100

SE EWR 1.3 100
SE BWI 0.8 100
SE ATL 0.2 100
SE MCO 2 . 1 100

327

Figure 15-4b: Data for specialized transshipment model , version 2 (net3 . da t).

subject to o_Bal {i in D_CITY}:
(1-pd_1oss[i]) * PO_Ship[i]

= sum {(i,j) in OW_LINKS} OW_Ship(i,j]i

The expression to the left of the = sign has been modified to reflect the fact that only
(l-pd_loss [il) * PD_Ship[il packages arrive at city i when PD_Ship[il
packages are shipped from the plant.

A similar variation occurs when the flow is not measured in the same units throughout
the network . If demand is reported in cartons rather than thousands of packages, fo r
example, the model will require a parameter to represent packages per carton:

param ppc integer> Oi

Then the demand constraints at the warehouses are adjusted as follows:

subject to W_Bal {j in W_CITY}:
sum {(i,j) in OW_LINKS} (lOOO/ppc) * DW_Ship[i,j]

= w_demand [j] ;

The term (l 0 0 a /ppc) * DW_Ship [i I j] represents the number of cartons recei ved
at warehouse j when DW_Ship [i, j] thousand packages are shipped from distribution
center i.

328 NETWORK LINEAR PROGRAMS CHAPTER 15

Figure 15-5: Traffic flow network.

15.2 Other network models

Not allnctwork linear programs involve the lranspOitation of things or the minimiza­
lion of costs. We describe here three well-known model classes - maximum now,
shortest palh, and transportation/assignment - that use the same kinds of variables and
constraints for different purposes.

Maximum flow models

In some network design applications the concern is to send as much flow as possible
through the network, rather than to send flow at lowest cost. This alternative is readi ly
handled by dropping the balance constraints at the origins and destinations of flow, while
substituting an objective that stands for total now in some sense.

As a specific example, Figure 15-5 presents a diagram of a simple traffic network.
The nodes and arcs represent intersections and roads: capacities, shown as numbers next
to the roads, are in cars per hour. We want to find the maximum traffic flow that can
enter the network at a and leave at g.

A model for this situation begins with a set of intersections, and symbolic parameters
to indicate the intersections that serve as entrance and exit to the road network:

set INTER;

param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

The set of roads is defined as a subset or the pairs of intersections:

set ROADS within (INTER diff {exit}) cross (INTER diff {entr}) i

This definition ensures that no road begins at the exit or ends at the entrance.
Next, the capacity and tfartic load are defined for each road: /'

SECTION 15.2 OTHER NETWORK MODElS 329

set INTER; # intersections

param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

entrance to road network
exit from road network

set ROADS within (INTER diff (exit}) cross (INTER diff (entr}) ;

param cap {ROADS} >= 0; # capacities
var Traff {(i,j) in ROADS} >= 0, <= cap(i,j]; # traffic loads

maximize Entering_Traff : sum {(entr,j) in ROADS} Traff[entr,j];

subject to Balance {k in INTER difi {entr,exit}}:
sum ({i,k) in ROADS} Traff[i,k] = sum ((k,j) in ROADS} Traff[k,j];

data ;

set INTER := abc d e f g

param entr : = a
param exit : = 9

param : ROADS , cap
a b 50,
b d 40,
c d 60,
d e 50,
e g 70,

: =

a
b
c
d
f

c
e
f
f
g

100
20
20
60
70

Figure 15-6: Maximum traffic flow model and data (netmax . mod).

param cap {ROADS} >= 0 ;
var Traff {(i,j) in ROADS) >= 0 , <= cap[i,j];

The constraints say that except for the entrance and exit, flow into each intersection
equals flow out:

subject to Balance (k in INTER diff {entr,exit}} :
sum ((i,k) in ROADS) Traff[Lk]

= sum ((k,j) in ROADS} Traff[k,j];

Gi ven these constraints, the flow out of the entrance must be the total flow through the
network, which is to be maximized:

maximize Entering_Traif: sum {(entr,j) in ROADS} Traff[entr,j];

We could equally well maximize the total flow into the exit. The entire model, along
with data for the example shown in Figure 15-5, is presented in Figure 15-6. Any linear
programming solver will find a maximum flow of 130 cars per hour.

Shortest path models

If you were to use the optimal solution to any of our models thus far, you would have
to send each of the packages, cars, or whatever along some path from a supply (or
entrance) node to a demand (or exit) node. The values of the decision variables do not

330 NETWORK LINEAR PROGRAMS CHAPTER 15

directly say what the optimal paths are, or how much flow must go on each one. Usually
it is not too hard to deduce these paths, however, especially when the network has a regu­
lar or special structure.

If a network has just one unit of supply and one unit of demand, the optimal solution
assumes a quite different nature. The variable associated with each arc is either 0 or I,
and the arcs whose variables have value 1 comprise a minimum-cost path from the supply
node to the demand node. Often the "costs" are in fact times or distances, so that the
optimum gives a shortest path.

Only a few changes need be made to the maximum flow model of Figure 15-6 to turn
it into a shortest path model. There are still a parameter and a variable associated with
each road from i to j, but we call them time [i, j 1 and Use [i, j 1, and the sum of
their products yields the objective:

param time {ROADS} >= 0; # times to travel roads
var Use {(i,j) in ROADS} >= 0; # 1 iff (i,j) in shortest path

minimize Total_Time: sum {(i,j) in ROADS} time[i,j] * Use[i,j];

Since only those variables Use [i, j 1 on the optimal path equal I, while the rest are O.
this sum does correctly represent the total time to traverse the optimal path. The only
other change is the addition of a constraint to ensure that exactly one unit of flow is avail­
able at the entrance to the network:

subject to Start : sum ((entr,j) in ROADS} Use[entr,j] = 1;

The complete model is shown in Figure 15-7. If we imagine that the numbers on the arcs
in Figure 15-5 are travel times in minutes rather than capacities. the data are the same;
AMPL find s the solution as follows:

ampl: mode~ netshort.mod;
ampl: solve;
MINOS 5.5 : optimal solution found.
1 iterations, objective 140

ampl: option omit_ zero_ rows ~;
ampl: display Use;
Use .-
a b 1
bel
e 9 1

The shortest path is a --; b --; e --; g, which takes 140 minutes.

Transportation and assignment models

The bc~t known and most widely used special network structure is the " bipartite"
structure depicted in Figure 15-8. The nodes fall into two groups, one serving as origins
of flow and the other as destjnalions. Each arc conneClS an origin to a destin.fltion .

SECTION 15.2 OTHER NETWORK MODELS 331

set INTER; tt intersections

param entr symbolic in INTER;
param exit symbolic in INTER, <> entr;

entrance to road network
exit from road network

set ROADS within (INTER diff {exit}) cross (INTER diff (entr});

param time {ROADS} >= 0; tt times to travel roads
var Use {(i,j) in ROADS} >= 0; # 1 iff (i,j) in shortest path

minimize Total_Time: sum {(i,j) in ROADS} time[i,jj * Use[i,jj;

subject to Start: sum {(entr,j) in ROADS} Use[entr,jj = 1;

subject to Balance {k in INTER diff {entr,exit}} :
sum ((i,k) in ROADS) Use[i,k] = sum ((k,j) in ROADS) Use[k,j];

data;

set INTER : = abc d e f 9

par am entr := a
param exit ;= 9

param: ROADS,
a b
b d
c d
d e
e 9

time
50,
40,
60,
50,
70,

.-
a c
b e
c f
d f
f 9

100
20
20
60
70

Figure 15-7: Shortest path model and data (netshort . mod).

The minimum-cost transshipment model on this network is known as the transporta­
tion model. The special case in which every origin is connected to every destination was
introduced in Chapter 3; an AMPL model and sample data are shown in Figures 3- I a and
3- I b. A more general example analogous to the models developed earlier in this chapter,
where a set LINKS specifies the arcs of the network, appears in Figures 6-2a and 6-2b.

Every path from an origin to a destination in a bipartite network consists of one arc.
Or, to say the same thing another way, the optimal flow along an arc of the transportation
model gives the actual amount shipped from some origin to some destination. This prop­
erty permits the transportation model to be viewed alternatively as a so-caJled assignment
model, in which the optimal flow along an arc is the amount of something from the origin
that is assigned to the destination. The meaning of assignment in this context can be
broadly construed, and in particular need not involve a shipment in any sense.

One of the more common applications of the assignment model is matching people to
appropriate targets, such as jobs, offices or even other people. Each origin node is associ­
ated with one person, and each destination node with one of the targets - for example,
with one project. The sets might then be defined as follows:

set PEOPLE;
set PROJECTS;
set ABILITIES within (PEOPLE cross PROJECTS);

332 NETWORK LINEAR PROGRAMS CHAPTER 15

Figure 15-8: Bipartite network.

The set ABILITIES takes the role of LINKS in our earlier models; a pair (i, j) is
placed in this set if and only if person i can work on project j.

As one possibility for continuing the model, the supply at node i could be the number
of hours that person i is available to work, and the demand at node j could be the num­
ber of hours required for project j. Variables Assign [i, j] would represent the num­
ber of hours of person i's time assigned to project j. Also associated with each pair
(i I j) would be a cost per hour, and a maximum number of hours that person i could

contribute to job j. The resulting model is shown in Figure 15-9.
Another possibility is to make the assignment in terms of people rather than hours.

The supply at every node i is I (person), and the demand at node j is the number of peo­
ple required for project j. The supply constraints ensure that Assign [i, j I is not
greater than I; and it will equal I in an optimal solution if and only if person i is
assigned to project j. The coefficient cost [i, j I could be some kind of cost of assign­
ing person i to project j, in which case the objective would still be to minimize total
cost. Or the coefficient could be the ranking of person i for project j, perhaps on a scale
from I (highest) to 10 (lowest). Then the model would produce an assignment for which
the total of the rankings is the best possible.

Finally, we can imagine an assignment model in which the demand at each node j is
also I; the problem is then to match people to projects. In the objective, cost (i, j]
could be the number of hours that person i would need to complete project j, in which
case the model would find the assignment that minimizes the total hours of work needed
to finish all the projects. You can create a model of lhis kind by replacing all references

r SECTION 15.3

set PEOPLE;
set PROJECTS i

DECLARING NETWORK MODELS BY NODE AND ARC

set ABILITIES within (PEOPLE cross PROJECTS);

param supply {PEOPLE} >= 0; ~ hours each person is available
param demand {PROJECTS} >= 0; H hours each project requires

333

check : sum {i in PEOPLE} supply(i] = sum {j in PROJECTS} demand[j];

param cost (ABILITIES) >= 0;
param limit (ABILITIES) >= 0;

cost per hour of work
maximum contributions to projects

var Assign {(i,j) in ABILITIES} >= 0, <= limit[i,j];

minimize Total_Cost:
sum ((i,j) in ABILITIES) cost[i,j] * Assign(i,j)i

subject to Supply {i in PEOPLE}:
sum {(i,j) in ABILITIES} Assign[i,j] supply[i];

subject to Demand {j in PROJECTS}:
sum «i,j) in ABILITIES} Assign[i,j] demand[j] ;

Figure 15-9: Assignment model (netasgn. mod).

to supply [i I and demand [j I by I in Figure 15-9. Objective coefficients represent­
ing ran kings are an option for this model as well, giving rise to the kind of assignment
model that we used as an example in Section 3.3.

15.3 Declaring network models by node and arc

AMPL's algebraic notation has great power to express a variety of network linear pro­
grams, but the resulting constraint expressions are often not as natural as we would like.
While the idea of constraining " flow out minus flow in" at each node is easy to describe
and understand, the corresponding algebraic constraints tend to involve terms like

sum «i,k) in LINKS} Ship[i,k]

that are not so quickly comprehended. The more complex and realistic the network, the
worse the problem. Indeed, it can be hard to tell whether a model's algebraic constraints
represent a valid collection of flow balances on a network, and consequently whether spe­
cialized network optimization software (described later in this chapter) can be used.

Algebraic formulations of network flows tend to be problematical because they are
constructed explicitly in terms of variables and constraints, while the nodes and arcs are
merely implicit in the way that the constraints are structured. People prefer to approach
network flow problems in the opposite way. They imagine giving an explicit definition
of nodes and arcs, from which flow variables and balance constraints implicitly arise. To
deal with this situation, AMPL provides an alternative that allows network concepts to be
declared directly in a modeL

334 NETWORK LINEAR PROGRAMS CHAPTER 15

The network extensions to AMPL include two new kinds of declaration, node and
arc, that take the place of the subj ect to and var declarations in an algebraic con­
straint formulation. The node declarations name the nodes of a network, and character­
ize the now balance constraints at the nodes. The arc declarations name and define the
arcs, by specifying the nodes that arcs connect, and by providing optional information
such as bounds and costs that are associated with arcs.

This section introduces node and arc by showing how they permit various examples
from earlier in this chapter to be reformulated conveniently. The following seclion pre­
sents the rules for these declarations more systematically.

A general transshipment model

In rewriting the model of Figure 15-2a using node and are, we can retain all of the
set and param declarations and associated data. The changes affect only the three dec­
larations -minimize, var. and subject to - that define the linear program.

There is a node in the network for every member of the set CITIES. Using a node
declaration, we can say this directly:

node Balance (k in CITIES): net_in = demand[k] - supply[kl;

The keyword net_in stands for "net input". that is, the flow in minus the flow out, so
this declaration ~ays that net flow in must equal net demand at each node Balance [k].
Thus it says the same thing as the constraint named Balance [k] in the algebraic ver­
sion. except that it uses the concise term net_in in place of the lengthy expression

sum ({i,k) in LINKS) Ship{i,k] - sum ({k,j) in LINKS) Ship[k,j]

Indeed, the syntax of subj ect to and node are practically the same except for the way
that the conservation-of-flow constraint is stated. (The keyword net_out may also be
used to stand for flow out minus flow in, so that we could have written net_out='
supply[k] - demand[k] ,)

There is an arc in the network for every pair in the set LINKS. This too can be said
directly, using an arc declaration:

arc Ship {(i, j) in LINKS} >= 0, <= capacity[i, j],
from Balance[i], to Balance[jl, obj Total_Cost cost[i,j];

An arc Ship [i, j] is defined for each pair in LINKS, with bounds of 0 and
capaci ty [i, j] on its flow ~ to this extent, the arc and var declarations are the
same. The arc declaration contains additional phrases, however, to say that the arc runs
from the node named Balance [i] to the node named Balance [j], with a linear
coefficient of cost [i, j] in the objective function named Total_Cost. These
phrases use the keywords from, to, and obj.

Since the information about the objective function is included in the arc declaration,
it is not needed in the minimi ze declaration, which reduces to:

minimize Total_Cost;

r SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC

set CITIES;
set LINKS within (CITIES cross CITIES) i

param supply {CITIES} >= OJ
param demand {CITIES} >= 0;

amounts available at cities
amounts required at cities

335

check : sum {i in CITIES} supply[iJ = sum {j in CITIES} demand[j];

par am cost {LINKS} >= 0;
param capacity {LINKS} >= OJ

minimize Total_Cost;

shipment costs/IOOO packages
max packages that can be shipped

node Balance {k in CITIES}: net_in = demand[k] - supply(k);

arc Ship {(i,j) in LINKS} >= 0, <= capacity[i,j],
from Balance[il I to Balance(j] I obj Total_Cost cost[i,j];

Figure 15-10: General transshipment model with node and arc (netlnode. mod).

The whole model is shown in Figure 15-10.
As this description suggests, arc and node take the place ofvar and subject to,

respectively. In fact AMPL treats an arc declaration as a definition of variables, so that
you would still say display Ship to look at the optimal flows in the network model of
Figure 15-10; it treats a node declaration as a definition of constraints. The difference is
that node and arc present the model in a way that corresponds more directly to its
appearance in a network diagram. The description of the nodes always comes first, fol­
lowed by a description of how the arcs COlmect the nodes.

A specialized transshipment model

The node and arc declarations make it easy to detine a linear program for a network
that has several different kinds of nodes and arcs. For an example we return to the spe­
cialized model of Figure 15-4a.

The network has a plant node, a distribution center node for each member of
D_CITY, and a warehouse node for each member of W_CITY. Thus the model requires
three node declarations:

node Plant: net_out = p_supply;
node Dist {i in D_CITY};
node Whse {j in W_CITY}: net_in = w_demand[j];

The balance conditions say that flow out of node Plant must be p_supply. while flow
into node Whse [j] is w_demand [j]. (The network has no arcs into the plant or out
of the warehouses, so net_out and net_in are just the flow out and flow in , respec­
tively.) The conditions at node Dist [iJ could be written either net_in = 0 or
net_out = 0, but since these are assumed by default we need not specify any condition
at all.

336 NETWORK LINEAR PROGRAMS

set D_CITY;
set W_CITY;
set DW_LINKS within (D_CITY cross W_CITY);

CHAPTER 15

param p_supply >= 0; # amount available at plant
param w_demand {W_CITY} >= 0;

check: p_supply = sum {j in

param pd_cost {D_CITY} >= 0;
param dw_cost {OW_LINKS} >= 0;

param pd_cap {D_CITY} >= 0;
param dw_cap {DW_LINKS} >= 0 ;

minimize Total_Cost ;

node Plant : net_out = p_supply;

node Dist {i in D_CITY};

amounts required at warehouses

W_CITY} w_dernandlj};

shipment costs/IOaO packages

max packages that can be shipped

node Whse {j in W_CITY} : net in = w_demand[j);

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[iJ,
from Plant, to Dist[i], obj Total_Cost pd_cost(i] ;

arc DW_Ship {(i,j) in OW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cos t dw_cost[i,j];

Figure 15-11: Speciali zed transshipment model with n ode and arc (net3node . mod).

This network has two kinds of arcs. There is an arc from the plant to each member of
D_CITY. which can be declared by:

arc PD_Ship {i in D_CITY} >= 0, <= pd_cap[i],
from Plant, to Dist(i), obj Total_Cost pd_cost[il ;

And there is an arc from distribution center i to warehouse j for each pair (i , j) in
DW_LINKS:

arc DW_Ship {(i,j) in DW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[j], obj Total_Cost dw_cost[i,j];

The arc declarations specify the relevant bounds and objecti ve coefficients, as in our
previous example. The whole model is shown in Figure 15-11.

Variations on transshipment models

The balance conditions in node declarations may be inequalities, like ordinary alge­
braic balance constraints. If production at the plant can sometimes exceed total demand
at the warehouses, it would be appropriate to give the condition in the declaration of node
Plant as net_out <= p_supply.

An arc declaration can specify losses in transit by adding a factor at the end of the
to phrase:

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC

arc PO_Ship {i in O_CITY} >= 0, <= pd_cap[i],
from Plant, to Oist[i] l-pd_loss[i],
obj Total_Cost pd_cost[i];

337

This is interpreted as saying that PD_Ship [i J is the number of packages that leave
node Plant, but (l-pd_loss [iJ) * PD_Ship[iJ is the number that enter node
Dist[iJ.

The same option can be used to specify conversions. To use our previous example, if
shipments are measured in thousands of packages but demands are measured in cartons,
the arcs from distribution centers to warehouses should be declared as:

arc OW_Ship {(i,j) in OW_LINKS} >= 0, <= dw_cap[i,j],
from Dist[i], to Whse[jJ (lOOO/ppc),
obj Total_Cost dw_cost[i,j];

If the shjpmenL~ to warehouses are also measured in cartons, the factor should be applied
at the distribution center:

arc OW_Ship {(i,j) in OW_LINKS} >= 0, <= dw_cap[i,j],
from Dist [i] (ppc/lOOO), to Whse [j],
obj Total_Cost dw_cost(i,j);

A loss factor could also be applied to the to phrase in these examples.

Maximum flow models

[n the diagram of Figure 15-5 that we have used to illustrate the maximum flow prob­
lem, there are three kinds of intersections represented by nodes: the one where traffic
enters, the one where traffic leaves, and the others where traffic flow is conserved. Thus
a model of the network could have three corresponding node declarations:

node Entr_Int: net_out >= 0;
node Exit_Int: net_in >= 0;

node Intersection {k in INTER diff {entr,exit});

The condition net_out >= 0 implies that the flow out of node Entr_Int may be any
amount at all; this is the proper condit ion , si nce there is no balance constraint on the
entrance node. An analogous comment applies to the condition for node Exit_Int.

There is one arc in this network for each pair (i, j) in the set ROADS. Thus the dec­
laration should look something like this:

arc Traff {(i,j) in ROAOS} >= 0, <= cap[i,j], it NOT RIGHT
from Intersection[i], to Intersection[j],
obj Entering_Traff (if i = entr then 1);

Since the aim is to maximize the total traffic leaving the entrance node, the arc is given a
coefficient of I in the objective if and only if i takes the value entr. When i does take
this value, however. the arc is specified to be from Intersection [entr], a node
that does not exist; the arc shou ld rather be from node Entr_Int. SimiJarly, when j
takes the value exi t. the arc shou ld not be to Intersection {exi t}, but to

338 NETWORK LINEAR PROGRAMS CHAPTER 15

Exi t_Int. AMPL will catch these errors and issue a message naming one of the nonex­
istent nodes that has been referenced.

It might seem reasonable to use an if -then-else to get around this problem, in the
following way:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j), # SYNTAX ERROR
from (if i = entr then Entr_Int else Intersection[i]),
to (if j = exit then Exit_lnt else Intersection[j]),
obj Entering_Traff (if i = entr then 1);

However, the if-then-else construct in AMPL does not apply to model components
such as Entr_Int and Intersection[i]; this version will be rejected as a syntax
error. Instead you need to use from and to phrases qualified by indexing expressions:

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from {if i = entr} Entr_Int,
from {if i <> entr} Intersection[i],
to {if j = exit} Exit_Int,
to {if j <> exit) Intersection[j],
obj Entering_Traff (if i = entr then 1);

The special indexing expression beginning with if works much the same way here as it
does for constraints (Seclion 8.4); the from or to phrase is processed if the condition
following if is true. Thus Traff [i, j 1 is declared to be from Entr_Int if i equals
entr, and to be from Intersection [i] if i is not equal to entr, which is what we
intend.

As an alternative, we can combine the declarations of the three different kinds of
nodes into one. Observing that net_out is positive or zero for Entr_Int, negative or
zero for Exi t_Int, and zero for all other nodes Intersection [i] , we can declare:

node Intersection {k in INTER} :
(if k = exit then -Infinity)

<= net_out <= (if k = entr then Infinity);

The nodes that were formerly declared as Entr_Int and Exit_Int are now just
Intersection [entr] and Intersection [exi t] , and consequently the arc dec­
laration that we previously marked "not right" now works just fine. The choice between
this version and the previous one is entirely a matter of convenience and taste.
(Inf ini ty is a predefined AMPL parameter that may be used to specify any "infinitely
large" bound ; its technical definition is given in Section A.7.2.)

Arguably the AMPL formulation that is most convenient and appealing is neither of
the above, but rather comes from interpreting the network diagram of Figure 15-5 in a
slightly different way. Suppose that we view the arrows into the entrance node and out of
the exit node as representing additional arcs, which happen to be adjacent to only one
node rather than two. Then flow in equals flow out at every intersection. and the node
declaration simplifies to:

node Intersection {k in INTER};

SECTION 15.3 DECLARING NETWORK MODELS BY NODE AND ARC 339

set INTERi # intersections

param entr symbolic in INTER i
param exit symbolic in INTER, <> entri

entrance to road network
exit from road network

set ROADS within (INTER diff {exit}) cross (INTER diff (entr});

param cap {ROADS} >= Oi # capacities of roads

node Intersection {k in INTER};

arc Traff_In >= 0, to Intersection[entr] i

arc Traff_Out >= 0, from Intersection[exit];

arc Traff {(i,j) in ROADS} >= 0, <= cap[i,j],
from Intersection[i], to Intersection[jj;

maximize Entering_Traff: Traff_In;

data;

set INTER := abc d e f g

param entr : = a
param exit : = g

param : ROADS:
a b
b d
c d
d e
e g

cap
50,
40,
60,
50,
70,

. -
a c
b e
c f
d f
f g

100
20
20
60
70

Figure 15-12: Maximum flow model with node and arc (netmax3 . mod).

The two arcs "'hanging" at the entrance and exit are defined in the obvious way, but
include only a to or a from phrase:

arc Traff_In >= 0, to Intersection [entr] i

arc Traff_Out >= 0, from Intersection[exit] i

The arcs that represent roads withjn the network are declared as before:

arc Traff {(i,j) in ROADS} >= 0, <= cap(i,j],
from Intersection[i], to Intersection[j];

When the model is represented in this way. the objecti ve is to maximize Traff_In (or
equivalently Traff_Out). We could do this by adding an obj phrase to the arc dec­
laration for Traff_In. but in this case it is perhaps clearer to define the objective alge­
braically:

maximize Entering_Traff: Traff_Ini

This version io;; 5.hown in full in Figure J 5-12.

340 NETWORK LINEAR PROGRAMS CHAPTER 15

15.4 Rules for node and arc declarations

Having defined node and arc by example, we now describe more comprehensively
the required and optional elements of these declarations, and comment on their interac­
tion with the conventional declarations minimize or maximi ze, subj ect to, and
var when both kinds appear in the same model.

node declarations

A node declaration begins with the keyword node, a name, an opt ional indexing
expression, and a colon. The expression following the colon, which describes the balance
condition at the node, may have any of the following form s:

net-expr arith-expr
lIef-exp' <= arith-expr
net-expr >= orilll-expr

arirh-expr lIet-exp'
arith-expr <= nel-expr
arirh-expr >= net-expr

arith-expr <= net-exp' <= arith-expr
ari,h-expr >= nel-expr >= arith-expr

where an arilh-expr may be any arithmetic expression that uses previously declared
model components and currently defined dummy indices. A Ilel-expr is restricted to one
of the fo llowing:

± net in
± net in + arith-expr
arith-expr ± net_in

± net_out
± net_out + arith-expr
arith-expr ± net out

(and a unary + may be omiued). Each node defined in this way induces a constraint in
the resulting linear program. A node name is treated like a constraint name in the AMPL
command environment, for example in a display statement.

For declarations that use net_in, AMPL generates the constraint by substituting, at
the place where net_in appears in the balance conditions, a linear expression that repre­
sents flow into the node minus flow out of the node. Declarations that use net_out are
handled the same way, except that AMPL substitutes Ilow out minus Ilow in. The expres­
sions for flow in and flow out are deduced from the arc declarations.

arc declarations

An arc declaration consists of the keyword arc, a name, an optional indexing
expression, and a series of optional qualifying phrases. Each arc creates a variable in the
resulting linear program, whose value is the amount of flow over the arc; the arc name
may be used 10 refer to this variable elsewhere. All of the phrases that may appear in a
var definition have the same significance in an arc definition; most commonly, the >=

I

SECTION 15.4 RULES FOR NODE AND ARC DECLARATIONS 341

and <= phrases are used to specify values for lower and upper bounds on the llow along
the arc.

The from and to phrases specify the nodes connected by an arc. Usually these con­
sist of the keyword from or to followed by a node name. An arc is interpreted to con­
tribute to the flow out of the from node, and to the llow into the to node; these interpre­
tations are what permit the inference of the constraints associated with the nodes.

Typically one from and one to phrase are specified in an arc declaration. Either
may be omitted, however, as in Figure 15-12. Either may also be followed by an optional
indexing expression, which should be one of two kinds:

• An indexing expression that specifies - depending on the data - an empty set (in
which case the from or to phrase is ignored) or a set with one member (in which
case the from or to phrase is used) .

• An indexing expression of the special form {if logical-expr}, which causes the
from or to phrase to be used if and only if the logical-expr evaluates to truc.

It is possible to specify that an arc carries flow out of or into two or marc nodes. by giv­
ing more than one from or to phrase, or by using an indexing expression that specifies a
set having more than one member. The result is not a network linear program, however,
and AMPL displays an appropriate warning message.

At the end of a from or to phrase. you may add an arithmetic cxpression represent­
ing a factor to multiply the flow , as shown in our examples of shipping-loss and change­
of-unit variations in Section 15.3. If the factor is in the to phrase, it multiplies the arc
variable in determining the flow into the specified node; that is, for a given flow along the
arc, an amount equal to the to-factor timc~ the flow is considered to enter thc to node.
A factor in the from phrase is interprcted analogously. The default factor is I.

An optional obj phrase specifics a coefficient that will multiply the arc variable to
create a linear term in a specified objective function. Such a phrase consists of the key­
word obj, the name of an objective t.hat has previously been defined in a minimize or
maximize declaration, and an arithmetic exprcssion for the coefficient value. The key­
word may be followed by an indexing expression, which is interpreted as for the from
and to phrases.

Interaction with objective declarations

If all terms in the objective function are specified through obj phrases in arc decla­
ralions, the declaration of the objective is simply minimize or maximi ze followed by
an optional indexing expression and a name. This declaration must come before thc arc
declarations that refer to the objecti ve.

Alternatively, <Irc names may be used as variables to specify the objective function in
the usual algebraic way. In thi!) case the objective must be declared after the arcs, as in
Figure 15-12.

342 NETWORK LINEAR PROGRAMS CHAPTER 15

set CITIES;
set LINKS within (CITIES cross CITIES);

set PRODS;

param supply {CITIES, PRODS} >= 0 ;
param demand {CITIES,PRODS} >= 0;

amounts available at cities
amounts required at cities

check {p in PRODS}:
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];

param cost {LINKS,PRODS} >= 0:
param capacity {LINKS/PRODS} >=
param cap~joint {LINKS} >= 0;

minimize Total_Cost;

shipment costs/lOaD packages
0; # max packages shipped

max total packages shipped/link

node Balance {k in CITIES, p in PRODS}:
net~in = demand[k,pJ - supply(k,p];

arc Ship {(i,j) in LINKS , p in PRODS} >= 0, <= capacity[i,j,p),
from Balance[i,p], to Balance[j,p], obj Total_Cost cost[i,j,p] ;

subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[i,j,p] <= cap_joint[i,j];

Figure 15-13: Multicommodity flow with side constraints (netmul ti . mod).

Interaction with constraint declarations

The components defined in arc declarations may be used as variables in additional
subject to declarations. The latter represent " side constraints" that are imposed in
addition to balance of flow at the nodes.

As an example, consider how a multicommodity flow problem can be built from the
node-and-arc network formulation in Figure 15-10. Following the approach in Section
4.1. we introduce a set PRODS of different products, and add it to the indexing of all
parameters, nodes and arcs. The result is a separate network linear program for each
product, with the objective function being the sum of the costs for all products. To tie
these networks together, we provide for a joint limit on the total shipments along any
link:

param cap_joint {LINKS} >= OJ

subject to Multi {(i,j) in LINKS}:
sum {p in PRODS} Ship[p,i,j} <= cap_joint[i,j);

The tinal model, shown in Figure 15-13, is not a network linear program, but the network
and non-network parts of it are cleanly separated.

Interaction with variable declarations

Just as an arc variable may be used in a subj ect to declaration, an ordinary var
variable may be used in a node declaration. That is, the balance condition in a node

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 343

declaration may contain references to variables that were defined by preceding var dec­
larations. These references define "side variables" to the network linear program.

As an example, we again replicate the formulation of Figure 15-10 over the set
PRODS. This lime we lie lhe nelworks logether by introducing a sel of feedslocks and
associated data:

set FEEDS;
param yield {PRODS, FEEDS} >= 0;
param limit {FEEDS, CITIES} >= OJ

We imagine that at CilY k, in addition 10 lhc amounls supply [p, k) of producls avail­
able to be shipped, up 10 limi t [f, k) of feedstock f can be converled into producls;
one unit of feedstock f gives rise to yield [p, f) unils of each product p. A variable
Feed [f, k) represenls the amounl of feed slock f used at city k :

var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,kJ;

The balance condition for product p at city k can now say that the net flow out equals net
supply plus the sum of the amounts derived from the various feed stocks:

node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,kJ - demand[p,kJ

+ sum (f in FEEDS) yield[p,fl * Feed[f,k);

The arcs are unchanged, leading to the model shown in Figure 15- 14. At a given city k,
lhe variables Feed [f, k) appear in lhe node balance condilions for all lhe differenl
products, bringing together the product networks into a single linear program.

15,5 Solving network linear programs

All of the models that we have described in this chapter give rise to linear programs
that have a " network" property of some kind. AMPL can send these linear programs to
an LP solver and relrieve lhe optimal values, much as for any olher class of LPs. If you
use AMPL in this way, the network structure is helpful mainly as a guide to formulating
the model and interpreting the results.

Many of lhe models lhal we have described belong as well to a more reslricled class
of problems thal (confusingly) are also known as "network linear programs." [n model­
ing terms. the variables of a network LP must represent flows on the arcs of a network,
and the constraints must be only of two types: bounds on the flows along the arcs, and
limits on flow out minus flow in at the nodes. A more technical way to say the same
thing is that each variable of a network linear program must appear in at most two con­
straints (aside from lower or upper bounds on the variables), such that the variable has a
coefficient of +1 in at most one constraint, and a coefficient of - I in at most one con­
straint.

" Pure" network linear programs of this restricted kind have some very strong proper­
ties that make their use particularly desirable. So long as the \upplics, demands, and

344 NETWORK LINEAR PROGRAMS

set CITIES;

set LINKS within (CITIES cross CITIES);

set PRODS:

CHAPTER 15

param supply {PRODS, CITIES} >= 0; # amounts available at cities

pararn demand {PRODS,CITIES} >= o· # amounts required at cities

check (p in PRODS),
sum {i in CITIES} supply(p,i] = sum {j in CITIES} demand[p,j] ;

param cost {PRODS, LINKS} >= 0; # shipment costs/IOaO packages
param capacity {PRODS, LINKS) >= 0; # max packages shipped of product

set FEEDS;

pararn yield {PRODS,FEEDS} >= 0;
param limit {FEEDS,CITIES} >= 0;

minimize Total_Cost;

amounts derived from feedstocks
feedstocks available at cities

var Feed {f in FEEDS, k in CITIES} >= 0, <= limit[f,k];

node Balance {p in PRODS, k in CITIES}:
net_out = supply[p,k] - demand[p,k]

+ sum (f in FEEDS) yield(p,f) * Feed(f,kl;

arc Ship {p in PRODS, (i,j) in LINKS} >= 0, <= capacity[p,i,j),
from Balance[p,i1, to Balance(p,j],
obj Total_Cost cost[p,i,j) ;

Figure 15-14: Multicommodity now with side variables (net feeds .mod).

bounds are integers, a network linear program must have an optimal solution in which all
flows are integers. Moreover, if the solver is of a kind that finds "extreme" solutions
(such as those based on the simplex method) it will always find one of the all-integer
optimal solutions. We have taken advantage of this property, without explicitly mention­
ing it, in assuming that the variables in the shortest path problem and in certain assign­
ment problems come out to be either zero or one, and never some fraction in between.

Network linear programs can also be solved much faster than other linear programs of
comparable size, through the use of solvers that are specialized to take advantage of the
network structure. If you write your model in terms of node and arc declarations,
AMPL automatically communicates the network structure to the solver, and any special
network algorithms available in the solver can be applied automatically. On the other
hand, a network expressed algebraically using var and subject to mayor may not be
recognized by the solver, and certain options may have to be set to ensure that it is recog­
nized. For example, when using the algebraic model of Figure 15-4a, you may see the
usual response from the general LP algorithm:

ampl: mode~ net3.mod; data net3.dat; Bo~ve;
CPLEX 8.0.0: optimal solution; objective 1819
1 dual simplex iterations (0 in phase I)

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 345

But when using the equivalent node and arc formulation of Figure 15- 1 I, you may get a
somewhat different response to reflect the application of a special network LP algorithm:

ampl : model net3node.mod
ampl: data net3.dat
ampl : solve;
CPLEX 8.0.0 : optimal solution; objective 1819
Network extractor found 7 nodes and 7 arcs.
7 network simplex iterations.
o simplex iterations (0 in phase I)

To determine how your favorite solver behaves in this situation, consult the solver­
specific documentation that is supplied with your AMPL installation.

Because network linear programs are much easier to solve, especially with integer
data, the success of a large-scale application may depend on whether a pure network for­
mulation is possible. In the case of the mullicommodity now model of Figure 15-13, for
example. the joint capacity constraints disrupt the network structure - they represent a
third constraint in which each variable figures - but their presence cannot be avoided in
a correct representation of the problem. Multicommodity flow problems thus do nOl nec­
essarily have integer solutions, and are generally much harder to solve than single­
commodity now problems of comparable size.

In some cases, a judicious reformulation can turn what appears to be a more general
model into a pure network model. Consider, for instance, a generalization of Figure
15-10 in which capacities are defined at the nodes as well as along the arcs:

param city_cap {CITIES} >= 0;
param link_cap {LINKS} >= 0;

The arc capacities represent , as before, upper limits on the shipments between cities. The
node capacities limit the throughput, or total now handled at a city, which may be written
as the supply at the city plus the sum of the nows in. or equivalently as the demand at the
city plus the sum of the nows out. Using the former, we arrive at the following con­
straint:

subject to through_limit {k in CITIES} :
supply[kJ + sum {{i,k) in LINKS) Ship[i,k) <= node_cap[kJ;

Viewed in this way, the throughput limit is another example of a "side constraint" that
disrupts the network structure by adding a third coefficient for each variable. But we can
achieve the same effect without a side constraint, by using two nodes to represent each
city; one receives flow into a city plus any supply, and the other sends now out of a city
plus any demand:

node Supply {k in CITIES}: net_out = supply[klj
node Demand {k in CITIES}: net_in = demand[k];

A shipment link between cities i and j is represented by an arc that connects the node
Demand [i J to node Supply [j J :

346 NETWORK LINEAR PROGRAMS CHAPTER 15

set CITIES;
set LINKS within (CITIES cross CITIES);

param supply {CITIES} >= 0;
param demand {CITIES} >= 0;

amounts available at cities
amounts required at cities

check: sum {i in CITIES} supply[i] = sum {j in CITIES} demand[j];

param cost {LINKS} >= 0; # shipment costs per ton

param city_cap {CITIES} >= 0; # max throughput at c1t1es
param link_cap {LINKS} >= 0; # max shipment over links

minimize Total_Cost;

node Supply {k in CITIES}: net_out = supply[k];
node Demand {k in CITIES}: net_in = demand[k];

arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,j],
from Demand[i], to Supply[jJ, obj Total_Cost cost{i,j];

arc Through {k in CITIES} >= 0, <= city_cap[kl,
from Supply[kj, to Demand{k];

Figure IS-IS: Transshipment model with node capacities (netthru.mod).

arc Ship {(i,j) in LINKS} >= 0, <= link_cap[i,jl,
from Demand[iJ, to Supply[jJ. obj Total_Cost cost[i,jj;

The throughput at city k is represented by a new kind of arc, from Supply [k] to
Demand [k]:

arc Through {k in cities} >= 0, <= city_cap[kJ,
from Supply[kJ, to Demand[k];

The throughput limit is now represented by an upper bound on this arc 's flow, rather than
by a side constraint, and the network slrUcture of the model is preserved. A complete list­
ing appears in Figure 15-15.

The preceding example exhibit5 an additional advantage of using the node and arc
declarations when developing a network model. If you use only node and arc in their
simple Fonns - no variables in the node conditions, and no optionaJ factors in the from
and to phrases - your model is guaranteed to give rise only to pure network linear pro­
grams. By contrast, if you use var and subj ect to, it is your responsibility to ensure
that the resulting linear program has the necessary network stntcturc.

Some of the preceding comments can be extended to "generalized network" linear
programs in which each variable still figures in at most two constraints. but not necessar­
ily with coefficients of + I and - I. We have seen examples of generalized networks in the
cases where there is a loss of flow or change of units on the arcs. Generalized network
LPs do not necessarily have integer optimal solutions, but fast algorithms for them do
exist. A solver that promises a " network" algorithm mayor may not have an extension
to generalized networks; check the solver-specific documentation before you make any
assumptions.

,

SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 347

Bibliography

Ravindra K. Ahuja, Thomas L. Magnanti and James B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall (Englewood Cliffs, NJ, 1993).

Dimitri P. Bertsekas Network Optimization: COlltill/lOUS alld Discrete Models. Athena Scientific
(Princeton, NJ, \998).

L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks. Princeton University Press (Princeton, NJ,
1962). A highly influential survey of network linear programming and related topics, which stimu­
lated much subsequent study.

Fred Glover, Darwin Klingman and Nancy V. Phillips, Network Models in Optimization and their
Applications ill Practice. John Wiley & Sons (New York, 1992).

Walter Jacobs, "The Caterer Problem." Naval Research Logistics Quarterly 1 (1954) pp.
154-165. The origin of the network problem described in Exercise 15-8.

Katta G. Murty, Network Programming. Prentice-Hall (Englewood Cli ffs, NJ, 1992).

Exercises

15-1. The following diagram can be interpreted as representing a network transshipment problem:

(50)

B l-----"----i D
13

(100") c.--", -'

(120)

t2

(30)

The arrows into nodes A and B represent supply in the indicated amounts, 100 and 50; the arrows
out of nodes E and F similarly represent demand in the amounts 30 and 120. The remaining arrows
indicate shipment possibilities, and the numbers on them are the unit shipping costs. There is a
capacity of 80 on every arc.

(a) Solve this problem by developing appropriate data statements to go along with the model of
Figure 15-2a.

(b) Check that you get the same solution using the node and arc formulation of Figure 15-10. Does
the solver appear to be using the same algorithm as in (a)? Try this comparison with each LP
solver available to you.

15~2. Reinterpret the numbers on the arcs between nodes, in the diagram of the preceding exer­
cise. to solve the following problems. (Ignore the numbers on the arrows into A and B and on the
arrows out of E and F.)

(a) Regarding the numbers on the arcs between nodes as lengths. use a model such as the one in
Figure 15-7 to find the shortest path from A to F.

348 NElWORK LINEAR PROGRAMS CHAPTER 15

(b) Regarding the numbers on the arcs between nodes as capacities, use a model such as the one in
Figure 15-6 to find the maximum flow from A 10 F.

(c) Generalize the model from (b) so that it can find the maximum flow from any subset of nodes
to any other subset of nodes, in some meaningful sense. Use your generalization to find the maxi­
mum flow from A and B to E and F.

15-3. Section 4.2 showed how a multiperiod model could be constructed by replicating a static
model over time periods, and using inventories to tie the periods together. Consider applying the
same approach to the specialized transshipment model of Figure 15-4a.

(a) Construct a multi-week version of Figure 15-4a, with the inventories kept at the distribution
centers (the members of D_CITY).

(b) Now consider expanding the data of Figure 15-4b for this model. Suppose that the initial
inventory is 200 at NE and 75 at SE, and that the inventory carrying cost per I ()(X) packages is 0.15
per week at NE and 0.12 per week at SE. Let the supplies and demands over 5 weeks be as fol­
lows:

Demand
Week Supply BaS EWR BWI ATL Mea

450 50 90 95 50 20
2 450 65 100 105 50 20
3 400 70 100 110 50 25
4 250 70 110 120 50 40
5 325 80 115 120 55 45

Leave the cost and capacity data unchanged, the same in all weeks. Develop an appropriate data
file for this situation, and solve the multi-week problem.

(c) The multi-week model in this case can be viewed as a pure network model, with arcs represent­
ing inventories as well as shipments. To show that this is the case, reformulate the model from (a)
using only node and arc declarations for the constraints and variables.

15-4. For each of the following network problems, conslruct a data file that pennilS it 10 be
solved using the general transshipment model of Figure 15-2a.

(a) The transportation problem of Figure 3-1.

(b) The assignment problem of Figure 3-2.

(c) The maximum flow problem of Figure 15-6.

(d) The shortest path problem of Figure 15-7.

15-5. Reformulate each of the following network models using node and arc declarations as
much as possible:

(a) The transportation model of Figure 6-2a.

(b) The shortest path model of Figure 15-7.

(c) The production/transportation model of Figure 4-6.

(d) The multicommodity transportation model of Figure 6-5.

15-6. The professor in charge of an industrial engineering design course is faced with the prob­
lem of assigning 28 students to eight projects. Each student must be assigned to one project, and
each project group must have 3 or 4 students. The students have been asked to rank the projects,
with I being the best ranking and higher numbers representing lower rankings.

-
SECTION 15.5 SOLVING NETWORK LINEAR PROGRAMS 349

(a) Formulatc an algebraic assignment model, using var and subj ect to declarations. for this
problem.

(b) Solve the assignment problem for the following table of rankings:

A ED EZ G HI H2 RB SC A ED EZ G HI H2 RB SC
Allen I 3 4 7 7 5 2 6 Knorr 7 4 I 2 2 5 6 3
Black 6 4 2 5 5 7 I 3 Manheim 4 7 2 I I 3 6 5
Chung 6 2 3 I I 7 5 4 Morris 7 5 4 6 6 3 2
Clark 7 6 2 2 3 5 4 Nathan 4 7 5 6 6 3 2
Conners 7 6 I 3 3 4 5 2 Neuman 7 5 4 6 6 3 I 2
Cumming 6 7 4 2 2 3 5 Patrick I 7 5 4 4 2 3 6
Demming 2 5 4 6 6 I 3 7 Rollins 6 2 3 I I 7 5 4
Eng 4 7 2 I I 6 3 5 Schuman 4 7 3 5 5 I 2 6
Farmer 7 6 5 2 2 3 4 Silver 4 7 3 I I 2 5 6
Forest 6 7 2 5 5 I 3 4 Stein 6 4 2 5 5 7 3
Goodman 7 6 2 4 4 5 I 3 Stock 5 2 I 6 6 7 4 3
Harris 4 7 5 3 3 I 2 6 Truman 6 3 2 7 7 5 I 4
Holmes 6 7 4 2 2 3 5 Wolman 6 7 4 2 2 3 5 I
Johnson 7 2 4 6 6 5 3 Young 3 4 7 7 6 2 5

How many students arc assigned second or third choice?

(c) Some of the projects are harder than others to reach without a car. Thus it is desirable that at
least a certain number of students assigned lO each project must have a car; the numbers vary by
project as follows:

Al ED 0 EZ 0 G 2 HI 2 H22 RB I SC I

The students who have cars are:

Chung Eng Manheim Nathan Rollins
Denuning Holmes Morris Patrick Young

Modify the model to add this car constraint. and solve the problem again. How many more llru·
dents than before must be assigned second or third choice?

(d) Your fonnulation in (c) can be viewed as a transportation model with side constraints. By
defining appropriate network nodes and arcs, reformulate it as a "pure" network flow model, as
discussed in Section 15.5. Write the formulation in AMPL using only node and arc declarations
for the constraints and variables. Solve with the same data as in (c). to show that the optimal value
is the same.

15-7. To manage its excess cash over the next 12 months, a company may purchase I·month,
2-month or 3-month certificates of deposit from any of several different banks. The current ca!>h
on hand and amounts invested are known. while the company mUM estimate the cash receipts and
expenditures for each month, and the returns on the different certificates.

The company's problem is to determine the best investment strategy. subject to cash requirements.
(As a practical matter, the company would use the first month of the optimal solUlion as a guide to
its current purchases. and then fe-solve with updated estimates at the beginning of the next month.)

(a) Draw a network diagram for this situation. Show each month as a node, and the investments.
receipts and expenditures as arcs.

350 NETWORK LINEAR PROGRAMS CHAPTER 15

(b) Fonnulate the relevant optimization problem as an AMPL model , using node and arc declara­
tions. Assume that any cash from previously-purchased certificates comjng due in the early
mon ths is included in data for the receipts.

There is more than one way to describe the objective function for this model. Explain your choice.

(c) Suppose that the company's estimated receipts and expenses (in thousands of dollars) over the
next 12 months are as follows:

receipt expense
1 3200 200
2 3600 200
3 3100 400
4 1000 800
5 1000 2100
6 1000 4500
7 1200 3300
8 1200 1800
9 1200 600

10 1500 200
11 1800 200
12 1900 200

The two banks competing for the business are estimating the following rates of return for the next
12 months:

CIT ; 1 2 3 NBD: 1 2 3
1 0.00433 0.01067 0.01988 1 0 . 00425 0.01067 0 . 02013
2 0.00437 0.01075 0.02000 2 0.00429 0.01075 0 .02025
3 0.00442 0.01083 0.02013 3 0 . 00433 0.01083 0 . 02063
4 0 . 00446 0 . 01092 0.02038 4 0.00437 0.01092 0.02088
5 0.00450 0.01100 0 .02050 5 0 . 00442 0.01100 0.02100
6 0.00458 0.01125 0.02088 6 0.00450 0.01125 0.02138
7 0.00467 0.01142 0.02113 7 0.00458 0.01142 0.02162
8 0 . 00487 0.01183 0.02187 8 0.00479 0.01183 0.02212
9 0 . 00500 0.01217 0.02237 9 0 . 00492 0.01217 0.02262

10 0 .0 0500 0.01217 0.02250 10 0.00492 0.01217 0.02275
11 0.00492 0.01217 0.02250 11 0.00483 0.01233 0.02275
12 0.00483 0.01217 0.02275 12 0.00475 0.01250 0.02312

Construct an appropriate data file, and solve the resulting linear program. Use display to pro­
duce a summary of the indicated purchases.

Cd) Company policy prohibits investing more than 70% of its cash in new certificates of anyone
bank in any month. Devise a side constraint on the model from (b) to impose thi s restriction.

Again solve the resulting linear program, and summarize the indicated purchases. How much
income is lost due to the restrictive policy?

15-8. A caterer has booked dinners for the next T days, and has as a result a requirement for a
certain number of napkins each day. He has a certain initial stock of napkins, and can buy new
ones each day at a certain price. In addition, used napkins can be laundered either at a slow service
that takes 4 days, or at a faster but more expensive service that takes 2 days. The caterer's problem
is to fmd the most economical combination of purchase and laundering that will meet the forthcom­
ing demand.

(a) It is not hard to see that the decision variables for this problem should be something like the fol ­
lowing:

-
SECTION 15.5

Buy[tl
Carry[tl
Wash2[tl
Wash4[tl
Trash[t]

SOLVING NETWORK LINEAR PROGRAMS

clean napkin'> bought for day t
clean napkins st ill on hand at the end of day t
used napkins sent 10 the fast laundry after day t
used napkins scnt to the slow laundry after day t
used napkins discarded after day t

There are two collections of constraints on these variables, which can be described as follows:

351

- The number of clean napkins acquired through purchase, carryover and laundering on day t

must equal the number sent to laundering, discarded or carried over after day t.

- The number of used napkins laundered or discarded after day t must equal the number that were
required for that day' s catering.

Formulate an AMPL linear programming model for this problem.

(b) Formulate an alternative network linear programming model for this problem. Write it in
AMPL using node and arc declarations.

(c) The "caterer problem" was introduced in a 1954 paper by Walter Jacobs of the U.S. Air Force.
Although it has been presented in countless books on linear and network programming. il does not
seem 10 have ever been used by any caterer. In what application do you suppose it really origi­
nated?

(d) Since thi s is an artificial problem, you might as well make up your own data for it. Use your
data to check that the formulations in (a) and (b) give the same optimal value.

r
16

Columnwise Formulations

Because the fundamental idea of an optimization problem is to minimize or maximize
a function of the decision variables, subject to constraints on them, AMPL is oriented
toward explicit descriptions of variables and constraiJl(s. This is why var declarations
tend to come first, followed by the minimize or maximize and subject to decla­
rations that use the variables. A wide variety of optimization problems can be formulated
with this approach, as the examples in this book demonstrate.

For certain kinds of linear programs, however, it can be preferable to declare the
objective and constraints before the variables. Usually in these cases, there is a much
simpler pattern or interpretation to the coefficients of a single variable down all the con­
straints than to the cocfricients of a single constraint across all the variables. In the jar­
gon of linear programming, it is easier to describe the matrix of constraint coefficients
"colum nwise" than "row-wise". As a result. the formulation is simplified by first
declaring the constraints and objective, then listing the nonzero coefficients in the decla­
rations of the variables.

One example of this phenomenon is provided by the network linear programs
described in Chapter 15. Each variable has at most two nonzero coefficients in the con­
straints, a +1 and a - I. Rather than trying to describe the constraints algebraically, you
may find it easier to specify, in each variable's declaration, the one or two constraints that
the variable figures in . In fact, this is exactly what you do by using the special node and
arc declarations introduced by Section 15.3. The node declarations come first to
describe the nature of the constraints at the network nodes. Then the arc declarations
define the network flow variables, using from and to phrases to localc their non.lCro
coefficients among the node con~traints. This approach is particularly appealing because
it corresponds directly to the way most people think about a network flow problem.

It wou ld be impractical for AMPL to offer special declarations and phrases for every
kind of linear program that you might want to declare by columns rather than by rows.
Instead, additional options to the var and subj ec t to declarations permit any linear
program to be given a columnwise declaration. Thi s chapter introduces AMPL's colu mn­
wise features through two cOl1lrasting examples - an input-output production model , and

354 COLUMNWISE FORMULATIONS CHAPTER 16

a work-shift scheduling model - and concludes with a summary of the language exten­
sions that may be used in columnwise formulations.

16.1 An input-output model

In simple maximum-profit production models such as the examples in Chapter I, the
goods produced are distinct from the resources consumed, so that overall production is
limited in an obvious way by resources available. In a more realistic model of a complex
operation such as a steel mill or refinery, however, production is carried out at a series of
units; as a result , some of a production unit' s inputs may be the outputs from other units.
For this situation we need a model that deals more generally with materials that may be
inputs or outputs, and with production activities that may invol ve several inputs and out­
puts each.

We begin by developing an AMPL formulation in the usual row-wi se (or constrai nt­
oriented) way. Then we explain the columnwise (or variable-oriented) alternative, and
di scuss refinements of the model.

Formulation by constraints

The definition of our model starts with a set of materials and a set of activities:

set MAT;
set ACT;

The key data values are the input-output coefficients for all material-activity combina­
tions:

param io {MAT,ACT};

If io [i, j 1 > 0, it is interpreted as the amount of material i produced (as an output) by
a unit of activity j. On the other hand, if io [i, j] < 0, it represents minus the amount
of material i consumed (as an input) by a unit of activity j. For example, a value of 10
represents 10 units of i produced per unit of j, while a value of - 10 represents 10 units
consumed per unit of j. Of course, we can expect that for many combinations of i and j
we will have io [i, j] = 0, signifying that material i does not figure in activity j at all.

To see why we want to interpret io [i, j] in this manner, suppose we define
Run [j 1 to be the level at which we operate (run) activity j:

param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min(j]i

var Run {j in ACT} >= act_min(j], <= act_max [j];

Then io [i, j 1 * Run [j 1 is the total amount of material i produced (if io [i, j 1 > 0)
or minus the amount of material i consumed (if io [i, j] < 0) by activity j. Summing
over all activities, we see that

r SECTION 16.1

set MAT;
set ACT;

materials
activities

AN INPUT-OUTPUT MODEL

param io {MAT,ACT}; # input-output coefficients

param revenue {ACT};
param act_min {ACT} >= 0 ;
param act_max {j in ACT) >= act_rnin[j] ;

var Run {j in ACT} >= act_min[j], <= act_max[j];

maXlffilze Net Proflt : sum {j in ACT} revenue[j] * Run[j] i

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run[j] = 0;

Figure 16-1: Input-output model by rows (iorow. mod).

sum {j in ACT} io[i,j] * Run[j]

355

represents the amount of material i produced in the operation minus the amount con­
sumed. These amounts must balance, as expressed by the following constraint:

subject to Balance {i in MAT} :
sum {j in ACT} io[i,j) * Run[j] = 0;

What about the availability of resources, or the requirements for finished goods? These
are readily modeled through additional activities that represent the purchase or sale of
materials. A purchase activity for material i has no inputs and just i as an output; the
upper limit on Run [i) represents the amount of this resource available. Similarly, a sale
activity for material i has 110 outputs and just i as an input, and the lower limit on
Run [i] represents the amount of this good that must be produced for sale.

We complete the model by associating unit revenues with the activities. Sale activi­
ties necessarily have positive revenues, while purchase and production activities have
negative revenues - that is, costs. The sum of unit revenues times activity levels gives
the total net protit of the operation:

param revenue {ACT} ;
maximize Net_Profit : sum {j in ACT} revenue[jj * Run[jl j

The completed model is shown in Figure 16-1.

A column wise formulation

As our discussion of purchase and sale activities suggests, everything in this model
can be organized by activity. Specifically, for each activity j we have a decision variable
RUn [j], a cost or income represented by revenue [j], limits act_min [j] and
act_max [j] , and a collection of input-output coefficients io [i I j]. Changes such as
improving the yield of a unit, or acquiring a new source of supply, are accommodated by
adding an activity or by modifying the data for an activity.

356 COlUMNWISE FORMULATIONS CHAPTER 16

In the formulation by rows, the activities' importance to mis model is somewhat hid­
den . While act_min [j 1 and act_max [j 1 appear in the declaration of the variables,
revenue (j) is in the objective. and the io [i, j] values are in the constraint declara­
tion. The column wise alternati ve brings all of this information together, by adding obj
and coeff phrases to the var declaration:

var Run {j in ACT} >= act_min(j), <= act_max[j],
obj Net_Profit revenue[j),
ceeff {i in MAT} Balance(i] io[i,j];

The obj phrase says that in the objective function named Net_Profit, the variable
Run [j 1 has the coefficient revenue [j 1 ; that is, the term revenue [j 1 * Run [j 1
should be added in. The coeff phrase is a bit more complicated, because it is indexed
over a set. It says that for each material i, in the constraint Balance [i 1 the variable
Run [j 1 should have the coefficient io [i, j 1 , so that the term io [i, j 1 * Run [j 1 is
added in. Together, these phrases describe all the coeffi cients of all the variables in the
linear program.

Since we have placed all the coefficients in the var declaration, we must remove
them from the other declarations:

maximize Net_Profit;
subject to Balance {i in MAT}: to_come = 0;

The keyword to_corne indicates where the terms io [i, j 1 * Run [j 1 generated by
the var declaration are to be "added in." You can think of to_come = a as a template
for the constraint, which will be filled out as the coefficients are declared. No template is
needed for the objective in this example, however, since it is exclusively the sum of the
terms revenue [j J * Run [j]. Templates may be written in a limited variety of ways,
as shown in Section 16.3 below.

Because the obj and coeff phrases refer to Net_Profit and Balance, the var
declaration must come after the rnaxirni ze and subj ect to declarations in the
columnwise formulation. The complete model is shown in Figure 16-2.

set MAT;
set ACT;
pararn io {MAT,ACT};

materials
activities
input-output coefficients

param revenue {ACT};
param act_min {ACT} >= 0;
param act_max {j in ACT} >= act_min[j];

maximize Net_Profit:

subject to Balance {i in MAT}; to_come = 0;

var Run {j in ACT} >= act_min[j], <= act_max(j],
obj Net_Profit revenue[j],
coeff {i in MAT} Balance[il io[i,j];

Figure 16-2: Columnwise formulation (iocoll. mod).

SECTION 16.1 AN INPUT·OUTPUT MODEL 357

Refinements of the column wise formulation

The advantages of a columnwise approach become more evident as the model
becomes more complicated. As one example, consider what happens if we want to have
separate variables to represent sales of fini shed materials. We declare a subset of materi­
als that can be sold, and use it to index new collections of bounds, revenues and variables:

set MATF within MATi # finished materials

param revenue {MATF} >= 0 ;

param sell_min {MATF} >= 0;
param sell_max {i in MATF} >= sell_min[i);

var Sell {i in MATF} >= sell_min[iJ, <= sell_max[i] ;

We may now dispense with the special sale activities previously described. Since the
remaining members of ACT represent purchase or production activities, we can introduce
a nonnegative parameter cost associated with them:

param cost {ACT} >= 0;

In the row-wise approach, the new objective is written as

maximize Net Profit:
sum {i in MATF} revenue [i) * Sell[iJ
- sum {j in ACT} cos t (j] * Run [j) ;

to represent total sales revenue minus total raw material and production costs.
So far we seem to have improved upon the model in Figure 16-1. The composition of

net profit is more clearly modeled, and sales are restricted to explicitly designated fin­
ished materials; also the optimal amounts sold are more easily examined apart from the
other variables, by a command such as display Sell. It remains to fix up the COI1-

straints. We would like to say that the net output of material i from all activities, repre­
sented as

sum {j in ACT} io[i,j) * Run[j]

in Figure 16-1 , must balance the amount sold - either Sell (i J if i is a fini shed mate­
rial. or zero. Thus the constraint declaration must be written:

subject to Balance {i in MAT}:
sum {j in ACT} io[i,j] * Run(j]

= if i in MATF then Sell(ij else 0;

Unfortunately this constraint seems less clear than our original one, due to the complica­
tion introduced by the i f-then-else expression.

In the coiumn wise alternative, the objective and constraints are the same as in Figure
16-2. while all {he changes are reflected in the declarations of the variables:

358 COLUMNWISE FORMULATIONS

set MAT; # materials
set ACT; # activities

param io {MAT. ACT} ; # input-output coefficients

set MATF within MAT; # finished materials

param revenue {MATF} >= 0;

param sell_min {MATF} >= OJ
param sell_max {i in MATF} >= sell_min[i];

param cost {ACT} >= 0;
param act_min {ACT} >= 0;
par am act_max {j in ACT} >= act_min[j];

maximize Net_Profit ;

subject to Balance {i in MAT}: to_come = 0;

var Run {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[iJ io[i,jj;

var Sell {i in MATF} >= sell_min[il, <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[ij -1;

CHAPTER 16

Figure 16-3: Columnwise formulation , with sales activities (ioco12 . mod).

var Ru n {j in ACT} >= act_min[j], <= act_max[j],
obj Net_Profit -cost[j],
coeff {i in MAT} Balance[i] io[i,j];

var Sell {i in MATF} >= sell_min[i], <= sell_max[i],
obj Net_Profit revenue[i],
coeff Balance[i] -1;

In thi s view, the variable Sell [i J represents the kind of sale activity that we previously
described, with only material i as input and no material s as output - hence the single
coefficient of - I in constraint Balance [i l. We need not specify all the zero coeffi­
cients for Sell [i] ; a zero is assumed for any constraint not explicitly cited in a coeff
phrase in the declaration. The whole model is shown in Figure 16-3.

This example suggests that a column wise approach is particularly suited to refine­
ments of the input-output model that distingui sh different kinds of activities. It would be
easy to add another group of variables that represent purchases of raw materials, for
instance.

On the other hand, versions of the input-output model that involve numerous special­
ized constraints would lend themselves more to a formulation by rows.

SECTION 16.2 A SCHEDULING MODEL 359

16.2 A scheduling model

In Section 2.4 we observed that the general form of a blending model was applicable
to certain scheduling problems. Here we describe a related scheduling model for which
the columnwise approach is particularly attractive.

Suppose that a factory's production for the next week is divided into fixed time peri­
ods, or shifts. You want to assign employees to shifts, so that the required number of
people are working on each shift. You cannot fill each shift independently of the others,
however, because only certain weekly schedules are allowed; for example. a person can­
not work five shifts in a row. Your problem is thus more properly viewed as one of
assigning employees to schedules. so that each shift is covered and the overall assignment
is the most economical.

We can conveniently represent the schedules for this problem by an indexed collec­
tion of subsets of shifts:

set SHIFTS;

param Nsched;
set SCHEDS = 1 .. Nsched;

shifts

number of schedules;
set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

For each schedule j in the set SCHEDS, the shifts that a person works on schedule j are
contained in the set SHIFT_LIST [j J . We also specify a pay rate per person on each
schedule, and the number of people required on each shift:

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

We let the variable Work [j J represent the number of people assigned to work each
schedule j , and minimize the sum of rate [j J * Work [j J over all schedules:

var Work {SCHEDS} >= 0;
minimize Total_Cost: sum {j in SCHEDS} rate[j] * Work[j];

Finally, our constraints say that the total of employees assigned to each shift i must be at
least the number required:

subject to Shift_Needs {i in SHIFTS}:
sum {j in SCHEDS : i in SHIFT_LIST[j1} Work[j]

>= required [i] i

On the left we take the sum of Work [j J over all schedules j such that i is in
SHIFT_LIST [j J. This sum represents the total employees who are assigned to sched­
ules that contain shift i, and hence equals the total employees covering shift i.

The awkward description of the constraint in this formulation moti vates us to try a
columnwise formulation. As in our previous examples, we declare the objective and con­
straints first, but with the variables left out:

minimize Total_Cost;
subject to Shift_Needs {i in SHIFTS}: to_come >= required[i];

360 CQLUMNWISE FORMULATIONS CHAPTER 16

The coefficients of Work [j] appear instead in its var declaration. In the objective, it
has a coefficient of rate (j J. In the constraints, the membership of SHIFT_LIST (j J
te ll s us exact ly what we need to know: Work [j] has a coefficient of I in constraint
Shift_Needs (i J for each i in SHIFT_LIST (j J, and a coefficient of 0 in the other
constraint~. This leads us to the following concise declaration:

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff (i in SHIFT_LIST[j)) Shift_Needs [i) 1,

The full model is shown in Figure 16-4.
As a specific instance of this model , imagine that you have three shifts a day on Mon­

day through Friday, and two shifts on Saturday. Each day you need 100, 78 and 52
employees on the first, second and third shifts, respectively. To keep things simple, sup­
pose that the cost per person is the same regardless of schedule, so that you may just min­
imize the total number of employees by selling ra te (j J to I for all j.

As for the schedules. a reasonable scheduling rule might be that each employee works
five shifts in a week, but never more than one shift in any 24-hour period. Part of the
data fil e is shown in Figure 16-5; we don ' t show the whole file, because there are 126
schedules that satisfy the rule' The resulting 126-variable linear program is not hard to
solve, however:

ampl: mode~ sched.mod; data sched.dat; solve;
MINOS 5.5: optimal solution found.
19 iterations, objective 265.6

ampl: o~tion display_e~B .000001;
ampl: o~tion omit_ zero_ rowB 1;
ampl : option diB~lay_1co~ 0, djsp~ay_width 60;

ampl: diB~lay Work;
Work [*) : =

10 28.8 30 14 . 4 71 35 . 6 106 23.2 123
18 7.6 35 6 . 8 73 28 109 14.4
24 6 . 8 66 35 . 6 87 14.4 113 14.4

35.6

As you can see, this optimal solution makes use of 13 of the schedules, some in fractional
amounts. (There exist many other opt imal solutions to thi s problem. so the results you
get may differ.) If you round each fraction in this solution up to the next highest value.
you get a pretty good feasible solut ion using 271 employees. To determine whether this
is the best whole-number solution, however, it is necessary to use integer programming
techniques. which are tbe subject of Chapter 20.

The convenience of the columnwise formulation in thi s case follows directly from
how we have chosen to represent the data. W e imagine that the modeler will be thinking
in terms of schedules, and will want to try addi ng, dropping or modifying different sched­
ules to see what solutions can be obtained. The subsets SHIFT_LIST [j) provide a
convenient and concise way of maintaining the schedules in the data. Since the data are
then organ ized by schedules, and there is abo a variable for each schedule, it proves to be

SECT10N 16.2 A SCHEDULING MODEL

shifts set SHIFTS;

param Nsched;
set SCHEDS = l .. Nsched ;

number of schedules;
set of schedules

set SHIFT_LIST {SCHEDS} within SHIFTS;

param rate {SCHEDS} >= 0;
param required {SHIFTS} >= 0;

minimize Total_Cost;

361

subject to Shift_Needs {i in SHIFTS) : to_come >= required[i];

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j],
coeff {i in SHIFT_LIST[i]J Shift_Needs[i] 1;

Figure 16-4: Columnwise scheduling model (sched. mod).

set SHIFTS := Mon! Tue1 Wed1 Thu1 Fril Sat1
Mon2 Tue2 Wed2 Thu2 Fri2 Sat2
Mon3 Tue3 Wed3 Thu3 Fri3

param Nsched : = 126

set SHIFT_LIST [1] := Monl Tuel Wedl Thul Fril
set SHIFT_LIST [2] := Monl Tuel Wedl Thul Fri2
set SHIFT_LIST [3] . - Monl Tue1 Wed1 Thu1 Fri3
set SHIFT_LIST [4] : = Monl Tuel Wed! Thul Satl
set SHIFT_LIST [5] : = Monl Tue1 Wed! Thul Sat2

(J J 7 lilies omiued)

set SHIFT_LIST[123] : = Tuel Wed1 Thul Fri2 Sat2
set SHIFT_LIST[124] : = Tuel Wed1 Thu2 Fri2 Sat2
set SHIFT_LIST[125] : = Tuel Wed2 Thu2 Fri2 Sat2
set SHIFT_LIST[126] := Tue2 Wed2 Thu2 Fri2 Sat2

param rate default 1 ;

param required : = Monl 100 Mon2 78 Mon3 52
Tue1 100 Tue2 78 Tue3 52
Wed1 100 Wed2 78 Wed3 52
Thul 100 Thu2 78 Thu3 52
Fril 100 Fri2 78 Fri3 52
Satl 100 Sat2 78

Figure 16-5: Partial data for scheduling model (sched. dat).

simpler - and for larger examples, more effic ient - to specify the coefficients by vari-
able.

Models of lhis kind are used for a variety of scheduling problems. As a convenience,
the keyword cover may be used (in the manner of from and to for networks) to spec-
ify a coeffi c ient of I :

362 COLUMNWISE FORMULATIONS

var Work {j in SCHEDS} >= 0,
obj Total_Cost rate[j] I

cover {i in SHIFT_LIST[j]} Shift_Needs[ili

CHAPTER 16

Some of the best known and largest examples are in airline crew scheduling, where the
variables may represent the assignment of crews rather than individuals, the shifts
become flights, and the requirement is one crew for each flight. We then have what is
known as a set covering problem, in which the objective is to most economically cover
the set of all flights with subsets represent ing crew schedules.

16.3 Rules for columnwise formulations

The algebraic description of an AMPL constraint can be written, in any of the follow­
ing ways:

arith-expr <=
arith-expr
arirh-expr >=

arith-expr
arirh-expr
arirh-expr

COllst-expr <= arith -expr <= COflst-expr
const -expr >= aritlt-expr >= const-expr

Each const-expr must be an arithmetic expression not containing variables, while an
arith-expr may be any valid arithmetic expression - though it must be linear in the vari­
ables (Section 8.2) if the result is to be a linear program. To permit a column wise formu­
lalion, one of the arith-exprs may be given as:

to come
to_come + aritlt-expr
arith-expr + to_come

Most often a "template" constraint of this kind consists, as in our examples, of
to_corne, a relational operator and a const-expr; the constraint's linear terms are all pro­
vided in subsequent var declarations, and to_corne shows where they should go. If the
template constraint does contain variables, they must be from previous var declarations,
and the model becomes a sort of hybrid between row-wise and columnwise forms.

The expression for an objective function may also incorporate to_come in one of the
ways shown above. If the objective is a sum of linear tenns specified entirely by subse­
quent var declarations, as in our examples, the expression for the objective is just
to_come and may be omitted.

In a var declaration, constraint coefficients may be specified by one or more phrases
consisting of the keyword coeff, an optional indexing expression. a constraint name,
and an arith-expr. If an indexing expression is present, a coefficient is generated for each
member of the indexing set; otherwi se, one coefficient is generated. The indexing
expression may also take the speciaJ form {if logical-expr} as seen in Section 8.4 or
15.3, in which case a coefficient is generated only if the Logical-expr evaluates to true.
Our simple examples have required just one coef f phrase in each var declaration, but

SECTION 16.3 RULES FOR COLUMNWISE FORMULATIONS 363

set CITIES ;
set LINKS within (CITIES cross CITIES);

set PRODS ;

param supply {CITIES,PRODS} >= 0 ;
param demand {CITIES,PRODS} >= a·

amounts available at cities
amounts required at cities

check {p in PRODS} :
sum {i in CITIES} supply[i,p] = sum {j in CITIES} demand[j,p];

param cost {LINKS, PRODS} >= 0 ;
param capacity {LINKS,PRODS} >=
param cap_joint {LINKS} >= 0;

minimize Total_Cost ;

shipment costs/laaa packages
0; # max packages shipped

max total packages shipped/link

node Balance {k in CITIES, p in PRODS} :
net_in = demand[k,p] - supply[k,p] ;

subject to Mul ti {(i,j) i n LINKS} :
to_come <= cap_joint[i , j] ;

arc Ship {(i,j) i n LINKS, p in PRODS} >= 0, <= capacity[i,j,p],
from Bal ance[i ,p], to Balance [j ,p],
coeff Mul t i[i,j) 1 . 0 ,
obj Tota l_Cost cost[i,j,p) i

Figure 16-6: Columnwise fonnulation of Figure 15-13 (netmcol . mod).

in general a separate c o eff phrase is needed for each different indexed collection of
constraints in which a variable appears.

Objective function coefficients may be specified in the same way, except that the key­
word obj is used instead of c oeff.

The obj phrase in a var declaration is the same as the obj phrase used in a rc dec­
larations for networks (Section 15.4). The constraint coefficients for the network vari­
ables defined by an arc declaration are normally given in from and to phrases, but
coeff phrases may be present as well; they can be useful if you want to give a column­
wise description of "side" constraints that apply in addition to the balance-of-flow con­
straints. As an example, Figure 16-6 shows how a coeff phrase can be used to rewrite
the multi commodity flow model of Figure 15-13 in an entirely columnwise manner.

Bibliography

Gerald Kahan. " Walking Through a Columnar Approach to Linear Programming of a Bus iness."
lnteliaces 12, 3 (1982) pp. 32- 39. A brief for the columnwise approach to linear programming.
with a small example.

364 COlUMNWISE FORMULATIONS CHAPTER 16

Exercises

16-1 . (a) Construct a colunmwise formulation of the diet model of Figure 2-1.

(b) Construct a columnwise formulation of the diet model of Figure 5-1. Since there are IwO sepa­
rate collections of constraints in this diet model, you will need two coeff phrases in the var dec­
laration.

16-2. Expand the column wise production model of Figure 16-3 to incorporate variables Buy [i]

that represent purchases of raw materials.

16-3. Formulate a multiperiod version of the model of Figure 16-3, usi ng the approach introduced
in Section 4.2: first replicate the model over a set of weeks, then introduce inventory variab les to
tie the weeks together. Use only colurnnwise declarations for all of the variables. including those
for inventory.

16-4. The "roll trim" or "culling stock" problem has much in common with the scheduling
problem described in this chapter. Review the description of the roll trim problem in Exercise 2·6,
and u~c it to answer the fo llowing questions.

(a) Wh.u is the relationship between the available cutting patterns in the roll trim problem. and the
coeffic ients of the variables in the linear programming formulation?

(b) Formulate an AMPL model for the roll trim problem that uses only column wise declarations of
the va riables.

(c) Solve the roll trim problem for the data given in Exercise 2-6. As a test of your formu lation,
show that it gives the same optimal value as a row-wise formulation of the model.

16-5. The set covering problem, mentioned at the end of Section 16.2, can be stated in a general
way as follows. You are given a set 5, and certain subsets T1> T 2 •.•. , Tn of 5: a cost is associated
with each of the subsets. A selection of some of the subsets T, is said to cover 5 if every member
of S is also a member of at least one of the se lected subsets. For example. if

s = {l,2,3,4}

and

Tl = {1,2,4} T2 = {2,3} T3 = {l} T4 = {3,4} T5 = {l,3}

the selections (Tl, T2) and (T2, T4 , T5) cover S, but the selection (T3, T4 , T5) does not.

The goa l of the SCI covering problem is to find the least costly selection of subsets that covers S.
Formulate a columnwise linear program that solves this problem for any given set and subsets.

17
Piecewise-Linear Programs

Several kinds of linear programming problems use functions that are not really linear,
but are pieced together from connected linear segments:

These "piecewise-linear" terms are easy to imagine, but can be hard to describe in con­
ventional algebraic notation. Hence AMPL provides a special, concise way of writing
them.

This chapter introduces AMPL's piecewise-linear notation through examples of
piecewise-linear objective functions. In Section 17.1, terms of potentially many pieces
are used to describe costs more accurately than a single linear relationship. Section 17.2
shows how terms of two or three pieces can be valuable for such purposes as penalizing
deviations from constraints, dealing with infeasibilities, and modeling "reversible" activ­
ities. Finally, Section 17.3 describes piecewise-linear functions that can be written with
other AMPL operators and functions; some are most effectively handled by convening
them to the piecewise-linear notation. while others can be accommodated only through
more extensive transformations.

Although the piecewise-linear examples in this chapter are all easy to solve, seem­
ingly similar examples can be much more difficult. The last section of this chapter thus
offers guidelines for fanning and using piecewise-linear terms. We explain how the easy
cases can be characterized by the convexity or concavity of the piecewise-linear terms.

366 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

rate3[i ,j]

-+~----------------~-------------r------------- Trans{i,j)
limit1 l i,j] limit2 I i. j]

Figure 17-1: Piecewise-linear function, with three slopes.

17.1 Cost terms

Piecewise-Iinearities are often employed (0 give a more realistic description of costs
than can be achieved by lincar terms alone. in this kind of applicat ion, piecewise-linear
terms serve much the same purpose as nonlinear ones, but without some of the difficulties
to be described in Chapter 18.

To make the comparison explicit, we will use the same transportation example as in
Chapter 18. We introduce AMPL's notation for piecewise-linear terms with a simple
example that has a fixed number of cost levels (and linear pieces) for each shipping link.
Then we show how an extension of the notation can use indexing expressions to specify a
varying number of pieces controlled through the data.

Fixed numbers of pieces

[n a linear transportation model like Figure 3-1a. any number of units can be shipped
from a given origin to a g iven destination at the same cost per unit. More realistically,
however, the most favorable rale may be available for only a limited number of units;
shipments beyond this limit pay higher rates. As an example, imagine that three cost rate
levels are specified for each origin-destination pair. Then the total cost of shipments
along a link increases with the amount shipped in a piecewise-linear fashion, with three
pieces as shown in Figure 17-l.

To model the three-piece costs, we replace the parameter cost of Figure 3- la by
three rates and two limits:

param ratel {i in ORIG. j in DEST} >= 0;
param rate2 {i in ORIG . j i n DEST} >= ratel[i , j] i

param rate3 {i in ORIG, j in DEST} >= rate2[i,j] ;

param limit! {i in ORIG , j in DEST} > 0;
param limit2 {i in ORIG, j in DEST} > limitl[i,j] ;

r
SECTION 17.1 COST TERMS 367

Shipments from i to j are charged at ratel [i, j 1 per unit up to limitl [i, j 1
units, then at rate2 [i, j 1 per unit up to limi t2 [i, j], and then at ra te3 [i, j 1 .
Normally rate2 [i, j 1 would be greater than ratel [i, j land rate3 [i, j 1 would
be greater than rate2 [i, j l, but they may be equal if the link from i to j does not
have three distinct rates.

In the linear transportation model, the objective is expressed in terms of the variables
and the parameter cost as follows:

var Trans {ORIG,DEST} >= OJ

minimize Total_Cost:
sum {i in ORIG, j in DEST} cost[i,jj * Trans[i,j];

We could express a piecewise-linear objective analogously, by introducing three collec­
tions of variables, one to represent the amount shipped at each rate:

var Trans! (i in ORIG, j in DEST) >= 0, <= limitl[i,j] ;
var Trans2 (i in ORIG, j in DEST) >= 0, <= limit2 [i, j]

- limitl[i,j] ;
var Trans3 (i in ORIG, j in DEST) >= ° .
minimize Total_Cost:

sum {i in ORIG, j in DEST} (rate! [i, j] * Trans! [i, j 1
+ rate2[i,j) * Trans2[i,jj + rate3[i,j] * Trans3[i,j]);

But then the new variables would have to be introduced into all the constraints, and we
would als.o have to deal with these variables whenever we wanted to display the optimal
results. Rather than go to all this trouble, we would much prefer to describe the
piecewise-linear cost function explicitly in terms of the original variables. Since there is
no standard way to describe piecewise-linear functions in algebraic notation, AMPL sup­
plies its own syntax for this purpose.

The piecewise-linear function depicted in Figure 17-1 is written in AMPL as follows:

«limitl[i,j], limit2[i,j];
ratel[i,j], rate2[i,j], rate3[i,j]» Trans[i,j]

The expression between < < and > > describes the piecewise-linear function, and is fol­
lowed by the name of the variable to which it applies. (You can think of it as "multiply­
ing" Trans [i, j], but by a series of coefficients rather than just one.) There are two
parts to the expression, a list of breakpoints where the slope of the function changes, and
a list of the slopes - which in this case are the cost rates. The lists are separated by a
semicolon, and members of each list are separated by commas. Since the first slope
applies to values before the first breakpoint, and the last slope to values after the last
breakpoint, the number of slopes must be one more than the number of breakpoints.

Although the lists of breakpoints and slopes are sufficient to describe the piecewise­
linear cost function for optimization, they do not quite specify the function uniquely. If
we added, say, 10 to the cost at every point, we would have a different cost function even
though all the breakpoints and slopes would be the same. To resolve this ambiguity,

368 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

set ORIG;
set DEST;

#: origins
destinations

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

amounts available at origins
amounts required at destinations

check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];

param ratel (i in ORIG, j in DEST) >= o·
param rate2 (i in ORIG, j in DEST) >= ratel[i,jj;
param rate3 (i in ORIG, j in DEST) >= rate2[i,j);

param limitl (i in ORIG, j in DEST) > 0;
param limit2 (i in ORIG, j in DEST) > limitl[i,jj;

var Trans {ORIG,DEST} >= 0; # units to be shipped

minimize Total_Cost :
sum {i in ORIG, j in DEST}

«limitl[i.j] I limit2 [i,j] ;
ratel[i,j], rate2(i,j] I rate3[i,jj» Trans[i,j] i

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST} :
sum {i i n ORIG} Trans[i,j] = demand[j] ;

Figure 17·2: Piecewise· linear model with three slopes (transpll . mod).

AMPL assumes that a piecewise-linear function evaluates to zero at zero, as in Figure
17- 1. Options for other possibilities are discussed later in this chapter.

ten
Summing the cost over all links, the piecewise-linear objective function is now writ-

minimize Total_Cost :
sum {i in ORIG, j in DEST}

«limitl[Lj], limit2[i,j] ;
ratel[i,j], rate2[i,j], rate3(i,j]» Trans[i,j];

The declarations of the variables and constraints stay the same as before ; the complete
model is shown in Figure 17·2.

Varying numbers of pieces

The approach taken in the preceding example is most useful when there are only a few
linear pieces for each term. If there were, for example, 12 pieces instead of three, a
model detining ratel[i ,j] through rate12[i,j] and limit1[i,j] through
limitll [i, j 1 would be unwieldy. Realistically, moreover, there would more likely
be up to 12 pieces, rather than exactly 12, for each tenn ; a term with fewer than 12 pieces
could be handled by making some rates equal , but for large numbers of pieces this would

r SECTION 17.2 COMMON TWO-PIECE AND THREE·PIECE TERMS 369

be a cumbersome device that would require many unnecessary data values and would
obscure the actual number of pieces in each tenTI.

A much bener approach is to let the number of pieces (that is, the number of shipping
rates) itself be a parameter of the model, indexed over the links:

pararn npiece {ORIG,DEST} integer >= 1;

We can then index the rates and limits over all combinations of links and pieces:

param rate {i in ORIG, j in DEST, pin 1 .. npiece(i,j]}
>= if p = 1 then 0 else rate[i,j,p-l];

param limit {i in ORIG, j in DEST, p in 1 .. npiece[i,j]-l}
> if p = 1 then a else limit[i,j,p-l];

For any particular origin i and destination j. the number of linear pieces in the cost term
is given by npiece [i, j 1. The slopes are rate [i, j ,p 1 for p ranging from I to
npiece [i, j 1, and the intervening breakpoints are 1 imi t [i, j ,p 1 for p from I to
npiece [i, j 1 -1. As before, there is one more slope than there are breakpoints.

To use AMPL's piecewise-li near function notation with these data values, we have to
give indexed li sts of breakpoints and slopes, rather than the explici t lists of the previous
example. This is done by placing indexi ng expressions in front of the slope and break­
point values:

minimize Total_Cost:
sum {i in ORIG, j in DEST}

«{p in 1 . . npiece[i,j]-l} limit[i,j,p);
{p in 1 .. npiece[i,j)} rate[i,j,p]» Trans(i,j);

Once again, the rest of the model is the same. Figure 17-3a shows the whole model and
Figure 17-3b ill ustrates how the data would be specified. Notice that since
npiece ["PITT" , "STL" 1 is I, Trans ["PITT" , "STL" 1 has only one slope and
no breakpoints; this implies a one-piece linear term for Trans [II PITT" , "STL"] in
the objective function.

17.2 Common two-piece and three-piece terms

Simple piecewise-linear terms have a variety of uses in otherwise linear models. In
this section we present three cases: allowing limited violations of the constraints, analyz­
ing infeasibility, and representing costs for variables that are meaningful at negative as
well as positive levels.

Penalty terms for " soft" constraints

Linear programs most easily express "hard" constraints: that production must be at
least at a certain level, for example, or that resources used must not exceed those avail­
able. Real situat ions are onen not nearly so definite. Production and resource use may

370 PIECEWISE-LINEAR PROGRAMS

set ORIG;
set DEST;

origins
destinations

CHAPTER 17

param supply {ORIG} >= 0;
param demand {DEST} >= 0;

amounts available at origins
amounts required at destinations

check : sum (i in ORIG} supply(iJ sum {j in DEST} demand[j];

param npiece {ORIG,DEST} integer >= 1;

param rate {i in ORIG, j in DEST, pin 1 . . npiece[i,j]}
>= if p = 1 then a else rate[i,j,p-l] ;

param limit {i in ORIG, j in DEST, p in 1 .. npiece[i,j]-l}
> if p = 1 then 0 else limi t[i,j,p-l);

var Trans {ORIG,DEST} >= 0 ; # units to be shipped

minimize Total_ Cost :
sum {i in ORIG, j in DEST}

«{p in 1 .. npiece [Lj)-l} limit[i,j,p] ;
{p in 1 .. npiece [i, j]} rate (i, j ,p»> Trans [i, j] ;

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,j] = supply[i];

subject to Demand {j in DEST} :
sum {i in ORIG} Trans[i,j] = demand[j] ;

Figure 17-33: Piecewise-linear model with indexed slopes (transp12 . mod).

have certain preferred levels, yet we may be allowed to violate these levels by accepting
some extra costs or reduced profits. The resulting "soft" constraints can be modeled by
adding piecewise-linear " penalty" terms to the objective function.

For an example, we return to the multi-week production model developed in Chapter
4. As seen in Figure 4-4, the constraints say that, in each of weeks 1 through T, total
hours used to make all products may not exceed hours available:

subject to Time {t in 1 .. T}:
sum {p in PROD} (1/rate [p]) * Make [p, t] <= avail [tJ ;

Suppose that, in reality, a larger number of hours may be used in each week, but at some
penalty per hour to the total profit. Specifically, we replace the parameter avail [t 1 by
two availability levels and an hourly penalty rate:

param avail_min {1 . . T} ~ = 0;
param avail_max {t in 1 . . T} >= avail_min[tl;

param time-penalty {1 . . T} > 0;

Up to avail_min[tl hours are available without penalty in week t, and up to
avail_max [t] hours are available at a loss of time-penal ty [t) in profit for each
hour above avail_min [t].

To model this situation, we introduce a new variable Use [t] to represent the hours
used by product.i on. Clearly Use [t] may not be less than zero, or greater than

SECTION 17.2 COMMON TWO·PIECE AND THREE·PIECE TERMS 371

param: ORIG , supply :=

GARY 1400 CLEV 2600 PITT 2900

param : DEST , demand : =

FRA 900 DET 1200 LAN 600 WIN 400
STL 1700 FRE 1100 LAF 1000

par am npiece : FRA DET LAN WIN STL FRE LAF
GARY 3 3 3 2 3 2 3
CLEV 3 3 3 3 3 3 3
PITT 2 2 2 2 1 2 1

param rate :=

[GARY, FRA, *] 1 39 2 50 3 70 [GARY,DET, *1 1 14 2 17 3 33
[GARY, LAN, *1 1 11 2 12 3 23 [GARY, WIN, *1 1 14 2 17
[GARY, STL, *1 1 16 2 23 3 40 [GARY, FRE, * 1 1 82 2 98
[GARY,LAF,*I 1 8 2 16 3 24

[CLEV, FRA, * 1 1 27 2 37 3 47 [CLEV, DET, *1 1 9 2 19 3 24
ICLEV, LAN, *1 1 12 2 32 3 39 [CLEV, WIN, *1 1 9 2 14 3 21
[CLEV,STL, *1 1 26 2 36 3 47 [CLEV,FRE, *1 1 95 2 105 3 129
[CLEV, LAF , * I 1 8 2 16 3 24

[PITT, FRA, * 1 1 24 2 34 I PITT, DET, * 1 1 14 2 24
IPITT, LAN , *1 1 17 2 27 [PITT, WIN, *1 1 13 2 23
IPITT,STL,*I 1 28 [PITT,FRE,*] 1 99 2 140
IPITT,LAF,*I 1 20

pararn limit : =

[GARY,*,*] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000
LAN 1 500 LAN 2 1000 WIN 1 1000
STL 1 500 STL 2 1000 FRE 1 1000
LAF 1 500 LAF 2 1000

[CLEV, *, *] FRA 1 500 FRA 2 1000 DET 1 500 DET 2 1000
LAN 1 500 LAN 2 1000 WIN 1 500 WIN 2 1000
STL 1 500 STL 2 1000 FRE 1 500 FRE 2 1000
LAF 1 500 LAF 2 1000

[PITT, *, *) FRA 1 1000 DET 1 1000 LAN 1 1000 WIN 1 1000
FRE 1 1000

Figure 17-3b: Data for piecewise-linear model (transp12 . da t).

avail_max [t]. In place of our previous constraint, we say lhat the total hours used to
make all products must equal Use [t 1 :

var Use {t in l . . T} >= 0, <= avail_max[t);

subject to Time {t in l . . T}:
sum {p in PROD} (l/rate[p]) * Make[p,t] = Use[tl;

We can now describe the hourly penalty in terms of this new variable. Tf Use (t] is
between 0 and avail_min [t], there is no penalty; if Use (t] is between
avail_min (t] and avail_max (t], the penalty is time-penal ty [t 1 per hour

372 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

penalty r slope = time-penal ty (t)

-+-----1"''-------- Use It 1

Figure 17-4: Piecewise-linear penalty function for hours used.

that it exceeds avail_rnin[t]. That is, the penalty is a piecewise-linear function of
Use [t 1 as shown in Figure 17-4, with slopes of 0 and timeJ)enal ty [t 1 surround­
ing a breakpoint at ava i l_min [t J. Using the syntax previously introduced, we can
rewrite the expression for the objecti ve function as:

maXlmlze Net Proflt :
sum {p in PROD, t in 1 .. T} (revenue[p,t]*Sell[p ,t] -

prodcost[p]*Make[p,t) - i nvcost[p)*Inv{p,t))
- sum {t in 1 .. T} «avail_min[tl; O,time-penalty[t]» Use[t) ;

The first summarion is the same expression for total profit as before, while the second is
the sum of the piecewise-linear penalty function s over all weeks. Between « and » are
the breakpoint avai l _min [t 1 and a list of the surrounding slopes, 0 and
timeJ)ena l t y [t 1 : this is followed by the argument Use [t 1 .

The complete revised model is shown in Figure 17-5a, and our small data sel from
Chapter 4 is expanded with the new availabilities and penalties in Figure 17-5b. In the
optimal solution, we find that the hours used are as follows:

ampl : model steelpll.mod; data steelpll.dat; solve;
MINOS 5 . 5 : optimal solution found .
21 iterations, objecti~e 457572 . 8571

ampl : display avail_min, Use, avail_max;
avail_min Use avail _max : =

1 35 35 42
2 35 42 42
3 30 30 40
4 35 42 42

In weeks I and 3 we use only the unpenalized hours available, while in weeks 2 and 4 we
also use the penali zed hours. Solutions to piecewise-linear programs usually display this
sort of solution, in which many (though not necessarily all) of the variables "Slick" at
one of the breakpoints.

r
SECTION 17.2 COMMON TWO·PIECE ANO THREE-PIECE TEAMS

products set PROD:
param T > 0 ; # number of weeks

param rate {PROD} > 0;
param invO {PROD} >= 0;
param commit {PROD,! .. T} >= 0;
param market {PROD,! .. T} >= 0;

param avail _min {1. . T} >= 0;

tons per hour produced
initial inventory
minimum tons sold in week
limit on tons sold in week

unpenalized hours available

373

param avail _max {t in 1. . T} >= avail _min[t]; # total hours avail
param time-penalty {1. . T} >

pararn prodcost {PROD} >= 0;
param invcost { PROD} >= 0;
param revenue {PROD, 1. .T}

var Make {PROD,l .. T} >= 0;
var Inv {PROD,O .. T} >= 0;

>=

0;

0;

var Sell {p in PROD, t in 1 .. T}

>= commit[p,t]. <= market[p.t];

cost/ton produced
carrying cost/ton of inventory
revenue/ton sold

tons produced
tons inventoried

tons sold

var Use {t in 1 .. T} >= 0, <= avail_max(t]; #- hours used

maximize Total_Profit :
sum {p in PROD, t in 1. .T} (revenue[p,t]*Sell(p,t] -

prodcost(p]*Make[p,t] - invcost[p]*Inv[p,t])
- sum {t in 1 .. T} «avail_min[t] i 0,time-pena1ty[tj» Use[t];

#- Objective : total revenue less costs in all weeks

subject to Time {t in 1 .. T}:
sum {p in PROD} (1/rate[p]I • Make{p,t] = Use[t) ,

#- Total of hours used by all products
#- may not exceed hours available, in each week

subject to Init_Inv {p in PROD}: Inv(p,O] = invO(p];

#- Initial inventory must equal given value

subject to Balance {p in PROD, tin 1 .. T}:
Make[p,t] + Inv[p,t-1] = Sel1[p,t] + Inv{p,t];

#- Tons produced and taken from inventory
#- must equal tons sold and put into inventory

Figure 17-53: Piecewise-linear objective with penalty function (8 teelpll . mod).

Dealing with infeasibility

The parameters commit [p, t] in Figure 17-5b represent the minimum production
amounts for each product in each week. If we change the data to raise these commit­
ments:

param commit:
bands
coils

1
3500
2500

2
5900
2400

3
3900
3400

4 ,=
6400
4100

374 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

param T . - 4 ·
set PROD := bands coils;

param : rate invO prodcost invcost : =
bands 200 10 10 2.5
coils 140 0 11 3 ;

param : avail_min avail max time-penalty . -
1 35 42 3100
2 35 42 3000
3 30 40 3700
4 35 42 3100

param revenue : 1 2 3 4 : =
bands 25 26 27 27
coils 30 35 37 39

param commit : 1 2 3 4 . -
bands 3000 3000 3000 3000
coils 2000 2000 2000 2000

param market : 1 2 3 4 . -
bands 6000 6000 4000 6500
coils 4000 2500 3500 4200

Figure 17 -Sb: Dala for Figure 17-5a (s t ee l pll . dat).

then there are not enough hours to produce even these minimum amounts, and the solver
reports that the problem is infeasible:

ampl : model steelpl1.mod;
amp l: data steelp12.dat;

ampl : solve;
MINOS 5 . 5 : infeasible problem .
13 iterations

Tn the solution that is returned, the inventory of coils in the last period is negati ve:

ampl : option display_ leol 0;
ampl : display Invi
Inv [*, * I (tr)

bands coils : =
0 10 0
1 0 937
2 0 287
3 0 0
4 0 -2700

and production of coils in several periods is below the minimum required:

r
SECTION 17.2 COMMON TWO-PIECE AND THREE-PIECE TERMS 375

f- slope = time-penal ty [t I

penalty

Use It I

Figure 17-6: Penalty function for hours used, with two breakpoints.

ampl: display commit,Make,market;
commit Make market : =

bands 1 3500 3490 6000
bands 2 5900 5900 6000
bands 3 3900 3900 4000
bands 4 6400 6400 6500
coils 1 2500 3437 4000
coils 2 2400 1750 2500
coils 3 3400 2870 3500
coils 4 4100 1400 4200

These are typical of the infeasible results that solvers return. The infeasibilities are scat­
tered around the solution, so that it is hard to tell what changes might be necessary to
achieve feasibility. By extending the idea of penalties, we can better concentrate the
infeasibility where it can be understood.

Suppose that we want to view the infeasibility in terms of a shortage of hours. Imag­
ine that we extend the piecewise-linear penalty function of Figure 17-4 to the one shown
in Figure 17-6. Now Use [t 1 is allowed to increase past avai l_max [t 1, but only
with an extremely steep penalty per hour - so that the solution wlll use hours above
avail_max [t 1 only to the extent absolutely necessary.

In AMPL, the new penalty function is introduced through the following changes:

var Use {t in 1 .. T} >= 0;

maximize Total_Profit:
sum {p in PROD, tin 1 . . T} (revenue[p,t]*Sell[p,tJ -

prodcost[p] *Make[p, tj - invcost[p]*Inv[p,t])
- sum {t in 1 .. T} «avail_min[t] ,avail_max[t] i

O,time-penalty[t] ,100000» Use[t] i

The former bound avail_max [t] has become a breakpoint , and to its right a very
large slope of 100,000 has been introduced. Now we get a feasible solution, which uses
hours as follows:

376 PIECEWISE-LINEAR PROGRAMS

penalty

Sell [p, t]
commit [p, t]

Figure 17-7: Penalty function for sales.

ampl : model steelp12_mod; data steelp12.dat; solve;
MINOS 5 . 5: optimal solution found.
19 iterations, objective -1576814.857

ampl : display avail_max, use;
avail_max Use . -

1 42 42
2 42 42
3 40 41.7357
4 42 61.2857

CHAPTER 17

This table implies that the commitments can be met only by adding about 21 hours,
mostly in the last week.

Alternatively, we may view the infeasibility in terms of an excess of commitments.
For this purpose we subtract a very large penalty from the objective for each unit that
Sell [p, t] falls below commit [p, t]; the penalty as a functi on of Sell [p, t] is
depicted in Figure 17-7.

Since this function has a breakpoint at commi t [p, t] , with a slope of 0 to the right
and a very negative value to the left, it would seem that the AMPL representation could be

«commi t[p ,t]; -100000,0» Se11[p,t]

Recall, however, AMPL's convention that such a function takes the value zero at zero.
Figure 17-7 clearly shows that we want our penalty function to take a positive value at
zero, so that it will fall to zero at commi t [p, t] and beyond. In fact we want the func­
tion to take a value of 10 0000 * commit[p,t] at zero, and we could express the
function properly by adding this constant to the penalty expression:

«commit(p,t]; -100000,0» Sell[p,t] + lOOOOO*commit(p,t]

The same thing may be said more concisely by using a second argument that states
explicitly where the piecewise-linear function should evaluate to zero:

«commit[p,t]; -100000,0» (Sell[p,t],commit[p,t))

This says that the fu nction should be zero at corrunit (P, t], as Figure 17-7 shows. Tn
the completed model , we have:

SECTION 17.2 COMMON lWO-PIECE AND THREE-PIECE TERMS

var Sell {p in PROD, t in 1 .. T} >= 0, <= market [p, t] ;

max1mize Total Profit:
sum {p in PROD, tin 1 .. T} (revenue[p,t]*Sell[p,t] -

prodcost[p]*Make[p,t] - invcost[p]*Inv(p,t])

377

- sum {t in 1 .. T} «avail_min[t]; O,time-penalty[t]» Use[t]
- sum {p in PROD, t in 1 .. T}

«commit[p,tl; -100000,0» (Sell[p,tl,commit[p,tl);

The rest of the model is the same as in Figure 17-5 •. Notice that Sell [p, t) appears in
both a linear and a piecewise-linear term within the objective function ; AMPL automati­
cally recognizes that the sum of these terms is also piecewise-linear.

This version, using the same data. produces a solution in which the amounts sold arc
as follows:

ampl : model steelp13.mod; data steelp12.dat; solve;
MINOS 5 . 5: optimal solution found .
24 iterations, objective -293856347

amp1; display Sell, commit;
Sell commit :=

bands 1 3500 3500
bands 2 5900 5900
bands 3 3900 3900
bands 4 6400 6400
coils 1 0 2500
coils 2 2400 2400
coils 3 3400 3400
coils 4 3657 4100

To get by with the given number of hours, commitments to deliver coils are cut by 2500
tons in the first week and 443 tons in the fourth week.

Reversible activities

Almost all of the linear programs in this book are formulated in terms of nonnegative
variables. Sometimes a variable makes sense at negative as well as positive values, how­
ever, and in many such cases the associated cost is piecewise-linear with a breakpoint at
zero.

One example is provided by the inventory variables in Figure 17-5a. We have
defined Inv [p, t) to represent the tons of product p inventoried at the end of week t.
That is, after week t there are Inv (p, t] tons of product p that have been made but not
sold. A negative value of Inv[p, t] could thus reasonably be interpreted as represent­
ing tons of product p that have been sold but not made - tons backordered, in effect.
The material balance constraints.

subject to Balance {p in PROD, t in 1 .. T}:
Make{p,t] + Inv[p,t-11 = Sell{p,t1 + Inv[p,t];

remain valid under this interpretation.

378 PIECEWISE·lINEAR PROGRAMS CHAPTER 17

This analysis suggests that we remove the >= 0 from the declaration of Inv in our
model. Then backordering might be especially attractive if the sales price were expected
to drop in later weeks, like this:

param revenue:
bands
coils

1
25
30

2
26
35

3
23
31

When we fe-solve with appropriately revi sed model and data files, however, the results
are not what we expect:

ampl : model Bteelp14.mod; data steelp14.dat; solve;
MINOS 5.5, optimal solution found.
15 iterations, objective 1194250

arnp1 , display Maks, Inv, Sell;
Make Inv Sell : =

bands 0 10
bands 1 0 -5990 6000
bands 2 0 -11990 6000
bands 3 0 -15990 4000
bands 4 0 -22490 6500
coils 0 0
coils 1 0 - 4000 4000
coils 2 0 -6500 2500
coils 3 0 -10000 3500
coils 4 0 -14200 4200

The source of difficulty is in the objective function , where invcost [p I * Inv [p, t I
is subtracted from the sales revenue. When Inv [p, t] is negative, a negative amount is
subtracted, increasing the apparent total profit. The greater the amount backordered, the
more the total profit is increased - hence the odd solution in which the maximum possi­
ble sales are backordered, while nothing is produced!

A proper inventory cost function for this model looks like the one graphed in Figure
17-8. It increases both as Inv [p, t I becomes more positive (greater inventories) and as
Inv [p, t I becomes more negative (greater backorders). We represent this piecewise­
linear function in AMPL by declaring a backorder cost (0 go with the inventory cost:

~ Backordered Inventori ed --7 Inv

Figure 17-8: Inventory cost function .

r
SECTlON 17.3

param invcost {PROD} >= 0;
param backcost {PROD) >= 0 ;

OTHER PIECEWISE·LlNEAR FUNCTIONS 379

Then the slopes for the Inv[p,t] term in the objective are -backcost[p] and
invcost [p], with the breakpoint at zero, and the correct objective function is:

maximize Total _Profit:
sum {p in PROD, t in 1 .. T}

(revenue(p,t]*Sell[p,t] - prodcost[p]*Make(p,t]
- «0; -backcost(p],invcost[pj» Inv[p,t])

- sum {t in 1 .. T} «avail_min(t); O,time-penalty[t]» Use[t];

In contrast to our flfst example. the piecewise-linear function is subtracted rather than
added. The result is still piecewise-linear, though; it 's the same as if we had added the
expression «0; backcost [p] , - invcos t [p] » Inv [p, t] .

When we make this change, and add some backorder costs to the data, we get a more
reasonable-looking solut ion. Nevertheless, there remains a tendency to make nothing and
backorder everything in the later periods; this is an "end effect" that occurs because the
model does not account for the eventual production cost of items backordered past the
last period. As a quick fix , we can rule out any remaining backorders at the end, by
adding a constraint that final-week inventory must be nonnegative:

subject to Final {p in PROD} : Inv[p,T] >= 0;

Solving with thi s constraint, and with backcos t values of 1.5 for band and 2 for coils:

ampl : model steelpl5.mod; data steelpl5.dat; solve;
MINOS 5.5, optimal solution found .
20 iterations, objective 370752 . 8571

ampl: display Make, Inv, Sell;
Make Inv Sell .-

bands 0 10
bands 1 4142.86 0 4152.86
bands 2 6000 0 6000
bands 3 3000 0 3000
bands 4 3000 0 3000
coils 0 0
coils 1 2000 0 2000
coils 2 1680 -820 2500
coils 3 2100 -800 2080
coils 4 2800 0 2000

About 800 tons of coils for weeks 2 and 3 will be delivered a week late under this plan.

17.3 Other piecewise-linear functions

Many simple piecewise-linear functions can be modeled in several equivalent ways in
AMPL. The function of Figure 17-4, for example, could be written as

380 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

if Use[t] > avail_min[tJ
then time-penalty[t] * (Use[t] - avail_min(t) else 0

or more concisely as

max(O, tirne-penalty[t] * (Use[t] - avail_min[t]»

The current version of AMPL does not detect that these expressions are piecewise-linear,
so you are unlikely to get satisfactory results if you try to solve a model that has expres­
sions like these in its objective. To take advantage of linear programming techniques that
can be applied for piecewi se- linear terms, you need to use the piecewise-linear terminol­
ogy

«avail_min[t)i Q,time-penalty[t]» Use[t]

so the structure can be noted and passed to a solver.
The same advice applies to the function abs. Imagine that we would like to encour­

age the number of hours used to be close to avai I_min [t]. Then we would want the
penalty term to equal timeJ)enal ty [t 1 times the amount that Use [t 1 deviates
from avail_min [t] • either above or below. Such a term can be written as

time-penalty[t] * abs(Use[t] - avail_rnin[t])

To express it in an explicitly piecewise-linear fashion, however, you should write it as

time-penalty[t] * «avail_min[t]; -1,1» Use[t]

or equivalently,

«avail_min[t]; -time-penalty[t],time-penalty[t]» Use[t]

As this example shows, multiplying a piecewise-linear function by a constant is the same
as multiplying each of its slopes individually,

As a final example of a common piecewise-linearity in the objective, we return to the
kind of assignment model that was discussed in Chapter 15, Recall that, for i in the set
PEOPLE and j in the set PROJECTS, cost [i, j 1 is the cost for person i to work an
hour on project j, and the decision variable Assign [i, j] is the number of hours that
person i is assigned to work on project j:

set PEOPLE;
set PROJECTS;

param cost {PEOPLE,PROJECTS} >= O·
var Assign {PEOPLE,PROJECTS} >= 0;

We originally formulated the objecti ve as the total cost of all assignments,

sum {i in PEOPLE, j in PROJECTS} cost[i,j] * Assign[i,j]

What if we want the fairest assignment instead of the cheapest? Then we might minimize
the maximum cost of anyone person's assignments:

r
SECTION 17.3

set PEOPLE;
set PROJECTS;

OTHER PIECEWISE-LINEAR FUNCTIONS 381

param supply {PEOPLE} >= 0; # hours each person is available
param demand {PROJECTS} >= 0; # hours each project requires

check: sum {i in PEOPLE} supply[iJ
= sum {j in PROJECTS} demand(jJ;

pararn cost {PEOPLE,PROJECTS} >= 0 ;
par am limit {PEOPLE, PROJECTS) >= 0 ;

var M;

cost per hour of work
maximum contributions
to projects

var Assign {i in PEOPLE, j in PROJECTS) >= 0, <= limit[i,j];

minimize Max_Cost : M;

subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];

subject to Supply {i in PEOPLE} :
sum {j in PROJECTS} Assign[i,j] = supply[i];

subject to Demand (j in PROJECTS) :
sum {i in PEOPLE} Assign(i,j] = demand(j];

Figure 17-9: Min-max assignment model (minmax. mod).

minimize Max Cost :
max {i in PEOPLE}

sum {j in PROJECTS} cost[i,j] * Assign[i,j] ;

This function is also piecewise-linear, in a sense; it is pieced together from the linear
function s sum {j in PROJECTS} cost (i, j J * Assign [i, j J for different people
i. However, it is not piecewise-linear in the individual variables - in mathematical jar­
gon, it is not separable - and hence it cannot be written using the « ... » notation.

This is a case in which piecewise-linearity can only be handled by rewriting the model
as a linear program . We introduce a new variable M to represent the maximum. Then we
write constraints to guarantee that M is greater than or equal to each cost of which it is the
maximum:

var M;
minimize Max_Cost: Mi

subject to M_def {i in PEOPLE}:
M >= sum {j in PROJECTS} cost[i,j] * Assign[i,j];

Because M is being minimized, at the optimal solution it will in fact equal the maximum
of sum {j in PROJECTS} cos t (i, j] * Assign (i. j] over all i in PEOPLE.
The other constraints are the same as in any assignment problem, as shown in Figure
17-9.

382 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

This kind of reformulation can be applied to any problem that has a "min-max"
objective. The same idea works for the analogous "max-min" objective, with
maximize instead ofminimize and with M <= ... in the constraints.

17.4 Guidelines for piecewise-linear optimization

AMPL's piecewise-linear notation has the power to specify a variety of useful func­
tions. We summarize below its various forms, most of which have been illustrated earlier
in this chapter.

Because this notation is so general, it can be used to specify many functions that are
not readily optimized by any effic ient and reliable algorithms. We conclude by describ­
ing the kinds of piecewise-linear functions that are most likely to appear in tractable mod­
els, with particular emphasis on the property of convexity or concavity.

Forms for piecewise-linear expressions

An AMPL piecewise-linear term has the general form

«breakpoint-list; slope-list» pi-argument

where breakpoint-list and slope-list each consist of a comma-separated list of one or more
items. An item may be an individual arithmetic expression, or an indexing expression
followed by an arithmetic expression. In the latter case, the indexing expression must be
an ordered set; the item is expanded to a list by evaluating the arithmetic expression once
for each set member (as in the example of Figure 17-3a).

After any indexed items are expanded, the number of slopes must be one more than
the number of breakpoints, and the breakpoints must be nondecreasing. The resulting
piecewise-linear function is constructed by interleaving the slopes and breakpoints in the
order given, with the first slope to the left of the fust breakpoint, and the last slope to the
right of the last breakpoint. By indexing breakpoints over an empty set, it is possible to
specify no breakpoints and one slope, in which case the function is linear.

The pi-argument may have one of the forms

var-ref
{arg-expr }
(arg-expr, zero-expr)

The var-ref (a reference to a previously declared variable) or the arg-expr (an arithmetic
expression) specifies the point where the piecewise-linear function is to be evaluated.
The zero-expr is an arithmetic expression that specifies a place where the function is zero;
when the zero-expr is omitted, the function is assumed to be zero at zero.

r
SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 383

Suggestions for piecewise-linear models

As seen in all of our examples. AMPL's terminology for piecewise-linear functions of
variables is limited to describing functions of individual variables. Tn model declarations,
no variables may appear in the breakpoint-lisl, slope-list and zero-expr (if any), while an
arg-expr can only be a reference to an individual variable. (Piecewise-linear expressions
in commands like display may use variables without limitation, however.)

A piecewise-linear function of an individual variable remains such a function when
mUltipUed or divided by an arithmetic expression without variables. AMPL also treats a
sum or difference of piecewise-linear and linear functions of the same variable as repre­
senting one piecewise-linear function of that variable. A separable piecewise-linear
function of a model's variables is a sum or difference (using +, - or sum) of piecewise­
Linear or linear functions of the individual variables. Oplimizers can effectively handle
these separable functions, which are the ones that appear in our examples.

A piecewise-linear function is convex if successive slopes are nondecreasing (along
with the breakpoints), and is concave if the slopes are non increasing. The two kinds of
piecewise-linear optimization most easily handled by solvers are minimizing a separable
convex piecewise-linear function, and maximizing a separable concave piecewise-linear
function, subject 10 linear constraints. You can easily check that all of this chapter's
examples are of these kinds. AMPL can obtain solutions in these cases by translating to
an equivalent linear program, applying any LP solver, and then translating the solution
back; the whole sequence occurs automatically when you type solve.

Outside of these two cases, optimizing a separable piecewise-linear function must be
viewed as an application of integer programming - the topic of Chapter 20 - and
AMPL must translate piecewise-linear terms to equivalent integer programming forms.
This, too, is done automatically, for solution by an appropriate solver. Because integer
programs are usually much harder to solve than similar linear programs of comparable
size, however, you should not assume that just any separable piecewise-linear function
can be readily optimized; a degree of experimentation may be necessary to determine
how large an instance your solver can handle. The best results are likely to be obtained
by solvers that accept an option known (mysteriously) as "special ordered sets of type
2"; check the solver-specific documentation for details.

The situation for the constraints can be described in a similar way. However, a sepa­
rable piecewise-linear function in a constraint can be handled through linear program­
ming only under a restrictive set of circumstances:

• If it is convex and on the left-hand side of a ~ constraint (or equivalently, the
right-hand side of a ~ constraint);

• If it is concave and on the left-hand side of a ~ constraint (or equivalently, the
right-hand side of a ~ constraint).

Other piecewise-linearities in the constraints must be dealt with through integer program­
ming techniques. and the preceding comments for the case of the objective apply.

If you have access to a solver that can handle piecewise-linearities directly, you can
turn off AMPL's translation to the linear or integer programming form by setting the

384 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

option pI_linearize to O. The case of minimizing a convex or maximizing a con­
cave separable piecewise-linear function can in particular be handled very efficiently by
piecewise-linear generalizations of LP techniques. A solver intended for nonlinear pro­
gramming may also accept piecewise-linear functions, but it is unlikely to handle them
reliably unless it has been specially designed for "nondifferentiable" optimization.

The differences between hard and easy piecewise-linear cases can be slight. This
chapter's transportation example is easy, in particular because the shipping rates increase
along with shipping volume. The same example would be hard if economies of scale
caused shipping rates to decrease with volume, since then we would be minimizing a con­
cave rather than a convex function. We cannot say definitively that shipping rates ought
to be one way or the other; their behavior depends upon the specifics of the situation
being modeled.

Tn all cases, the difficulty of piecewise-linear optimization gradually increases with
the total number of pieces. Thus piecewise-linear cost functions are most effective when
the costs can be described or approximated by relatively rew pieces. If you need more
than about a dozen pieces to describe a cost accurately, you may be better off using a
nonlinear function as described in Chapter 18.

Bibliography

Roben Fourer, "A Simplex Algorithm for Piecewise-Linear Programming Ill: Computational
Analysis and Applications." Mathematical Programming 53 (1992) pp. 213-235. A survey of
conversions from piecewise-linear to linear programs, and of applications.

Raben Fourer and Roy E. Marsten, "Solving Piecewise-Linear Programs: Experiments with a
Simplex Approach." ORSA Journal on Computing 4 (1992) pp. 16-31. Descriptions of varied
applications and of experience in solving them.

Spyros Kontogiorgis, "Practical Piecewise-Linear Approximation for Monotropic Optimization."
INFORMS Journal on Computing 12 (2000) pp. 324-340. Guidelines for choosing the breakpoints
when approximating a nonlinear function by a piecewise-linear one.

Exercises

17·1. Piecewise-linear models are sometimes an alternative to the nonlinear models described in
Chapter 18. replacing a smooth curve by a series of straight-line segments. This exercise deals
with the model shown in Figure 18-4.

(a) Reformulate the model of Figure 18-4 so that it approximates each nonlinear term

Trans[i,j] I (1 - Trans[i,j]/limit[i,j])

by a piecewise-linear term having three pieces. Set the breakpoints at (1/3) * limi t [i , j]
and (2/3) * limit [i, j]. Pick the slopes so that the approximation equals the original nonlin­
ear term when Trans[i,j] is 0.1/3 * limit[i,j], 2/3 * limit[i,j], or 11/12 *
1 imi t [i , j] ; you should find that the three slopes are 3/2, 9/2 and 36 in every term, regardless

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 385

of the size of limit [i, j]. Finally, place an explicit upper limit of 0.99 * limi t (i, j 1 on
Trans [i, j].

(b) Solve the approximation with the data given in Figure 18-5, and compare the optimal shipment
amounts to the amounts recommended by the nonlinear model.

(c) Formulate a more sophisti cated version in which the number of linear pieces for each term is
given by a parameter nsl. Pick the breakpoints to be at (k/nsl) * limit[i,j] for k from I
10 ns 1-1. Pick the slopes so that the piecewise-linear function equals the original nonlinear func­
tion when Trans[i,j] is (k/nsl) * limit[i,j) for any k from 0 to nsl-1, or when
Trans [i, j] is (ns1-1/4) Insl * limit [i, j J.
Check your model by showing that you get the same results as in (b) when nsl is 3. Then, by try­
ing higher values of nsl, determine how many linear pieces the approximation requires in order to
determine all shipment amounts to within about 10% of the amounts recommended by the original
nonlinear model.

17-2. This exercise asks how you might convert the demand constraints in the lransportation
model of Figure 3-1 a into the kind of "soft " constraints described in Section 17.2.

Suppose that instead of a single parameter ca lled demand [j] at each destination j, you are given
the following four parameters that describe a more complicated situation:

dem_min_abs[j]
dem_mio_ask[j)
dem_max_ask[j)
dem_max_abs[j]

absolute minimum that must be shipped to j
preferred minimum amount shipped to j
preferred maximum amount shipped to j
absolute maximum that may be shipped to j

There are also two penalty costs for shipment amounts outside of the preferred limits:

dem_min-pen
dem_max-pen

penalty per unit that shipments fall below dem_min_ask [j I
penalty per unit that shipments exceed dem_ max_ ask [j I

Because the total shipped to j is no longer fixed , a new variab le Receive [j] is introduced to
represent the amount rece ived at j.

(a) Modify the model of Figure 3- la to use thi s new infonnation. The modifications will involve
declaring Receive [j) with the appropriate lower and upper bounds, adding a three-piece
piecewise-linear penalty tenn to the objective function , and substituting Receive [j) for
demand [j] in the constraints.

(b) Add the following demand information to the data of Figure 3- lb:

dem_ min_abs dem_min_ask dem_max_ask dem_max abs
FRA 800 850 950 1100
DET 975 1100 1225 1250
LAN 600 600 625 625
WIN 350 375 450 500
STL 1200 1500 1800 2000
FRE 1100 1100 1100 1125
LAF 800 900 1050 1175

Let dem_min-pen and dem_max-pen be 2 and 4, respectively. Find the new optimal so lution .
In the solution, which destinations receive shipments that are outside the preferred leve ls?

17-3. When the diet model of Figure 2-1 is run wi th the data of Figure 2-3, there is no feasible
so lution . This exercise asks you to use the ideas of Section 17.2 to tind some good near-feasible
solutions.

386 PIECEWISE·LlNEAR PROGRAMS CHAPTER 17

(a) Modify the model so thai it is possible, at a very high penalty, to purchase more than the speci­
fied maximum of a food. In the resulting solution, which maximums are exceeded?

(b) Modify the model so that it is possible, at a very high penalty. to supply more than the specified
maximum of a nutrient. In the resulting solut ion, which maximums are exceeded?

(c) Using extremely large penalties, such as 1020 may give the solver numerical difficulties.
Experiment to see how available solvers behave when you use penalty terms like 1020 and 1030,

17-4. In the model of Exercise 4-4(b), the change in crews from one period to the next is limited
to some number M. As an alternative to imposing this limit, suppose that we introduce a new vari­
able D, that represents the change in number of crews (in all sh ifts) at period t. This variable may
be positive, indicating an increase in crews over the previous period, or negative, indicating a
decrease in crews.

To make use of this variable, we introduce a defining constrain t,

D, = L fES (Y), - Ys,,-J),

for each t = I, ... , T. We then estimate costs of c· per crew added from period to period, and c­
per crew dropped from period to period: as a result, the following cost must be included in the
objective for each month t:

c-D" ifD,<O;

c·D" ifD,>O.

Reformulate the model in AMPL accordingly, using a piecewise-linear function to represent this
extra cosl.

Solve using c- = -20000 and c+ = 100000, together with the data previously given. How does this
solution compare to the one from Exercise 4-4(b)?

17-5. The following "credit scoring" problem appears in many contexts, including the process­
ing of credit card applications. A set APPL of people apply for a card, each answering a set QUES
of questions on the application. The response of person i to question j is converted to a number,
ans [i , j 1 : typical numbers are years at current address. monthly income, and a home ownership
indicator (say, I if a home is owned and 0 otherwise).

To summarize the responses, the card issuer chooses weights Wt [j] . from which a score for each
person i in APPL is computed by the linear formula

sum {j in OUES} ans [i, j J * Wt (j J

The issuer also chooses a cutoff, Cut; credit is granted when an applicaJll'S score is greater than or
equal to the cutoff, and is denied when the score is less than the cutoff. In this way the decision
can be made objectively (if not always most wisely).

To choose the weights and the cutoff, the card issuer collects a sample of previously accepted
applications , some from people who turned out to be good customers. and some from people who
never paid their bills. If we denote these two collections of people by sets GOOD and BAD, then the
ideal weights and cutoff (for this data) would satisfy

sum (j in QUES) ans[i,jl * Wt[j] >= Cut foreach iinGOOD
sum (j in QUES) ans[i,jl * Wt[j] < Cut for each i in BAD

Since the relationship between answers to an application and creditworthiness is imprecise at best,
however, no values of Wt [j] and Cu t can be found to satisfy all of these inequalities. Instead,

SECTION 17.4 GUIDELINES FOR PIECEWI SE-LINEAR OPTIMIZATION 387

the issuer has to choose values that are merely the best possible, in some sense. There are any
number of ways to make such a choice; here, naturally, we consider an optimization approach.

(a) Suppose that we define a new variable Di f f [i] that equals the difference between person i's
score and the cutoff:

Diff(i] 0:: sum {j in QUES} ans[i,j] * Wt[jj - Cut

Clearly the undesirable cases are where Di f f [i] is negative for i in GOOD, and where it is non­
negati ve for i in BAD. To di scourage these cases, we can te ll the issuer to minimize the function

sum { i in GOOD} max(O,-Diff[i) + sum {i in BAD) max(O,Diff(i])

Explain why minimizing thi s function tends to produce a desirable choice of weights and cutoff.

(b) The expression above is a piecewise-linear function of the variables Diff [i] . Rewrite it
using AMPL's notation for piecewise- linear functions.

(c) Incorporate the express ion from (b) into an AMPL model for finding the weights and cutoff.

(d) Given thi s approach, any positive value for Cut is as good as any other. We can fix it at a con­
venient round number - say, 100. Explain why this is the case.

(e) Using a Cut of 100, apply the model to the following imaginary credit data:

set GOOD : = 17
set BAD : = _15

18 19 _22 _24
16 _20 _21 _23

set QUE5 : = Q1 Q2 Rl R2 R3 52 T4 ;

param ans : Q1
15 1. 0
16 0 . 0
17 0 . 5
18 1. 5
1 9 1. 5
20 1. 0

_21 1. °
_22 0.5
_23 0.5
_24 1. 0

25 0 . 0
26 0 . 5
27 1. 0
28 0 . 0

~29 1. 0
30 1. 5

Q2
10

5
10
10

5
5

10
10
10
10

5
10

5
5
5
5

R1
15
15
25
25
20

5
20
25
25
15
15
15
10
15
15
20

R2
20
40
35
30
25
30
30
40
25
40
15
20
25
40
40
25

R3
10

8
8
8
8
8
8
8
8
8

10
8

10
8
8

10

82
8

10
10

6
8
8

10
8
8

10
12
10

8
10

8
10

T4 : '"
10

8
1 0
10

8
6

10
10
1 4
10
10
10

6
8

10
14

What are the chosen weights? Using these weights, how many of the good customers would be
denied a card, and how many of the bad ri sks would be granted one?

You should find that a lot of the bad ri sks have scores right at the cutoff. Why does thi s happen in
the solution? How might you adjust the cutoff to deal with it?

(D To force scores further away from the cutoff (in the desired direction), it might be preferable to
use the following objecti ve,

sum {i in GOOD) max{O,-Diff[i]+offset) +
sum (i in BAD) max(O,Diff[i]+offset)

where offset is a positive parameter whose value is supplied. Ex plain why this change has lhe
des ired effect. Try offset values of 2 and 10 and compare the re!>uits with those in (e).

388 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

(g) Suppose that giving a card to a bad credit risk is considered much more undesirable than refus­
ing a card to a good credit risk. How would you change the model to take this into account?

(h) Suppose U1Ut when someone's application is accepted, his or her score is also used to suggest an
initial credit limit. Thus it is particularly important that bad credit risks not receive very large
scores. How would you add pieces to the piecewise-linear objective function terms to account for
this concern?

17-6. In Exercise 18-3, we suggest a way to estimate position, velocity and acceleration values
from imprecise data, by minimizing a nonlinear "sum of squares" function:

,
L["j - (ao-a,lj- V, a,IJ)J ' ,
j- I

An alternative approach instead minimizes a sum of absolute values:
,
Llh) - (ao-a\t j - Y2 a 2t])I·

j. .. \

(a) Substitute the sum of absolute values directly for the sum of squares in the model from Exercise
18·3, first with the abs function, and then with AMPL's explicit piecewise·1inear notation.

Explain why neither of these formulations is likely to be handled effectively by any solver.

(b) To model this situation effectively, we introduce variables e] to represent the individual formu­
las h] - (a o-o\tj- Yl a2tJ) whose absolute values are being taken. Then we can express the
minimization of the sum of absolute values as the following constrained optimization problem:

,
Minimize L le)1

j _ r

Subjectto ej = hj - (aO-a\'1- Y2 a2t]).j=1 •...• n

Write an AMPL model for this fonnulation, using the piecewise-linear notation for the tenns I ej I .
(c) Solve for 00, 0lt and a2 using the data from Exercise 18-3. How much difference is there
between this estimate and the least-squares one?

Use display to print the ej values for both the least·squares and the least·absolute-values solu·
tions. What is the most obvious qualitative difference?

(d) Yet another possibility is to focus on the greatest absolute deviation. rather than the sum:

max 1"1 - (ao-a\t j - Y2 a 2 tJ)I·
j = I n

Formulate an AMPL linear program that will minimize this quantity, and test it on the same data as
before. Compare the resulting estimates and e j values. Which of the three estimates would you
choose in this case?

17-7. A planar structure consists of a set of joints connected by bars. For example, in the fol­
lowing diagram, the joints are represented by circles, and the bars by lines between two circles:

SECTION 17.4 GUIDELINES FOR PIECEWISE-LINEAR OPTIMIZATION 389

Consider the problem of finding a minimum-weight structure to meet certain external forces. We
let J be the set of joints, and B r;;;.JxJ be the set of admissible bars: for the diagram above, we could
take} = {1,2,3.4,5),and

B = {(1,2), (1,3). (1.4). (2.3), (2.5). (3.4), (3,5). (4.5»).

The "origin" and "destination" of a bar are arbitrary. The bar bctweenjoints I and 2. for exam­
ple, could be represented in B by either (1,2) or (2, I), but it need not be represented by both.

We can use two-dimensional Euclidean coordinates [0 specify the position of each joint in the
plane, taking ~ome arbitrary point as the origin:

a; horizontal position of joint i relative [0 the origin

a) vertical position of joint i relative to the origin

For the example. if the origin lies exactly at joint 2, we might have

(a;. an = (0. 2). (a,. al) = (0, 0). (a" a» = (2. I).

(a:. a:) = (4. 2). (aj, a;) = (4. 0).

The remaining data consist of the external forces on the joints:

It horizontal component of the external force on joint i

/.,. vertical component of the external force on joint i

To resist this force, a subset Sr;,J of joints is fixed in position. (It can be proved that fixing two
joints is sufficient to guarantee a solution.)

The external forces induce stresses on the bars, which we can represent as

Fij if> 0, tension on bar (i ,j)

if < 0, compression of bar (i ,j)

A set of stresses is in equilibrium if the external forces, tensions and compressions balance at all
joints, in both the horizontal and vertical components - except at the fixed joints. That is, for
each joint k E S.

L c' F
IfU:(l.k) E 8 Ik iJc

~ c' F
4..J iEJ.(i.Ie)EH II; ik

~ c' F -.I:'
4..J jEJ:(k.j)EH leJ kj - Ie

~ c' F = fl.
~ jEJ(Ie.j)EB Ie} tj

where c;, and C:~', are the cosines of the direction from joinl s 10 joint t with the horizontal and verti­
cal axes,

C;, = (a,(-(1:)1/)1'

c~I=(a;'-ai)/lslt

and lSI is the length of the bar(s,t):

I = -I(ax _a')' + (a' _a')' S/ 'V , J I J .

In general, there are infinitely many different sets of equilibrium stresses. However, it can be
shown that a given system of Slfesses will be realized in a structure of minimum weight if and only
if the cros~-~ectional areas of the bars are proportional to the absolute values of the stres~es. Since
the weight of a bar is proportional to the cross section times length, we can take the (suitably
scaled) weight of bar (i ,j) to be

w ij = li/IFijl·

The problem is then to find a system of stresse~ F ;j that meet the equilibrium conditions. and that
minimize the sum of the weights WI) over all bars (i,J) E B.

(a) The indexing sets for this linear program can be declared in AMPL as:

390 PIECEWISE-LINEAR PROGRAMS CHAPTER 17

set joints;
set fixed within joints;
set bars within {i in joints, j in joints; i <> j);

Using these set declarations. fonnulate an AMPL model for the minimum-weight structural design
problem. Use the piecewise-linear nmation of thi s chapter to represent the absolute-value terms in
the objective function.

(b) Now consider in particular a structure that has the following joints:

900000
3.25 cp 0) 0) ® ®

1.75 ® ® G ®
Assume that there is one unit horizontally and vertically between joints, and that the origin is at the
lower left ; thus (01 ,o'I) = (0. 2) and (a~.s ,o1s) = (5,0).

Let there be external forces of 3.25 and 1.75 units straight downward on joints I and 7. so thatft =
-3.25,j{ = - 1.75, and otherwise aliI.' = 0 and!? = O. Let S = {6,15). Finally, let the admissible
bars consist of all possible bars that do not go directly through a joint; for example. (1,2) or (1,9)
or (1,13) would be admissible, but not (1,3) or (I, 12) or (I, 14).

Determine all the dara for the problem that is needed by the linear program, and represent it as
AMPL data statements.

(c) Use AMPL to solve the linear program and to examine the minimum-weight structure that is
detennined.

Draw a diagram of the optimal structure, indicating the cross sections of the bars and the nature of
the stresses. Lf there is zero force on a bar, it has a cross section of zero, and may be left out of
your diagram.

(d) Repeat parts (b) and (c) for the case in which all possible bars are admissible. Is the resulting
structure different? Is it any lighter?

18
Nonlinear Programs

Although any model that violates the linearity rules of Chapter 8 is "not linear", the
term "nonlinear program" is traditionally used in a more narrow sense. For our purposes
in this chapter, a nonlinear program, like a linear program, has continuous (rather than
integer or discrete) variables; the expressions in its objective and constraints need not be
linear, but they must represent "smooth" functions. Intuitively, a smooth function of
one variable has a graph like that in Figure 18-la, for which there is a well-defined slope
at every point; there are no jumps as in Figure 18-1 b, or kinks as in Figure i8-le. Mathe­
matically, a smooth function of any number of variables must be continuous and must
have a well-defined gradient (vector of fIrst derivatives) at every point; Figures 18-1 band
IS-Ie exhibit points at which a function is discontinuous and nondifferentiable, respec­
tively.

Optimization problems in functions of this kind have been singled out for several rea­
sons: because they are readily distinguished from other "not linear" problems. because
they have many and varied applications, and because they are amenable to solution by
well-established types of algorithms. Indeed, most solvers for nonlinear programming
use methods that rely on the assumptions of continuity and differentiability. Even with
these assumptions, nonlinear programs are typically a lot harder to formulate and solve
than comparable linear ones.

This chapter begins with an introduction to sources of nonlinearity in mathematical
programs. We do not try to cover the variety of nonlinear models systematically, but
instead give a few examples to indicate why and how nonlinearities occur. Subsequent
sections discuss the implications of nonlinearity for AMPL variables and expressions.
Finally, we point out some of the difficulties that you are likely to confront in trying to
solve nonlinear programs.

While the focus of this chapter is on nonlinear optimization, keep in mind that AMPL
can also express systems of nonlinear equations or inequalities, even if there is no objec­
tive to optimize. There exist solvers specialized to this case, and many solvers for nonlin­
ear optimization can also do a decent job of finding a feasible solution to an equation or
inequality system.

392 NONLINEAR PROGRAMS CHAPTER 18

(a) Smooth and continuous function

(b) Discontinuous function

(c) Continuous, nondifferentiable function

Figure 18-1: Classes of nonlinear functions.

18.1 Sources of nonlinearity

We discuss here three ways that nonlinearities come to be included in optimization
models: by dropping a linearity assumption, by constructing a nonlinear function to

achieve a desired effect, and by modeling an inherently nonlinear physical process.
As an example, we describe some nonlinear variants of the linear network flow model

netl .mo d introduced in Chapter 15 (Figure 15-2a). This linear program's objective is
to minimize total shipping cost,

minimize Total_Cost :
sum {(i,j) in LINKS} cost[i,j] * Ship[i,j] ;

where cos t [i, j 1 and Sh i p [i, j 1 represent the cost per unit and total units shipped
between cities i and j , with LINKS being the set of all city pairs between which ship­
ment routes exist. The constraints are balance of flow at each city:

subject to Balance {k in CITI ES} :
supply(k] + sum {(i,k) in LINKS} Ship[i,k]

= demand[k] + sum {(k,j) in LINKS} Ship[k,j);

SECTION 18.1 SOURCES OF NONLINEARITY 393

with the nonnegative parameters supply [i] and demand [i) representing the units
either available or required at city i.

Dropping a linearity assumption

The linear network now model assumes that each unit shipped from city i to city j
incurs the same shipping cost, cos t [i, j 1, Figure 18-2a shows a typical plot of ship­
ping cost versus amount shipped in this case; the plot is a line with slope cost [i I j]
(hence the term linear), The other plots in Figure 18-2 show a variety of other ways,
none of them linear, in which shipping cost could depend all the shipment amount.

In Figure 18-2b the cost also tends to increase linearly with the amount shipped, but at
certain critical amounts the cost per unit (that is, the slope of the line) makes an abrupt
change. This kind of function is called piecewise-linear. It is not linear, strictly speak­
ing, but it is also not smoothly nonlinear. The use of piecewise-linear objectives is the
topic of Chapter 17,

In Figure 18-2c the function itself jumps abruptly. When nothing is shipped, the ship­
ping cost is zero: but when there is any shipment at all. the cost is linear starting from a
value greater than zero. In this case there is a fixed cost for using the link from i to j,
plus a variable cost per unit shipped. Again, this is not a function that can be handled by
linear programming techniques, but it is also not a smooth nonlinear function. Fixed
costs are most commonly handled by use of integer variables, which are the topic of
Chapter 20.

The remaining plots illustrate the sorts of smooth nonlinear functions that we want to
consider in this chapter. Figure 18-2d shows a kind of concave cost function. The incre­
mental cost for each additional unit shipped (that is, the slope of the plot) is great at tirst,
but becomes less as more units are shipped; after a certain point. the cost is nearly linear.
This is a continuous alternative to the fixed cost function of Figure 18-2c. It could also
be used to approximate the cost for a situation (resembling Figure 18-2b) in which vol­
ume discounts become available as the amount shipped increases.

Figure 18-2e shows a kind of convex cost function. The cost is more or less linear for
smaller shipments. but rises steeply as shipment amounts approach some critical amount.
This sort of function would be used to model a situation in which the lowest cost shippers
are used first. while shipping becomes progressively more expensive as the number of
units increases. The critical amount represents, in effect, an upper bound on the ship­
ments.

These are some of the simplest functional forms. The functions that you consider will
depend on the kind of situation that you are trying to model. Figure 18-2f shows a possi­
bility that is neither concave nor convex, combining features of the previous two exam­
ples.

Whereas linear functions are essentially all the same except for the choice of coeffi~
cients (or slopes), nonlinear functions can be defined by an infinite variety of different
formulas. Thus in building a nonlinear programming model, it is up to you to derive or
specify nonlinear functions thaL properly represent the ~itliaLion at hand. in the objective

394 NONLINEAR PROGRAMS CHAPTER 18

(a) Linear costs

(b) Piecewise linear costs

(e) Fixed + variable linear costs

(d) Concave nonlinear costs

(e) Convex nonlinear costs

(f) Combined nonlinear costs

Figure 18-2: Nonlinear cost functions.

•

SECTION 18.1 SOURCES OF NONLINEARITY 395

of the transportation example, for instance, one poss ibility would be to replace the prod­
uct cost[i,jj * Ship[i,jj by

(costl[i,j) + cost2[i,j)*Ship[i,jJ) / (1 + Ship[i,jJ)
* Ship[i,j}

This function grows quickly at small shipment levels but levels ofT to essentially linear at

larger levels. Thus it represents one way to implement the curve shown in Figure 18-2d.
Another way to approach the specification of a nonlinear objective function is to

focu s on the slopes of the plots in Figure 18-2. In the linear case of Figure 18-2a, the
slope of the plot is constant; that is why we can lise a single parameter cost [i, j] to
represent the cost pcr unit shipped. In the piecewise-linear case of Figure 18-2b, the
slope is constant within each interval; we can express such piecewise-linear functions as
explained in Chapter 17.

In the nonlinear case, however, the slope varies continuously with the amount
shipped. This suggests that we go back to our original linear formulation of the network
flow problem, and turn the parameter cos t [i, j j into a variable Cos t [i, j j :

var Cost {ORIG,DEST}:
var Ship {ORIG,DEST} >= 0 :

m~n~m~ze Total_Cost :

shipment costs per unit
units to ship

sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,j]:

This is no longer a linear objective, because it multiplies a variable by another variable.
We add some equations to specify how the cost relates to the amount shipped:

subject to Cost_Relation {i in ORIG, j in DEST}:
Cost[i,j) =

(cost1[i,j) + cost2[i,j)*Ship[i,j]) / (1 + Ship[i,j);

These equations are also nonlinear, because they involve division by an expression that
contains a variable. It is easy to sec that Cost [i I j] is near costl (i I j] where ship­
ments are near zero, but levels off to cost2 [i, j j at , ufficiently high shipment levels.
Thus the concave cost of Figure 18-2d is realized provided that the first cost is greater
than the ,econd.

Assumptions of nonlinearity can be found in constraints as well. The constraints of
the network flow model embody only a weak linearity assumption, to the effect that the
total shipped out of a ci ty is the sum of the shipments to the other cities. But in the pro­
duction model of Figure 1-6a, the constraint

subject to Time {s in STAGE}:
sum {p in PROD} (l/rate[p,s]) * Make[p] <= avail[s]:

embodies a strong assumption that the number of hours used in each stage s of making
each product p grows linearly with the level of production .

396 NONLINEAR PROGRAMS CHAPTER 18

Achieving a nonlinear effect

Sometimes nonlinearity arises from a need 10 model a situation in which a linear func­
tion could not possibly exhibit the desired behavior.

In a network model of traffic flows, as one example, it may be necessary to take con­
gestion into account. The total time to tmverse a shipment link should be essentially a
constant for small shipment amounts, but should increase rapidly towards infinity as the
capacity of the link is approached. No linear function has this property, so we are forced
to make travel time a nonlinear function of shipment load in order to gel the desired
effecl.

One possibility for expressing the traveltime is given by the function

time[i,j] + (sens[i,j]*Ship[i,j]) I (1 - Ship[i,j]/cap[i,j])

This function is approximately time [i, j] for small values of Ship [i, j J , but goes
to infinity as Ship [i, j J approaches cap [i, j J ; a third parameter sens [i, j J gov­
erns the shape of the function between the two extremes. This function is always convex,
and so has a graph resembling Figure 18-2e. (Exercise 18-4 suggests how this traveltime
function can be incorporated into a network model of traffic flows.)

As another example. we may want to allow demand to be satisfied only approxi­
mately. We can model this possibility by introducing a variable Discrepancy [kJ, to
represent the deviation of the amount delivered from the amount demanded. This vari­
able, which can be either positive or negative, is added to the right-hand side of the bal­
ance constraim:

subject to Balance {k in CITIES}:
supp1y[k] + sum ((i,k) in LINKS) Ship[i,k]

demand[k] + Discrepancy[k] +
sum ((k,j) in LINKS) Ship[k,jl;

One established approach for keeping the discrepancy from becoming too large is to add
a penalty cost to the objective. If this penalty is proportional to the amount of the di s­
crepancy, then we have a convex piecewise-linear penalty term,

minimize Total_Cost:
sum {(i , j) in LINKS} cos t [i , j] * Ship [i, j} +
sum {k in CITIES} pen * «-1,1; 0» Discrepancy[k];

where pen is a positive parameter. AMPL readily transforms this objective to a linear
one.

This form of penalty may not achieve the effect that we want, however, because it
penalizes each unit of the di screpancy equally . To discourage large discrepancies, we
would want the penalty to become steadily larger per unit as the discrepancy becomes
worse, but this is not a property that can be achieved by linear penalty functions (or
piecewise-linear ones that have a finite number of pieces). Instead a morc appropriate
penally function would be quadratic:

--
SECTION 18.2 NONLINEAR VARIABLES

m1n1m1ze Total_Cost:
sum {(i, j) in LINKS} cos t (i , j] * Ship [i , j] +
sum {k in CITIES} pen * Discrepancy(k] A 2;

397

Nonlinear objectives that are a sum of squares of some quantities are common in opti­
mization problems that involve approximarion or data fitling.

Modeling an inherently nonlinear process

There are many sources of nonlinearity in models of physical activities like oil refin­
ing, power transmission, and structural design. More often than not, the nonlinearities in
these models cannot be traced to the relaxation of any linearity assumptions, but are a
consequence of inherently nonlinear relationships that govern forces, volumes, currents
and so forth. The forms of the nonlinear functions in physical models may be easier to
determine, because they arise from empirical measurements and the underlying laws of
physics (rather than economics). On the other hand. the nonlinearities in physical models
lend to involve more complicated functional forms and interactions among the variables.

As a simple example, a model of a natural gas pipeline network must incorporate not
only the shipments between cities but also the pressures at individual cities, which are
subject to certain bounds. Thus in addition to the flow variables Ship [i, j I the model
must define a variable Press [k] to represent the pressure at each city k. If the pressure
is greater at city i than at city j, then the flow is from i to j and is related to the pres­
sure by

Flow[i,j]"2 = c[i,j]"2 * (Press[i]"2 - Press[j]"2)

where c [i, j] is a constant determined by the length, diameter, and efficiency of the
pipe and the properties of the gas. Compressors and valves along the pipeline give rise to
different nonlinear flow relationships. Other kinds of networks, notably for transmission
of electricity, have their own nonlinear flow relationships that arc dictated by the physics
of the situation.

If you know the algebraic form of a nonlinear expression that you want to include in
your model, you can probably see a way to write it in AMPL. The next two sections of
this chapter consider some of the specific issues and features relevant to declaring vari­
ables for nonlinear programs and to writing nonlinear expressions. Lest you get carried
away by the ease of writing nonlinear expressions, however, the last section offers some
cautionary advice on solving nonlinear programs.

18.2 Nonlinear variables

Although AMPL variables are declared for nonlinear programs in the same way as for
linear programs, two features of variables - initial values and automatic substitution -
are particularly useful in working with nonlinear models.

398 NONLINEAR PROGRAMS CHAPTER 18

Initial values of variables

You may specify values for AMPL variables. Prior to optimization, these " initial"
values can be displayed and manipulated by AMPL commands. When you type solve,
they are passed to the solver, which may use them as a starting guess at the solution.
After the solver has finished its work, the initial values are replaced by the computed
optimal ones.

All of the AMPL features for assigning values to parameters are also available for
variables. A var declaration may also specify initial values in an optional: = phrase; for
the transportation example, you can write

var Ship {LINKS} >= 0, : = 1;

to set every Ship (i, j J initially to I, or

var Ship {{i.j) in LINKS} >= 0, := cap[i,j] - 1 ;

to initialize each Ship [i I j] to I less than cap (i, j J . Alternatively, initial values
may be given in a data statement along with the other data for a model:

var Ship : FRA DET LAN WIN STL FRE LAF . -
GARY 800 400 400 200 400 200 200
CLEV 800 800 800 600 600 500 600
PITT 800 800 800 200 300 800 500

Any of the data statements for parameters can also be used for variables, as explained in
Section 9.4.

All of these features for assigning values to the regular ("primal") variables also
apply to the dual variables associated with constraints (Section 12.5). AMPL interprets an
assignment to a constraint name as an assignment to the associated dual variable or (in
the tenninoiogy more common in nonlinear programming) to the associated Lagrange
multiplier. A few solvers, such as MINOS, can make use of initial values for these multi­
pliers.

You can often speed up the work of the solver by suggesting good initial values. Thi s
can be so even for linear programs, but the effect is much stronger in the nonlinear case.
The choice of an initial guess may determine what value of the objective is found to be
"optimal" by the solver, or even whether the solver finds any optimal solution at all.
These possibilities are discussed further in the last section of this chapter.

If you don't give any initial value for a variable, then AMPL will tentatively set it to
zero. If the solver incorporates a routine for determining initial values, then it may re-set
the values of any uninitialized variables, while making use of the values of variables that
have been initialized. Otherwise, uninitialized variables will be left at zero. Although
zero is an obvious starting point, it has no special significance; for some of the examples
that we will give in Section 18.4, the solver cannot optimize sllccessfully unless the initial
values are reset away from zero.

SECTION 18.2 NONLINEAR VARIABLES 399

Automatic substitution of variables

The issue of substituting variables has already arisen in an example of the previous
section, where we declared variables to represent the shipping costs, and then defi ned
them in terms of other variables by use of a constraint:

subject to Cost_Relation {(i,j) in LINKS} :
Cost[i.jl =

(cost1[i,jl + cost2[i,jl*Ship[i,jj) / (1 + Ship[i,jll;

If the expression to the right of the = sign is substituted for every appearance of
Cos t [i, j], the Cost variables can be eliminated from the model, and these con­
straints need not be passed to the solver. There are two ways in which you can tell AMPL
to make such substitutions automatically.

First, by changing option subs tout from its default value of zero to one, you can
tell AMPL to look for all "defining" constraints that have the form shown above: a sin­
gle variable to the left of an = sign. When this alternative is employed, AMPL tries to use
as many of these constraints as possible to substitute variables out of the model. After
you have typed solve and a nonlinear program has been generated from a model and
data, the constraints are scanned in the order that they appeared in the model. A con­
straint is identified as "defining" provided that

• it has just one variable to the left of an = sign:
• the left-hand variable's declaration did not specify any restrictions, such as inte­
grality or bounds; and
• the left-hand variable has not already appeared in a constraint identified as defin­
ing.

The expression to the right of the = sign is then substituted for every appearance of the
left-hand variable in the other constraints , and the defining constraint is dropped. These
rules give AMPL an easy way to avoid circular substitutions, but they do imply that the
nature and number of substitutions may depend on the ordering of the constraints.

As an alternative, if you want to specify explicitly that a certain collection of variables
is to be substituted out, use an = phrase in the declarations of the variables. For the pre­
ceding example, you could write:

var Cost {(i,j) in LINKS}
= (cost1[i,jl + cost2[i.jl*Ship[i,jj) / (1 + Ship[i,j]);

Then the variables Cos t [i , j I would be replaced everywhere by the expression follow­
ing the = sign. Declarations of this kind can appear in any order, subject to the usual
requirement that every variable appearing in an = phrase must be previously defined.

Variables that can be substituted out are not mathcmatically necessary to the opti­
mization problem. Nevertheless, they often serve an esscntial descriptive purpose: by
associating names with nonlinear expressions, they perntit more complicated expressions
to be written understandably. Moreover, even though these variables have been removed
from the problem sent to the solver, their names remain available for use in browsing
through the results of optimization.

400 NONLINEAR PROGRAMS CHAPTER 18

When the same nonlinear expression appears morc than once in the objective and con­
straints, introducing a defined variable to represent it may make the model more concise
as well as morc readable. AMPL also processes such a substitution efficiently. In gener­
ating a representation of the nonlinear program for the solver, AMPL does not substitute a
copy of the whole defining expression for each occurrence of a defined variable. Instead
it breaks the expression into a linear and a nonlinear part, and saves one copy of the non­
linear part together with a list of the locations where its value is to be substituted; only the
tenns of the linear part are substituted explicitly in multiple locations. This separate
treatment of linear terms is advantageous for solvers (such as MINOS) that handle the lin­
ear terms specially, but it may be turned off by setting option linelim to zero.

From the solver's standpoint, substitutions reduce the number of constraints and vari­
ables, but tend to make the constraint and objective expressions more complex. As a
result. there are circumstances in which a solver will perform beller if defined variables
are not substituted out. When developing a new model, you may have to experiment to
determine which substitutions give the best results.

18.3 Nonlinear expressions

Any of AMPL' s arithmetic operators (Table 7-1) and arithmetic functions (Table 7-2)
may be applied to variables as well as parameters. If any resulting objective or constraint
does not satisfy the rules for linearity (Chapter 8) or piecewise-linearity (Chapter 17),
AMPL treats it as "not linear". When you type solve, AMPL passes along instructions
that are sufficient for your solver to evaluate every expression in every objective and con­
straint, together with derivatives if appropriate.

If you are using a typical nonlinear solver, it is up to you to define your objective and
constraints in terms of the "smooth" functions that the solver requires. The generality of
AMPL's expression syntax can be misleading in this regard. For example, if you are try­
ing to use variables Flow [i, j] representing f]ow between points i and j, it is tempt­
ing to write expressions like

cost[i,j) * a bs(Flow[i,j]l

or

if Flow[i,j] = a then a else base[i,j] + cost[i ,j)*Flow (i, j]

These are certainly not linear, but the first is not smooth (its slope changes abruptly at
zero) and the second is not even continuous (its value jumps suddenly at zero). If you try
to use such expressions, AMPL will not complain. and your solver may even return what
it claims to be an optimal solution - but the results could be wrong.

Expressions that apply nonsmooth functions (such as abs , min, and max) to vari­
ables generally produce nonsmooth results; the same is true of if-then-else expres­
sions in which a condition involving variables follows i f . Nevertheless, there are useful
exception~ where a carefully written expression can preserve smoothness. As an exam-

SECTION 18.3 NONLINEAR EXPRESSIONS 401

(a) x 2 if x ~ 0, _x2 if x <0

(b) log (x) / (x - 1)

1.0

Figure 18-3: Smooth nonlinear function s.

pie, consider again the flow-pressure relationship from Section 18.1. If the pressure is
greater at city i than at city j, then the flow is from i to j and is related to the pressure
by

Flow[i,j]'2 = cli,j]'2 * (Press[i]'2 - Press[j]'2)

If instead the pressure is greater at city j than at city i. a similar equation can be written:

Flow[j,i]'2 = c[j,i]'2 * (Presslj]'2 - Press[i]-2)

But since the constants c [i, j] and c [j , i] refer to the same pipe, they are equal.
Thus instead of defining a separate variable for flow in each direction, we can let
Flow [i, j] be unrestricted in sign. with a positive value indicating flow from i to j
and a negative value indicating the opposite. Using this variable. the previous pair of
flow-pressure constraints can be replaced by one:

(if Flow[i,j] >= a then Flow[i,j]~2 else -Flow[i,j]~2)
= c[i,j]~2 * (Press[i]~2 - Press[j]~2)

Normally the use of an if expression would give rise to a non smooth constraint. but in
this case it gives a function whose two quadratic halves "meet" smoothly where
Flow [i, j] is zero, as seen in Figure 18-3a.

As another example, the convex function in Figure IS-3b is most easily written
log(Flow[i,j]) / (Flow[i,j]-l), but unfortunately if Flow[i,j] is I this
simplifies to 010, which would be reported as an error. In fact, this expression does not
evaluate accurately if Flow [i, j 1 is merely very close to zero. If instead we write

402 NONLINEAR PROGRAMS

if abs(Flow[i,jl-ll > 0.00001 then
log(Flow[i,jll / (Flow[i,jl-11

else
1.5 - Flow [i,jI / 2

CHAPTER 18

a highly accurate linear approximation is substituted at small magnitudes of
Flow [i, j]. This alternative is not smooth in a literal mathematical sense, but it is
numerically close enough to being smooth to suffice for use with some solvers.

In the problem instance that it sends to a solver, AMPL distinguishes linear from non­
linear constraints and objectives, and breaks each constraint and objective expression into
a sum of linear terms plus a not-linear part. Additional terms that become linear due to
the fixing of some variables are recognized as linear. For example, in our example from
Section 18.1 ,

minimize Total_Cost :
sum {i in ORIG, j in DEST} Cost[i,j] * Ship[i,jl;

each fixing of a Cos t [i, j I variable gives rise to a linear term; if all the Cos t [i, j 1
variables are fixed , then the objective is represented to the solver as linear. Variables
may be fixed by a fix command (Section 11.4) or through the actions of the presolve
phase (Section 14. 1) ; although the presolving algorithm ignores nonlinear constraints, it
works with any linear constraints that are available, as well as any constraints that
become linear as variables are fixed.

AMPL's built-in functions are only some of the ones most commonly used in model
formulations. Libraries of other useful functions can be introduced when needed. To use
cumulative normal and inverse cumulative normal function s from a library called
statlib, for example. you would first load the library with a statement such as

load statlib.dll;

and declare the functions by use of AMPL function statements:

function cumnormal;
function invcumnormal;

Your model could then make use of these functions to form expressions such as
cumnormal (mean [i I , sdev [i] , Inv [i, t]1 and invcumnormal (61. If these
functions are applied to variables. AMPL also arranges for function evaluations to be car­
ried out during the solution process.

A function declaration specifies a library function 's name and (optionally) its
required arguments. There may be any number of arguments, and even iterated collec­
tions of arguments. Each function 's declaration must appear before its use. For your
convenience, a script containing the function declarations may be supplied along with
the library, so that a statement such as include statlib is sufficient to provide
access to all of the library' s functions. Documentation for the library will indicate the
function s available and the numbers and meanings of their arguments.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 403

Determining the correct load command may in volve a number of detail s that depend
on the type of system you're using and even its specific configuration. See Section A.22
for further discussion of the possibilities and the related AMPLFUNC option.

If you are ambitious, you can write and compile your own function libraries. Instruc­
tions and examples are available from the AMPL web site.

18.4 Pitfalls of nonlinear programming

While AMPL gives you the power to formulate diverse nonlinear optimization models,
no solver can guarantee an acceptable solution every time you type solve. The algo­
rithms used by solvers are susceptible to a variety of difficulties inherent in the complexi­
ties of nonlinear functions. This is in unhappy contrast to the linear case, where a well­
designed solver can be relied upon to solve almost any linear program.

This section offers a brief introduction to the pitfalls of nonlinear programming. We
focus on two common kinds of difficulties, function range violations and multiple local
optima, and then mention several other traps more briefly.

For illustration we begin with the nonlinear transportation model shown in Figure
18-4. It is identical to our earlier transportation example (Figure 3-la) except that the
terms cost [i, j] * Trans [i I j] are replaced by nonlinear terms in the objective:

minimize Total_Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,jj I (1 - Trans(i,j]/limit[i,j]);

Each term is a convex increasing function of Trans [i, j] like that depicted in Figure
18-2e; it is approximately linear with slope rate [i, j] at relati vely small values of
Trans [i, j J, but goes to infinity as Trans [i, j J approaches lirni t [i, j J. Asso­
ciated data values, also similar to those used for the linear transportation example in
Chapter 3, are given in Figure 18-5.

Function range violations

An attempt to solve using the model and data as given proves unsuccessful :

ampl : model nltrans.mod;
ampl : data nltrans.dat;

ampl: sol va;
MINOS 5.5 Error evaluating objective Total_Cost
can't compute 8000/0
MINOS 5.5 : solution aborted.
8 iterations, objective 0

The solver' s message is cryptic, but strongly suggests a division by zero while evaluating
the objective. That could only happen if the expression

1 - Trans[i,j]/limit[i,j]

404 NONLINEAR PROGRAMS

set ORIG;
set DEST;

#- origins
#- destinations

CHAPTER 18

param supply {ORIG} >= 0;
param demand {DEST} >= OJ

amounts available at origins
amounts required at destinations

check : sum {i in ORIG} supply[i] = sum {j in DEST} demand[j] j

param rate {ORIG,DEST} >= 0 ;
param limit {ORIG,DEST} > 0;

base shipment costs per unit
limit on units shipped

var Trans {i in ORIG, j in DEST} >= 0; # units to ship

minimize Total_Cost :
sum {i in ORIG, j in DEST}

rate[i,jj * Trans[i,j] / (1 - Trans[i,j]/limit[i,j]);

subject to Supply {i in ORIG} :
sum {j in DEST} Trans[i,j] = supply[iJ ;

subject to Demand {j in DEST} :
sum {i in ORIG} Trans[i,j] = demand[j];

Figure 18-4: Nonlinear transportation model (nl trans. mod).

param : ORIG, suppl y . -
GARY 1400 CLEV 2600 PITT 2900

param : DEST : deman d . -
FRA 900 DET 1200 LAN 600
WIN 400 STL 1700 FRE 1100
LAF 1000

param rate , FRA DET LAN WIN STL FRE LAF . -
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 1 4 17 13 28 99 20

param limit , FRA DET LAN WIN STL FRE LAF : =

GARY 500 1000 1000 1000 800 500 1000
CLEV 500 BOO 800 800 500 500 1000
PITT 800 600 600 600 500 500 900

Figure 18-5: Data for nonlinear transportation model (nltrans . dat).

is zero at some point. If we use display to print the pairs where Trans [i, j] equals
limit [i, j l :

ampl: display {i in ORIG,] ~n DEBT: Trans[i,j] = limit[i,i]};
set {i in ORIG, j in DEST : Trans[i,j] == limit(i,jJ}

, = (GARY,LAF) (PITT,LAN) ;

ampl : display Trans['GARY', 'LAF'], limit ['GARY', 'LAF'];
Trans['GARY','LAF'] 1000
limit('GARY', 'LAF'] = 1000

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 405

we can see the problem. The solver has allowed Trans [GARY, LAF] to have the value
1000, which equals limit [GARY, LAF]. As a result,the objective function term

rate[GARY,LAF] * Trans[GARY,LAF)
I (1 - Trans [GARY, LAFI 11imit [GARY, LAFI I

evaluates to 8000/0. Since the solver is unable to evaluate the objective function, it gives
up without finding an optimal solution.

Because the behavior of a nonlinear optimization algorithm can be sensitive to the
choice of starting guess, we might hope that the solver will have greater success from a
different start. To ensure that the comparison is meaningful, we first set

ampl : option send_ statuses 0;

so that status information about variables that was returned by the previous solve will not
be sent back to help determine a starting point for the next solve. Then AMPL's let
command may be used to suggest, for example, a new initial value for each
Trans [i, j] that is halfof limit Ii. j]:

ampl: lee (i in ORIG, j in DEST) TraDs(i,j1 := limit[i,j}12;
ampl: solve;
MINOS 5.5: the current point cannot be improved.
32 iterations, objective -7.38590338ge+18

This time the solver runs to completion. but there is still something wrong. The objective
is less than - 10 18 , or -00 for all practical purposes, and the solution is described as "can­
not be improved" rather than optimal.

Examining the values of Trans [i, j] / limi t [i, j] in the solution that the solver
has returned gives a clue to the difficulty:

ampl: display {i in ORIG, j
Trans (L j] Ilimit [L j] [*, *]

CLEV GARY
DET -6.125e-14 a
FRA a 1.5
FRE 0.7 1
LAF 0.4 0.15

in DEST) Trans(i,j}llimdt(i,j};
(tr)

PITT ,=

LAN 0.375 7.03288e-15

2
0.1875
0.5
0 . 5
0.5
0.5
0.5

STL 2.9 a
WIN 0.125 a

These ratios show that the shipments for several pairs, such as Trans [CLEV, STLI.
significantly exceed their limits. More seriously, Trans [GARY, FRE] seems to be right
at limi t [GARY, FRE] , since their ratio is given as I. If we display them to full preci­
sion, however, we see:

ampl: option display-precision 0;
ampl: display Trans['GARY','FRE'}, limie['GARY','FRE'};
Trans I 'GARY' , 'FRE' 1 500. 0000000000028
limit['GARY', 'FRE'] = 500

406 NONLINEAR PROGRAMS CHAPTER 18

Figure 18-6: Singularity in cost function y =x/(I - xlc).

The variable is just slightly larger than the limit, so the cost term has a huge negative
value. If we graph the entire cost function , as in Figure 18-6. we see that indeed the cost
function goes off to -~ to the right of the singularity at limit [GARY, FREJ.

The source of error in both runs above is our assumption that, since the objective goes
to +~ as Trans [i, j J approaches limi t [i, j J from below, the solver will keep
Trans [i, j] between 0 and limi t [i I j]. At least for this solver, we must enforce
such an assumption by giving each Trans [i, j J an explicit upper bound that is slightly
less than 1 imi t [i, j J, but close enough not to affect the eventual optimal solution:

var Trans {i in ORIG, j in DEST} >= 0, <= .9999 * limit{i,j];

With this modification, the solver readily find s an optimum:

ampl: option display-precision 6;
ampl: model nltransb.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found .
81 iterations, objective 1212117
ampl: display Trans;
Trans ['*,'*] (tr)

CLEV GARY PITT ,=
DET 586.372 187.385 426.242
FRA 294.993 81.2205 523.787
FRE 365.5 369 . 722 364 . 778
LAF 490.537 0 509 .4 63
LAN 294.148 0 305.852
STL 469.691 761.672 468.637
WIN 98.7595 0 301.241

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 407

These values of the variables are well away from any singularity, with
Trans [i, j J Ilimi t [i. j J being less than 0.96 in every case. (If you change the
starting guess to be limit [i, j J /2 as before, you should find that the solution is the
same but the solver needs only about half as many iterations to find it.)

The immediate lesson here is that nonlinear functions can behave quite badly outside
the intended range of the variables. The incomplete graph in Figure 18-2e made this cost
function look misleadingly well-behaved, whereas Figure 18-6 shows the need for a
bound to keep the variable away from the singularity.

A more general lesson is that difficulties posed by a nonlinear function may lead the
solver to fail in a variety of ways. When developing a nonlinear model, you need to be
alert to bizarre results from the solver, and you may have to do some detective work to
trace the problem back to a flaw in the model.

Multiple local optima

To illustrate a different kind of difficulty in nonlinear optimization, we consider a
slightly modified objective function that has the following formula:

minimize Total~Cost:
sum {i in ORIG, j in DEST}

rate[i,j] * Trans[i,j]"0 . 8 / (1 - Trans[i,j]/limit[i,j]);

By raising the amount shipped to the power 0.8, we cause the cost function to be concave
at lower shipment amounts and convex at higher amounts, in the manner of Figure 18-2f.
Attempting to solve this new model, we again initially run into technical difficulties:

ampl : model nItransc.mod; data nltrans.dat; solve;
MINOS 5.5: Error evaluating objective Total~Cost:

can't evaluate pow' (0,0.8)
MINOS 5 . 5: solution aborted .
8 iterations, objective a

This time our suspicion naturally centers upon Trans [i, j] "0 . 8, the only expression
that we have changed in the model. A further clue is provided by the error message's ref­
erence to pow' (0,0.8), which denotes the deri vative of the exponential (power) func­
tion at zero. When Trans [i, j) is zero, this function has a well-defi ned value, but its
derivative with respect to the variable - the slope of the graph in Figure 18-2f - is infi­
nite. As a result, the partial derivative of the total cost with respect to any variable at zero
cannot be returned to the solver; since the solver requires all the partial derivatives for its
optimization algorithm, it gives up.

This is another variation on the range violation problem, and again it can be remedied
by imposing some bounds to keep the solution away from troublesome points. In this
case, we move the lower bound from zero to a very small positive number:

var Trans {i in ORIG, j in DEST}
>= le-10, <= .9999 * limit[i,j], := 0;

408 NONLINEAR PROGRAMS CHAPTER 18

We might also move the slarting guess away from zero, but in this example the solver
takes care of that automatically, since the initial values only suggest a starting point.

With the bounds adjusted, the solver runs normally and reports a solution:

ampl: mode~ nltransd.mod; data nltrans.dat; solve;
MINOS 5.5: optimal solution found .
65 iterations, objective 427568.1225
ampl : display Trans;
Trans (*.*J (tr)

CLEV GARY PITT
DET 689.091 le-l0 510.909
FRA le-l0
FRE 385.326
LAF 885.965
LAN 169.662
STL 469.956
WIN le-l0

199.005 700.995
326.135 388 . 54
114 . 035

le-l0
760 . 826

le-l0

le-l0
430 . 338
469.218
400

We can regard each le-IO as a zero, since such a small value is negligible in compari­
son with the rest of the solution.

Next we again try a starling guess at limi t [i, j] /2, in the hope of speeding things
up. This is the result:

ampl: let {i in ORIG, j in DEST} Trans[i,j] := limit[i,j]/2;
ampl: solve;
MINOS 5.5: optimal solution found .
40 iterations, objective 355438 . 2006

ampl : display Trans;
Trans (*, * J (tr)

CLEV GARY PITT
DET 540 . 601 265.509 393 . 89
FRA 328.599 le-l0 571. 401
FRE 364 . 639 371 . 628 363 . 732
LAF 491.262 le-l0 508 . 738
LAN 301. 741 le-l0 298 . 259
STL 469 . 108 762 . 863 468.029
WIN 104.049 le-l0 295.951

.-

Not only is the solution completely different. but the optimal value is 17% lower! The
first solution could not truly have minimized the objective over all solutions that are fea­
sible in the constraints.

Actually both solutions can be considered correct, in the sense that each is locally
optimal. That is, each solution is less costly than any other nearby solutions. All of the
classical methods of nonlinear optimization, which are the methods considered in this
chapter, are designed to seek a local optimum. Started from one specified initial guess,
these methods are not guaranteed to find a solution that is globally optimal, in the sense
of giving the best objective value among all solutions that satisfy the constraints. In gen­
eral , finding a global optimum is much harder than finding a local one.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 409

Fortunately, there are many cases in which a local optimum is entirely satisfactory.
When the objective and constraints satisfy certain properties, any local optimum is also
global; the model considered at the beginning of this section is one example, where the
convexity of the objective, together with the linearity of the constraints, guarantees that
the solver will find a global optimum. (Linear programming is an even more special case
with thi s property; that 's why in previous chapters we never encountered local optima
that were not global.)

Even when there is more than one local optimum, a knowledge of the situation being
modeled may help you to identify the global one. Perhaps you can choose an initial solu­
tion near to the global optimum, or you can add some constraints that rule out regions
known to contain local optima.

Finally, you may be content to find a very good local optimum, even if you don ' t
have a guarantee that it is global. One straightforward approach is to try a series of start­
ing points systematically, and take the best among the solutions. As a simple illustration,
suppose that we declare the variables in our example as follows:

param alpha >=0, <= 1i

var Trans {i in ORIG, j in DEST}
>= le-IO, <= .9999 * limit[i,j), : = alpha * limit[i,j]i

For each choice of alpha we get a different starting guess, and potentially a different
solution. Here are some resulting objective values for alpha ranging from 0 to I:

alpha Total_Cost

0.0 427568.1
0.1 366791.2
0.2 366791.2
0.3 366791.2
0.4 366791.2
0.5 355438.2
0.6 356531.5
0.7 376043.3
0.8 3670 14.4
0.9 402795.3
1.0 365827.2

The solution that we previously found for an alpha of 0.5 is still the best, but in light of
these results we are now more inclined to believe that it is a very good solution. We
might also observe that, although the reported objective value varies somewhat erratically
with the choice of starting point - a feature of nonlinear programs generally - the
second-best value of Total_Cos t was found by selling alpha to 0.6. This suggests
that a closer search of alpha values around 0.5 might be worthwhile.

Some of the more sophisticated methods for global optimization attempt to search
through starting points in this way, but with a more elaborate and systematic procedure
for deciding which starting points to try next. Others treat global optimization as more of
a combinatorial problem, and apply solution methods motivated by those for integer pro-

410 NONLINEAR PROGRAMS CHAPTER 18

gramming (Chapter 20). Global optimization methods are still at a relatively early stage
of development, and are likely to improve as experience accumulates, new ideas are tried,
and available computing power further increases.

Other pitfalls

Many other factors can influence the efficiency and success of a nonlinear solver,
including the way that the model is formulated and the choice of units (or scaling) for the
variables. As a rule, nonlinearities are more easily handled when they appear in the
objective function rather than in the constraints. AMPL's option to substitute variables
automatically, described earlier in this chapter, may help in this regard. Another rule of
thumb is that the values of the variables should differ by at most a few orders of magni­
tude; solvers can be misled when some variables are, say, in millions and others are in
thousandths. Some solvers automatically scale a problem to try to avoid such a situation,
but you can help them considerably by judiciously picking the units in which the vari­
ables are expressed.

Nonlinear solvers also have many modes of failure besides the ones we have dis­
cussed. Some methods of nonlinear optimization can get stuck at "stationary" points
that are not optimal in any sense, can identify a maximum when a minimum is desired (or
vice-versa), and can falsely give an indication that there is no feasible solution to the con­
straints. Tn these cases your only recourse may be to try a different starting guess; it can
sometimes help to specify a start that is feasible for many of the nonlinear constraints.
You may also improve the solver's chances of success by placing realistic bounds on the
variables. If you know, for instance, that an optimal value of 80 is plausible for some
variables, but a value of 800 is not, you may want to give them a bound of 400. (Once an
indicated optimum is at hand, you should be sure to check whether these "safety"
bounds have been reached by any of the variables; if so, the bounds should be relaxed and
the problem re-solved.)

The intent of this section has been to illustrate that extra caution is advisable in work­
ing with nonlinear models. If you encounter a difficulty that cannot be resolved by any of
the simple devices described here, you may need to consult a textbook in nonlinear pro­
gramming, the documentation for the particular solver that you are using, or a numerical
analyst versed in nonlinear optimization techniques.

Bibliography

Roger Fletcher, Practical Methods o/Optimization. John Wiley & Sons (New York, NY, 1987). A
concise survey of theory and methods.

Philip E. Gill , Walter Murray and Margaret H. Wright, Practical Optimization. Academic Press
(New York. NY, 1981). Theory, algorithms and practical advice.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Verlag (Heidelberg,
1999). A text on methods for optimization of smooth functions.

-
SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 411

Richard P. O'Neill, Mark Williard. Bert Wilkins and Ralph Pike, "A Mathematical Programming
Model for Allocation of Natural Gas." Operations Research 27, 5 (l979) pp. 857-873. A source
for the nonlinear relationships in natural gas pipeline networks described in Section 18.1.

Exercises

18-1. In the last example of Sect.ion 18.4, try some more starting points to see if you can find an
even better locally optimal solution. What is the best solution you can find?

18-2. The following little model fence. mod determines the dimensions of a rectangular field of
maximum area that can be surrounded by a fence of given length:

param fence> 0;

var Xfield >= 0;
var Yfield >= 0;

maximize Area: Xfield * Yfield;
subject to Enclose: 2*Xfield + 2*Yfield <= fence;

It's well known that the optimum fie ld is a square.

(a) When we tried to solve this problem for a fence of 40 meters, with the default initial guess of
zero for the vari ables, we got the following result:

ampl: s o lve ;
MINOS 5.5: optimal solution found.
o iterations, objective 0

ampl: displ ay XEi eld, YEi e ld;
Xfield 0
yfield = 0

What could explain this unexpected outcome? Try the same problem on any nonlinear solver
available to you, and report the behavior that you observe.

(b) Using a different starting point if necessary, run your solver to confirm that the optimal dimen­
sions for 40 meters of fence are indeed 10 x 10.

(c) Experiment with an analogous model for determining the dimensions of a box of maximum vol­
ume that can be wrapped by paper of a given area.

(d) Solve the same problem as in (c), but for wrapping a cylinder rather than a box.

1 8~3 . A falling object on a nameless planet has been observed 1O have approximately the follow­
ing heights h j at (mostly) one-second intervals t/

0.0 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.0

loa 95 87 76 66 56 47 38 26 IS 6 o
According to the laws of physics on this planet, the height of the object at any time should be given
by the formula

h j = aO-allj-lha2tj,

where ao is the initial height, al is the initial velocity, and (12 is the acceleration due to gravity.
But since the observations were not made exactly, there exists no choice of Go, G I, and 02 that will

412 NONLINEAR PROGRAMS CHAPTER 18

cause all of the data to fit this formula exactly. Instead, we wish to estimate these three values by
choosing them so as to minimize the "sum of squares"

±Llij ~ (aO-altj-YIa2tj)f.
j= 1

where t j and 11 j are the observations from the jlh entry of the table, and II is the number of observa­
tions. This expression measures the error between the ideal formula and the observed behavior.

(a) Create an AMPL model that minimizes the sum of squares for any number 1/ of observations tj
and h). This model should have three variables and an objective function, but no constraints.

(b) Use AMPL data statements to represent the sample observations given above, and solve the
resulting nonlinear program to determine the estimates of ao, ai, and a2'

18-4. This problem involves a very simple "traffic flow" network:

Traffic proceeds in the direction of the arrows, entering at intersection a, exiting at d, and passing
through b or c or both. These data values are given for the roads connecting the intersections:

From To Time Capacity Sensitivity
a b 5.0 10 0.1
a c 1.0 30 0.9
c b 2.0 10 0.9
b d 1.0 30 0.9
c d 5.0 10 0.1

To be specific, we imagine that the times are in minutes. the capacities are in cars per minute, and
the sensitivities are in minutes per (car per minute).

The following AMPL statements can be used to represent nelworks of this kind:

set inters; # road intersections

param EN symbolic in inters;
param EX symbolic in inters;

set roads within {i in inters,

param time {roads} > 0;
param cap {roads} > 0;
param sens {roads} > 0;

entrance to network
exit from network

in inters : i <> EX and j <> EN};

(a) What is the shortest path, in minutes. from the entrance to the exit of this network? Construct a
shortest path model, along the lines of Figure 15-7, that verifies your answer.

(b) What is the maximum traffic flow from entrance to exit, in cars per minute, that the network
can sustain? Constnlct a maximum flow model, along the lines of Figure 15-6, that verifies your
answer.

SECTION 18.4 PITFALLS OF NONLINEAR PROGRAMMING 413

(c) Question (a) above was concerned only with the speed of traffic, and question (b) only with the
volume of traffic. In reality, these quantities are interrelated. As the traffic volume on a road
increases from zero, the time required to travel the road also increases.

Travel lime increases only moderately when there are just a few cars, but it increases very rapidly
as the traffic approaches capacity. Thus a nonlinear function is needed to model this phenomenon.
Let us define T (i , j] , the travel time on road (i, j) , by the following constraints:

var X {roads} >= 0;
var T {roads};

cars per minute entering road (i,j)
travel time for road (i,j)

subject to Travel_Time {(i,j) in roads}:
T[i,jj = time[i,j] + (sens[i,jj*X[i,j]) I (l-X[i,jj/cap[i,j]l;

You can confirm that the travel time on (i, j) is close to time [i. j] when the road is lightly
used, but goes to infinity as the use approaches cap [i , j] cars per minute. The magnitude of
sens r i. j] controls the rate at which travel time increases, as more cars try to enter the road.

Suppose that we want to analyze how the network can best handle some number of cars per minute.
The objective is to minimize average travel time from entrance lO exit:

param through> 0; # cars per minute using the network

minimize Avg_Time:
(sum {(i,j) in roads} T[i,jj * X[i,j]) I through;

The nonlinear expression T (i, j] * X (i, j] is travel minutes on road (i, j) times cars per
minute entering the road - hence, the number of cars on road (i, j). The summation in the
objective thus gives the total cars in the entire system. Dividing by the number of cars per minute
getting through, we have the average number of minutes for each car.

Complete the model by adding the following:

- A constraint that lOtai cars per minute in equals total cars per minute out at each intersection,
except the entrance and exit.

- A constraint that total cars per minute leaving the entrance equals the total per minute (repre­
sented by through) that are using the network.

- Appropriate bounds on the variables. (The example in Section 18.4 should suggest what bounds
are needed.)

Use AMPL to show that, for the example given above, a throughput of 4.0 cars per minute is opti­
mally managed by sending half the cars along a~b~d and half along a~c~d, giving an aver­
age travel time of about 8.18 minutes.

(d) By trying values of parameter through both greater than and less than 4.0, develop a graph of
minimum average travel time as a function of throughput. Also, keep a record of which travel
routes are used in the optimal solutions for different throughputs, and summarize this information
on your graph.

What is the relationship between the information in your graph and the solutions from parts (a) and
(b)'

(e) The model in (c) assumes that you can make the cars' drivers take certain routes. For example,
in the optimal solution for a throughput of 4.0, no drivers are allowed to "cut through" from c lO
b.

What would happen if instead all drivers could take whatever route they pleased? Observation has
shown that, in such a case, Ihe traffic tends to reach a stable solution in which no route has a travel
time less (han the average. The optimal solution for a throughput of 4.0 is not stable, since - as

TECNOl6clCO DE MC!M:<':~
... AUDile;, n.ca.;A~j.!J..'!,.t-.:.,. i

414 NONLINEAR PROGRAMS CHAPTER 18

you can verify - the travel time on a-+c-+b-.:;d is only about 7.86 minutes; some dri vers would
lfY to em through if they were permitted.

To find a stable solution using AMPL, we have to add some data specifying the possible routes
from entrance (0 exit:

param choices integer> 0; * number of routes
set route {l . . choices} within roads;

Here route is an indexed collection of sels: for each r in 1 .. choices, the expression
rou te [r] denOies a different subset of roads that together fonn a route from EN to EX. For our
network, choices should be 3, and Ihe route sets should be {(a,b), (bid»).
{(a,e), (c,d)} and {(a,e), (c,b), (b,d)}, Usingthese dalavalues, lhe slabilitycondi­
lions may be ensured by onc additional collection of constraints, which say that the time to travel
any route is no less than the average trave l time for all routes:

subject to Stability {r in 1 .. choices}:
sum {(i,j) in route[r]1 T[i,jj >=

(sum {{i,j) in roads) T [i,jj * X[i,jj) / through;

Show that, in the stable solution for a throughput of 4.0, a little more than 5% of the drivers cut
through, and the average traveltime increases \0 about 8.27 minu tes. Thus traffic would have been
faster if the road from c to b had never been bui lt! (This phenomenon is known as Braess's para­
dox. in honor of a traffic analyst who noticed that when a certain link was added 10 Munich's road
system. traffic seemed to get worse.)

(0 By trying throughput values both greater than and less than 4.0. develop a graph of the stable
travel time as a function of throughput. Indicate, on the graph, for which throughputs the stab le
time is greater than the optimaitime.

(g) Suppose now that you have been hired to analyze the possibility of opening an additional wind­
ing road , directly from a to d, with travel time 5 minutes, capacity 10, and sensitivity 1.5. Working
with the models developed above. write an analysis of the consequences of making thi s change. as
a function of the throughput value.

18-5. Return 10 the model constructed in (e) of the previous exercise. This exercise asks about
reducing the number of variables by subst ituting some out. as explained in Section 18.2.

(a) Set the option show_s ta ts to I, and solve the problem. From the ex tra output you get. ve rify
that there are 10 variables.

Next repeat the sess ion with option subs tout set to 1. Verify from the resulting messages that
some of the variables are el iminated by substitution. Which of the variables must these be?

(b) Rather than setting subs tout, you can specify that a variable is to be substituted ou t by plac­
ing an appropriate = phrase in its var declaration. Modify your model from (a) to use this feature,
and verify that the results are the same.

(c) There is a long expression for average travel time that appears twice in this model. Define a
new variable Avg to stand for thi s express ion. Verify that AMPL also substitutes this vari able out
when YOli solve the resulting model , and that the result is the same as before.

18·6. In Modelillg alld Optimizatiol/ lVi,,, GINO, Judith Liebman, Leon Lasdon , Linus Schruge
and Allan Waren describe the following problem in design ing a stee l tank to hold ammonia. The
dec ision variables are

SECTION 18.4 PITFAllS OF NONLINEAR PROGRAMMING 415

T the temperature inside the tank
J the thickness of the insulmion

The pressure inside the tank is a function of the temperature ,

P = e- 39.<,(j/(T+460)+IL86

It is desired 10 minimize the cost of the tank. which has three components: insulation cost, which
depends on the thickness; the cost of the steel vessel, which depends on the pressure; and the cost
of a recondensation process for cooling the ammonia, which depends on both temperature and insu­
lation thickness. A combination of engineering and economic considerations has yielded the fol ­
lowing formulas :

C,=400 J09

C v = IOOO+22(P-14.7)12
CH = 144(80 - T)/ /

(a) Formulate thi s problem in AMPL as a two-variable problem, and alternatively as a six-variable
problem in wh ich fOllr of the variables can be substituted out. Which formulation would YOll prefer
to work with?

(b) Using your preferred formulation , determine the parameters of the least-cost tank.

(c) Increasing the factor 144 in C R causes a proportional increase in the recondensation COSl. Try
several larger values, and describe in general terms how the total cost increases as a function of the
increase in thi s factor.

18-7. A social accounting matrix is a table that shows the flows frolll each sector in an economy
to each other sector. Here is simple five-sector example, with blank entries indicating flow s known
to be zero:

LAB H1 H2 P1 P2 total
LAB 15 3 130 80 220
H1 ? ?
H2 ? ?
P1 15 130 20 190
P2 25 40 55 105

If the matrix were estimated perfectly, it would be balanced: each row sum (the flow out of a sec­
tor) would equal the corresponding column sum (the flow in). As a practical maller, however.
there are several difficulties:

- Some entrie~, marked? above, have no reliab le estimates.

- In the estimated table. the row sums do not necessarily equal the column sums.

- We have separate estimates of the total flows into (or out of) each ~ector, shown to the ri ght of
the rows in our table. These do not necessarily equal the sums of the estimated rows or columns.

Nonlinear programming can be used to adjust thi s matrix by finding the balanced matrix that is
closest, in some ~ense, to the one given.

For a set S of sectors. let ETr:;;;;.S be the subset of sectors for which we have estimated total flows.
and let E;tr;;;;.SxS contain all sector pairs (i , j) for which there are known estimates. The g iven
data values are:

416 NONLINEAR PROGRAMS CHAPTER 18

t , estimated row/column sums. ie Er
aU estimated social accounting matrix entries, (it j) E E,.,

Let SA ~SxS contain all row-column pairs (i , j) for which there should be entries in the matrix -
this includes entries that contain ? instead of a number. We want to determine adjusted entries Ai) .

for each (i , j) e SA' that are truly balanced:

L A= L A
jI!S:(i.j)ESA 'I jES:(j.i)ESA Ji

for all ; e S. You can think of these equations as the constraints on the variables A ' j '

There is no best function for measuring "close", but one popular choice is the sum of squared dif­
ferences between the estimates and the adjusted values - for both the matrix and the row and col­
umn sums - scaled by the estimated values. For convenience, we write the adjusted sums as
defined variables:

T=L A
I }eS:{i.j)eS~ IJ

Then the objective is to minimize

L ' , (a jj -A ij)2/ a ij + L (r , -Tj)2/t j
(I'})& £ A le Er

Formulate an AMPL model for this problem, and determine an optimal adjusted matrix.

18-8. A network of pipes has the following layout:

3 5

2

The circles represent joints. and the arrows are pipes. loints I and 2 are sources of flow, and joint
9 is a sink or destjnation for flow, but flow through a pipe can be in either direction. Associated
with each joint i is an amount w, to be withdrawn from the flow at that joint, and an elevation e j:

2 3 4 5 6

o 0 200 0 0 200
50 40 20 20 0 0

7 8

150 0
o 20

9

o
20

10

150
20

Our decision variables are the flows F ij through the pipes from i to j . with a positive value repre­
senting flow in the direction of the arrow, and a negative value representing flow in the opposite
direction. Naturally, flow in must equal flow out plus the amount withdrawn at every joint. except
for the sources and the sink.

The "head loss" of a pipe is a measure of the energy required 10 move a flow through it. In our
situation . the head loss for the pipe from; to j is proportional 10 the square of the flow rate:

H ,) = KC'J F~ if F'j > 0,

--
SECTION 18.4 PITFALLS OF NONllNEAR PROGRAMMING 417

Hi} = -KcijF~ if Pi) < 0,

where K = 4.96407 X 10 - 6 is a conversion constant, and e'i is a factor computed from the diameter,
friction, and length of the pipe:

from 10 C ij

I 3 6.36685
2 4 28.8937
3 10 28.8937
3 5 6.36685
3 8 43.3406
4 10 28.8937
4 6 28.8937
5 6 57.7874
5 7 43.3406
6 7 28.8937
8 4 28.8937
8 9 705.251

For two joints i and j at the same elevation, the pressure drop for flow from i to j is equal to the
head loss. Both pressure and head loss are measured in feel, so thai after correcting for differences
in elevation between the joints we have the relmion:

Hi) = (Pj+e,.) - (Pj+e j)

Finally, we wish to maintain the pressure at both the sources and the sink at 200 feel.

(a) Fonnulatc a general AMPL model for this situation, and put together data statements for the data
given above.

(b) There is no objective function here, but you can still employ a nonlinear solver to seek a feasi­
ble solution. By setting the option show_stats to I, confirm that the number of variables equals
the number of equations, so thatlhere arc no "degrees of freedom" in the solution. (This does not
guarantee that there is just one solution, however.)

Check that your solver finds a solution to the equations, and display the results.

19
Complementarity Problems

A variety of physical and economic phenomena are most naturally modeled by saying
that certain pairs of inequality constraints must be complementGl),. in the sense that at
least one must hold with equality. These conditions may in principle be accompanied by
an objective function, but are morc commonly used to construct complementarity prob­
lems for which a feasible solution is sought. Indeed, optimization may be viewed as a
special case of complementarity. since the standard optimaJity conditions for linear and
smooth nonlinear optimization arc complementarity problems. Other kinds of comple­
mentarity problems do not arise from optimization, however, or cannot be conveniently
formulated or solved as optimization problems.

The AMPL operator complements permits complementarity conditions to be speci­
fied directly in com/traint declarations. Complementarity models can lhereby be formu­
lated in a natural way, and instances of such models are easily sent to special solvers for
complementarity problems.

To motivate the syntax of complements, we begin by describing how it would be
used to model a few simple economic equilibrium problems, some equivalent to linear
programs and some not. We then give a general definition of the complements opera­
tor for pairs of inequalities and for more general "mixed" complementarity conditions
via double inequalities. Where appropriate in these sections, we also comment on an
AMPL interface to the PATH solver for "square" mixed complementarity problems. In a
final section, we describe how complementarity constraints are accommodated in several
of AMPL's existing features, including presolve, constraint-name suffixes, and generic
synonyms for constraints.

19.1 Sources of complementarity

Economic equilibria are one of the best-known applications of complementarity con­
ditions. We begin this section by showing how a previous linear programming example
in production economics has an equivalent form as a complementarity model. and how

420 COMPLEMENTARITY PROBLEMS CHAPTER 19

set PROD: # products
set ACT; # activities

pararn cost {ACT} > 0 ; # cost per unit of each activity
param demand {PROD} >= 0; # units of deman d for each product
param io {PROD, ACT} >= 0; # units of each product from

1 unit of each activity

var Level {j in ACT} >= 0;

minimize Total_Cost : sum {j in ACT} cost[j] * Level[j];

subject to Dema n d {i in PROD} :
sum {j in ACT} io[i,j] * Level(j] >= demand(i] ;

Figure 19-1 : Production cost minimjzation model (econrnin . mod),

bounded variables are handled though an extension to the concept of complementarity.
We then describe a further extension to price-dependent demands that is not motivated by
optimization or equivalent to any linear program. We conclude by briefly describing
other complementarity models and applications.

A complementarity model of production economics

In Section 2.4 we observed that the form of a diet model also app lies to a model of
production economics. The decision variables may be taken as the levels of production
activities, so that the objective is the total production cost,

minimize Tota l _Cost : sum { j in ACT} cost[j] • Level[jj ;

where cost [j J and Level [j J are the cost per unit and the level of activity j . The
constraints say that the totals of the product outputs must be at least the product demands:

subject to Demand {i in PROD} :
sum {j in ACT} io[i,jj * Level[jj >= demand[i];

with i o [i , j J being the amount of product i produced per unit of activity j, and
demand [i J being the total quantity of product i demanded. Figures 19- 1 and 19-2
show thjs " economic" model and some data for it.

Minimum·cost product jon levels are easily computed by a linear programming solver:

ampl: model econmln .mod;
ampl : data econ.dat;

ampl : solve;
CPLEX 8 . 0 . 0 : optimal solution: objective 6808640.553
3 dual simplex iterations (0 in phase I)

SECTION 19. 1 SOURCES OF COMPLEMENTARITY

param: ACT , cost . -
P1 2450 P1a 1290
P2 1850 P2a 3700 P2b 2150
P3 2200 P3c 2370
P4 2170

param: PROD, demand :=
AA1 70000
AC1 80000
BC1 90000
BC2 70000
NA2 400000
NA3 800000

param io (tr) ,

AA1 AC1 BC1 BC2 NA2 NA3 :=
P1 60 20 10 15 938 295
P1a 8 0 20 20 1180 770
P2 8 10 15 10 945 440
P2a 40 40 35 10 278 430
P2b 15 35 15 15 1182 315
P3 70 30 15 15 896 400
P3c 25 40 30 30 1029 370
P4 60 20 15 10 1397 450

Figure 19-2: Data for production models (econ . dat).

ampl:
Level

P1
P1a

P2
P2a
P2b

display
[* I , ;

o
1555.3

o
o
o

P3 147.465
P3c 1889.4

P4 0

Level;

421

Recall (from Section 12.5) that there are also dual or marginal values - or " prices" -
associated with the consLTaints:

ampl : display Demand.dual;
Demand.dual [*) :=

AA1 16.7051
AC1 5 . 44585
BC1 57.818
BC2 0
NA2 0
NA3 0

422 COMPLEMENTARITY PROBLEMS CHAPTER 19

In the conventional linear programming interpretation, the price on constraint i gives,
within a sufficiemly small range, the change in the total cost per unit change in the
demand for product i.

Consider now an alternative view of the production economics problem, in which we
define variables Price [i] as well as Level [j] and seek an equilibrium rather than
an optimum solution. There are two requirements that the equilibrium solution must sat­
isfy.

First, for each product, total output must meet demand and the price must be nonnega­
tive, and in addition there must be a complementarity between these relationships: where
production exceeds demand the price must be zero, or equivalently, where the price is
positive the production must equal the demand. This relationship is expressed in AMPL
by means of the complements operator:

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

When two inequalities are joined by complements, they both must hold, and at least
one must hold wilh equality. Because our example is indexed over the set PROD, it sets
up a relationship of this kind for each product.

Second, for each activity, there is another relationship that may at first be less obvi­
ous. Consider that, for each unit of activity j, the value of the resulting product i OUlput
in terms of the model's prices is Price [i J * io [i, j J. The total value of all outputs
from one unit of activity j is thus

sum {i in ACT} Price[i] * io[i,j]

At equilibrium prices. this total value cannot exceed the activity's cost per unit,
cos t [j]. Moreover, there is a complementarity between this relationship and the level
of activity j: where cost exceeds total value the activity must be zero, or equivalently,
where the activity is positive the total value must equal the cost. Again this relationship
can be expressed in AMPL with the complements operator:

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price(i] * io[i,j] <= cost(j];

Here the constraint is indexed over ACT, so that we have a complementarity relationship
for each activity.

Putting together the two collections of complementarity constraints, we have the lin­
ear compLementarity probLem shown in Figure 19-3. The number of variables and the
number of complementarity relationships are equal (to activities plus products). making
this a "square" complementarity problem that is amenable to certain solution techniques,
though not the same techniques as those for linear programs.

Applying the PATH solver, for example, the complementarity problem can be seen to
have the same solution as the related minimum-cost production problem:

SECTION 19.1

set PROD ;
set ACT;

products
activities

SOURCES OF COMPLEMENTARITY 423

param cost {ACT} > 0;
param demand {PROD} >= 0;
param io {PROD,ACT} >= 0 ;

cost per unit of each activity

var Price {i in PROD};
var Level {j in ACT} ;

units of demand for each product
units of each product from
1 unit of each activity

subject to Pri_Compl {i in PROD} :
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT} :
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j);

Figure 19-3 : Production equilibri um model (econ . mod).

ampl : model e e on.mod;
ampl : data eeon.dat ;
ampl : option s o l v er path;
ampl : solve;
Path v4 . S : Solution found .
7 iterations (0 for crash); 33 pivots.
20 function, 8 gradient evaluations .

ampl : display sum {j in ACT} c ost[j] • Leve l[j};
sum{j in ACT} cost[j]*Level[j] = 6808640

Further appl ication of display shows that Level is the same as in the production eco­
nomics LP and that Price takes the same values that Demand . dual has in the LP.

Complementarity for bounded variables

Suppose now that we extend our models by placing bounds on the activity levels:
I eve I_min [j 1 <= Level[j 1 < = Ieve I_max [j l . The equi valence between the
optimization problem and a square complementarity problem can be maintained, pro­
vided that the complementarity relationship for the acti vities is generali zed to a " mixed"
form. Where an activity's cost is greater than its total value (per unit), the activity's level
must be at its lower bound (much as before). Where an activity's level is between its
bounds, its cost must equal its total value. And an activity's cost may also be less than its
total value, provided that its level is at its upper bound. These three relationships are
summarized by another form of the complements operator:

subject to Lev_ Compl {j in ACT} :
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price[i] * io(i,j] i

424 COMPLEMENTARITY PROBLEMS

set PROD;
set ACT ;

products
activities

CHAPTER 19

param cost (ACT) > o· # cost per unit of each activity
param demand (PROD) >= 0; # units of demand for each product
pararn io (PROD,ACT) >= 0; # units of each product from

1 unit of each activity

param level _min (ACT)
param level _max (ACT)

var Price {i in PROD} ;
var Level {j in ACT};

> 0; # min
> o· # max

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

allowed level for each
allowed level for each

sum {j in ACT} io[i,j] * Level[j) >= demand(i];

subject to Lev_Comp! {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price(i] * io(i,j] i

activity
activity

Figure 19·4: Bounded version of production equilibrium model (econ2 . mod).

When a double inequality is joined to an expression by complements, the inequalities
must hold, and either the expression must be zero, or the lower inequality must hold with
equality and the expression must be nonnegative, or the upper inequality must hold with
equality and the expression must be non positive.

A bounded version of our complementarity examples is shown in Figure 19-4. The
PATH solver can be applied to this model as well:

ampl: model econ2.mod;
ampl: data econ2.dat;
ampl : option solver path;
ampl : solve;
Path v4.5 : Solution found.
9 iterations (4 for crash); 8 pivots.
22 function, 10 gradient evaluations .

ampl: display level_min, Level, level_max;
level_min Level level_max :=

P1 240 240 1000
P1a 270 1000 1000
P2 220 220 1000
P2a 260 680 1000
P2b 200 200 1000
P3 260 260 1000
P3c 220 1000 1000
P4 240 240 1000

The results are the same as for the LP that is derived from our previous example (Figure
19- 1) by adding the bounds above to lhe variables.

SECTION 19.1 SOURCES OF COMPLEMENTARITY 425

set PROD;
set ACT;

products
activities

param cost {ACT} > 0;
param io {PROD,ACT} >= 0;

cost per unit of each activity
units of each product from
1 unit of each activity

param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[jj
>= dernzero[ij - dernrate[ij * Price[i];

subject to Lev_Compl {j in ACT} :
Level[j] >= 0 complements

sum {i in PROD} Price(i] * io{i,j] <= cost[j);

Figure 19-5: Price-dependenl demands (econnl . mod).

Complementarity for price-dependent demands

If complementarity problems only arose rrom linear programs, they would be of very
limited interest. The idea of an economic equilibrium can be generalized, however, to
problems lhal have no LP equivalenls. Rather lhan laking the demands to be fixed, for
example, it makes sense to view the demand for each product as a decreasing function of
its price.

The simplest case is a decreasing linear demand, which could be expressed in AMPL
as

demzero{i] - dernrate[i] * Price[ij

where demzero [i] and demrate [i] are nonnegative parameters. The resulting
complementarity problem simply substitutes thi s expression for demand [i] . as seen in
Figure 19-5. The complemenlarilY problem remains square, and can slill be solved by
PATH, bUl wilh clearly different results:

ampl: model econnl.mod;
ampl : data econnl.dat;

ampl : option solver path;

ampl : solve;
Path v4.5: Solution found .
11 iterations (3 for crash); 11 pivots.
12 function, 12 gradient evaluations.

426 COMPLEMENT AAITY PROBLEMS

ampl: display Level;
Leve l [* 1 : =

Pi 2 40
Pia 710.156

P2 220
P2a 260
P2b 20 0

P3 2 60
P3c 939. 063

P4 2 4 0

CHAPTER 19

The balance between demands and prices now tends to push down the equilibrium pro­
duction levels.

Because the Price [i) variables appear on both sides of the complements opera­
(Or in this model, there is no equivalent linear program. There does exist an equivalent
nonlinear optimization model, but it is not as easy to derive and may be harder to solve as
well.

Other complementarity models and applications

This basic example can be extended to considerably more complex models of eco­
nomic equilibrium. The activity and price variables and their corresponding complemen­
tarity constraints can be comprised of several indexed collections each, and both the cost
and price functions can be nonlinear. A solver such as PATH handles all of these exten­
sions, so long as the problem remains square in the sense of having equal numbers of
variables and complementarity constrai nts (or being easily converted to such a form as
explained in the next section).

More ambitious models may add an objective function and may mix equality, inequal­
ity and complementarity constraints in arbitrary numbers. Solution techniques for these
so-called MPECs - mathematical programs with equilibrium constraints - are at a rela­
tively experimental stage. however.

Complementarity problems also arise in physical systems, where they can serve as
models of equilibrium conditions between forces. A complementarity constraint may
represent a discretization of the relationship between two objects, fo r example. The rela­
tionship on one side of the complements operator may hold with equality at points
where the objects are in contact, while the relationship on the other side holds with equal­
ity where they do not touch.

Game theory provides another class of examples. The Nash equilibrium for a bi­
matrix game is characterized by complementarity conditions, for example. in which the
variables are the probabilities with which the two players make their available moves.
For each move. either its probability is zero, or a related equality holds to insure there is
nothing LO be gained by increasing or decreasing its probability.

Surveys that describe a variety of complementarity problems in detail are cited in the
references at the end of this chapter.

SECTION 19.2 FORMS OF COMPLEMENTARITY CONSTRAINTS 427

19.2 Forms of complementarity constraints

An AMPL complementarity constraint consists of two expressions or constraints sepa­
rated by the complements operator. There are always two inequalities, whose position
determines how the constraint is interpreted.

If there is one inequality on either side of complements, the constraint has the gen­
eral form

single-inequality complements single-inequality i

where a single-inequality is any valid ordinary constraint - linear or nonlinear - con­
taining one >= or <= operator. A constraint of this type is satisfied if both of the single­
inequality relations are sa tisfied, and at least one is satisfied with equality.

If both inequalities are on the same side of the complements operator, the con­
straint has instead one of the forms

double-inequality complements expression
expression complements double-inequality

where double-inequality is any ordinary AMPL constraint containing two >= or two <=
operators, and expression is any numerical expression. Variables may appear nonlinearly
in either the doubLe-inequality or the expression (or both). The conditions for a constraint
of this type to be satisfied are as follow s:

• if the left side <= or the right side >= of the double·inequality holds with
equality, then the expression is greater than or equal to 0;

• if the right side <= or the left side >= of the double-inequality holds with
equality. then the expression is less than or equal to 0;

• if neither side of the double-inequality holds with equality, then the expres­
sion equals O.

In the special case where the double-inequality has the form 0 <= body <= Infinity,
these conditions reduce to those for complementarity of a pair of single inequalities.

For completeness, the special case in which the left-hand side equals the right-hand
side of the double inequality may be written using one of the forms

equality complements eJ.pressioll
expression complements equality ;

A constraint of this kind is equ ivalent to an ordinary constraint consisting only of the
equality; it places no restrictions on the expression.

For the use of solvers that require "square" complementarity systems, AMPL con­
verts to square any model instance in which the number of variables equals the number of
complementarity constraints plus the number of equality constraints. There may be any
number of additional inequality constraints, but there must not be any objective. Each
equality is trivially turned into a complementarity condition, as observed above; each

428 COMPLEMENTARITY PROBLEMS CHAPTER 19

added inequality is made complementary to a new, otherwise unused variable, preserving
the squareness of the problem overall.

19.3 Working with complementarity constraints

All of AMPL's features for ordinary equalities and inequalities extend in a straightfor­
ward way to complementarity constraints. This section covers extensions in three areas:
expressions for re lated solution values, effects of pre solve and related displays of prob­
lem statistics, and generic synonyms for constraints.

Related solution values

AMPL's built-i n suffixes for values related to a problem and its solution extend to
complementarity constraints, but with two collections of suffixes - of the form
cnome . Lsuf and cname. Rsuf - corresponding to the left and right operands of com­
plements, respectively. Thus after econ2 . mod (Figure 19-4) has been solved, for
example, we can use the following display command to look at vaJues associated with
the constrai nt Lev_CampI:

ampl: display Lev _ Campl . Llb, Lev_ Campl .Lbod'y,
ampl? Lev_ Compl.Rbody, Lev_ Compl.Rslack;

, Lev_Campl . LIb Lev_Compl.Lbody Lev_Campl . Rbody Lev_Compl.Rslack : =
P1 240 240 1392 . 86 Infinity
P1a 270 1000 -824.286 Infinity
P2 220 220 264.286 Infinity
P2a 260 680 5.00222e-12 Infinity
P2b 200 200 564.286 Infinity
P3 260 260 614 . 286 Infinity
P3c 220 1000 -801 . 429 Infinity
P4 240 240 584 . 286 Infinity

Because the right operand of Lev_CampI is an expression, it is treated as a "constraint"
with infinite lower and upper bounds, and hence infinite slack.

A suffix of the form cnome . slack is also defined for complementarity constraints.
For complementary pairs of single inequalities, it is equal to the lesser of
cnome. Lslack and cname. Rslack. Hence it is nonnegative if and only if both
inequalities are satisfied and is zero if the complementarity constraint holds exactly. For
complementary double inequalities of the form

expr complements [bound <= body <= "bound
Ibollnd <= body <= ubotmd complements e:tpr

cname. slack is defined to be

-
SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 429

min (expr, body - lboll1ld)
min (-expr, "bollnd - body)
-abs (expr)

if body <= Ibollnd

if body >= "boUlld
olherwise

Hence in this case it is always nonposilive, and is zero when the complementarity con­
straint is satisfied exactly.

If cllame for a complementarity constraint appears unsuffixed in an expression, it is
interpreted as representing cname. slack.

Presolve

As explained in Section 14.1, AMPL incorporates a presolve phase that can substan­
tially simpl ify some linear programs. In the presence of complementarity constraints,
several new kinds of simplifications become possible.

As an example. given a constraint of the form

exprl >= 0 complements exprz >= 0

if presolve can deduce that expr1 is strict ly positive for all feasible points - in other
words, that it has a positive lower bound - it can replace the constraint by expr2 = o.

Similarly, in a constraint of the form

IbOl/lld <= body <= uboulld complements expr

there are various possibilities, including the following:

If presolve can deduce for all
feasible points that

body < ubOimd
Ibound < body < ubowu/
expr < 0

Then the constraint can be replaced by

Ibound <= body complements expr >= 0
expr = 0
body = uboLllld

Transformations of these kinds are carried out automatically, un less option presol ve
o is used to turn off the presolve phase. As with ordinary constraints, results are reported
in terms of the original model.

By displaying a rew predetined parameters:

_ncons
_nccons

sncons
_snccons

the number of ordinary constraints before prcsolve
the number of complementarity conditions before presolve
the number of ordinary constraints after pre!tolve
the number of complementarity condition~ after presolve

or by setting option show_stats 1, you can gel some information on the number of
simplifying transformations that presolve has made:

ampl: model econ2.mod; data econ2.dat;
ampl: option solver path;
ampl: option show_ stats 1;
ampl: solve;

430 COMPLEMENTARITY PROBLEMS

Presolve eliminates 16 constraints and 2 variables.
Presolve resolves 2 of 14 complementarity conditions.
Adjusted problem:
12 variables, all linear
12 constraints. all linear; 62 non zeros
12 complementarity conditions among the constraints:

12 linear, 0 nonlinear.
o objectives .

Path v4.S: Solution found .
7 iterations (1 for crash); 30 pivots.
8 function, 8 gradient evaluations.

ampl : display _ neons, _ nccons, _ sneons, _ snccons;
_neans = 28
_nceons = 14
_sneons = 12

snccons = 12

CHAPTER 19

When first instantiating the problem , AMPL counts each complementarity constrai nt
as two ordinary constraints (the two arguments to complements) and also as a comple­
mentarity condition. Thus _nccons equals the number of complementarity constraints
before presolve, and _ncons equals twice _nccons plus the number of any non­
complementari ty constraints before presolve. The presolve messages at the beginning of
the show_stats output indicate how much presolve was able to reduce these numbers.

In thi s case the reason for the reduction can be seen by comparing each product's
demand to the minimum possible output of that product - the amount that results from
setting each Level [j 1 to level_min [j 1 :

ampl: display {i in PROD}
ampl? (sum(j in ACT) iofi,j)·level_min[j], damand[i]);

sum{j in ACT} io[i,j]*level_min[j] demand[iJ : =

AA1 69820 70000
AC1 45800 80000
BC1 37300 90000
BC2 29700 70000
NA2 1854920 4e+05
NA3 843700 8e+05

We see that for products NA2 and NA3. the total output exceeds demand even at the low­
est activity levels. Hence in the constraint

subject to Pri_Compl {i in PROD} :
Price[i] >= 0 complements

sum {j in ACT} io(i,j] * Level[j] >= demand[i] ;

the right-hand argument to complements never holds with equal ity for NA2 or NA3.
Presolve thus concludes that Price ["NA2 II J and Price ["NA3"] can be fixed at
zero, removing them from the resulting problem.

r
SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 431

Generic synonyms

AMPL's generic synonyms for constraints (Section 12.6) extend to complementarity
conditions, mainly through the substitution of ecan for con in the synonym names.

From the modeler 's view (before preso!ve), the ordinary constraint synonyms remain:

_ncons
conname

_con

number of ordinary constraints before presolve
names of the ordinary constraints before presolve
synonyms for the ordinary constraints before presolve

The complementarity constraint synonyms are:

_nccons
_cconname
_econ

number of complementarity constraints before presolve
names of the complementarity constraints before presolve
synonyms for the complementarity constraints before presolve

Because each complementarity constraint also gives rise to two ordinary constraints, as
explained in the preceding discussion of presolve, there are two entries in _conname
corresponding to each entry in _cconname:

ampl: display (i in 1 •• 6)
_canname[i]

1 "Pri_Campl ['AAl'] _ L"
2 "Pri_Campl ['AAI '] _ R"
3 "Pri_Campl ['ACI'] . L"
4 "Pri_Campl [' ACI'] .R"
5 "Pri_Compl['BC1'j.L"
6 "Pri_Campl['BCI'j.R"

(_ conname[i1, _ cconname[i1);
_ccanname[i] :=

"Pri_Campl [' AAl')"
"Pri_Campl ['ACl' j "
"Pri_Campl ['BCI' J "
"Pri_Campl [, BC2') "
"Pri_Campl ['NA2' j "
"Pri_Campl ['NA3 '] "

For each complementarity constraint cname, the left and right arguments to the comple­
ments operator are the ordinary constraints named cname. Land cname .1\. This is con­
firmed by using the synonym terminology to expand the complementarity constraint
Pri_Compl ['AAl J] and the corresponding two ordinary constraints from the example
above:

ampl : expand Pri_ Compl['AA1'1J
subject to Pri_Compl['AAl'j:

Price('AAl') >= 0
complements

60*Level['PI'] + 8*Level['Pla'] + 8*Level['P2'] +
40*Level['P2a'] + 15*Level['P2b'] + 70*Level['P3'] +
25*Level['P3c'] + 60*Level['P4'j >= 70000;

ampl: expand _con[11, _ con[21;
subject to Pri_Compl.L['AAl']:

Price['AAl'] >= 0;
subject to Pri_Compl.R['AAl']:

60*Level['Pl'] + 8*Level['Pla'] + 8*Level['P2') +
40*Level['P2a'] + 15*Level['P2b'] + 70*Level['P3'] +
25*Level['P3c'] + 60*Level['P4'] >= 70000;

From the solver's view (after presolve), a more limited collection of synonyms is ddined:

432 COMPLEMENTARITY PROBLEMS

_sncons
snccons
sconname

_se~n

number of all constraints after presolve
number of complementarity const raints after presolve
names of all constraints after presolve
synonyms for all constraints after presolve

CHAPTER 19

Necessarily _snccons is less than or equal to _sncons, with equality only when all
constraints are complementarity constraints.

To simplify the problem description that is sent 10 the solver, AMPL converts every
complementarity constraint into one of the following canonical forms:

expr complements Ibollnd <= var <= ubolllld
expr <= 0 complements var <= uboulld
expr >= 0 complements Ibolllld <= var

where var is the name of a differem variable for each constraint. (Where an expression
more complicated than a single variable appears on both sides of complements, this
involves the introduction of an auxiliary variable and an equality constraint defining the
variable to equal one of the expressions.) By using sol expand in place of expand,
you can see the form in which AMPL has sent a complementarity constraint to the solver:

ampl: solexpand Pri_C~I['AA~'];
subject·to Pri_Compl('AA1'] :

-70000 + 60*Level [, Pl'] + 8*Level (' Pla'] + 8*Level (, P2'] +
40*Level('P2a'] + l5*Level['P2b'] + 70*Level['P3'] +
25*Level [' P3c' I + 60*Level [, P4'] >= 0

complements
0<= Price('AA1'];

A predefined array of integers, _scvar, gives the indices of the complementing vari­
ables in the generic variable arrays _var and _varname. This terminology can be used
to display a list of names of such variables:

ampl: display {i in ~ .. 3} (_ sconname[i], _ svarname[_ scvar[i]]);
_sconname(i] _svarname(_scvar[i]] :=

1 ~Pri_Compl (' AAl'] .R" ~Price[' AAl'] ~

2 ~ Pri_Compl ['AC1'] . R" "Price ['AC1' I "
3 "Pri_Compl ['BC1') . R" "Price ['BC1' I "

When constraint i is an ordinary equality or inequality, _scvar [i] is O. The names of
complementarity constraints in _sconname are suffixed with . L or . R according to
whether the expr in the constraint sent to the solver was derived from the left or right
argument to complements in the original constraint.

Bibliography

Richard W. Cottle, Jong-Shi Pang. and Richard E. Stone, The Linear Compfeme'lwriry Problem,
Academic Press (San Diego, CA, 1992). An encyclopedic account of linear complementarity prob­
lems with a nice overview of how these problems arise.

r
SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 433

Steven P. Dirkse and Michael C. Ferris, "MCPLlB: A Collection of Nonlinear Mixed Complemen­
tarity Problems," Optimization Methods and Software 5, 4 (1995) pp. 319-345. An extensive sur­
vey of nonlinear complementarity, including problem descriptions and mathematical formulations.

Michael C. Ferris and Jong-Shi Pang. "Engineering and Economic Applications of Complementar­
ity Problems." SIAM Review 39, 4 (1997) pp. 669-713. A variety of complementarity lest prob­
lems, originally wrilten in the GAMS modeling language but now in many cases translated to

AMPL.

Exercises

19~1. The economics example in Section 19.1 used a demand function that was linear in the
price. Construct a nonlinear demand function that has each of the characteristics described below.
Define a corresponding complementarity problem, using the data from Figure 19-2 as much as pos­
sib le.

Use a solver such as PATH to compute an equ ilibrium so lution. Compare this so lution to those for
the constant-demand and linear-demand alternatives shown in Section 19.1.

(a) For price i near zero the demand is near demzero [i] and is decreasing at a ralc near
demra te [i]. After price i has increased substantiall y, however, both the demand and the rate
of decrease of the demand approach zero.

(b) For price i near zero the demand is approximately constant at demzero [i]. but as price i
approaches deml im [i] the demand drops quickly to zero.

(c) Demand for i actually rises with price, until it reaches a va lue demmax [i] al a price of
demarg [i]. Then demand faBs with price.

19-2. For each scenario in the previous problem, experimcnt with differcnt starting points for the
Level and Price values. Determine whether there appears a unique equilibrium point.

19-3. A bimarrix game between players A and 8 is defined by two III by II "payoff" matrices,
whose e lements we denote by aij and b ij . In one round of the game, player A has a choice of 111

alternatives and player 8 a choice of n alternatives. If A plays (chooses) i and 8 plays), then A
and B win amounts a ij and b 'i' respectively; negative winnings are interpreted as losses.

We can allow for "mixed" strategies in which A plays i with probability pt and 8 plays) with
probability pf. Then the expected value of player A's winnings is:

,
L a 'i x pJ. if A plays i
i'" I

and the expected value of player 8's winnings is:

m

L.b,) x pf. if B plays)
i",l

A "pure" strategy is the special case in which each player has one probability equal to and the
rest equal to O.

A pair of strategies is said to represent a Nash equilibrium if neither player can improve his
expected payoff by changing only his own strategy.

434 COMPLEMENTARITY PROBLEMS CHAPTER 19

(a) Show that the requirement for a Nash equilibrium is equivalent 10 the following
complementarity-like conditions:

for all i such that p? > 0, A's expected return when playing i equals A's maximum
expected return over all possible plays

for all) such thai p! > 0, 8' s expected return when playing) equals 8's maximum
expected return over all poss ible plays

(b) To build a complementarity problem in AMPL whose solution is a Nash equilibrium, the param­
eters representing the payoff matrices can be defined by the following param declarations:

param nA > Oi
param nB > 0;

actions available to player A
actions available to player B

param payoff A {t .. nA, 1 .. nB};
param payoffB {l. .nA, 1. .nB};

payoffs to player A
payoffs to player B

The probabilities that define the mixed strategies are necessari ly variables. In addition it is conve­
nient 10 define a variable to represent the maximum expected payoff for each player:

var PlayA {i in 1. .nA}; # player A's mixed strategy
var PlayB {j in 1 .. nB}; # player B's mixed strategy

var MaxExpA; # maximum expected payoff to player A

var MaxExpB; # maximum expected payoff to player B

Write AMPL declarations for the following constraints:

- The probabilities in any mixed strategy must be nonnegative.
- The probabilities in each player's mixed strategy must sum to I.
- Player A's expected return when playing any particular i

must not exceed A's maximum expected return over all possible plays
- Player B's expected return when playing any particular j

must not exceed B's maximum expected return over all possible plays

(c) Write an AMPL model for a square complementarity system that enforces the constraints in (b)
and the conditions in (a).

(d) Test your model by applying it to the " rock-sc issors-paper" game in which both players have
the payoff matrix

o 1 -1
-1 0 1

1 -1 0

Confinn that an equilibrium is found where each player chooses between all three plays with equal
probability.

(e) Show that the game for which both players have the payoff matrix

-3 1 3 -1
2 3 -1 -5

has several equilibria, at least one of which uses mixed strategies and one of which uses pure
strategies.

Running a solver such as PATH will only return one equilibrium solution. To find more, experi­
ment with changing the initial solu tion or fixing some of the variables to 0 or 1.

SECTION 19.3 WORKING WITH COMPLEMENTARITY CONSTRAINTS 435

19-4. Two companies have to decide now whether to adopt standard I or standard 2 for future
introduction in their products. If they decide on the same standard, company A has the greater pay­
off because it s technology is superior. If they decide on different standards, company 8 ha:, the
greater payoff because its market share is greater. These considerations lead to a bimatrix game
whose payoff matrices are

A = 10
2

3
9

B 4
7

6
5

(a) Use a solver such as PATH to find a Nash equilibrium. Verify that it is a mixed strategy, with
A's probabilities being 112 for both standards and 8 's probabilities being 317 and 417 for standards
I and 2, re~pectively.

Why is a mixed strategy not appropriate for this application?

(b) You can see what happens when cOlllp;.my A decides on standard I by issuing the following
commands:

ampl: fix PlayA(lJ :.1;
ampl: Bolve,
presolve. constraint CompIA(l] .L:

all variables eliminated, but upper bound = -1 < 0

Explain how AMPL's presolve phase could deduce that the complementarity problem has no feasi ­
ble solution in thi s casco

(c) Through further experimentation, show that there are no Nash equilibria for this situation that
involve only pure strategies.

20
Integer Linear Programs

Many linear programming problems require certain variables to have whole number,
or integer, values. Such a requirement arises nalUrally when the variables represent enti­
ties like packages or people that can not be fractionally divided - at least, not in a mean­
ingful way for the situation being modeled. Integer variables also playa role in formulat­
ing equation systems that model logical conditions, as we will show later in this chapter.

In some situations, the optimization techniques described in previous chapters are suf­
ficient to find an integer solution. An integer optimal solution is guaranteed for certain
network linear programs, as explained jn Section 15.5. Even where there is no guarantee,
a linear programming solver may happen to find an integer optimal solution for the par­
ticular instances of a model in which you are interested. This happened in the solution of
the multicommodity transportation model (Figure 4-1) ror the particular data that we
specified (Figure 4-2).

Even if you do not obtain an integer solution from the solver, chances are good that
you ' ll get a solution in which mosl of the variables lie at integer values. Specifically,
many solvers are able to return an "extreme" solution in which the number of variables
not lying at their bounds is at most the number of constraints. If the bounds are integral,
all of the variables at their bounds will have integer values; and if the rest of the data is
integral, many of the remaining variables may turn out to be integers, too. You may then
be able to adjust the relatively few non-integer variables to produce a completely integer
solution that is close enough to feasible and optimal for practical purposes.

An example is provided by the scheduling linear program or Figures 16-4 and 16,5,
Since the number of variables greatly exceeds the number of constraints, most of the vari­
ables end up at their bound of 0 in the optimal solution, and some other variables come
out at integer values as well. The remaining variables can be rounded up to a nearby inte­
ger solution that is a little more costly but still satisfies the constraints.

Despite all these possibilities, there remain many circumstances in which the restric­
tion to integrality must be enforced explicitly by the solver. Integer programming solvers
face a much more difficult problemlhan their linear programming counterparts, however;
they generally require more computer time and memory. and often demand more help

438 INTEGER LINEAR PROGRAMS CHAPTER 20

from the user in formulation and in choice of options. As a result, the size of problem
that you can solve wi ll be more Iimjted for integer programs than for linear ones.

This chapter first describes AMPL declarations of ordinary integer variables, and then
introduces the use of zero-one (or binary) variables for modeling logical conditions. A
concluding section offers some advice on formulating and solving integer programs
effectively.

20.1 Integer variables

By adding the keyword integer to the qualifying phrases of a var declaration, you
restrict the declared variables to integer values.

As an example, in analyzing the diet model in Section 2.3, we arrived at the following
optimal solution:

ampl: model diet.mod;
ampl: data diet2a . dat;

ampl : solve;
MINOS 5.5: optimal solution found .
13 iterations, objective 118 . 0594032

ampl: display Buy;
Buy [*] :=

BEEF 5.36061
CHK 2

FISH 2
HAM 10
MCH 10
MTL 10
SPG 9.30605
TUR 2

If we want the foods to be purchased in integral amounts, we add integer to the
model's var deciaration (Figure 2-1) as follows:

var Buy {j in FOOD} integer >= f_rnin[j], <= f_max[j];

We can then try to re-solve:

ampl: model dietl.mod; data diet2a.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 8 variables
MINOS 5 . 5: optimal solution found.
13 iterations, objective 118.0594032

As you can see, the M1NOS solver does not handle integrality constraints. It has ignored
them and returned the same optimal value as before.

To get the integer optimum, we switch to a solver that does accommodate integrality:

SECTION 20.2 ZERO-ONE VARIABLES AND LOGICAL CONDITIONS

ampl: option so~ver cp~ex;
ampl: so~ve;

CPLEX 8.0.0: optimal integer solution; objective 119.3
11 MIP simplex iterations
1 branch-and-bound nodes

ampl : display Buy;
Buy [*] ,=
BEEF 9

CHK 2
FISH 2

HAM 8
MCH 10
MTL 10
SPG 7
TUR 2

439

Comparing this solution to the previous one, we see a few features typical of integer pro­
gramming. The minimum cost has increased from $ 1 18.06 to $1 19.30; because integral­
ity is an additional constraint on the values of the variables, it can only make the objec­
tive less favorable. The amounts of the different foods in the diet have also changed, but
in unpredictable ways. The two foods that had fractional amounts in the original opti­
mum, BEEF and SPG, have increased from 5.36061 to 9 and decreased from 9.30605 to
7, respectively; also, HAM has dropped from the upper limit of 10 to 8. Clearly, you can­
not always deduce the integer optimum by rounding the non-integer optimum to the clos­
est integer va lues.

20.2 Zero-one variables and logical conditions

Variables that can take only the va lues zero and one are a special case of integer vari­
ables. By cleverly incorporating these "zero-one" or "binary" variables into objectives
and constraints, integer linear programs can specify a variety of logical conditions that
cannot be described in any practical way by linear constraints alone.

To introduce the use of zero-one variables in AMPL, we return to the multicommodity
transportation model of Figure 4-1. The decision variables Trans [i, j ,p 1 in this
model represent the tons of product p in set PROD to be shipped from originating city i
in ORIG to destination city j in DEST. In the small example of data given by Figure 4-2,
the products are bands, coils and plate; the origins are GARY, CLEV and PITT,
and there are seven destinations_

The cost that this model associates with shipment of product p from i to j is
cost [i I j I P 1 * Trans [i I j I p], regardless of the amount sh ipped . This' 'variable"
cost is typical of purely linear programs, and in this case allows smaJi shipments between
many origin-destination pairs. Tn the following examples we describe ways to use zero-

440 INTEGER LINEAR PROGRAMS CHAPTER 20

one variables to discourage shipments of small amounts; the same techniques can be
adapted to many other logical conditions as well.

To provide a convenient basis for comparison, we focus on the tons shipped from
each origin to each destination, summed over all products. The optimal values of these
total shipments are determined by a linear programming solver as follow s:

ampl : model multi.mod;
ampl : data multi.datl
ampl: solve;
MINOS 5 . 5: optimal solution found.
41 iterations, objective 199500

ampl: option display_ eps .000001,
ampl: option display_ transpose -10;

ampl:
ampl?
surn{p

display (i in ORIG, j in DEST)
sum (p in PROD) Trans[i,j,p};

in PROD} Trans[i,j,p] [*,*J

CLEV
GARY
PITT

DET FRA FRE LAF LAN
625 275 325 225 400

o 0 625 150 0
525 625 225 625 100

STL
550
625
625

WIN
200

o
175

: =

The quantity 625 appears often in this solution, as a consequence of the multicommodity
constraints:

subject to Multi {i in ORIG, J In DEST} :
sum {p in PROD} Trans(i,j,p] <= limit[i,jj;

In the data for our example. lirni t [i, j] is 625 for all i and j; its six appearances in
the solution correspond to the six routes on which the multicommodity limit constraint is
tight. Other routes have positive shipments as low as 100; the four instances of 0 indicate
routes that are not used.

Even though all of the shipment amounts happen to be integers in this solution, we
would be willing to ship fractional amounts. Thus we will not declare the Trans vari­
ables to be integer, but will instead extend the model by using zero-one integer variables.

Fixed costs

One way to discourage small shipments is to add a "fixed" cost for each origin­
destination route that is actually used. For this purpose we rename the cost parameter
veost, and declare another parameter feost to represent the fixed assessment for using
the route from i to j:

param vcost {ORIG,DEST, PROD} >= 0; # variable cost on routes
param fcost {ORIG,DEST} > 0; # fixed cost on routes

We wanL feost [i, j] to be added 1O the objective function if the total shipment of
products from i to j - that is, sum {p in PROD} Trans [i, j , p] - is positive; we

-
SECTION 20.2 ZERO-ONE VARIABLES AND LOGICAL CONDITIONS 441

want nothing to be added if the total shipment is zero. Using AMPL expressions, we
could write the objective function most directly as follows:

minimize Total_Cost: # NOT PRACTICAL
sum {i in ORIG, j in DEST, p in PROD}

vcost[i,j,p) * Trans[i,j,p]
+ sum {i in ORIG, j in DEST}

if sum {p in PROD} Trans[i,j,p] > 0 then fcost[i,jli

AMPL accepts this objective, but treats it as merely " not linear" in the sense of Chapter
18, so that you are unlikely to get acceptable results trying to minimize it.

As a more practical alternative, we may associate a new variable Use [i, j] with
each route from i to j, as follows: Use [i, j] takes the value I if

sum {p in PROD) Trans[i,j,p]

is positive, and is 0 otherwise. Then the fixed cost associated with the route from i to j
is feast [i, j] * Use [i, j], a linear term . To declare these new variables in AMPL,
we can say that they are integer with bounds >= 0 and <::: 1; equivalently we can use
the keyword binary:

var Use {ORIG,DEST} binary;

The objective function can then be written as a linear expression:

minimize Total~Cost:
sum {i in ORIG, j in DEST, p in PROD}

vcost[i,j,p] * Trans[i,j,p]
+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

Since the model has a combination of continuous (non-integer) and integer variables, it
yields what is known as a " mixed-integer" program.

To complete the model , we need to add constraints to assure that Trans and Use are
related in the intended way. This is the " clever" part of the formulation ; we simply
modify the Multi constraints cited above so that they incorporate the Use variables:

subject to Multi {i in ORIG, j in DEST} :
sum {p in PROD} Trans[i,j,p) <= limit[i,j] * Use[i,j];

If Use [i, j] is 0, this constraint says that

sum {p in PROD} Trans[i,j,p] <= a

Since this total of shipments from i to j is a sum of nonnegative variables, it must equal
O. On the other hand, when Use [i, j] is l, the constraint reduces to

sum {p in PROD} Trans[i,j,p] <= limit[i,j]

which is the muhicommodity limit as before. Although there is nothing in the constraint
to directly prevent sum (p in PROD) Trans [i, j ,p] from being 0 when Use [i, j]
is I , so long as feost [i, j] is positive thi s combination can never occur in an optimal
solution. Thus Use [i, j 1 will be I if and only if sum (p in PROD) Trans (i, j ,p]

is positive. which is what we want. The complete model is shown in Figure 20-1 a.

442 INTEGER LINEAR PROGRAMS

set ORIG;
set DEST;
set PROD;

origins
destinations
products

CHAPTER 20

param supply {ORIG,PROD} >= 0;
param demand {DEST,PROD} >= OJ

amounts available at origins
amounts required at destinations

check {p in PROD} :
sum {i in ORIG} supply[i,p] = sum {j in DEST} demand[j,p);

param limit {ORIG,DEST} >= 0; # maximum shipments on routes

param veast {ORIG,DEST,PROD) >= 0; # variable shipment cost on routes
var Trans (ORIG,DEST,PROD) >= 0; # units to be shipped

par am fcost {ORIG,DEST} >= OJ
var Use {ORIG,DEST} binary;

fixed cost for using a route
= 1 only for routes used

minimize Total_Cost:
sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p]

+ sum {i in ORIG, j in DEST} fcost[i,jl * Use(i,j] ;

subject to Supply {i in ORIG, p in PROD}:
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,pl;

subject to Multi {i in ORIG, j in DEST} :
sum {p in PROD} Trans[i,j,pl <= limit[i,j] * Use[i,j];

Figure 20-1.: Multicommodity model with fixed costs (mul tmipl . mod).

To show how this model might be solved. we add a table of fixed costs to the sample
data (Figure 20-1 b):

param feost:
GARY
CLEV

FRA DET LAN WIN STL
3000 1200 1200 1200 2500
2000 1000 1500 1200 2500

FRE LAF .-
3500 2500
3000 2200

PITT 2000 1200 1500 1500 2500 3500 2200

If we apply the same solver as before, the integrality restrictions on the Use variables are
ignored:

ampl: model mul tmip1.mod;
ampl: data mu1tmip1.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 21 variables
MINOS 5.5: optimal solution found.
43 iterations, objective 223504

ampl: option display_ sps .000001;
ampl: option display_ transpose -10;

--
SECTION 20.2 ZERO-ONE VARIABLES AND LOGICAL CONDITIONS 443

set ORIG : = GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF
set PROD . - bands coils plate ;

param supply (tr) , GARY CLEV PITT : =
bands 400 700 800
coils 800 1600 1800
plate 200 300 300

param demand (tr) ,
FRA DET LAN WIN STL FRE LAF · -

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250

param limit default 625

param vcost : =

[*,*,bands] : FRA DET LAN WIN STL FRE LAF · -
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 l3
PITT 19 11 12 10 25 83 15

[*,*,coils] : FRA DET LAN WIN STL FRE LAF · -
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 l3 28 99 20

[*, * ,plate] : FRA DET LAN WIN STL FRE LAF .-
GARY 41 15 12 16 17 86 8
CLEV 29 9 l3 9 28 99 18
PITT 26 14 17 l3 31 104 20

param feost : FRA DET LAN WIN STL FRE LAF .-
GARY 3000 1200 1200 1200 2500 3500 2500
CLEV 2000 1000 1500 1200 2500 3000 2200
PITT 2000 1200 1500 1500 2500 3500 2200

Figure 20-1b: Data for Figure 20- \a (multmipl. dat).

amp 1 , display sum {i in ORIG, J ~n DEST, p in PROD}
ampl? vcost{i,j,p} * Trans[i,j,p};
surn{i in ORIG, j in DEST, p in PROD}

vcost[i,j,p]*Trans[i,j,p] = 199500

ampl: display Use;

Use [*, *]
DET FRA FRE LAF LAN STL WIN . -

CLEV 1 0.44 0.52 0.36 0.64 0 . 88 0 . 32
GARY 0 0 1 0.24 0 1 0
PITT 0 . 84 1 0.36 1 0.16 1 0 . 28

444 INTEGER LINEAR PROGRAMS CHAPTER 20

As you can see, the total variable cost is the same as before, and Use assumes a variety of
fractional values. This solution tells us nothing new, and there is no simple way to con­
vert it into a good integer solution. An integer programming solver is essential to get any
practical results in this situation.

Switching to an appropriate sol ver, we find that the true optimum with fixed costs is
as follows:

ampl : option solver cplex; solve;
CPLEX 8 . 0.0 : optimal integer solution ; objective 229850
295 MIP simplex iterations
19 branch-and-bound nodes

ampl : display (i in ORIG, j in DEST)
ampl? sum (p in PROD) Trans{i,j,p};
sum{p in PROD} Trans [i, j , p) [*, *]

DET FRA FRE LAF LAN STL WIN : =
CLEV 625 275 0 425 350 550 375
GARY 0 0 625 0 150 625 0
PITT 525 625 550 575 0 625 0

ampl : display use;
Use [* , *]

DET FRA FRE LAF LAN STL WIN : =

CLEV 1 1 0 1 1 1 1
GARY 0 0 1 0 1 1 0
PITT 1 1 1 1 0 1 0

Imposing the integer constraints has increased the total cost from $223,504 to $229,850;
but the number of unused routes has increased, to seven, as we had hoped.

Zero-or-minimum restrictions

Although the fixed-cost solution uses fewer routes, there are still some on which the
amounts shipped are relatively low. As a practical matter, it may be that even the vari­
able costs are not applicable unless some minimum number of tons is shipped. Suppose,
therefore, that we declare a parameter minload to represent the minimum number of
tons that may be shipped on a route. We could add a constraint to say that the shipments
on each route, summed over all products, must be at least minload:

subject to Min_Ship {i in ORIG, j in DEST} :
sum {p in PROD} Trans[i,j,p] >= minloadi

WRONG

But thi s would force the shipments on every route to be at least minload, which is not
what we have in mind. We want the tons shipped to be either zero, or at least rninload.
To say thi s directly, we might write:

subject to Min_Ship {i in ORIG, j in DEST} :
sum {p in PROD} Trans[i,j,p] = a or
sum {p in PROD} Trans[i ,j,p] >= minloadi

NOT ALLOWED

SECTION 20.2 ZERO-ONE VARIABLES AND LOGICAL CONDITIONS 445

But the current version of AMPL does not accept logical operators in constraints.
The desired zero-or-minimum restrictions can be imposed by employing the variables

Use [i, j) • much as in the previous example:

subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

When total shipments from i to j are positive, Use [i, j 1 is I, and Min_Ship [i, j 1
becomes the desired minimum-shipment constraint. On the other hand, when there are no
shipments from i to j, Use [i, j) is zero; the constraint reduces to 0 >= 0 and has no
effect.

With these new restrictions and a minload of 375, the solution is found to be as fol­
lows:

ampl: model multmip2.mod;
ampl: data multmip2.dat;

ampl: solve;
CPLEX 8.0.0: optimal integer solution; objective 233150
279 MIP simplex iterations
17 branch-and-bound nodes

ampl: display (i in ORIG, j in DEST)
ampl? swn {p in PROD} Trans[i,j,p};
sum{p in PROD) Trans [i, j ,p] (*, *]

DET FRA FRE LAF LAN STL WIN :=

CLEV 625 425 425 0 500 625 0
GARY 0 0 375 425 0 600 0
PITT 525 475 375 575 0 575 375

Comparing this to the previous solution, we see that although there are still seven unused
routes, they are not the same ones; a substantial rearrangement of the solution has been
necessary to meet the minimum-shipment requirement. The total cost has gone up by
about 1.4% as a result.

Cardinality restrictions

Despite the constraints we have added so far, origin PITT still serves 6 destinations,
while CLEV serves 5 and GARY serves 3. We would like to explicitly add a further
restriction that each origin can ship to at most maxserve destinations, where
rnaxserve is a parameter to the model. This can be viewed as a restriction on the size,
or cardinality, of a certain set. Indeed, it could in principle be written in the form of an
AMPL constraint as follows:

subject to Max_Serve {i in ORIG}: # NOT ALLOWED
card {j in DEST:

sum {p in PROD} Trans[i,j,p] > O} <= maxservei

Such a declaration will be rejected, however, because AMPL currently does not allow
constraints to use sets that arc defined in terms of variables.

446 INTEGER LINEAR PROGRAMS

set ORIG;
set DEST;
set PROD;

origins
destinations
products

CHAPTER 20

param supply {ORIG,PROD} >= 0 ;
param demand {DEST,PROD} >= 0;

amounts available at origins
amounts required at destinations

check {p in PROD} :
sum {i in ORIG} supp!y(i,p] = sum {j in DEST} demand(j,p);

param limit {ORIG,DEST} >= 0;
param minload >= 0;
param maxserve integer> 0;

maximum shipments on routes
minimum nonzero shipment
maximum destinations served

param vcost {ORIG,DEST, PROD} >= 0; # variable shipment cost on routes
var Trans {ORIG,DEST,PROD} >= 0; # units to be shipped

param feast {ORIG,DEST} >= 0;
var Use {ORIG,DEST} binary;

minimize Total_Cost:

fixed cost for using a route
= 1 only for routes used

sum {i in ORIG, j in DEST, p in PROD} vcost(i,j,pj * Trans[i,j,p]
+ sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j];

subject to Supply {i in ORIC, p in PROD} :
sum {j in DEST} Trans[i,j,p] = supply[i,p];

subject to Max_Serve {i in ORIG} :
sum {j in DEST} Use[i,j] <= maxserve;

subject to Demand {j in DEST, p in PROD}:
sum {i in ORIG} Trans[i,j,p] = demand[j,p];

subject to Multi {i in ORIC, j in DEST} :
sum {p in PROD} Trans[i,j,p] <= limit[i,j] * Use(i,jj;

subject to Min_Ship {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] >= minload * Use[i,j];

Figure 20-2a: Multicommodity model with further restrictions (mul tmip3 . mod).

Zero-one variables again offer a convenient alternative. Since the variables
Use [i, j] are I precisely for those destinations j served by origin i, and are zero oth­
erwise, we can write sum {j in DEST} Use [i, j] for the number of destinations
served by i. The desired constraint becomes:

subject to Max_Serve {i in ORIG}:
sum {j in DEST} Use[i,jj <= maxserve;

Adding this constraint to the previous model , and setting rnaxserve to 5, we arrive at
the mixed integer model shown in Figure 20-2a, with data shown in Figure 20-2b. It is
optimized as fo llows:

SECTION 20.2 ZERO-ONE VARIABLES AND LOGICAL CONDITIONS

set ORIG := GARY CLEV PITT ;

set DEST := FRA DET LAN WIN STL FRE LAF
set PROD .- bands coils plate ;

param supply (tr) ; GARY CLEV PITT :=

bands 400 700 800
coils 800 1600 1800
plate 200 300 300

param demand (tr) ;
FRA DET LAN WIN STL FRE LAF · -

bands 300 300 100 75 650 225 250
coils 500 750 400 250 950 850 500
plate 100 100 0 50 200 100 250

param limit default 625

param vcost :=

[*,*,bands] : FRA DET LAN WIN STL FRE LAF .-
GARY 30 10 8 10 11 71 6
CLEV 22 7 10 7 21 82 13
PITT 19 11 12 10 25 83 15

[* , * ,coils 1 : FRA DET LAN WIN STL FRE LAF . -
GARY 39 14 11 14 16 82 8
CLEV 27 9 12 9 26 95 17
PITT 24 14 17 13 28 99 20

(*, * ,plate] : FRA DET LAN WIN STL FRE LAF · -
GARY 41 15 12 16 17 86 8
CLEV 29 9 13 9 28 99 18
PITT 26 14 17 13 31 104 20

param fcost : FRA DET LAN WIN STL FRE LAF · -
GARY 3000 1200 1200 1200 2500 3500 2500
CLEV 2000 1000 1500 1200 2500 3000 2200
PITT 2000 1200 1500 1500 2500 3500 2200

par am minload ; = 375 ;

param maxserve : = 5 ;

Figure 20·2b: Data for Figure 20·2. (rnul trnip3 . dat).

ampl: model multmip3.mod;
ampl : data multmip3.dat;

ampl : solve;
CPLEX 8_0_0: optimal integer solution; objective 235625
392 MIP simplex iterations
36 branch-and-bound nodes

447

448 INTEGER LINEAR PROGRAMS CHAPTER 20

ampl: display {i in ORIG, J ,n DEST}

ampl? Bum {p in PROD} Trans[i,j,p};
sum{p in PROD} Trans Ii, j ,p] [* I *]

DET FRA FRE LAF LAN STL WIN :=

CLEV 625 375 550 0 500 550 0
GARY 0 0 0 400 0 625 375
PITT 525 525 625 600 0 625 0

At the cost of a further 1.1 % increase in the objective, rearrangements have been made so
that GARY can serve WIN, bringing the number of destinations served by PITT down to
five.

Notice that this section 's three integer solutions have served WIN from each of the
three different origins - a good example of how solutions to integer programs can jump
around in response to small changes in the restrictions.

20.3 Practical considerations in integer programming

As a rule, any integer program is much harder to solve than a linear program of the
same size and structure. A rough idea of the difference in the previous examples is given
by the number of iterations reported by the solvers; it is 41 for solving the original linear
multicommodity transportation problem, but ranges from about 280 to 400 for the mixed
integer versions. The computation times vary si milarly; the linear programs are solved
almost instantly, while the mixed integer ones are noticeably slower.

As the size of the problem increases, the difficulty of an integer program also grows
more quickly than the difficulty of a comparable linear program. Thus the practical limits
to the size of a solvable integer program wi ll be much more restrictive. Indeed, AMPL
can easily generate integer programs that are too difficult for your computer to solve in a
reasonable amount of time or memory. Before you make a commitment to use a model
with integer variables, therefore, you should consider whether an alternative continuous
linear or network formulation might give adequate answers. If you must use an integer
formulation, try it on collections of data that increase gradually in size, so that you can
get an idea of the computer resources required.

If you do encounter an integer program that is difficult to solve, you should consider
reformulations that can make it easier. An integer programming solver attempts to inves­
tigate all of the different possible combinarions of values of the integer variables;
although it employs a sophisticated strategy that rules out the vast majority of combina­
tions as infeasible or suboptimal , the number of combinations remaining to be checked
can sti ll be huge. Thus you should try to use as few integer variables as possible. For
those variables that are not zero-one, lower and upper bounds should be made as tight as
possible to reduce the numher of comhinations that might be invest igated.

Solvers derive valuable information about the sol utions to an integer program by fix­
ing or restricting some of the integer variables, then solving the linear programming

SECTION 20.3 PRACTICAL CONSIDERATIONS IN INTEGER PROGRAMMING 449

" relaxation" that results when the remaining integer restrictions are dropped. You may
be able to assist in this strategy by reformulating the model so that the solution of a relax­
ation will be closer to the solution of the associated integer problem. In the multicom­
modity transportation model , for example, if Use [i, j I is 0 then each of the individual
variables Trans [i, j ,pi must be 0, while if Use [i, j I is 1 then Trans [i, j ,pi
cannot be larger than either supply [i, p I or demand [j ,p I. This suggests that we
add the following constraints:

subject to Avail {i in ORIG, j in DEST, p in PROD}:
Trans(i,j,p] <= min{supply[i,p] ,demand[j,p]) * Use[i,j] i

Although these constraints do not rule out any previously admissible integer solutions,
they tend to force Use [i, j I to be closer to I for any solution of the relaxation that uses
the route from i to j. As a result, the relaxation is more accurate, and may help the
solver to find the optimum integer solution more quickly; this advantage may outweigh
the extra cost of handHng more constraints. Tradeoffs of thi s kind are most often
observed for problems substantially larger than the examples in this section, however.

As this example suggests , the choice of a formulation is much more critical in integer
than in linear programming. For large problems, solution times can change dramatically
in response to simple reformulations. The effect of a reformulation can be hard to pre­
dict , however; it depends on the structure of your model and data, and on the details of
the strategy used by your solver. Generally you will need to do some experimentation to
see what works best.

You can also try to help a solver by changing some of the default settings that deter­
mine how it initially processes a problem and how it searches for integer solutions. Many
of these settings can be manipulated from within AMPL, as explained in the separate
instructions for using particular solvers.

Finally, a solver may provide options for stopping prematurely, returning an integer
solution that has been determined to bring the objective value to within a small percent­
age of optimality. Tn some cases, such a solution is found relatively early in the solution
process; you may save a great deal of computation time by not insisting that the solver go
on to find a provably optimal integer solution.

In summary, experimentation is usually necessary to solve integer or mixed-integer
linear programs. Your chances of success are greatest if you approach the use of integer
variables with caution, and if you are willing to keep trying alternative fonnulation s, set­
tings and strategies until you get an acceptable result.

Bibliography

Ellis L. Johnson, Michael M. Kostreva and Uwe H. Suhl, "Solving 0-1 Integer Programming Prob­
lems Arising from Large-Scale Planning Models." Operations Research 33 (1985) pp. 803-819.
A case stud y in which preprocessing. reformulation, and algorithmic strategies were brought to
bear 0 11 the solution of a difficu!t class of integer linear programs.

450 INTEGER LINEAR PROGRAMS CHAPTER 20

George L. Nemhauser and Laurence A. Wolsey, Integer and Combinatorial Oplimi:a/ion. John
Wiley & Sons (New York, NY, 1988). A survey of integer programming problems. theory and
algorithms.

Alexander Schrijver, Tlleory of Linear alld IlIteger Programming. John Wiley & Sons (New York,
NY, 1986). A guide to the fundamentals of the subject, with a particularly thorough collection of
references.

Laurence A. Wolsey. JlIleger Programming. Wilcy- Interscience (New York, NY, 1998). A practi­
cal, intermediate-level guide for readers familiar with linear programming.

Exercises

20-1. Exercise I-I optimizes an advertising campaign that permits arbitrary combination~ of vari­
ous media. Suppose that instead you must allocate a $1 million advertising campaign among sev­
eral media, but for each, your only choice is whether to use that medium or not. The following
table shows, for each medium, the cost and audience in thousands if you use that medium, and the
creative time in three categories that wi ll have to be committed if you use that medium. The final
column shows your limits on COSI and on hours of creat ive lime.

TV Magazine Radio Newspaper Mail Phone Limit"
Audience 300 200 100 150 100 50
Cost 600 250 100 120 200 250 I ()()()

Writers 120 50 20 40 30 5 200
Anists 120 80 0 60 40 0 300
Others 20 20 20 20 20 200 200

Your goal is 10 maxim ile the aud ience, subject to the limits.

(a) Formulate an AMPL model for this situation, us ing a zero-one integer variable for each medium.

(b) Use an integer programming solver 10 find the optimal solution.

Also solve the problem with the integrality restrictions relaxed and compare the resulting solution.
Could you have guessed the integer optimum from 190king at the non-integer one?

20-2. Return to the multicommodity transportation problem of Figures 4-1 and 4-2. Use appro­
priate integer variables to impose each of the restrictions described below. (Treat each part sepa­
rately; don't try to put all the restrictions in one model.) Solve the resulting integer program, and
comment in general terms on how the solution changes as a result of the restrictions. Also solve
the corresponding linear program with the integrality restrictions relaxed, and compare the LP solu­
tion to the integer one.

(a) Require the amount shipped on each origin-destination link to be a multiple of 100 tons. To
accommodate this restriction. allow demand to be satisfied only 10 the nearest 100 - for example.
since demand for bands at FRE is 225 tons. allow either 200 or 300 tons to be shipped to FRE.

(b) Require each destination except STL to be served by at most two origins.

(c) Require the number of origin-de~tination links used to be as small as possible, regardless of
co~l.

(d) Require each origin that supplies product p to destination j to ship either nothing, or at least the
lesser of demand [j , p] and 150 to11'\.

SECTION 20.3 PRACTICAL CONSIDERATIONS IN INTEGER PROGRAMMING 451

20-3. Employee sCheduling problems are a common source of integer programs, because it may
not make sense to schedule a fraction of a person.

(a) Solve the problem of Exercise 4-4(b) with the requirement that the variables Y.m representing
the numbers of crews employed on shift s in period t, must all be integer. Confirm that the optimal
ilueger solution just ' ' rounds up" the linear programming solution to the next highest integer.

(b) Similarly auempt to find an integer solution for the problem of Exercise 4A(c), where invento­
ries have been added to the formulation. Compare the difficulty of this problem to the one in (a).
Is the optimal integer solution the same as the rounded-up linear programming solution in this
case?

(c) Solve the scheduling problem of Figures 16-4 and 16-5 with the requirement that an integer
number of employees be assigned to each shifL Show that this solution is beller than the one
obtained by rounding up.

(d) Suppose that the number of supervisors required is 1110 the number of employees, rounded to
the nearest whole number. Solve the scheduling problem again for supervisors. Does the integer
program appear to be harder or easier to solve in this case? Is the improvement over the rounded­
up solution more or less pronounced?

20-4. The so-called knapsack problem arises in Illany contexts. In its simplesl form, you start
with a set of objects, each having a known weight and a known value. The problem is to decide
which items to put into your knapsack. You want these items to have as great a total value as pos­
sible, but their weight cannot exceed a certain preset limit.

(a) The data for the simple knapsack problem could be written in AMPL as follows:

set OBJECTS;
param weight {OBJECTS} > 0;
param value {OBJECTS} > 0;

Using these declarations, fonnulate an AMPL model for the knapsack problem.

Use your model to solve the knapsack problem for objects of the following weights and values,
subject to a weight limit of 100:

object a b c d e f g h i j
weight 55 50 40 35 30 30 15 15 10 5
value 1000 800 750 700 600 550 250 200 200 150

(b) Suppose instead that you want to fill several identical knapsacks, as specified by this exU'a
parameter:

param knapsacks> 0 integer; # number of knapsacks

Formulate an AMPL model for this situation. Don't forget to add a constraint that each object can
only go into one knapsack!

Using the data from (a), solve for 2 knapsacks of weight limit 50. How does the solution differ
from your previous one?

(c) Superficially, the preceding knapsack problem resembles an assignment problem; we h<tvc a
collection of objects and a collection of knapsacks, and we want to make an optimal assignment
from members of the former to members of the lattcr. What is the essential difference between the
kinds of assignment problems described in Section 15.2, and the knapsack problem described in
(b)?

452 INTEGER LINEAR PROGRAMS CHAPTER 20

(d) Modify the fonnul;lIion from (a) :-'0 thai it accommodates a volume limit for the knapsack as
well as a weight limit. Solve again using the following volumes:

object
volume

a
3

b
3

c
3

d
2

e
2

f
2

g
2

h
1

i
1

j
1

How do the total weight, volume and value of this solution compare to those of the so lution you
found in (a)?

(e) How can the media selection problem of Exercise 20-1 be viewed as a knapsack problem like
the one in (d)?

(f) Suppose Ihm you can put up to 3 of each object in the knapsack, instead of just J. Revi se the
model of (a) to accommodate thi s possibility. and fe-solve with the same data. How does the opti­
mal solution change?

(g) Review the roil-culling problem described in Exercise 2-6. Given a supply of wide rolls. orders
for narrower rolls. and a collection of cutting patterns, we seek a combination of patterns that fills
all orders u ~i ng the le.l\t material,

When this problem is solved, the algorithm returns a "dual value" corresponding to each ordered
roll width. It is possible to interpret the dual value as the sav ing in wide rolls that you might
achieve for each extra narrow roll that YOll obtain; for example, a value of 0.5 for a 50" roll would
indicate that you might save 5 wide rolls if you could obtain 10 extra 50" rolls.

It is natural to ask: Of all the patterns of narrow rolls that fit within one wide roll, which has the
greatest total (dual) value? Explain how this can be regarded as a knapsack problem.

For the problem of Exercise 2-6(a), the wide rolls are 110"; in the solution using the six patterns
given, the dual values for the ordered width~ arc:

20" 0.0
40" 0.5
50" 1.0
55" 0.0
75" 1.0

What is the maximum-value pattern? Show that it is not one of the oncs given, and that adding it
allows you to get a better solution.

20-5. Recall the multiperiod model of production that was introduced in Section 4.2. Add zero­
one variables and appropriate constraints to the formulation from Figure 4-4 to impose each of the
restrictions described below. (Treat each part separately.) Solve with the data of Figure 4-5. and
confirm that the so lution properly obeys the restrictions.

(a) Require for each product p and week t. Ihal either none of the product is made that week, or at

least 2500 ton~ are made.

(b) Require thar only one product be made in anyone week.

(e) Require that each product be made in at most two weeks out of any three-week period. As~ume
lhal only bands were made in "week - I t· and that both bands and coil\ were made in "week 0".

A
AMPL Reference Manual '

AMPL is a language for algebraic modeling and mathematical programming: a computer­
readable language for expressing optimization problems such as linear programming in algebraic
notation. This appendix summarizes the features of AMPL, with particular emphasis on technical
details not fully covered in the preceding chapters. Nevertheless, not every feature, construct, and
option is listed; the AMPL web site www . ampl . com contains the most up to date and complete
information.

The following notational conventions are used. Literal text is printed in constant width

font, while syntactic categories are printed in italic font. Phrases or sub phrases enclosed in
slanted square brackets [and J are optional, as are constructs with the subscript opt.

A.1 Lexical rules

AMPL models involve variables, constraints, and objectives, expressed with the help of sets and
parameters. These are called model entities. Each model entity has an alphanumeric name: a string
of one or more Unicode UTF-8 letters, digits, and underscores, in a pattern that cannot be mistaken
for a numeric constant. Upper-case letters are distinct from lower-case letters.

Numeric constants are written in standard scientific notation: an optional sign, a sequence of
digits that may contain a decimal point, and an optional exponent field that begins with one of the
letters d, 0, e or E, as in 1.230-45. All arithmetic in AMPL is in the same precision (double pre­
cision on most machines), so all exponent notations are synonymous.

Literals are strings delimited either by single quotes ' or by double quotes "; the deiimiting
character must be doubled if it appears within the literal, as in 'x' 'y' , which is a literal contain­
ing the three characters x' y. Newline characters may appear within a literal only if preceded by \.
The choice of delimiter is arbitrary; 'abc' and "abc" denote the same literal.

Literals are distinct from numeric constants: 1 and '1' are unrelated.
Input is free form; white space (any sequence of space, tab or newline characters) may appear

between any tokens. Each statement ends with a semicolon.
Comments begin with # and extend to the end of the current line, or are delimited by I * and

* I , in which case they may extend across several lines and do not nest. Comments may appear
anywhere in declarations, commands, and data.

These words are reserved, and may not be used in other contexts:

454 AMPL REFERENCE MANUAL APPENDIX A

Current complements integer solve _result_num
IN contains less suffix
INOUT default logical sum
Infinity dimen max symbolic
Initial div min table
LOCAL else option then
OUT environ setof union
all exists shell exitcode until
binary forall solve exitcode while
by if solve_message within
check in solve_result

Words beginning with underscore are also reserved. The other keywords, function names, etc.,
are predefined, but their meanings can be redefined. For example, the word prod is predefined as
a product operator analogous to sum, but it can be redefined in a declaration, such as

set prod; # products

Once a word has been redefined, the original meaning is inaccessible.
AMPL provides synonyms for several keywords and operators; the preferred forms are on the

left.

**

<> !=
and &&
not
or II
prod product

A.2 Set members

A set contains zero or more elements or members, each of which is an ordered list of one or
more components. Each member of a set must be distinct. All members must have the same num­
ber of components; this common number is called the set's dimension.

A literal set is written as a comma-separated list of members, between braces { and }. If the
set is one-dimensional, the members are simply numeric constants or literal strings, or any expres­
sions that evaluate to numbers or strings:

{"a", "b", "c"}
{1,2,3,4,S,6,7,8,9}
{t,t+l,t+2}

For a multidimensional set, each member must be written as a parenthesized comma-separated list
of the above:

{("a",2), ("a",3), ("b",S)}
{ (1,2,3) , (1, 2,4) , (1,2, 5) , (1, 3, 7) , (1, 4, 6) }

The value of a numeric member is the result of rounding its decimal representation to a floating­
point number. Numeric members that appear different but round to the same floating-point num­
ber, such as 1 and O. OlE2, are considered the same.

•

SECTION A.4 EXPRESSIONS 455 .

A.3 Indexing expressions and subscripts

Most entities in AMPL can be defined in collections indexed over a set; individual items are
selected by appending a bracketed subscript to the name of the entity. The range of possible sub­
scripts is indicated by an indexing expression in the entity's declaration. Reduction operators, such
as sum, also use indexing expressions to specify sets over which operations are iterated.

A subscript is a list of symbolic or numeric expressions, separated by commas and enclosed in
square brackets, as in supply [i J and cost [j, p [kJ + 1, "0,+" J. Each subscripting expression
must evaluate to a number or a literal. The resulting value or sequence of values must give a mem­
ber of a relevant one-dimensional or multidimensional indexing set.

An indexing expression is a comma-separated list of set expressions, followed optionally by a
colon and a logical "such that" expression, all enclosed in braces:

indexing:
{ sexpr-list
{ sexpr-list

sexpr-list:
sexpr

lexpr }

dummy-member in sexpr
sexpr-list , sexpr

Each set expression may be preceded by a dummy member and the keyword in. A dummy mem­
ber for a one-dimensional set is an unbound name, that is, a name not currently defined. A dummy
member for a multidimensional set is a comma-separated list, enclosed in parentheses, of expres­
sions or unbound names; the list must include at least one unbound name.

A dummy member introduces one or more dummy indices (the unbound names in its compo­
nents), whose scopes, or ranges of definition, begin just after the following sexpr; an index's scope
runs through the rest of the indexing expression, to the end of the declaration using the indexing
expression, or to the end of the operand that uses the indexing expression. When a dummy mem­
ber has one or more expression components, the dummy indices in the dummy member range over
a slice of the set, i.e., they assume all values for which the dummy member is in the set.

{A} # a set
{A, B} # all pairs, one from A, one from B

{i in A, j in B} # the same
{i in A, B} # the same
{i in A, C [i]} # all pairs, one from A, one from C[i]
{i in A, (j, k) in D} # 1 from A and 1 (itself a pair) from D
{i in A: p[i] > O} # all i in A such that p[i] is positive
{i in A, j in C [i] : i <= j} # i and j must be numeric
{i in A, (i, j) in D: i <= j} # all pairs with i in A and i,j in D

(same value of i) and i <= j

The optional : lexpr in an indexing expression selects only the members that satisfy the logical
expression and excludes the others. The lexpr typically involves one or more dummy indices of
the indexing expression.

A.4 Expressions

Various items can be combined in AMPL's arithmetic and logical expressions. An expression
that may not contain variables is denoted cexpr and is sometimes called a "constant expression",

456 AMPL REFERENCE MANUAL APPENDIX A

Precedence Name Type Remarks

if-then-else A,S A: if no else, then "else 0" assumed
S: "else sexpr" required

2 or II L
3 exists forall L logical reduction operators
4 and && L
5 < <= = -- <> != >= > L
6 in not in L membership in set

6 within not within L S wi thin T means set S ~ set T
7 not ! L logical negation

8 union diff syrndiff S syrndiff '" symmetric difference
9 inter S set intersection

10 cross S cross or Cartesian product
11 setof by S set constructors

12 + - less A a less b '" max(a - b, 0)
13 sum prod min max A arithmetic reduction operators
14 * / div mod A di v'" truncated quotient of integers

15 + - A unary plus, unary minus

16
,

** A exponentiation

Operators are listed in increasing precedence order. Exponentiation and if-then­
else are right-associative; the other operators are left-associative. The' Type' col­
umn indicates result types: A for arithmetic, L for logical, S for set.

Table A-1: Arithmetic, logical and set operators.

even though it may involve dummy indices. A logical expression, denoted lexpr, may not contain
variables when it is part of a cexpr. Set expressions are denoted sexpr.

Table A-I summarizes the arithmetic, logical and set operators; the type column indicates
whether the operator produces an arithmetic value (A), a logical value (L), or a set value (S).

Arithmetic expressions are formed from the usual arithmetic operators, built-in functions, and
arithmetic reduction operators like sum:

expr:
number
variable
expr arith-op expr arith-op is + - less * / mod di v ' * *
unary-op expr unary-op is + -
built-in (exprlist)
if lexpr then expr [else expr J
reduction-op indexing expr reduction-op is sum prod max min
(expr)

Built-in functions are listed in Table A-2.
The arithmetic reduction operators are used in expressions like

sum {i in Prod} cost[i] * Make[i]

The scope of the indexing expression extends to the end of the expr. If the operation is over an
empty set, the result is the identity value for the operation: 0 for sum, 1 for prod, Inf ini ty for
min, and - Inf ini ty for max.

•

SECTION A.4 EXPRESSIONS 457

Logical expressions appear where a value of "true" or "false" is required: in check state­
ments, the "such that" parts of indexing expressions (following the colon), and in if lexpr then
... else ... expressions. Numeric values that appear in any of these contexts are implicitly coerced
to logical values: 0 is interpreted as false, and all other numeric values as true.

lexpr:
expr
expr compare-op expr
lexpr logic-op lexpr
not lexpr
member in sexpr
member not in sexpr
sexpr wi thin sexpr
sexpr not wi thin sexpr
opname indexing lexpr
(lexpr)

compare-op is < <= = == ! = <> > >=
logic-op is or I I and &&

opname is exists or forall

The in operator tests set membership. Its left operand is a potential set member, i.e., an
expression or comma-separated list of expressions enclosed in parentheses, with the number of
expressions equal to the dimension of the right operand, which must be a set expression. The
wi thin operator tests whether one set is contained in another. The two set operands must have
the same dimension.

The logical reduction operators exists and forall are the iterated counterparts of or and
and. When applied over an empty set, exists returns false and forall returns true.

Set expressions yield sets.

sexpr:
{ [member [, member...]] }
sexpr set-op sexpr
opname indexing sexpr
expr .. expr [by expr]
setof indexing member
if lexpr then sexpr else sexpr
(sexpr)
interval
infinite-set
indexing

set-op is union diff syrndiff inter cross
opname is union or inter

Components of members can be arbitrary constant expressions. Section A.6.3 describes intervals
and infinite-sets.

When used as binary operators, union and inter denote the binary set operations of union
and intersection. These keywords may also be used as reduction operators.

The .. operator constructs sets. The default by clause is by 1. In general, e I . _ e2 by e3
means the numbers

rounded to set members. (The notation Lx J denotes the floor of x, that is, the largest integer ~ x.)

The setof operator is a set construction operator; member is either an expression or a
comma-separated list of expressions enclosed in parentheses. The resulting set consists of all the
members obtained by iterating over the indexing expression; the dimension of the resulting expres­
sion is the number of components in member.

458 AMPL REFERENCE MANUAL

abs (x)

acos (x)

acosh (x)

alias (v)

asin (x)

asinh (x)

atan (x)

atan2 (y, x)

atanh(x)
ceil (x)

ctime ()
ctime (t)
cos (x)

exp(x)

floor (x)

log (x)

loglO (x)

max(x,y, ...)

min (x, y, ...)
precision(x,n)
round (x, n)

round (x)

sin (x)

sinh (x)

sqrt (x)

tan (x)

tanh(x)
time ()
trunc (x, n)

trunc (x)

absolute value Ixl
inverse cosine, cos - I (x)

inverse hyperbolic cosine, cosh - I (x)

alias of model entity v
inverse sine, sin- I (x)

inverse hyperbolic sine, sinh- I (x)
inverse tangent, tan - 1 (x)

inverse tangent, tan - 1 (y/x)

inverse hyperbolic tangent, tanh - I (x)
ceiling of x (next higher integer)
current time as a string
ti me t as a string
cosine
eX

floor of x (next lower integer)
log, (x)
log 10 (x)

maximum (2 or more arguments)
minimum (2 or more arguments)
x rounded to n significant decimal digits
x rounded to n digits past decimal point
x rounded to an integer
sine
hyperbolic sine
square root
tangent
hyperbolic tangent
current time in seconds
x truncated to n digits past decimal point
x truncated to an integer

Table A-2: Built-in arithmetic functions.

ampl: set y = setof {i in 1 .. 5} (i,i~2);

ampl: display y;
set y := (1,1) (2,4) (3,9) (4,16) (5,25);

A.4.1 Built-in functions

APPENDIX A

The built-in arithmetic functions are listed in Table A-2. The function alias takes as its
argument the name of a model entity and returns its alias, a literal value described in Section A.5.
The functions round (x, n) and trunc (x, n) convert x to a decimal string and round or trUncate
it to n places past the decimal point (or to - n places before the decimal point if n < 0); similarly,
precision(x, n) rounds x to n significant decimal digits. For round and trunc, a missing n

is taken as 0, thus providing the usual rounding or truncation to an integer.
Several built-in random number generation functions are available, as listed in Table A-3. All

are based on a uniform random number generator with a very long period. An initial seed n can be
specified with the -sn command-line argument (A.23) or option randseed, while -s or

SECTION A.4

Beta(a,b)

Cauchy ()

Exponential ()

Garruna (a)

Irand224 ()

Normal (11 ,0)

NormalOl ()

Poisson (11)

Uniform(m, ll)

UniformOl()

EXPRESSIONS

del1sity(x) = x" - '(I-x)b - '/(r(a)r(b)!r(a+b)) , xin[O, I]

dellsiry(x) = I/(lt(1 +X2))

dellsity(x) = e-" x> °
dellsity(x) = x"- ' e - x I r(a), x;:>O, a >0

integer uniform on [0,2 24
)

normal distribution with mean 11, variance 0

normal distribution with mean 0, variance I

probability(k) = e-' Il klk !, k = 0, I , ...

uniform on [m , II)

uniform on [0, I)

459

Table A-3: Built-in random number generation functions.

option rand8eed ' , instructs AMPL to choose and print a seed. Giving no -8 argument is the
same as specifying -8l.

Irand224 () returns an integer in the range [0, 224
). Given the same seed, an expression of

the form floor (m* Irand224 () I n) will yield the same value on most computers when m

and n are integer expressions of reasonable magnitude, i.e., I n I < 2k
-

24 and I m I < 2k, for
machines that correctly compute k-bit floating-point integer products and quotients; k 2': 47 for
most machines of current interest.

Functions that operate on sets are described in Section A.6.

A.4.2 Strings and regular expressions

In almost all contexts in a model or command where a literal string could be used, it is also
possible to use a string expression, enclosed in parentheses. Strings are created by concatenation
and from the built-in string and regular expression functions listed in Table A-4.

The string concatenation operator & concatenates its arguments into a single string; it has
precedence below all arithmetic operators. Numeric operands are converted to full-precision deci­
mal strings as though by printf format %. g (A.16).

s & t
num(s)

numO (s)

ichar (s)

char (II)
length(s)
substr (s, m, II)

sprintf (j, exprlist 01")

match (s, re)
sub (s, re, rep/)
gsub (s , re, rep!)

concatenate strings sand t
convert string s to number; error if stripping leading and trailing white
space does not yield a valid decimal number
strip leading white space, and interpret as much as possible of s as a num­
ber, but do not raise error
Unicode value of the first character in string s
string representation of character 11; inverse of ichar
length of string s
II character substring of s starting at position m; if II omitted, rest of string
format arguments according to format stringfillt
starting position of regular expression re in s, or ° if not found
substitute repl for the first occurrence of regular expression re in s
substitute repl for all occurrences of regular expression re in s

Table A-4: Built-in string and regular expression functions.

460 AMPL REFERENCE MANUAL APPENDIX A

There is no implicit conversion of strings to numbers, but num(s) and numO(s) perform
explicit conversions. Both ignore leading and trailing white space; num complains if what remains
is not a valid number, whereas numO converts as much as it can, returning 0 if it sees no numeric
prefix.

The match, sub, and gsub functions accept strings representing regular expressions as their
second arguments. AMPL regular expressions are similar to standard Unix regular expressions.
Aside from certain metacharacters, any literal character c is a regular expression that matches an
occurrence of itself in the target string. The metacharacter "." is a regular expression that
matches any character. A list of characters enclosed in brackets is a regular expression that
matches any character in the list, and lists may be abbreviated: [a - z 0 - 9] matches any lower case
letter or digit. A list of characters that begins with the character A and is enclosed in brackets is a
regular expression that matches any character not in the list: [A 0 - 9] matches any non-digit. If r
is a regular expression, then r * matches 0 or more occurrences of r, r + matches I or more occur­
rences, and r? matches 0 or I occurrence. A r matches r only if r occurs at the beginning of the
string, and r $ matches r only at the end of the string. Parentheses are used for grouping and I
means "or"; rl I rz matches rl or r2. The special meaning of a metacharacter can be turned off
by preceding it by a backs lash.

In the replacement pattern (third argument) for sub and gsub, & stands for the whole matched
string, as does \ 0, while \ 1, \2, ... , \ 9 stand for the string matched by the first, second, ... , ninth
parenthesized expression in the pattern.

Options (A.14.1) are named string values, some of which affect various AMPL commands
(A. 14). The current value of option opname is denoted $ opname.

A.4.3 Piecewise-linear terms

In variable, constraint and objective declarations, piecewise-linear terms have one of the fol­
lowing forms:

« breakpoints
« breakpoints
« breakpoints
« breakpoints

slopes > > var
slopes » (cexpr)
slopes » (var, cexpr)
slopes » (cexpr, cexpr)

where breakpoints is a list of breakpoints and slopes a list of slopes. Each such list is a comma­
separated list of cexpr's, each optionally preceded by an indexing expression (whose scope covers
just the cexpr). The indexing expression must specify a set that is manifestly ordered (see A.6.2),
or it can be of the special form

{if lexpr}

which causes the expr to be omitted if the lexpr is false. In commands, the more general forms

« breakpoints ; slopes » (expr)
« breakpoints ; slopes » (expr, expr)

are also allowed, and variables may appear in expressions in the breakpoints and slopes.
After the lists of slopes and breakpoints are extended (by indexing over any indexing expres­

sions), the number of slopes must be one more than the number of breakpoints, and the breakpoints
must be in non-decreasing numeric order. (There is no requirement on the order of the slopes.)
AMPL interprets the result as the piecewise-linear function f(x) defined as follows. Let Sj,

1 :::; j :::; n, and b i, 1 :::; i :::; n - 1, denote the slopes and breakpoints, respectively, and let

SECTION A.6 SET DECLARATIONS 461

bo = -00 and b" = +00. Then f(O) = 0, and for b i-I .:; X .:; b i,f has slope s i, i.e., rex) = S i'

For the forms having just one argument (either a variable var or a constant expression expr), the
result isf(var) orf(expr). The form with two operands is interpreted asf(var) - f(expr). This
adds a constant that makes the result vanish when the var equals the expr.

When piecewise-linear terms appear in an otherwise linear constraint or objective, AMPL col­
lects two or more piecewise-linear terms involving the same variable into a single term.

A.S Declarations of model entities

Declarations of model entities have the following common form:

entity name alias Of" indexing Opl body Opl ;

where name is an alphanumeric name that has not previously been assigned to an entity by a decla­
ration, alias is an optional literal, indexing is an optional indexing expression, and entity is one of
the keywords

set
param
var
arc
minimize
maximize
subject to
node

In addition, several other constructs are technically entity declarations, but are described later;
these include environ, problem, suffix and table.

The entity may be omitted, in which case subj ect to is assumed. The body of various dec­
larations consists of other, mostly optional, phrases that follow the initial part. Each declaration
ends with a semicolon.

Declarations may appear in any order, except that each name must be declared before it is used.
As with piecewise-linear terms, a special form of indexing expression is allowed for variable,

constraint, and objective declarations:

{if lexpr}

If the logical expression lexpr is true, then a simple (unsubscripted) entity results; otherwise the
entity is excluded from the model, and subsequent attempts to reference it cause an error message.
For example, this declaration includes the variable Test in the model if the parameter testing
has been given a value greater than 100:

param testing;
var Test {if testing> 100} >= 0;

A.6 Set declarations

A set declaration has the form

462 AMPL REFERENCE MANUAL

set declaration:
set name a/ias oPt indexing opt attributesopt ;

in which attributes is a list of attributes optionally separated by commas:

attribute:
dimen II

wi thin sexpr
= sexpr
default sexpr

APPENDIX A

The dimension of the set is either the constant positive integer n, or the dimension of sexpr, or 1 by
default. The phrase wi thin sexpr requires the set being declared to be a subset of sexpr. Several
wi thin phrases may be given. The = phrase specifies a value for the set; it implies that the set
wi ll not be given a value later in a data section (A.12. 1) or a command such as let (A.18.9). The
defaul t phrase specifies a default value for the set, to be used if no value is given in a data sec­
tion. The = and defaul t phrases are mutually exclusive. If neither is given and the set is not
defined by a data statement, references to the set during model generation cause an error message.
For historical reasons, : = is currently a synonym for = in declarations of sets and parameters, but
this use of : = is deprecated.

The sexpr in a = or defaul t phrase can be {}, the empty set, which then has the dimension
implied by any dimen or wi thin phrases in the declaration, or 1 if none is present. In other con­
texts, {} denotes the empty set.

Recursive definitions of indexed sets are allowed, so long as the assigned values can be com­
puted in a sequence that only references previously computed values. For example,

set nodes;
set arcs within nodes cross nodes;

param max_iter = card(nodes)-l; # card(s)

set step (s in 1 .. max_iter) dimen 2 =
if s == 1

then arcs

number of elements in s

else step[s-l] union setof {k in nodes,
(i,k) in s tep[s-l]. (k,j) in step[s-l]} (i,j);

set reach = step[max_iter];

computes in set reach the transitive closure of the graph represented by nodes and arcs.

A.6.1 Cardinality and arity functions

The function card operates on any finite set: card (sexpr) returns the number of members in
sexpr. If sexpr is an indexing expression, the parentheses may be omitted. For example,

c ard ({ i in A: x l i] >= 4 })

may also be written

card {i i n A : x li] > = 4}

The function ari ty returns the arity of its set argument; the function indexari ty returns
the arity of its argument's indexing set.

•

SECTION A.6 SET DECLARATIONS 463

A.6.2 Ordered sets

A named one-dimensional set may have an order associated with it. Declarations for ordered
sets include one of the phrases

ordered [by [reversed J sexpr J
circular [by [reversed J sexpr J

The keyword circular indicates that the set is ordered and wraps around, i.e., its first member is
the successor of its last, and its last member is the predecessor of its first.

Sets of dimension two or higher may not currently be ordered or circular.

If set S is ordered by T or circular by T, then set T must itself be an ordered set that
contains S, and S inherits the order of T. If the ordering phrase is by reversed T, then S still
inherits its order from T, but in reverse order.

If S is ordered or circular and no ordering by sexpr is specified, then one of two cases
applies. If the members of S are explicitly specified by a = {member-list} expression in the
model or by a list of members in a data section, S adopts the ordering of this list. If S is otherwise
computed from an assigned or defaul~ sexpr in the model, AMPL will retain the order of manifestly
ordered sets (explained below) and is otherwise free to pick an arbitrary order.

Functions of ordered sets are summarized in Table A-S.

If S is an expression for an ordered set of n members, e is the jth member of S, and k is an inte­
ger expression, then next (e, S, k) is member j + k of S if 1 ::; j + k ::; n, and an error other­
wise. If S is circular, then next (e, S, k) is member I + «j + k - 1) mod n) of S. The
function nextw (next with wraparound) is the same as next, except that it treats all ordered sets
as circular; prev (e, S, k) == next (e, S, -k), and prevw (e, S, k) == nextw (e, S, -k).

Several abbreviations are allowed. If k is not given, it is taken as 1. If both k and S are omit­
ted, then e must be a dummy index in the scope of an indexing expression that runs over S, for
example as in {e in S}.

Five other functions apply to ordered sets: first (S) returns the first member of S, last (S)
the last, member (j, S) returns the jth member of S, ord (e , S) and ordO (e , S) the ordinal posi­
tion of member e in S. If e is not in S, then ordO returns 0, whereas ord complains of an error.
Again, ord(e) = ord(e, S) and ordO(e) = ordO(e, S) if e is a dummy index in the scope
of an indexing expression for S.

Some sets are manifestly ordered, such as arithmetic progressions, intervals, subsets of ordered
sets, if expressions whose then and else clauses are both ordered sets, and set differences (but
not symmetric differences) whose left operands are ordered.

A.6.3 Intervals and other infinite sets

For convenience in specifying ordered sets and prototypes for imported functions (A.22), there
are several kinds of infinite sets. Iterating over infinite sets is forbidden, but one can check mem­
bership in them and use them to specify set orderings. The most natural infinite set is the interval,
which may be closed, open, or half-open and which follows standard mathematical notation. There
are intervals of real (floating-point) numbers and of integers, introduced by the keywords
interval and integer respectively:

464 AMPL REFERENCE MANUAL APPENDIX A

next (e, S, k)

next (e, S)
next (e)

nextw (e, S, k)

nextw (e, S)
nextw(e)

prev(e,S,k)

prev(e,S)

prev (e)

prevw(e, S, k)

prevw(e,S)

prevw(e)

first (S)

last (S)

member (j, S)

ord(e,S)

ord(e)

ordO(e,S)

ordO (e)

card(S)
arity(S)
indexarity(E)

interval:
interval [a, b]
interval (a, b]
interval [a, b)
interval (a, b)
integer [a, b]
integer (a, b]
integer [a, b)
integer (a, b)

member k positions after member e in set S
same, with k = 1
next member of set for which e is dummy index
member k positions after member e in set S, wrapping around
wrapping version ofnext(e, S)
wrapping version of next(e)

member k positions before member e in set S
same, with k = 1
previous member of set for which e is dummy index
member k positions before member e in set S, wrapping around
wrapping version of prev(e , S)
wrapping version of prev(e)

first member of S
last member of S
jth member of S; 1 ~ j ~ card(S),j integer

ordinal position of member e in S
ordinal position of member e in set for which it is dummy index
ordinal position of member e in S; 0 if not present
same as ord(e)

number of members in set S
arity of S if S is a set, else 0; for use with _SETS
arity of entity E's indexing set
card, ari ty, and indexari ty also apply to unordered sets

Table A-S: Functions of ordered sets.

'" {x: a~x~b},

'" {x: a<x~b},

'" {x: a~x<b},

'" {x: a<x<b},

'" {x: a ~ x ~ b and x E I},

'" {x: a < x ~ b and x E I},

'" {x: a ~ x < b and x E I},

'" {x: a < x < b and x E I}

where a and b denote arbitrary arithmetic expressions, and I denotes the set of integers. In func­
tion prototypes (A.22) and the declaration phrases

in interval
wi thin interval
ordered by [reversed 1 interval
circular by [reversed 1 interval

the keyword interval may be omitted.
The predefined infinite sets Reals and Integers are the sets of all floating-point numbers

and integers, respectively, in numeric order. The predefined infinite sets ASCII, EBCDIC, and
Display all represent the universal set of strings and numbers from which members of any one­
dimensional set are drawn; ASCII is ordered by the ASCII collating sequence, EBCDIC by the

SECTION A.7 PARAMETER DECLARATIONS 465

EBCDIC collating sequence, and Display by the ordering used in the display command (Sec­
tion A.16). Numbers precede literals in Display and are ordered numerically; literals are sorted
by the ASCII collating sequence.

A.7 Parameter declarations

Parameter declarations have a list of optional attributes, optionally separated by commas:

parameter declaration:
param name alias o,,, indexing opl attributes o,,, ;

The attributes may be any of the following:

attribute:

relop:

binary
integer
symbolic
relop expr
in sexpr
= expr
defaul t expr

< <= != <> > >=

The keyword integer restricts the parameter to be an integer; binary restricts it to 0 or l.
If symbolic is specified, then the parameter may assume any literal or numeric value (rounded as
for set membership), and the attributes involving <, <=, >= and> are disallowed; otherwise the
parameter is numeric and can only assume a numeric value.

The attributes involving comparison operators specify that the parameter must obey the given
relation. The in attribute specifies a check that the parameter lies in the given set.

The = and defaul t attributes are analogous to the corresponding ones in set declarations, and
are mutually exclusive.

Recursive definitions of indexed parameters are allowed, so long as the assigned values can be
computed in a sequence that only references previously computed values. For example,

param comb 'n choose k' {n in O .. N, kin O .. n}
= if k = 0 or k = n then 1 else comb[n-l,k-l] + comb[n-l,k];

computes the number of ways of choosing n things k at a time.
In a recursive definition of a symbolic parameter, the keyword symbolic must precede all

references to the parameter.

A.7.1 Check statements

Check statements supply assertions to help verify that correct data have been read or generated;
they have the syntax

check [indexing oPI : 1 lexpr ;

Each check statement is evaluated when one of the commands solve, write, solution, or
check is executed.

466 AMPL REFERENCE MANUAL APPENDIX A

A.7.2 Infinity

Inf ini ty is a predefined parameter; it is the threshold above which upper bounds are consid­
ered absent (i.e., infinite), and - Inf ini ty is the threshold below which lower bounds are consid­
ered absent. Thus given

set A;
param Ub{A} default Infinity;
param Lb{A} default -Infinity;
var V {i in A} >= Lb[il, <= Ub[il;

components of V for which no Lb value is given in a data section are unbounded below and com­
ponents for which no Ub value is given are unbounded above. One can similarly arrange for
optional lower and upper constraint bounds. On computers with IEEE arithmetic (most modern
systems) Inf ini ty is the IEEE 00 value.

A.a Variable declarations

Variable declarations begin with the keyword var:

variable declaration:
var name alias 01" indexing opt attributes Ollt ;

Optional attributes of variable declarations may be separated by commas; these attributes include

attribute:
binary
integer
symbolic
>= expr
<= expr
: = expr
defaul t expr
= expr
coeff indexing op, constraint expr
cover indexing op, constraint
obj indexing op, objective expr
in sexpr
suffix suJname expr

As with parameters, integer restricts the variable to integer values, and binary restricts it to 0
or 1. The >= and <= phrases specify bounds, and the: = phrase an initial value. The default
phrase specifies a default for initial values that may be provided in a data section (A.12.2);
defaul t and: = are mutually exclusive. The = expr phrase is allowed only if none of the previ­
ous attributes appears; it makes the variable a defined variable (A.8.1). Each suffix sufname
expr phrase specifies an initial value for a previously declared suffix sufname.

If symbolic is specified, in sexpr must also appear and attributes requiring a numeric value,
such as >= expr, are excluded. If in sexpr appears without symbolic, the set expression sexpr
must be the union of intervals and discrete sets of numbers. Either way, in sexpr restricts the
variable to lie in sexpr.

The coeff and obj phrases are for columnwise coefficient generation; they specify coeffi­
cients to be placed in the named constraint or objective, which must have been previously declared

SECTION A.S VARIABLE DECLARATIONS 467

using the placeholder to_come (see A.9 and A.lO). The scope of indexing is limited to the
phrase, and may have the special form

{if Lexpr}

which contributes the coefficient only if the lexpr is true. A cover phrase is equivalent to a
coeff phrase in which the expr is 1.

Arcs are special network variables, declared with the keyword arc instead of var. They may
contribute coefficients to node constraints (A.9) via optional attribute phrases of the form

from indexing oP1 node exprop1

to indexing oP1 node exprop1

These phrases are analogous in syntax to the coeff phrase, except that the final expr is optional;
omitting it is the same as specifying 1.

A.B.1 Defined variables

In some nonlinear models, it is convenient to define named values that contribute somehow to
the constraints or objectives. For example,

set A;
var v {A};
var W {A};

subject to C {i in A}: w[il = vexpr;

where vexpr is an expression involving the variables v.
As things stand, the members of C are constraints, and we have turned an unconstrained prob­

lem into a constrained one, which may not be a good idea. Setting option subs tout to I
instructs AMPL to eliminate the collection of constraints C. AMPL does so by telling solvers that
the constraints define the variables on their left-hand sides, so that, in effect, these defined vari­
ables become named common subexpressions.

When option subs tou t is I, a constraint such as C that provides a definition for a defined
variable is called a defining constraint. AMPL decides which variables are defined variables by
scanning the constraints once, in order of their appearance in the model. A variable is eligible to
become a defined variable only if its declaration imposes no constraints on it, such as integrality or
bounds. Once a variable has appeared on the right-hand side of a defining constraint, it is no
longer eligible to be a defined variable - without this restriction, AMPL might have to solve
implicit equations. Once a variable has been recognized as a defined variable, its subsequent
appearance on the left-hand side of what would otherwise be a defining constraint results in the
constraint being treated as an ordinary constraint.

Some solvers give special treatment to linear variables because their higher derivatives vanish.
For such solvers, it may be helpful to treat linear defined variables specially. Otherwise, variables
involved in the light-hand side of the equation for a defined variable appear to solvers as nonlinear
variables, even if they are used only linearly in the right-hand side. By doing Gaussian elimination
rather than conveying linear variable definitions explicitly, AMPL can arrange for solvers to see
such right-hand variables as linear variables. This often causes fill-in, i.e., makes the problem less
sparse, but it may give the solvers a more accurate view of the problem. When option linelim
has its default value 1, AMPL treats linear defined variables in this special way; when option lin­
elim is 0, AMPL treats all defmed variables alike.

468 AMPL REFERENCE MANUAL APPENDIX A

A variable declaration may have a phrase of the form = expr, where expr is an expression
involving variables. Such a phrase indicates that the variable is to be defined with the value expr.
Such defining declarations allow some models to be written more compactly.

Recognizing defined variables is not always a good idea - it leads to a problem in fewer vari­
ables, but one that may be more nonlinear and that may be more expensive to solve because of loss
of sparsity. By using defining constraints (instead of using defining variable declarations) and
translating and solving a problem both with $substout = 0 and with $substout = 1, one can
see whether recognizing defined variables is worthwhile. On the other hand, if recognizing a
defined variable seems clearly worthwhile, defining it in its declaration is often more convenient
than providing a separate defining constraint; in particular, if all defined variables are defined in
their declarations, one need not worry about $substout.

One restriction on defining declarations is that subscripted variables must be defined before
they are used.

A.9 Constraint declarations

The form of a constraint declaration is

constraint declaration:
[subj ect to J name alias oP1 indexing oP1

[: = initial_dual J [default initial_dual J
[: constraint expression J [suffuc-initializations J ;

The keyword subj ec t to in a constraint declaration may be omitted but is usually best retained
for clarity. The optional : = initial_dual specifies an initial guess for the dual variable (Lagrange
multiplier) associated with the constraint. Again, defaul t and : = clauses are mutually exclu­
sive, and defaul t is for initial values not given in a data section. Constraint declarations must
specify a constraint in one of the fo llowing forms:

constraint expression:
expr <= expr
expr = expr
expr >= expr
cexpr <= expr <= cexpr
cexpr >= expr >= cexpr

To enable columnwise coefficient generation for the constraint, one of the exprs may have one of
the following forms:

to_come + expr
expr + to_come
to_come

Terms for this constraint that are specified in a var declaration (A.8) are placed at the location of
to_come.

Nodes are special constraints that may send flow to or receive flow from arcs. Their declara­
tions begin with the keyword node instead of subj ec t to. Pure transshipment nodes do not
have a constraint body; they must have "flow in" equal to "flow out". Other nodes are sources or
sinks; they specify constraints in one of the forms above, except that they may not mention
to_come, and exactly one expr must have one of the following forms:

III

SECTION A.9

net_in + expr
net_out + expr
expr + net_in
expr + net_out
net_in
net_out

CONSTRAINT DECLARATIONS 469

The keyword net_in is replaced by an expression representing the net flow into the node: the
terms contributed to the node constraint by to phrases of arc declarations (A.8), minus the terms
contributed by from phrases. The treatment of net_out is analogous; it is the negative of
net_in.

The optional suffix-initialization phrases each have the form

suffix-initialization:
suffix sufname expr

optionally preceded by a comma, where sufname is a previously declared suffix.

A.9.1 Complementarity constraints

For expressing complementarity constraints, in addition to the forms above, constraint declara­
tions may have the form

name alias op, indexing op, : constr, complements constr2 ;

in which constr) and constr2 consist of 1, 2, or 3 expressions separated by the operators <=, >= or
=. In constr) and constr2 together, there must be a total of two explicit inequality operators, with
= counting as two. A complementarity constraint is satisfied if both constr) and constr2 hold and
at least one inequality is tight, i.e., satisfied as an equality. If one of constr) or constr2 involves
two inequalities, then the constraint must have one of the forms

expr, <= expr2 <= expr3 complements expr.
expr3 >= expr2 >= expr, complements expr.
expr. complements expr, <= expr2 <= expr3
expr. complements expr3 >= expr2 >= expr,

In all of these cases, the constraint requires the inequalities to hold, with

expr. ~ 0 if expr, expr2
expr. ~ 0 if expr2 expr3
expr. 0 if expr, < expr2 < expr3

For expressing mathematical programs with equilibrium constraints, complementarity con­
straints may coexist with other constraints and objectives.

Solvers see complementarity constraints in the standard form

expr complements lower bound <= variable <= upper bound

A synonym (A. 19.4), _scvar{i in 1 .. _sncons}, indicates which variable, if any, comple­
ments each constraint the solver sees. If _scvar [i 1 in 1 .. _snvars, then variable
_svar [_scvar [i 11 complements constraint _scon [i 1; otherwise _scvar [i 1 == 0, and
_con [i 1 is an ordinary constraint. The synonyms _cconname {1 . . _nccons} are the names
of the complementarity constraints as the modeler sees them.

470 AMPL REFERENCE MANUAL

A.10 Objective declarations

The declaration of an objective is one of

ob j ecti ve declaration:
maximize name alias ol" indexing op,

minimize name alias op, indexing op,

APPENDIX A

expression] [suffix-initializations]
expression] [suffix-initializations]

and may specify an expression in one of the following forms:

expression:
expr
to_come + expr
expr + to_come
to_come

The to_come forms permit column wise coefficient generation, as for constraints (A.9). Specify­
ing none of the above expressions is the same as specifying": to_come". Suffix-initializations
may appear as in constraint declarations.

If there are multiple objectives, the one sent to a solver can be set by the obj ecti ve com­
mand; see section A.lS.6. By default, all objectives are sent.

A.11 Suffix notation for auxiliary values

Variables, constraints, objectives and problems have a variety of associated auxiliary values.
For example, variables have bounds and reduced costs, and constraints have dual values and slacks.
Such values are accessed as name. suffix, where name is a simple or subscripted variable, con­
straint, objective or problem name, and . suffix is one of the possibilities listed in Tables A-6, A-7,
and A-S.

For a constraint, the _ body, . lb, and . ub values correspond to a modified form of the con­
straint. If the constraint involves a single inequality, subtract the right-hand side from the left, then
move any constant terms to the right-hand side; if the constraint involves a double inequality, simi­
larly subtract any constant terms in the middle from all three expressions (left, middle, right). Then
the constraint has the form lb ::; body::; ub, where lb and ub are (possibly infinite) constants.

The following rules determine lower and upper dual values (c . ldual and c . udual) for a
constraint c. The solver returns a single dual value, c . dual, which might apply either to
body ~ lb or to body::; ub. For an equality constraint (lb = ub), AMPL uses the sign of c . dual
to decide. For a minimization problem, c . dual > 0 implies that the same optimum would be
found if the constraint were body ~ lb, so AMPL sets c . ldual = c . dual and c . udual = 0;
similarly, c . dual < 0 implies that c . ldual = 0 and c . udual = c . dual. For a maxi­
mization problem, the inequalities are reversed.

For inequality constraints (lb < ub), AMPL uses nearness to bound to decide whether
c . ldual or c . udual equals c . dual. If body - lb < ub - body, then c . ldual = c . dual
and c . udual = 0; otherwise, c . ldual = 0 and c . udual = c . dual.

Model declarations may referen~e any of the suffixed values described in Tables A-6, A-7 and
A-S. This is most often useful in new declarations that are introduced after one model has already
been translated and solved. In particular, the suffixes . val and . dual are provided so that new
constraints can refer to current optimal values of the primal and dual variables and of the objective.

SECTION A.11

.astatus

.init

.initO

.lb

.1bO

.lbl

.lb2

.lrc

.lslack

.rc

.relax

.slack

.sstatus

. status

.ub

.ubO

.ubl

.ub2

.urc

.uslack

.val

AMPL status (A. I 1.2)

current initial guess

SUFFIX NOTATION FOR AUXILIARY VALUES

initial initial guess (set by : =, data, or defaul t)
current lower bound
initial lower bound
weaker lower bound from presolve
stronger lower bound from presolve
lower reduced cost (for var >= lb)
lower slack (val - lb)
reduced cost
ignore integrality restriction if positive
min(lslack, uslack)
solver status (A.ll.2)
status (A. ll.2)
current upper bound
initial upper bound
weaker upper bound from presolve
stronger upper bound from presolve
upper reduced cost (for var <= ub)
upper slack (ub - val)
current value of variable

Table A-6: Dot suffixes for variables.

471

For a complementarity constraint, suffix notations like constraint. lb, constraint. body, etc.,
are extended so that constraint. Lsuffix and constraint. Rsuffix correspond to constr, . suffix and
constr2 . suffix, respectively, and complementarity-constraint. slack (or the unadorned name)
stands for a measure of the extent to which the complementarity constraint is satisfied: if constr,
and constr2 each involve one inequality, the new measure is

min(constr, . slack, cOllstr2. slack),

which is positive if both are satisfied as strict inequalities, 0 if the complementarity constraint is
satisfied exactly, and negative if at least one of constr, or constr2 is violated. For constraints of
the form expr, <= expr2 <= expr3 complements expr 4, the. slack value is

min (expr2-expr" expr.) if expr, >= expr2
min (expr)-expr2 , -expr.) if expr) <= expr2
-abs(expr.) if expr, < expr2 < expr)

so in all cases, the. slack value is 0 if the complementarity constraint holds exactly and is nega­
tive if one of the requisite inequalities is violated.

A. 11. 1 Suffix declarations

Suffix declarations introduce new suffixes, which may be assigned values in subsequent decla­
rations, let commands and function invocations (with OUT arguments, A.22). Suffix declarations
begin with the keyword suffix:

472 AMPL REFERENCE MANUAL

AMPL status (A.II.2)
current value of constraint body
current initial guess for dual variable

APPENDIX A

.astatus

. body

.dinit

.dinitO

. dual
initial initial guess for dual variable (set by : =, data, or defaul t)
current dual variable

.lb

.lbs

.ldual

.lslack

.slack

.sstatus

. status

.ub

.ubs

.udual

.uslack

.val

lower bound
lb for solver (adjusted for fixed variables)
lower dual value (for body >= lb)
lower slack (body - lb)
min(lslack, uslack)
solver status (A.Il.2)
status (A.Il.2)
upper bound
ub for solver (adjusted for fixed variables)
upper dual value (for body <= ub)
upper slack (ub - body)

Table A-7: Dot suffixes for constraints.

current value of objective

Table A-8: Dot suffix for objectives.

suffix declaration:
suffix name alias op, attributes op, ;

Optional attributes of suffix declarations may be separated by commas; these attributes include

attribute:
binary
integer
symbolic
>= expr
<= expr
direction

direction:
IN
OUT
INOUT
LOCAL

At most one direction may be specified; AMPL assumes INOUT if no direction is given. These
directions are from a solver's perspective: IN suffix values are input to the solver; OUT suffix val­
ues are assigned by the solver; INOUT values are both IN and OUT; and LOCAL values are not
seen by the solver.

Symbolic suffixes are declared with the symbolic attribute; appending _num to the name of
a symbolic suffix gives the name of an associated numeric suffix; solvers see the associated
numeric value. If symsuf is a symbolic suffix, option symsuf _ table connects symsuf with
symsuf _num as follows. Each line of $symsuf _table should begin with a numeric limit value,

SECTION A.12 STANDARD DATA FORMAT 473

followed by a string value and optional comments, all separated by white space. The numeric limit
values must increase with each line. The string value with the greatest numeric limit value less
than or equal to the . sufname _num value is the associated string value. If the . sufname _num
value is less than the limit value in the first line of $symsuf _table, then the. symsuf _num
value is used as the . symsufvalue.

A. 11.2 Statuses

Some solvers maintain a basis and distinguish among basic and various kinds of nonbasic vari­
ables and constraints. AMPL's built-in symbolic suffix. sstatus permits solvers to return basis
information to AMPL and, in a subsequent solve (A. IS. I), to be given the previously optimal
basis, which sometimes leads to solving the updated problem faster.

AMPL's drop/restore status (A.IS.6) of constraints and its fix/unfix status (A.IS.7) of variables
is reflected in the built-in symbolic suffix. astatus. The built-in symbolic suffix. status is
derived from . astatus and . sstatus: if the variable or constraint, say x, is in the current
problem, x. status = x. sstatus; otherwise x. status = x. astatus. AMPL assigns
x . as ta tus_num = 0 if x is in the current problem, so the rule for determining . s ta tus is

x.status = if x.astatus_num == 0 then x.sstatus else x.astatus.

When option astatus table has its default value, x. astatus = 'in' when
x. astatus num = O.

A.12 Standard data format

AMPL supports a standard format to describe the sets and parameter values that it combines
with a model to yield a specific optimization problem.

A data section consists of a sequence of tokens (literals and strings of printing characters) sepa­
rated by white space (spaces, tabs, and newlines). Tokens include keywords, literals, numbers, and
the delimiters () [1 : = *. A statement is a sequence of tokens terminated by a
semicolon. Comments may appear as in declarations. In all cases, arrangement of data into neat
rows and columns is for human readability; AMPL ignores formatting.

A data section begins with a data command and ends with end-of-input or with a command
that returns to model mode (A. 14).

In a data section, model entities may be assigned values in any convenient order, independent
of their order of declaration.

A. 12. 1 Set data

Statements defining sets consist of the keyword set, the set name, an optional : =, and the
members. A one-dimensional set is most easily specified by listing its members, optionally sepa­
rated by commas. The single or double quotes of a Jjteral string may be omitted if the string is
alphanumeric but does not specify a number.

An object in a data section may be a number or a character string. As in a model, a character
string may be specified by surrounding it with quotes (' or "). Since so many strings appear in
data, however, AMPL allows data statements to drop the quotes around any string that consists only

474 AMPL REFERENCE MANUAL APPENDIX A

of characters that may occur in a name or number, unless quotes are needed to distinguish a string
from a number.

The general form of a set data statement is

set-data-statement:
set set-name : = set-spec set-spec ...

set-spec:
set -template op, member-list
set-template op, member-table member-table ...

The set-name must be the name of an individually declared set, or the subscripted name of a set
from an indexed collection. The optional template has the form

set-template:
(templ-item, templ-item, ...)

templ-item:
object

*

where the number of tempi-items must equal the dimension of the named set. If no template is
given, a template of all *'s is assumed.

There are two forms of set-spec, list format and table format. The list format of set-spec is

member-list:
member-item member-item

member-item:
object object ...

The number of objects in a member-item must match the number of *'s in the preceding template,
which may not have: as a tempi-item; the objects are substituted for the *'s, from left to right, to
produce a member that is added to the set being specified. In the special case that the template
contains no * 's, the member-list should be empty, while the template itself specifies one member
to be added.

The table format of set-spec looks like this:

member-table:
(tr) op, t-header t-header . -

row-label ± ± ±
row-label

t-header:
object object

row-label:
object object

± ± ±

There must be at least one t-header, at least one object in each row-label, and as many t-header's
and row-label's as *'s and:'s in the preceding template. If the preceding template involves any
: ' s, there must be as many :' S as t -headers; otherwise if the optional (tr) appears, the initial *' s
are treated as :' s, and if (tr) does not appear, the final *' s are treated as :' s. Each table entry
shown as ± must be either a + or a - symbol. Each - entry is ignored, while each + entry's
row-labels are substituted for the template's *, s in sequence, and the objects in the t-headers
corresponding to the + are substituted for the:'s to produce a set member.

'"

SECTION A.12 STANDARD DATA FORMAT 475

To define a compound set, one can list all members. Each member is a parenthesized,
comma-separated list of components, and successive members have an optional comma between
them. Alternatively, one can describe the members of a two-dimensional set by a table or sequence
of tables. In such a table, the row labels are for the first subscript, the columns for the second;
"+" stands for a pair that occurs in the set, and" -" for a pair that does not. The colon introduces
a table, and is mandatory in this context. If (tr) precedes the colon, the table is transposed, inter­
changing the roles of rows and columns.

In general, a set statement involves a sequence of lD and 2D set tables. ID tables start with
either a new template (after which a : = is optional) or with : = alone, in which case the previous
template is retained. The default (initial) template is (*, ... , *) , that is, as many *'s as the set's
dimension. 2D tables start with an optional new template, followed by : or (tr) and an optional
colon, followed by a list of column labels and a : =. Templates containing no *'s stand for them­
selves. The effect of (tr) persists until a new template appears.

For indexed sets, each component set must be given in a separate data statement. It is not nec­
essary to specify subset members in the same order as in their parent set.

A. 12.2 Parameter data

There are two forms of the statement that specifies parameter data or variable initial values.
The first form is analogous to the set data statement:

param-data-statement:
param param-name param-de!ault oPI • - param-spec param-spec ...

param-spec:
param -template Opl value-list
param-template opl value-table value-table ...

with the addition of an optional param-defaull that will be described below. The param-name is
usually the name of a parameter declared in the model, but may also be the name of a variable or
constraint; the keyword var may be used instead of pararn to make the distinction clear.

The pararn statement's templates have the same content as in the set data statement, but are
given in brackets (like subscripts) rather than parentheses:

param-template:
[tempi-item, tempi-item, ... I

tempi-item:
object

*

The value-list is like the previously defined member-list, except that it also specifies a parameter
or variable value:

value-list:
value-item value-item

value-item:
object object ... entry

The objects are substituted for *'s in the template to define a set member, and the parameter or
variable indexed by this set member is assigned the value associated with the entry (see below).

476 AMPL REFERENCE MANUAL APPENDIX A

The value-table is like the previously defined member-table, except that its entrys are values rather
than + or -:

value-table:
(tr) Opl t-header

row-label entry
row-label entry

t-header:
object object

row-label:
object object

entry:
number
string
default-symbol

t-header t-header

entry entry
entry entry

As in set statements, the notation (tr) means transpose; it implies a 2D table, and a after
it is optional. It remains in effect until a new template appears.

A table may be given in several chunks of columns.
Each entry's row-label and t-header entries are substituted for *'s and: 's in the template to

define a set member, and the parameter or variable indexed by this set member is assigned the
value specified by the entry. The entry may be a number for variables and for parameters that take
numerical values, or a string for variables and parameters declared with the attribute symbolic.
An entry that is the default symbol (see below) is ignored.

The second form of parameter data statement provides for the definition of multiple parame­
ters, and also optionally the set over which they are indexed:

param-data-alternate:
param param-defaultoPI :

param-name param-name

param param-default opl : set-name:

. - value-item value-item ...

param-name param-name ... : = value-item value-item ... ;

The named parameters must all have the same dimension. If the optional set-name is specified, its
membership is also defined by this statement. Each value-item consists of an optional template
followed by a list of objects and a list of values:

value-item:
template Opl object ... entry entry ...

An initial template of all * 's (as many as the common dimension of the named parameters) is
assumed, and a template remains in effect until a new one appears. The objects must be equal in
number to the number of *'s in the current template; when substituted for the *'s in the current
template, they define a set member. If a set is being defined, this member is added to it. The
parameters indexed by this member are assigned the values associated with the subsequent entrys,
which obey the same rules as the table entrys previously described. Values are assigned in the
order in which the parameters' names appeared at the beginning of the statement; the number of
entrys must equal the number of named parameters.

A param data statement's optional defaul t phrase has the form

<

SECTION A.13

param-default:
defaul t /lumber

DATABASE ACCESS AND TABLES 477

If this phrase is present, any parameter named but not explicitly assigned a value in the statement is
given the value of number.

A data item may be specified as " . " rather than an explicit value. This is normally taken as a
missing value, and a reference to it in the model would cause an error message. If there is a
defaul t value, however, each missing value is determined from that default. A default value
may be specified either through a default phrase in a parameter's declaration in the model (A.7), or
from an optional phrase

default r

that follows the parameter's name in the data statement. In the latter case, r must be a numeric
constant.

Default-value symbols may appear in both ID and 2D tables. The default-symbol is initially a
dot (.). A stack of default-value symbols is maintained, with the current symbol at the top. The
defaul tsym statement (which is recognized only in a data section) pushes a new symbol onto
the stack, and nodefaul tsym pushes a "no symbol" indicator onto the stack. The statement

defaultsym;

(without a symbol) pops the stack.
Parameters having three or more indices may be given values by a sequence of ID and 2D

tables, one or more for each slice of non default values.
In summary, a pararn statement defining one indexed parameter starts with the keyword

pararn and the name of the parameter, followed by an optional default value and an optional : =.
Then comes a sequence of I D and 2D param tables, which are similar to I D and 2D set tables,
except that templates involve square brackets rather than parentheses, 2D tables contain numbers
(or, for a symbolic parameter, literals) rather than +'s and -'s, and ID tables corresponding to a
template of k *'s contain k + 1 rather than k columns, the last being a column of numbers or
default symbols (. 's). A special form, the keyword param, an optional default value, and a single
(untransposed) 2D table, defines several parameters indexed by a common set, and another special
form, param followed by the parameter name, an optional : =, and a numeric value, defines a
scalar parameter.

Variable and constraint names may appear in data sections anywhere that a parameter name
may appear, to specify initial values for variables and for the dual variables associated with con­
straints. The rules for default values are the same as for parameters. The keyword var is a syn­
onym for pararn in data statements.

A.13 Database access and tables

AMPL's table facility permits obtaining data from and returning data to an external medium,
such as a database, file, or spreadsheet. A table declaration establishes connections between
columns of an external relational table and sets, parameters, variables and expressions in AMPL.
The read table and wri te table commands use these connections to read data values into
AMPL from tables and write them back. AMPL uses table handlers to implement these connec­
tions. Built-in table handlers permit reading and writing" . tab" and" . bi t" files to save and
restore values and experiment with AMPL's table facilities; to access databases and spreadsheets, at

478 AMPL REFERENCE MANUAL APPENDIX A

least one other handler must be installed or loaded (A.22). The built-in set _HANDLERS names
the currently available handlers, and the symbolic parameter _handler_lib{_HANDLERS}
tells which shared library each handler came from.

Table declarations have the form

table-declaration:
table table-name indexing op, in-out op, string-list op, :

key-spec, data-spec, data-spec, ... ;

in-out is one of IN, OUT, or INOUT; IN means into AMPL, OUT means out of AMPL, and INOUT

means both. INOUT is assumed if in-out is not given. The optional string-list gives the names of
drivers, files, and driver-specific options that are used to access external data; the contents depend
on the handler used for the table and perhaps on the operating system.

The key-spec in a table declaration specifies key columns that uniquely identify the data to
be accessed:

set-io op, [key-col-spec, key-col-spec, .. . J

The optional set-io phrase has the form

set-name arrow

in which arrow is one of <-, ->, or <->; it points in the direction that the information is moved,
from the key columns to the AMPL set (by read table), from the set to the columns (by wri te
table), or both, depending on in-out. Each key-cal-spec names a column in the external table and
associates a dummy index with it. A key-cal-spec of the form

key-name

uses key-name for both purposes, and a key-cal-spec of the form

key-name - data-col-name

introduces key-name as the dummy index and data-cal-name as the name of the column in the
external medium; data-cal-name may be a name, quoted string, or parenthesized string expression.

Each data-spec names a data column in the external table. In the simplest case, the external
name and the AMPL name are the same. If not, however, an external name can be associated with
an internal name with the syntax

data-spec:
param-name - data-col-name

Each data-spec optionally ends with one of IN, OUT, or INOUT, which overrides the default table
direction and indicates whether read table should read the column into AMPL (IN or INOUT),

and whether wri te table should write the column to the external medium (OUT or INOUT).

Special syntax permits use of an indexing expression to describe one or more columns of data:

indexing expr-col-desc
indexing (expr-col-desc , expr-col-desc , ...)

in which expr-col-desc has the form

expr [- colname -] in-outop,

Another special syntax permits iterating data columns:

indexing < data-spec , data-spec , ... >

""'"

SECTION A.14 COMMAND LANGUAGE OVERVIEW 479

The latter may not be nested, but may contain the former.
After a table declaration, data access is done with

read table table-name subscriptoP1 ;

write table table-name subscript oP1 ;

which refer back to the information given in the table declaration.

A.14 Command language overview

AMPL recognizes the commands listed in Table A-9. Commands are not part of a model, but
cause AMPL to act as described below.

The command environment recognizes two modes. In model mode, where AMPL starts upon
invocation, it recognizes model declarations (A.S) and all of the commands described below. Upon
seeing a data statement, it switches to data mode, where only data-mode statements (A.12) are
recognized. It returns to model mode upon encountering a keyword that cannot begin a data-mode
statement, or the end of the file. Commands other than data, end, include, qui t and shell
also cause AMPL to enter model mode.

A phrase of the form

include filename

causes the indicated file to be interpolated. Here, and in subsequent contexts where a filename
appears, iffilename involves semicolons, quotes, white space, or non-printing characters, it must be
given as a literal, i.e., 'filename' or "filename". In contexts other than include, filename may
also be a parenthesized string expression (A.4.2). include commands may be nested; they are
recognized in both model and data mode. The sequences

model; include filename
data; include filename

may be abbreviated

model filename
data filename

The commands command is analogous to include, but is a statement and must be termi­
nated by a semicolon. When a data or commands command appears in a compound command
(i .e., the body of a loop or the then or else part of an if command (A.2D.I), or simply in a
sequence of commands enclosed in braces), it is executed when the flow of control reaches it,
instead of when the compound command is being read. In this case, if the data or commands
command does not specify a file, AMPL reads commands or data from the current input file until it
encounters either an end command or the end of the current file.

For include phrases as well as model, data, and commands commands, files with simple
names, e.g., not involving a slash (/), are sought in directories (folders) specified by option
ampl_include (A.14.1): each nonblank line of $ampl_include specifies a directory; if
$ampl_include is empty or entirely blank, files are sought in the current directory.

The option insertprompt (default' <% d> ') specifies an insertion prompt that immediately
precedes the usual prompt for input from the standard input. If present, %d is the current insert

480 AMPL REFERENCE MANUAL APPENDIX A

call
cd
check
close
commands
data
delete
display
drop
end
environ
exit
expand
fix
include
let
load
model
objective
option
print
printf
problem
purge
quit
read
read table
redeclare
reload
remove
reset
restore
shell
show
solexpand
solution
solve
update
unfix
unload
write
write table
xref

invoke imported function
change current directory
perform all check commands
close file
read and interpret commands from a file
switch to data mode; optionally include file contents
delete model entities
print model entities and expressions; also csvdisplay and _display
drop a constraint or objective
end input from current input file
set environment for a problem instance
exit AMPL with status value
show expansion of model entities
freeze a variable at its current value
include file contents
change data values
load dynamic function library
switch to model mode; optionally include file contents
select an objective to be optimized
set or display option values
print model entities and expressions unformatted
print model entities and expressions formatted
define or switch to a named problem
remove model entities
terminate AMPL
take input from a file
take input from a data table
change declaration of entity
reload dynamic function library
remove file
reset specified entities to their initial state
undo a drop command
temporary escape to operating system to run commands
show names of model entities
show expansion as seen by solver
import variable values as if from a solver
send current instance to a solver and retrieve solution
allow updating data
undo a fix command
unload dynamic function library
write out a problem instance
write data to a data table
show dependencies among entities

Table A-9: Commands.

level, i.e., nesting of da ta and commands commands specifying files and appearing within a

compound command.

SECTION A.15 REDIRECTION OF INPUT AND OUTPUT 481

A. 14. 1 Options and environment variables

AMPL maintains the values of a variety of options that influence the behavior of commands
and solvers. Options resemble the "environment variables" of the Windows and Unix operating
systems; in fact AMPL inherits its initial options from the environments of these systems. AMPL
supplies its own defaults for many options, however, if they are not inherited in this way.

The option command provides a way to examine and change options. It has one of the
forms

option redirectionop, ;

option opname [evalue J [, opname [evalue J ... J redirection op, ;

The first form prints all options that have been changed or whose default may be provided by
AMPL. In the second form, if an evalue is present, it is assigned to opname; otherwise the value (a
character string) currently associated with opname is printed. An opname is an option name
optionally preceded by an environment name (A.18.8) and a period. The option name also may be
a name-pattern, which is a name containing one or more *' s. In a name-pattern, a * stands for an
arbitrary sequence, possibly empty, of name characters, and thus may match multiple names; for
example

option *col*;

lists all options whose names contain the string "col". Specific environment or option names
may also be given by parenthesized string expressions.

An evalue is a white-space-separated sequence of one or more literals, numbers, parenthesized
string expressions, and references to options of the form $ opname or $ $ opname, in which opname
contains no *'s; in general, $opname means the current value of option opname, and $ $opname
means the default value, i.e., the value inherited from the operating system, if any, or provided by
AMPL. The quotes around a literal may be omitted if what remains is a name or number. The dis­
played option values are in a format that could be read as an option command.

A.1S Redirection of input and output

An optional redirection phrase can be used with a variety of AMPL commands to capture their
output in a file for subsequent processing. It applies to all forms of display and print and also
to most other commands that can produce output, such as solve, objective, fix, drop,
restore, and expand.

A redirection has one of the forms

> filename
» filename
< filename (for read command)

in which filename may have any of the forms that can appear in data and commands commands
(A. 14). The file is opened the first time a command specifies filename in a redirection; the first
form of redirection causes the file to be overwritten upon first being opened, while the second form
causes output to be appended to the current contents. The form < filename is used only for input
from the read command (A.17). Once open, filename remains open until a reset or unless
explicitly closed by a close command:

close jilenames oPf ;

482 AMPL REFERENCE MANUAL APPENDIX A

As long as filename remains open , output forms of redirection causes output to be appended to the
file's current contents. A close command without a filename closes all open files and pipes. A
close command may specify a comma-separated list of filenames. The variant

remove filename ;

closes and deletes filename.

A.16 Printing and display commands

The display, print, and printf commands print arbitrary expressions. They have the
forms

display [indexing: J disparglist redirection o"r ;
print [indexing: J arglist redirection opr ;
printf [indexing: J fmt , arglist redirection opr

If indexing is present, its scope extends to the end of the command, and it causes one execution of
the command for each member in the indexing set. The format stringfint is like a printf format
string in the C programming language and is explained more fully below.

An arglist is a (possibly empty, comma-separated) list of expressions and iterated-arglists; an
iterated-arglist has one of the forms

indexing expr
indexing (nonempty-argiist)

where expr is an arbitrary expression. The exprs can also involve simple or subscripted variable,
constraint, and objective names; a constraint name represents the constraint's current dual value. A
disparglist is described below.

The optional redirection (A.lS) causes output to be sent to a file instead of appearing on the
standard output.

The print command prints the items in its arglist on one line, separated by spaces and termi­
nated by a newline; the separator may be changed with option print_separator. Literals are
quoted only if they would have to be quoted in data mode. By default, numeric expressions are
printed to full precision, but this can be changed with option print-precision or option
print_round, as described below.

The printf command prints the items in its arglist as dictated by its format string fint. It
behaves like the printf function in C. Most characters in the format string are printed verbatim.
Conversion specifications are an exception. They start with a % and end with a format letter, as
summarized in Table A-lO. Between the % and the format letter there may be any of - , for left­
justification; +, which forces a sign; 0, to pad with leading zeros; a minimum field width; a period;
and a precision giving the maximum number of characters to be printed from a string or digits to be
printed after the decimal point for %f and %e or significant digits for %g or minimum number of
digits for %d. Field widths and precisions are either decimal numbers or a *, which is replaced by
the value of the next item in the arglist. Each conversion specification consumes one or (when *'s
are involved) more items from the arglist and formats the last item it consumes. With %g, a preci­
sion of 0 (% • Og or % . g) specifies the shortest decimal string that rounds to the value being format­
ted. The standard C escape sequences are allowed: \ a (alert or bell), \ b (backspace), \ f (form­
feed) , \n (newline), \ r (carriage return), \ t (horizontal tab), \ v (vertical tab), \ xd and \ xdd,

l

SECTION A.16 PRINTING AND DISPLAY COMMANDS 483

%d signed decimal notation
%i signed decimal notation (same as %d)
%u unsigned decimal notation
%0 unsigned octal notation , without leading 0
%x unsigned hexadecimal , using abcdef, without leading Ox
%X unsigned hexadecimal, using ABCDEF, without leading ox
%c single character
%s string
%q quote string appropriately for data values
%Q always quote string
% f double-precision floating-point
%e double-precision floating-point, exponential notation using e
%E double-precision floating-point, exponential notation using E
%g double-precision floating-point, using % f or %e
%G double-precision floating-point, using % for %E
%% literal %

Table A-IO: Conversion specifications in printf formats.

where d denotes a hexadecimal digit, and \ d, \ dd and \ddd, where d denotes an octal digit. For­
mat %q prints a string value with data-section quoting rules; format %Q always quotes the string.

The sprintf function (A.4.2) formats its argument list according to a format string that uses
the same conversion specifications.

The display command formats various entities in tables or lists, as appropriate. Its disparg­
list is similar to an arglist for print or printf, except that an item to be displayed can also be a
set expression or the unsubscripted name of an indexed parameter, variable, constraint, or set; fur­
thermore iterated arglists cannot be nested, i.e. , they are restricted to the forms

indexing expr
indexing (exprlist

where exprlist is a nonempty, comma-separated list of expressions. The display command
prints scalar expressions and sets individually, and partitions indexed entities into groups having
the same number of subscripts, then prints each group in its own table or sequence of tables.

By default, the display command rounds numeric expressions to six significant figures, but
this can be changed with the options display-precision or display_round, as described
below.

Several options whose names end with -precision control the precision with which
floating-point numbers are converted to printable values; positive values imply rounding to that
many significant figures, and 0 or other values imply rounding to the shortest decimal string that,
when properly rounded to a machine number, would yield the number in question. If set to integral
values, $display_round and Sprint_round override $display-precision and
$print-precision, respectively, and similarly for the analogous options in Table A-I!. For
example, $display_round n causes the display command to round numeric values to n
places past the decimal point (or to - n places before the decimal point if n < 0). A negative pre­
cision with %f formats as for the print command with print_round negative. Options that
affect printing include those shown in Table A-I!.

484 AMPL REFERENCE MANUAL APPENDIX A

csvdisplay-precision
csvdisplay_round
display_lcol
display_eps
display_max_2d_cols
display-precision
display_round
display_transpose
display_width
expand-precision
expand_round
gutter_width

objective-precision
omit zero_cols
omit_zero_rows
output-precision
print-precision
print_round
print_separator
solution-precision

solution_round

precision for _display and csvdisplay (0 is full precision)
rounding for _display and csvdisplay (' , is full precision)
maximum elements for a I D table to be displayed one element per line
display absolute numeric values < $display_eps as zero
if> 0, maximum data columns in a 2D display

precision for display command when $display_round is not numeric
places past decimal for display command to round
transpose tables if rows - columns < $display _transpose
maximum line length for print and display commands
precision for expand command when $expand_round is not numeric
places past decimal for expand command to round
separation between columns for display command

precision for objective value displayed by solver
if nonzero, omit all-zero columns from displays
if nonzero, omit all-zero rows from displays
precision used in nonlinear expression (. nl) files
precision for print command when Sprint_round is not numeric
places past decimal for print command to round
separator for values printed by print command
precision for solve or solution command when $solution_round

is not numeric
places past decimal for solve or solution command to round

Table A-ll: Options that control printing.

Commands _display and csvdisplay are variants that emit tables in a more regular for­
mat than does display: each line of a table starts with S subscripts and ends with k items, all sep­
arated by commas. _display and csvdisplay differ in the table headers they emit. The
header for _display consists of a line starting with _display and followed by three integers s,
k, and n (the number of table lines that follow the header), each preceded by a space. If
$csvdisplay_header is 1, csvdisplay precedes the data values by a header line listing the
k indices and n expressions by name. If $csvdisplay_header is 0, this header line is omitted.

A.17 Reading data

The read command provides a way of reading unformatted data into AMPL parameters and
other components, with syntax similar to the print command:

read [indexing : J arglist redirection o,,, ;

As with print, the optional indexing causes the read command to be executed separately for
each member of the specified indexing set.

The read command treats its input as an unformatted series of data values, separated by white
space. The arglist is a comma-separated list of arguments that specifies a series of components to
which these values are assigned. As with print, the arglisl is a comma-separated list of args,
which may be any of

...,

SECTION A.18

argo
component-ref
indexing-expr component-ref
indexing-expr (arglist)

MODELING COMMANDS 485

The component-ref must be a reference to a possibly suffixed parameter, variable, or constraint, or
a suffixed problem name; it is meaningless to read a value into a set member or any more general
expression. All indexing must be explicit, for example read {j in DEST} demand [j 1 rather
than read demand. Values are assigned to args in the order that they are read, so later arguments
can use values read earlier in the same read command.

If no redirection is specified, values are read from the current input stream. Thus if the read
command was issued at an AMPL prompt, one types the values at subsequent prompts until all of
the arglist entries have been assigned values. The prompt changes from ampl? back to ampl :
when all the needed input has been read. If instead read is inside a script file that is read with
include or commands, then the input is read from the same file , beginning directly after the ;
that ends the read command.

Most often the input to read lies in a separate file, specified by the optional redirection; its
form is <filename, where filename is a string or parenthesized string expression that identifies a
file. Multiple read's can access the same file, in which case each read starts reading the file
where the previous one left off. To force reading to start at the beginning again, close filename
before re-reading.

If a script is to contain a read command that reads values typed interactively, the source of the
values must be redirected to the standard input; specifying a - (minus sign) as the filename does so.
This is most often used to read interactive responses from a user.

A.18 Modeling commands

A.1B.1 The sol ve command

The solve command has the form

s ol ve redirection op, ;

It causes AMPL to write the current translated problem to temporary files in directory $TMPDIR
(unless the current optimization problem has not changed since a previous wri te command), to
invoke a solver, and to attempt to read optimal primal and dual variables from the solver. If this
succeeds, the optimal variable values become available for printing and other uses. The optional
redirection is for the solver's standard output.

The current value of the solver option determines the solver that is invoked. Appending
, _oopt' to $sol ver gives the name of an option which, if defined with a nonempty string,
determines (by the first letter of the string) the style of temporary problem files written; otherwise,
AMPL uses its generic binary output format (style b). For example, if $solver is supersol,
then $supersol_oopt, if nonempty, determines the output style. The command-line option
'-o? ' (A.23) shows a summary of the currently supported output styles.

AMPL passes two command-line arguments to the solver: the stub of the temporary files, and
the literal string - AMPL. AMPL expects the solver to write dual and primal variable values to file
stub. sol, preceded by commentary that, if appropriate, reports the objective value to

486 AMPL REFERENCE MANUAL APPENDIX A

$obj ecti ve-precision significant digits. In reading the solution, AMPL rounds the primal
variables to $solution_round places past the decimal point if $solution_ round is an
integer, or to $solution-precision significant figures if $solution-precision is a
positive integer; the defaults for these options imply that no rounding is performed.

A variable always has a current value. A variable declaration or data section can specify the
initial value, which is otherwise O. The option reset_ini t ial_gues ses controls the initial
guess conveyed to the solver. If option reset_ini tial_guesses has its default value of 0,
then the current variable values are conveyed as the initial guess. Setting option
reset_initial_guesses to I causes the original initial values to be sent. Thus
$reset_ini tial_guesses affects the starting guess for a second solve command, as well
as for an initial solve command that follows a solution command (described below).

A constraint always has an associated current dual variable value (Lagrange multiplier). The
initial dual value is 0 unless otherwise given in a data section or specified in the constraint's decla­
ration by a : = initial_dual or a default initial_dual phrase. Whether a dual initial guess is
conveyed to solvers is governed by the option dual_initial_guesses. Its default value of
I causes AMPL to pass the current dual variables (if $reset_ini tial_guesses is 0) or the
original initial dual variables to the solver; if $dual_ini tial_guesses is set to 0, AMPL will
omit initial values for the dual variables.

AMPL's presolve phase computes two sets of bounds on variables. The first set reflects any
sharpening of the declared bounds implied by eliminated constraints. The other set incorporates
sharpenings of the first set that presolve deduces from constraints it cannot eliminate from the
problem. The problem has the same solutions with either set of bounds, but solvers that use
active-set strategies (such as the simplex method) may have more trouble with degeneracies with
the sharpened bounds. Solvers often run faster with the first set, but sometimes run faster with the
second. By default, AMPL passes the first set of bounds, but if option var_bounds is 2, AMPL
passes the second set. The . lb and . ub suffixes for variables always reflect the current setting of
$var_bounds; .lbl and. ubl are for the first set, .lb2 and. ub2 for the second set.

If the output style is m, AMPL writes a conventional MPS file, and the value of option
integer_markers determines whether integer variables are indicated in the MPS file by
, INTORG' and 'INTEND' 'MARKER' lines. By default, $ integer_markers is I, causing
these lines to be written; specifying

option integer_markers 0;

causes AMPL to omit the 'MARKER' lines.
The option relax_integrali ty causes integer and binary attributes of variables to

be ignored in solve and write commands. It is also possible to control this by setting the
. relax suffix of a variable (A.ll).

By default, values of suffixes of type IN or INOUT (A.I1.I) are sent to the solver, and updated
values for suffixes of type OUT or INOUT are obtained from the solver, but the sending and receiv­
ing of suffix values can be controlled by setting option send_suffixes suitably: if
$send_suffixes is 1 or 3, suffix values are sent to the solver; and if $send_suffixes is 2
or 3, then updated suffix values are requested from the solver.

Whether . sstatus values (A.Il.2) are sent to the solver is determined by options
send_suffixes and send_statuses; setting $send_statuses to 0 causes. sstatus
values not to be sent when $send_suffixes permits sending other suffixes.

Most solvers supply a value for AMPL's built-in symbolic parameter solve_message.
AMPL prints the updated solve_message by default, but setting option solver _msg to 0

4

SECTION A.18 MODELING COMMANDS 487

suppresses this printing. Most solvers also supply a numeric return code sol ve_resul t_nurn,
which has a corresponding symbolic value sol ve_resul t that is derived from
solve_result_nurn and $solve_result_table analogously to symbolic suffix values
(A.Il.l).

By default AMPL permutes variables and constraints so solvers see the nonlinear ones first.
Some solvers require this, but with other solvers, occasionally it is useful to suppress these permu­
tations by setting option nlJ)errnute suitably. It is the sum of

1 to permute constraints
2 to permute variables
4 to permute objectives

and its default value is 3.
When complementarity constraints are present, the system of constraints is considered square

if the number of "inequality complements inequality" constraints plus the number of equations
equals the number of variables. Some complementarity solvers require square systems, so by
default AMPL warns about nonsquare systems. This can be changed by adjusting option
cornpl_warn, which is the sum of

1 warn about nonsquare complementarity systems
2 warn and regard nonsquare complementarity systems as infeasible
4 disregard explicit matchings of variables to equations

A.1B.2 The solution command

The solution command has the form

solution filename ;

This causes AMPL to read primal and dual variable values from filename, as though written by a
solver during execution of a solve command.

A.1B.3 The write command

The wr i t e command has the form

write outopt-valueopt ;

in which the optional outopt-value must adhere to the quoting rules for afilename. If outopt-value
is present, wri te sets $outopt to outopt-value. Whether or not outopt-value is present, wri te
then writes the translated problem as $outopt dictates: the first letter of $outopt gives the out­
put style (A.18.1), and the rest is used as a "stub" to form the names of the files that are created.
For example, if $outopt is "b/tmp/diet", the write command will create file
/trnp/diet .nl, and if $auxfiles so dictates (A. 18.4), auxiliary files /trnp/diet. row,
/tmp/diet. col, and so forth. The solve command's rules for initial guesses, bounds, suf­
fixes, etc., apply.

A.1BA Auxiliary files

The solve and write commands may cause AMPL to write auxiliary files. For the solve
command, appending _auxfiles to $solver gives the name of an option that governs the aux­
iliary fi les written; for the write command, $auxfiles plays this role. The auxiliary files

488 AMPL REFERENCE MANUAL APPENDIX A

Key

a
c
e
f
p

r

s
u

Fi le

stub. adj
stub. col
stub. env
stub. fix
stub. spc
stub. row
stub . slc
stub. unv

Description

constant added to objective values
AMPL names of variables the solver sees
environment (written by a solve command)
variables eliminated from the problem because their values are known
MINOS "specs" file for output style m
AMPL names of constraints and objectives the solver sees
constraints eliminated from the problem
unused variables

Table A-12: Auxiliary files.

shown in Table A-12 are written only if the governing option's value contains the indicated key let­
ter. If a key letter is capitalized, the corresponding auxi liary file is written only if the problem is
nonlinear.

A.1B.5 Changing a model: delete, purge, redeclare

The command

delete name/ist

deletes each name in namelisl, restoring any previous meaning name had, provided no other enti­
ties depend on name, i.e., if xref name (A. 19.2) reports no dependents.

The command

purge namelist

deletes each name and all its direct and indirect dependents.
The statement

redeclare entity-declaration ;

replaces any existing declaration of the specified entity with the given one, provided either that the
entity has no dependents, or that the new declaration does not change the character of the entity (its
kind, such as set or param, and its number of subscripts). A redeclare can be applied to
statements beginning with any of the following:

arc
check

function
maximize

minimize
node

param
problem

set
subject to

Redec1arations that would cause circular dependencies are rejected.
The command

delete check n;

deletes the nth check, while

redeclare check n indexing 01"

redeclares the nth check.

suffix
table

var

SECTION A.18 MODELING COMMANDS 489

A.1B.6 The drop, rest ore and ob ject i v e commands

These commands have the forms

drop indexing 01" constr- or-obj-name redirection op, ;

res t o re indexing 01" constr-or-obj-name redirection op,

obj ecti ve objective-name redirection op, ;

where constr-or-obj-name is the possibly subscripted name of a constraint or objective. The
drop command instructs AMPL not to transmit the indicated entity (in wri te and solve com­
mands); the restore command cancels the effect of a corresponding drop command. If
constr-or-obj-name is not subscripted but is the name of an indexed collection of constraints or
objectives, drop and res tore affect all members of the collection.

The obj ecti ve command arranges that only the named objective is passed to the solver.
Issuing an obj ecti ve command is equivalent to dropping all objectives, then restoring the
named objective.

A.1B.7 The fix and unfix commands

These commands have the forms

fix indexing op, varname [: = expr 1 redirection op, ;

unfix indexing op, varname [: = expr 1 redirection op,

where varname is the possibly subscripted name of a variable. The fix command instructs AMPL
to treat the indicated variable (in wri te and solve commands) as though fixed at its current
value, i.e., as a constant; the unfix command cancels the effect of a corresponding fix com­
mand. If varname is not subscripted but is the name of an indexed collection of variables, fix and
unf ix affect all members of the collection.

An optional : = expr may appear before the terminating semicolon, in which case the expres­
sion is assigned to the variable being fixed or unfixed, as though assigned by let (A.IS.9).

A.1B.B Named problems and environments

The problem declaration/command has three functions : declaring a new problem, making a
previously declared problem current, and printing the name of the current problem (in the form of a
problem command establishing the current problem).

p r oblem name indexing op, environop, suJ!ix-initializations op, : itemlist ;

declares a new problem and specifies the variables, constraints, and objectives that are in it. Other
variables appearing in the specified constraints and objectives are fixed (but can be unfixed by the
unf ix command). The new problem becomes the current problem. Initially the current problem
is Ini tial. The itemlist in a problem declaration is a comma-separated list of possibly sub­
scripted names of variables, constraints, and objectives, each optionally preceded by indexing.
Suffix-initializations are analogous to those in constraint declarations, except that they appear
before the colon.

The command

problem name

makes name (a previously declared problem) current, and

490 AMPL REFERENCE MANUAL APPENDIX A

problem redireclionoPI ;

prints the current problem name. Drop/restore and fix/unfix commands apply only to the current
problem. Variable values, like parameters, are global; just the fixed/unfixed status of a variable
depends on the problem. Similarly, the droplrestore status of a constraint depends on the problem
(as do reduced costs). The current problem does not restrict the let command (A.18.9).

When a problem is declared, it can optionally specify an environment associated with the prob­
lem: the environ phrase has the form

environ envllame

to specify that the problem's initial environment is envname, which must bear a subscript if the
environment is indexed. Otherwise a new unindexed environment with the same name as the prob­
lem is created, and it inherits the then current environment (set of option values).

In option commands, unadorned (conventional) option names refer to options in the current
environment, and the notation envname . opname refers to $opname in environment envname. The
declaration

environ envnanle indexing opt ;

declares environment envname (or indexed set of environments, if indexing is present). If there is
no indexing, envname becomes the current environment for the current problem.

For previously declared environments, the command

environ enVllalne ;

makes the indicated environment current, and the command

environ indexing opI envname : = envname, ;

copies environment envname I to envname, where envname and envname, must be subscripted if
declared with indexings. The initial environment is called Ini tial.

A.1B.9 Modifying data: reset, update, let

The reset command has several forms.

reset ;

causes AMPL to forget all model declarations and data and to close all files opened by redirection,
while retaining the current option settings.

reset options ;

causes AMPL to restore all options to their initial state. It ignores the current $OPTIONS_IN and
$OPTIONS_INOUT; the files they name can be included manually, if desired.

reset data ;

causes AMPL to forget all assignments read in data mode and allows reading data for a different
problem instance.

reset data name-List ;

causes AMPL to forget any data read for the entities in name-list; commas between names are
optional.

SECTION A.19 EXAMINING MODELS 491

A reset data command forces recomputation of all = expressions, and reset data p,
even when p is declared with a = expression, forces recomputation of random functions in the =
expression (and of any user-defined functions in the expression).

Problems (including the current one) are adjusted when their indexing expressions change,
except that previous explicit drop/restore and fix/unfix commands remain in effect. The reset
problem command cancels this treatment of previous explicit drop, restore, fix, and unfix com­
mands, and brings the problem to its declared drop/fix state. This command has the forms

reset problem ; applies to the current probLem
reset problem probname [subscript lop, ;

If the latter form mentions the current problem, it has the same effect as the first form. reset
problem does not affect the problem's environment.

update data ;

permits all data to be updated once in subsequent data sections: current values may be overwritten,
but no values are discarded.

update data name-list

grants update permission only to the entities in name-list.
The let command

let indexing oPI name : = expr ;

changes the value of the possibly indexed set, parameter or variable name to the value of the
expression. If name is a set or parameter, its declaration must not specify a = phrase.

The command

1 e t indexing Opl name. suffix : = expr ;

assigns the corresponding suffix value, if permitted. Some suffix values are derived and cannot be
assigned; attempting to do so causes an error message.

A.19 Examining models

A.19.1 The show command

The command

show namelistoPI redirection op, ;

lists all model entities if namelist is not present. It shows each name's declaration if it has one, or
else lists model entities of the kind indicated by the first letters of each name:

ch_ == > checks c. ==> constraints
e_ ==> environments L ==> functions
o. ==> objectives
pro ==> problems p. ==> parameters
suo ==> suffixes s. ==> sets
t. ==> tables V. ==> variables

492 AMPL REFERENCE MANUAL APPENDIX A

A.19.2 The xref command

The command xref shows entities that depend directly or indirectly on specified entities:

xref itemList redireclion o", ;

A.19.3 The expand command

The expand command prints generated constraints and objectives:

expand indexing 0", item list redirection o", ;

The item list can assume the same forms allowed in problem declarations. If it is empty, all non­
dropped constraints and objectives are expanded. The variant

solexpand indexing ol" item/ist redirection op, ;

shows how constraints and objectives appear to the solver. It omits constraints and variables elimi­
nated by presolve unless they are explicitly specified in the itemlist.

Both the expand and solexpand commands permit variables to appear in the itemlist; for
each, the commands show the linear coefficients of the variable in the relevant (non-dropped and,
for solexpand, not eliminated by presolve) constraints and objectives, and indicates" + non-
1 inear" when the variable also participates nonlinearly in a constraint or objective.

The options expand-precision and expand_round control printing of numbers by
expand. By default they are printed to 6 significant figures.

A.19.4 Generic names

AMPL provides a number of generic names that can be used to access model entities without
using model-specific names. Some of these names are described in Table A-13 ; the complete cur­
rent list is on the AMPL web site.

These synonyms and sets can be used in display and other commands. They present the
modeler's view (before presolve). Similar automatically updated entities with _ changed to _s

(i.e., _snvars, _svarnames, _svar, etc.) give the solver's view, i.e., the view after presolve.
There are exceptions, however, due to the way complementarity constraints are handled (A.9.1):
none of _cvar, _scconname, or _snccons exists.

A.19.S The check command

The command

check;

causes all check statements to be evaluated.

A.20 Scripts and control flow statements

AMPL provides statements similar to control flow statements in conventional programming lan­
guages, which make it possible to write a program of statements to be executed automatically.

SECTION A.20

_nvars
_ncons
_nobjs
_varname{l .. _nvars}
_conname{l .. _ncons}
_objname{l .. _nobjs}

_var{ 1 .. _nvars}
_con {I .. _ncons}
_obj {I .. _nobj s}

_PARS
_SETS

_VARS
_CONS

_OBJS

PROBS
_ENVS

_FUNCS

_nccons
_cconname{l .. _nccons}
_scvar{l .. _sncons}

snbvars
snccons

_snivars
_snlcc
_snlnc

snnlcc
snnlcons
snnlnc

_snnlobjs
_snnlv
_snzcons
_snzobjs

SCRIPTS AND CONTROL FLOW STATEMENTS

number of variables in current model
number of constraints in current model
number of objectives in current model
names of variables in current model
names of constraints in current model
names of objectives in current model

synonyms for variables in current model
synonyms for constraints in current model
synonyms for objectives in current model

set of all declared parameter names
set of all declared set names
set of all declared variable names
set of all declared constraint names
set of all declared objective names
set of all declared problem names
set of all declared environment names
set of all declared user-defined functions

number of complementarity constraints before presolve
names of complementarity constraints
if _scvar [i 1 > 0, _svar [scvar [i 1 1 complements _scon [i 1
number of binary (0, I) variables
number of complementarity constraints after presolve
number of general integer variables (excluding binaries)
number of linear complementarity constraints
number of linear network constraints
number of nonlinear compl. constrs.: _snccons= _snlcc+ _snnlcc
number of nonlinear constraints
number of nonlinear network constraints
number of nonlinear objectives
number of nonlinear variables
number of constraint Jacobian matrix non zeros
number of objective gradient nonzeros

Table A-13: Generic synonyms and sets.

A.20.1 The for, repeat and if-then-else statements

493

Several commands permit conditional execution of and looping over lists of AMPL commands:

if lexpr then cmd
if lexpr then cmd else cmd
for loopname opt indexing cmd
repeat loopname opt opt-while cmds} opt-while
break loopname opt ;

continue Loopname opt ;

In these statements, cmd is either a single, possibly empty, command that ends with a semicolon or
a sequence of zero or more commands enclosed in braces. lexpr is a logical expression. loopname
is an optional loop name (which must be unbound before the syntactic start of the loop), which
goes out of scope after syntactic end of the loop. If present, an opt-while condition has one of the
forms

494 AMPL REFERENCE MANUAL

while lexpr
until lexpr

APPENDIX A

If /oopname is specified, break and continue apply to the named enclosing loop; otherwise
they apply to the immediately enclosing loop. A break terminates the loop, and continue
causes its next iteration to begin (if permitted by the optional initial and final opt-while clauses of a
repeat loop, or by the indexing of a for loop). Dummy indexes from indexing may appear in
cmd in a for loop. The entire index set of a for loop is instantiated before starting execution of
the loop, so the set of dummy indices for which the loop body is executed will be unaffected by
assignments in the loop body.

Variants of break,

break commands
break all ;

terminate, respectively, the current commands command or all commands commands, if any, and
otherwise act as a qui t command.

Loops and if-then-else structures are treasured up until syntactically complete. Because else
clauses are optional, AMPL must look ahead one token to check for their presence. At the outer­
most level, one must thus issue a null command (just a semicolon) or some other command or dec­
laration to execute an outermost "else-less" if statement. (In this regard, end-of-file implies an
implicit null statement.)

A semicolon is taken to appear at the end of command files that end with a compound com­
mand with optional final parts missing:

repeat
if ... then

no final condition or semicolon
no else clause

AMPL has three pairs of prompts whose text can be changed through option settings. The
default settings are:

option cmdpromptl '%s ampl: ';
option cmdprompt2 '%s ampl? ';
option datapromptl 'ampl data: '.
option dataprompt2 'ampl data? '.
option promptl 'ampl: '.
option prompt2 'ampl? ';

promptl appears when a new statement is expected, and prompt2 when the previous input line
is not yet a complete command (for example, if the semicolon at the end is missing).

In data mode, the values of datapromptl and dataprompt2 are used instead. When a
new line is begun in the middle of an if, for or repeat statement, the values of cmdpromptl
and cmdprompt2 are used, with %s replaced by the appropriate command name; for example:

ampl: for {t in time} {
for{ ... } { ? ampl: if t <= 6
for{ ... } { ? ampl? then let cmin[tj := 3;
if ... then { ... } ? ampl: else let cmin[tj := 4;
for{ ... } { ? ampl: };
ampl:

SECTION A.21 COMPUTATIONAL ENVIRONMENT 495

A.20.2 Stepping through commands

It is possible to step through commands in an AMPL script one command at a time. Single-step
mode is enabled by

option single_step n ;

where n is a positive integer; it specifies that if the insert level is at most n, AMPL should behave as
though commands -; were inserted before each command: it should read commands from the
standard input until end or other end of file signal (control-D on Unix, control-Z on Windows).
Some special commands may appear in this mode:

step nopt

skip nop,

next nopt

cont

execute the next command, or n commands
skip the next command, or n commands
if the next command is an if-then-else or looping command, execute the entire
compound command, or n commands, before stopping again
(unless the compound command itself specifies conunands -;)
execute until the end of all currently nested compound commands
at the current insert level

A.21 Computational environment

AMPL runs in an operating system environment, most often as a standalone program, but some­
times behind the scenes in a graphical user interface or a larger system. Its behavior is influenced
by values from the external environment, and it can set values that become part of that environ­
ment. The parameter -pid gives the process lD of the AMPL process (a number unique among
processes running on the system).

A.21.1 The shell command

The shell command provides a temporary escape to the operating system, if such is permit­
ted, to run commands.

shell 'command-line' redirectionop, ;

shell redirectionop, ;

The first version runs command-line, which is contained in a literal string. In the second version,
AMPL invokes an operating-system shell, and control returns to AMPL when that shell terminates.
Before invoking the shell, AMPL writes a list of current options and their values to the file (if any)
named by option shell_env_file. The name of the shell program is determined by option
SHELL.

A.21.2 The cd command

The cd command reports or changes AMPL's working directory.

cd ;
cd new-directory ;

The parameter _cd is set to this value.

496 AMPL REFERENCE MANUAL

_ampl_elapsed_time
_ampl_system_time
_ampl_user_time
_ampl_time
_shell_elapsed_time
_shell_system_time

shell_user_time
shell time

_solve_elapsed_time
_solve_system_time
_solve_user_time
_solve_time
_total_shell_elapsed_time
_total_shell_system_time

total_shell_user_time
total shell time

_total_solve_elapsed_time
_total_solve_system_time
total solve_user_time
total solve_time

elapsed seconds since the start of the AMPL process
system CPU seconds used by the AMPL process itself
user CPU seconds used by the AMPL process itself
_ampl_system_time + _ampl_user_time
elapsed seconds for most recent shell command
system CPU seconds used by most recent shell command
user CPU seconds used by most recent shell command
_shell_system_time + _shell_user_time
elapsed seconds for most recent solve command
system CPU seconds used by most recent solve command
user CPU seconds used by most recent solve command
_solve_system_time + _solve_user_time
elapsed seconds used by all shell commands
system CPU seconds used by all shell commands

APPENDIX A

user CPU seconds used by all shell commands
_total_shell_system_time+_total_shell_user_time
elapsed seconds used by all solve commands
system CPU seconds used by all solve commands
user CPU seconds used by all so lve commands
_total_solve_system_time+_total_solve_user_time

Table A-14: Built-in timing parameters.

A.21.3 The quit, exit and end commands

The qui t command causes AMPL to stop without writing any files implied by $outopt, and
the end command causes AMPL to behave as though it has reached the end of the current input
file, without reverting to model mode. At the top level of command interpretation, either command
terminates an AMPL session. The command exi t is a synonym for qui t, but it can return a sta­
tus to the surrounding environment:

exi t expression opl ;

A.21.4 Built-in timing parameters

AMPL has built-in parameters that record various CPU and elapsed times, as shown in Table
A-14. Most current operating systems keep separate track of two kinds of CPU time: system time
spent by the operating time on behalf of a process, e.g., for reading and writing files, and user time
spent by the process itself outside of the operating system. Usually the system time is much
smaller than the user time; when not, finding out why not sometimes suggests ways to improve
performance. Because seeing separate system and user times can be helpful when performance
seems poor, AMPL provides built-in parameters for both sorts of times, as well as for their sums.
AMPL runs both solvers and shell commands as separate processes, so it provides separate parame­
ters to record the times taken by each sort of process, as well as for the AMPL process itself.

A.21.S Logging

If option log_file is a non empty string, it is taken as the name of a file to which AMPL
copies everything it reads from the standard input. If option log_model is 1, then commands and

""

SECTION A.22 IMPORTED FUNCTIONS 497

decl.arations read from other files are also copied to the log file, and if log_data is 1, then data
sectIOns read from other files are copied to the log file as well.

A.22 Imported functions

Sometimes it is convenient to express models with the help of functions that are not built into
AMPL. AMPL has facilities for importing functions and optionally checking the consistency of
their argument lists. Note: The practical details of using imported functions are highly system­
dependent. This section is concerned only with syntax; specific information will be found in
system-specific documentation, e.g., on the AMPL web site.

An imported function may need to be evaluated to translate the problem; for instance, if it plays
a role in determining the contents of a set, AMPL must be able to evaluate the function. In this case
the function must be linked, perhaps dynamically, with AMPL. On the other hand, if an imported
function's only role is in computing the value of a constraint or objective, AMPL never needs to
evaluate the function and can simply pass references to it on to a (nonlinear) solver.

Imported functions must be declared in a function declaration before they are referenced.
This statement has the form

function name aliasop, (domain-spec) op' typeol" [pipe litseq op, [format fmt 1 J

in which name is the name of the function, and domain-spec amounts to a function prototype:

domain-spec:
domain-list

nonempty-domain-list

A domain-list is a (possibly empty, comma-separated) list of set expressions, asterisks (*'s), direc­
tion words (IN, OUT, or INOUT), direction words followed by set expressions, and iterated­
domain-lists:

iterated-domain-list:
indexing (nonempty domain-list

An iterated-domain-list is equivalent to one repetition of its domain-list for each member in the
indexing set, and the domain of dummy variables appearing in the indexing extends over that
domain-list. The direction words indicate which way information flows: into the function (IN), out
of the function (OUT), or both, with IN the default. In a function invocation, OUT arguments are
assigned values specified by the function at the end of the command invoking the function.

Omitting the optional (domain-spec) in the function declaration is the same as specifying
(...). The function must be invoked with at least or exactly as many arguments as there are sets
in the domain-spec (after iterated-domain-lists have been expanded), depending on whether or not
the domain-spec ends with AMPL checks that each argument corresponding to a set in the
domain-list lies in that set. A * by itself in a domain-list signifies no domain checking for the cor­
responding argument.

A function whose return value is not of interest can be invoked with a call command:

call funcname (arglist);

Type can be symbolic or random or both; symbolic means the function returns a literal
(string) value rather than a numeric value, and random indicates that the "function" may return

498 AMPL REFERENCE MANUAL APPENDIX A

different values for the same arguments, i.e., AMPL should assume that each invocation of the func­
tion returns a different value.

The commands

load libnames opr

unload libnames opr

reload libnames opr

load, unload, or reload shared libraries (from which functions and table handlers are imported); lib­
names is a comma-separated list of library names. When at least one libname is mentioned in the
load and unload commands, $AMPLFUNC is modified to reflect the full pathnames of the cur­
rently loaded libraries. The reload command first unloads its arguments, then loads them. This
can change the order of loaded libraries and affect the visibility of imported functions: the first
name wins. With no arguments, load loads all the libraries currently in $AMPLFUNC; unload
unloads all currently loaded libraries, and reload reloads them (which is useful if some have
been recompiled).

The keyword pipe indicates that this is a pipe junction, which means AMPL should start a sep­
arate process for evaluating the function. Each time a function value is needed, AMPL writes a line
of arguments to the function process, then reads a line containing the function value from the pro­
cess. (Of course, this is only possible on systems that allow mUltiple processes.) A litseq is a
sequence of one or more adjacent literals or parenthesized string expressions, which AMPL con­
catenates and passes to the operating system (i.e., to $SHELL) as the description of the process to
be invoked. In the absence of a litseq, AMPL passes a single literal, whose value is the name of the
function. If the optional format fint is present, fint must be a format, suitable for printf, that
tells AMPL how to format each line it sends to the function process. If no fint is specified, AMPL
uses spaces to separate the arguments it passes to the pipe function.

For example:

ampl: function mean2 pipe "awk '{print ($1+$2)12}''';
ampl: display mean2(l,2) + 1;
mean2(1, 2) + 1 = 2.5

The function mean2 is expected (by default) to return numeric values; AMPL will complain if it
returns a string that does not represent a number.

The following functions are symbolic, to illustrate formatting and the passing of arguments.

ampl: function f1 symbolic pipe "awk ,,, , {printf nx%s \n n, $1}' n,,,;
ampl: function gl symbolic pipe 'awk "(printf nXX%s\nn, $1}"';
ampl: function cat symbolic pipe format n»%s«\nn;

ampl: display f1(213);
fl(2/3) = xO.66666666666666667

ampl: display gl('abc');
gl('abc') = XXabc

ampl: display cat ('some words');
cat('some words') = "»'some words'«"

The declaration of fl specifies a litseq of 3 literals, while gl specifies one literal; cat, having an
empty litseq, is treated as though its litseq were' cat'. The literals in each litseq are stripped of
the quotes that enclose them, have one of each adjacent pair of these quotes removed, and have
(backs/ash, newline) pairs changed to a single newline character; the results are concatenated to

SECTION A.23 AMPL INVOCATION 499

produce the string passed to the operating system as the description of the process to be started.
Thus for the four pipe functions above, the system sees the commands

awk '{print ($1+$2) / 2)'
awk '{printf "x%s\n", $l}'
awk '{printf "XX%s \ n", $l}'
cat

respectively. Function cat illustrates the optional format fmt phrase. If fmt results in a string
that does not end in a newline, AMPL appends a newline character. If no fmt is given, each
numeric argument is converted to the shortest decimal string that rounds to the argument value.

Caution: The line returned by a pipe function must be a complete line, i.e., must end with a
newline character, and the pipe function process must flush its buffers to prevent deadlock. (Pipe
functions do not work with most standard Unix programs, because they don't flush output at the
end of each line.)

Imported functions may be invoked with conventional functional notation, as illustrated above.
In addition, iterated arguments are allowed. More precisely, if f is an imported function, an invo­
cation of f has the form f (arglist) in which arglist is as for the print and printf commands
- a possibly empty, comma-separated list of expressions and iterated-arglists:

ampl: function mean pipe 'awk "(x = 0\
for(i = 1; i <= NF; i++) x += $i\
printf "%.17g\n", x/NF}"';

ampl: display mean({i in 1 .. 100} i);
mean({i in 1 .. 100} (i)) = 50.5

ampl: display mean({i in 1 .. 50}(i,i+50));
mean ({i in 1 .. 50} (i, i + 50)) = 50.5

ampl: display mean({i in 0 .. 90 by 10}({j in 1 .. 10} i + j));
mean({i in 0 .. 90 by 10} ({j in 1 .. 10) (i + j))) = 50.5

The command

reset function name op1 ;

closes all pipe functions, causing them to be restarted if invoked again. If an function is named
explicitly, only that function is closed.

A.23 AMPL invocation

AMPL is most often invoked as a separate command in some operating system environment.
When AMPL begins execution, the declarations, commands, and data sections described above
(A.14) can be entered interactively. Depending on the operating system where AMPL is run, the
invocation may be accompanied by one or more command-line arguments that set various proper­
ties and options and specify files to be read. These can be examined by typing the command

ampl '-?'

The initialization of some options may be determined by command-line arguments. The '-?'

argument produces a listing of these options and their command-line equivalents.
Sometimes it is convenient to have option settings remembered across AMPL sessions. Under

operating systems from which AMPL can inherit environment variables as described above, the

500 AMPL REFERENCE MANUAL APPENDIX A

options OPTIONS_IN, OPTIONS_INOUT, and OPTIONS_OUT provide one way to do this. If
$OPTIONS_IN is nonempty in the inherited environment, it names a file (meant to contain
option commands) that AMPL reads before processing command-line arguments or entering its
command environment. OPTIONS_INOUT is similar to OPTIONS_IN; AMPL reads file
$OPTIONS_INOUT (if nonempty) after $OPTIONS_IN. At the end of execution, if
$OPTIONS_INOUT is nonempty, AMPL writes the current option settings to file
$OPTIONS_INOUT. If nonempty, $OPTIONS_OUT is treated like $OPTIONS_INOUT at the
end of execution.

The command-line argument -v prints the version of the AMPL command being used; this is
also available as option version.

The command-line option -R (recognized only as the first command-line option and not men­
tioned in the -? listing of options) puts AMPL into a restricted "server mode," in which it declines
to execute cd and shell commands, forbids changes to options TMPDIR, ampl_include, and
PATH (or the search path for the operating system being used), disallows pipe functions, and
restricts names in option solver and file redirections to be alphanumeric (so they can only
write to the current directory, which, on Unix systems at least, cannot be changed). By invoking
AMPL from a shell script that suitably adjusts current directory and environment variables before it
invokes ampl -R, one can control the directory in which AMPL operates and the initial environ­
ment that it sees.

On systems where imported function libraries can be used, the command-line option - i libs
specifies libraries of imported functions (A.22) and table handlers (A.l3) that AMPL should load
initially. If -ilibs does not appear, AMPL assumes -i$AMPLFUNC. Here libs is a string, perhaps
extending over several lines, with the name of one library or directory per line. For a directory,
AMPL looks for library amplfunc. dll in that directory. If libs is empty and amplfunc. dll

appears in the current directory, AMPL loads amplfunc. dll initially. If library
amp 1 tabl . dll is installed in what the operating system considers to be a standard place, AMPL
also tries to load this library, which can provide "standard" database handlers and functions.

q

.. see arithmetic progress ion
; see semicolon statement terminator

" I ••• I see quotes
> > > < < < see error messages
#, /* ... * / comment 10,453
", * *, exponentiation II 1, 456
+, - in set data tab le 156--157.475
>, » output redirection 220,239,251. 273,

48 1
, = attribute 13 1, 398, 466, 468
= allribute see also defined variab les
= attribute 74, 118- 120,211, 462. 465
$ column name abbreviat ion 230
-columnnameoperator 177, 184-185,188,

190,478
-? command~l i nc .. trgument 499-500
< ... > data specification 196-197,479
" default symbol 120, 153, 156-157,228,

477
(), empty set 74, 146, 162, 262, 264, 341,

456-457,462
'* in option command 205,481
< input redirection 163,165,481. 485
« ... », pieccwi se~linear expression 367.

369.376,380-382,460
% printf conversion character 239, 482
-> read/write status 189, 193,478
<- read/write status 175, 177, 182. 193
<-> read/write stalUs 193.478
- standard input filename 165.283,485,495
& string concatenation operator 270. 459
: = versus = initial values 211

abs function 11 3, 140, 380, 458
Access databasc 170, 174-175, 178, 192, 194
Access filename extension, . mdb 199-200
Ackermann 's functi on 126
acos function 11 3. 458

acosh function 113. 458
active~set methods 279,486
activity model 43
advertising model 21, 450
aggregated model 55.88
Ahuja, Ravindra K. 347
airline crew scheduling 362
Alatorre. Jaime 20

Index

algebraic modeling language xvii. xxi
alias function 458
amp 1

command·line 203.499
data prompt 144

ampl , prompt 5. 165,204.485
ampl? prompt 165, 204. 485
AMPL web page see www.ampl.com
ampl_include option 479
_ampl_time parameter 251,496
AMPLFUNC option 498, 500
and operalOr 114. 456
arc

declaration 334-341, 353, 467
loss along 326

argument see comllland~ line argument
arithmetic

expression 61, 76, 111-114, 456
functions. table of 11 3, 458
logical. set operators, table of 456
operators 456
operators. table of 11 2
progression 59. 75. 457
reduclion operators 456
to logical conversion 123, 457

arity function 462,464
Aronofsky, Julius S. 20
array see one-dimensional set, parameter
ASCII filename extension .. tab 201. 477
ASCII set 87.464

502 INDEX

as in function 113.458
asinh function 113.458
assignable expression 185
assignmenl model 49-51. 53,135,330--333,

348
. astatus suffix 294-295
astatus_table option 294
atan. atan2 function ID,458
atanh function 113,458
attribute

,= 131,398,466,468
= 74,1 18-120,211,462,465
binary 117, 122, 131,441,465-466
circular 83,98. 146,463
circular by 86,463
coeff 356.362.466
cover 361,467
default 74. 119- 120, 160--161,462.

465-466,468,476-477
dimen 93. 96, 462
from 334,336,338.341,353.361,363,

467
integer 36, 11 6. 131, 438. 441 , 465-466
obj 334, 339. 34 1. 356, 363. 466
ordered 83.98. 146.463
ordered by 86, 463
ordered. inheritance of 86. 463
pipe 498
random 497
reversed 86. 463
suffix 466,469-470,489
synUoolic 123,465,476.497
to 334.336.338.34 1.353,36 1,363,467
verbose 200

auxiliary files. table of 488

bad_subscripts option 253
basic solulion 287. 289-290, 292, 298, 473
Beale, E. M. L. xxi
Benders decomposition 30 1
Bentley, Jon L. xxi
Bertsekas. Dimitri P. 347
Beta function 459
bimatrix game 426, 433
binary filename extension, . bi t 201,477
binary attribute 117. 122. 131,441,

465-466
bipartite graph 330
Bisschop, Johannes xxi
. bi t binary filename extension 201,477
Bixby. Robert E. xxi
blending

model 37-39

nonlinearity in 38
. body see constraint body
bounded variable complementarity 423-424
bounds on variables 10, 14, 17, 32, 35, 130,

139,241-242,276.279,466,470-47 1,
486

Braess's paradox 414
break statement 266,493
breakpoint see piecewise-linear expres~ion
built-in function see function
built-in

lable handler 174, 20 I
timing parameters, tab le of 496

by clause 75,457

card function 79,98,462,464
cardinality restrictions 445
Cartesian product see cross product
caterer problem 347, 350
Cauchy function 459
cd command 495
_cd current directory 479,495,500
ceil func tion 212.237.458
char function 459
check statement 46,56.117.465
Cherry, Lorinda L. xxi
Chvatal, VaSek 20,317
circular

attribute 83, 98, 146, 463
by attribute 86. 463

close command 25 1,48 1,485
cmdpromptl, cmdprompt2 opt ion 494
coeff attribu te 356.362.466
collections of

data columns. indexed 196
sets, indexed 100-- 104, 161- 162
tables, indexed 193

column
key 170,172.175,178,180, 183. 193
name, valid 17 1- 172.177, 185

column name
abbreviation, $ 230
operator, - 177,184--185.188,190,478

comma separator in data 144
command see also statement
command mode see model mode
command

language 479-496
null 494

command
* in option 205,481
cd 495
close 251,48 1,485

cant 495
csvdisplay 484
data II. 143- 144.206.2 14.256,473,

479
delete 213,488
delete check 488
display 12,58,67,8 1,104, 124,

219-238,482-484
drop 214.489
end 204,496
environ 490
exit 496
expand 13,247-248,492
fix 215.489
include 255-256,479
let 36.210-212,405,491
load 402.477.498
model 11 ,206,2 14,256,479
next 269,495
objective 135-136,206,489
option 204,481
print 238-239,482-484
printf 124,239-240.26 1,482-484
problem 301,307,311,489
purge 213,488
quit 5.204,214,496
read 163, 484
read table 175.177.180,477
redec lare 213, 488
redec lare check 488
reload 498
remove 482
reset 17,214,481,490
reset da ta 122. 209-210, 490
reset options 205,490
reset problem 491
restore 214,489
shell 214,495
show 246, 491
skip 270,495
solexpand 248,492
solution 487
solve 206-207,485-486
solve problem 3 15
step 268, 495
suffix 296.299,302
unfix 215.489
unload 498
update data 209.491
write 487
write table 178,186,477
xref 211 , 247. 492

command-line
ampl 203. 499

argument, -? 499-500
argument, - i 500
argument, -0 485
argument, - R 500
argument, - s 458
argument, -v 500

commands

INDEX 503

Slepping Ihrough 268-270, 495
lable of 480

commands statement 256,479
comment, #. / *" ,* I 10,453
comments in data 47,453,473
comparison operators see relational operators
campI_warn option 487
complementarity

bounded variable 423-424
eonSirain! 427-428,469,471,487
constraint, suffixes for 428, 431, 471
generic names and 431
presolve and 429
problem 420-423

complements operator 469
computed parameters 118-121
concatenation see string concatenation

operator
concave functions 383. 393
conditional declaration see if indexing

expression
conditional expression !iee logical expression.

if-then-else
constant expression 455, 457, 461
constraint

body 35.242,280.470
eomplcmenlarity 427-428,469,471,487
declar,'ion xv. 2, 5. 9, 16, 137- 139.340.

461,468-469
defining 386,399.467
double-inequality 32, 139.470
either/or 59
equalilY 21, 30. 130
nonlinear 59,140,492
redundanl 276-278

constraint declaration, to_come 356,362.
468

cant command 495
continuation see line continuation
continue statement 266,493
continuity assumption 38,39 1
control flow statements 492
conversion from

arithmetic to logical 123, 457
number to string 27 I . 459

conversion characters, table ofprintf 483
convex functions 383. 393. 396

504 INDEX

cos function 113, 458
cost funclions, nonlinear 394
Cottle, Richard W. 432
Coullard, Collette xxi, 136, 141 , 166,287
cover attribute 361. 467
covering problem, sel 362, 364
CPLEX solver 36, 50, 208, 281
Cramer, Gary I. xxi
credit scoring model 386
crew scheduling, airline 362
cross product 97-98, 456
cross operator 98, 456
csvdisplay command 484
ctime function 458
cut. mod, file 306
cutting-stock problem 41, 305, 364,452

Dantzig, George B. xxi, 39, 52
. dat file .'iee file
data reset see reset data command
data value, omitted see default symbol
data

columns, indexed collections of 196
comma separator in 144
comments in 47,453,473
for indexed collection 101. 161
format 473-477
mode 143,206,256,479
multidimensional list 148~151

multidimensional tabular 156-160
one-dimensional li st 145- 146
parameter 477
set 473-475
set and parameter 151-154
table, set and parameter 476
two-dimensional li st 146-148
two-dimensional tabular 154--156
unformatted 163
validation 12, 46, 93, 118
value, default 160-161

data specification, < ... > 196-197,479
data command II, 143-144,206,214,256,

473,479
database handler see table handler
data-model separation 7, 11,74,143
datapromptl, dataprompt2 option 494
declaration see also statement
declaration

arc 334-341,353,467
constraint xv, 2, 5, 9,16,137-139,340,

461, 468-469
node 334-340,353,468
objective 134-1 37.470

parameter 8, I 10-1 II , 465-466
problem 489
set 8,74,461-465
table 174,178,180,186,477
variable 5, 8, 466-467

declaration
function 402.497
to_come constraint 356, 362,468

declarations, suffix 471
default read/write status see INOUT
default data value 160-161
defaullSymbol . 120, 153, 156-157,228,

477
default

attribute 74, 119-120, 160-161,462,
465-466,468,476-477

versus = initial values 119
defined variables 466-468
defining constraint 386,399,467
delete

check command 488
command 213, 488

derivative 407
diet model 27-37,39,77-78, 135

integer solutions in 36.439
di ff operator 76, 98, 456-457
differentiability assumption 391
dimen auribute 93,96, 462
directed network graph 320
. direction suffix 296
Dirkse, Steven P. 433
_display command 484
display

corrunand 12,58,67,81,104,124,
219-238,482-484

fonnalling options 227-230
formatting options, table of 227
numeric options 232-238
numeric options, table of 232

Display set 87,464
display_leoloption 63,228,231
display_eps option 235
display---precision option 233,263,

406,483
display_round option 234-235,483
display_transpose option 229
display_width option 204,229
displaying

indexing expression 224-227
parameters 220-224
sets 220

di v operator III, 456
double-inequality constraint 32. 139.470
drop command 214.489

Drud, Arne xx i
. dual see dual value
dual

value 17.22.40,66-67, 162,243-245,
259,262.266.470.482

variable 398
variables 162.243.468,472,485
variables, initial values of 185,468,472.

477, 486
dual_ini tial_guesses option 486
dummy index 3 1.47,79.92,94-95.99, 138,

184.188, 190-191 , 197,455,463
scope of 47,321

Duna, Goutam 20
Dutton, John M . 20

EBCDIC set 87.464
economic

analysis 42,415
equilibrium model 419,422

eexi t option 252
either/or constraint 59
Ernlin, Grace R. xx i
e mpty

key speci fication 182
set, indexing over 82, 146
string 205, 234. 252, 272
table entry 173. 187

empty sct () 74.146.162,262.264,341,
456--457,462

end effect 67,379
end command 204, 496
environ command 490
environment

options 490
variables 205,48 1
variables, table of 484

environment, Initial 316,490
env ironments, named 316-317
equality constraint 21,30, 130
equilibrium stress model 388
Erikson, Warren 39
error messages 12,83,85,94,116.119,146,

160,207,211,224,252, 338
\ escape sequences, printf 482
evaluation. order of 100. 111. 132.467, 473
Excel spreadsheet 174, 176, 196
Excel filename extension, . xIs 199-200
exists operator I IS. 456-457
exi t command 496
exp function 11 3.458
expand command 13,247-248,492
expand-precision opt ion 484

expand_round 484
Exponential function 459
exponentiation ". * * I 1 I , 456
expression

tNDEX 505

arithmetic 6 1,76, 111-114,456
assignable 185
constant 455, 457, 461
indexi ng 9,79-82,99-100. 110, 138,455
linear 132-134, 139,383
logical 80,99, 11 4-1 16,455,457
metacharacters. regular 460
nonlinear 114, \33,400-403
regular 273,460
set 455,457
simplification of 46, 130, 134, 139
string 194, 197,273,459

expression « ... », piecewise-linear 367.
369,376,380-382,460

Fabian. Tibor 20
factorial 126
feasibility tolerance 28 1
feasible solutions 4,35
Ferris, Michael C. 433
Fibonacci numbers 126
file inclusion see model. data, include,

commands
file output see output redirection
file, temporary 485
file

blend . mod 38
cut2 .mod 313
cut. dat 309
cut .mod 306
diet2 . dat 34
diet. dat 33
diet.mod 32
dietu.dat 82
dietu. mod 78
econ2 . mod 424
econ.dat 421
ecorunin. mod 420
econ. mod 423
econnl . mod 425
fence.mod 41 I
iocoll . mod 356
iocol2 . mod 358
iorow . mod 355
mirunax. mod 38 1
multic.mod 103
multi.dat 58
mul ti. mod 57
multmipl.dat 443

506 INDEX

roul tmipl . mod 442
multmip3.dat 447
multmip3.mod 446
netl . mod,netl . dat 322
netlnode.mod 335
net2. dat 325
net2 .mod 324
net3 .dat 327
net3 . mod 326
net3node . mod 336
netasgn . mod 333
netfeeds . mod 344
netmax3 . mod 339
netmax . mod 329
netmeol . mod 363
netmulti .mod 342
netshort.mod 331
net thru . mod 346
nltrans.mod,nltrans.dat 404
prod.dat 10
prod.mod 8
sched.dat 361
sched.mod 36 1
stee12.dat 14
stee13.mod,stee13.dat 15
stee14.dat 17
stee14.mod 16
steel.mod,steel.dat II
steelP . dat 65
steelpll. dat 374
steelpll . mod 373
steelP . mod 64
steelTO .mod 59
steelT2 .dat 85
steelT2 .mod 84
steelT3.dat 102
steelT3.mod 101
steelT.mod,steelT.dat 62
transp2 .mod 93
transp3 .dat 95
transp3 .mod 95
transp. dat 48
transpll.mod 368
transp12.dat 371
transp12.mod 370
transp.mod 47

filename syntax II. 144. 165, 204, 479
filename

- standard input 165. 283, 485, 495
extension, . bi t binary 20 1,477
extension, . mdb Access 199-200
extension, . tab ASCII 201,477
extension, . xl s Excel 199-200

files, table of auxiliary 488

firs t function 84, 463
Fisher. Marshall L. 317
fix command 215,489
fixed

costs 440-444
variab les 131,241.402

Fletcher, Roger 4 10
floating-point representation 76, 87, 144,

233,235,263,27 1,279.453-454,483
floor function 2 12,457-458
flow see network flow
for statement 258-262,493
forall operator 11 5.456-457
Ford. Lester R. lr. 347
fonnatting options

display 227-230
table of display 227

Fourer. Robert xx i. 20. 318. 384
from attribute 334.336.338.341.353.361.

363,467
Fulkerson. D. R. 347
function

abs 113. 140. 380, 458
acos 11 3. 458
acosh 113, 458
alias 458
ari ty 462.464
as in 11 3.458
asinh 11 3.458
a tan, a tan2 11 3,458
a tanh 11 3.458
Beta 459
card 79,98.462,464
Cauchy 459
ceil 2 12.237,458
char 459
cos 11 3,458
ctime 458
exp 113,458
Exponential 459
first 84,463
floor 212,457-458
Gamma 459
gsub 273. 460
ichar 459
indexar i ty 462, 464
Irand224 459
last 84,463
length 271,459
log,loglO 11 3.458
rna tch 271, 285, 460
max 113. 380, 458
member 463
min 113, 140,458

next 84-85, 463
nextw 84-85,463
Normal. NorrnalOl 209,459
nwn, numO 460
ord, ordO 85, 463
Poisson 459
precision 458
prevo prevw 83-84,463
round 2 12, 458
sin 11 3,458
sinh 113,458
sprintf 27 1,459,483
sqrt 113,458
sub 273.460
substr 271.459
tan 113,458
tanh 113,458
time 458
trunc 212. 458
Uniform.Uniform01459

function declaration 402,497
functions

concave 383,393
convex 383,393,396
imported 497-499
of sels 83-85
of sets, table of 464
piecewise-linear 365,379-384,393,395
separable 381, 383
smoolh 391, 400-402
table of arithmetic 113, 458
table of random number 459
table of regu lar expression 459
tableofrounding 212
table of string 459

Gamma function 459
Garille. Susan Garner 39
Gass, Saul I. 39
Gas~mann, H. Lxxi
Gay, David M. 318
generic names 249,291,429,492

and complementarity 431
lable of 493

gentimes option 250
Gill. Philip E. 410
Gilmore-Gomoryalgorithm 305-306
global optimum 408
Glover, Fred 347
graph

bipartite 330
directed network 320
transitive closure of 462

Grosse, Eric H. xx i
gsub function 273.460
gutter_width option 230

Haesslcr. Robert W. 318
Hager, W. W. 318
handler see table handler
_handler_lib 477
_HANDLERS 477
Hearn, D. W. 3 18
Hilal, Said S. 39

INDEX 507

- i command-line argument 500
ichar function 459
IEEE arithmetic see floating-point

representation
if indexing expression 138,338,34 1,362,

460-461,467
if-then-else

nesled 266
operator 115.117,133,264,457
statement 26+--266. 493-494

. iis suffix 299
iisfind. iis_table option 299
imported functions 497-499
IN. INOUT suffix attribute 472
in operator 78.98, 114,455-457.465
IN readlwrilc Slatu, 174,177,180,182,186,

478
include see also model, data
include

command 255-256,479
search path 479

index see dummy index
indexari ty function 462.464
indexed

collection. data for 101. 161
collections of data co lumns 196
collections of sets 100-104, 161- 162
collections of tables 193
objectives 134

indexing
expression 9,79-82,99-100,110,138.455
expression, displaying 224-227
expression, scope of 80, 94-95, 455-456.

482
over empty set 82, 146

indexing expression, if 138. 338, 341. 362.
460-46 1.467

infea.-.ibility in prcsolve 279
infeo.l~iblc solutions 34.299.374
infinite

loop 262, 267

508 INDEX

sels 86,463
Infinity 242,276,338,456,466
inheritance of ordered attribute 86,463
Initial

environment 316. 490
problem 31 1,315,489

initial values
of dual variables 185,468,472,477,486
of variables 131. 162, 398, 405, 408-409,

466,471,477. 486
initial values

:=versus= 211
default versus = 119

initialization, suffix 466,469--470,489
INOUT read/write status 186, 193, 195
input redirection, < 163, 165,48 1,485
inpul-output model 37,42,354-358
insertprompt option 268,479
integer

program. relaxation of 309,448
programming xvi, 36, 437-438, 448--449
solution, rounding 10 35,309,360,439,

448
solutions in diet model 36, 439
solutions in network model 344
solutions in scheduling model 360
solutions in transportation model 51,

439-448
integer

attribute 36, 116, 131, 438, 441, 465-466
set 86, 463-464

integer_markers option 486
Integers set 87,464
inter operator 76,98, 103,456-457
interior point algorithm 287
intersection, set see inter
interval set 86.463-464
Irand224 function 459
irreducible infeasible subset 299
iterated operator see operator

Jacobs, Walter 347,351
Johnson, Ellis L. 449

Kahan, Gerald 363
Kelly, Paul xxi
Kendrick, David A. 20
Kernighan. Mark D. xxi
key

column 170, 172, 175, 178, 180, 183, 193
specification, cmpty 182

keyword see reserved word
Klingman, Darwin 347

knapsack problem 23, 306, 451
Kontogiorgis, Spyros 384
Kostreva, Michael M. 449
Kuhn, Harold W. xxi
Kuip, C. A. C. xxi

Lagrange multiplier see dual variables
large scale optimization xvi
Lasdon,Leon 318,414
las t function 84, 463
.lb lower bound 35,241-242,279,470,486
.1bO, .lbl, .lb2 lower bound 279
least squares 388,412
length function 271,459
Lenstra, Jan Karel xxi
less operator I II , 456
let command 36, 210-212, 405, 491
library see imported functions
Liebman, Judith 414
line continuation \ 205,453
linear

expression 132-134, 139,383
program, network 319,343,353
programming xvi, 1-5, 129

linearity of costs, yield 38, 393
linelim option 467
linked linear programs 55, 60
list data

multidimensional 148-151
one-dimensional 145-146
two-dimensional 146-148

literal
number 75, III, 144,453-454
set 74,454
string 74, 144,453-454,473

load command 402,477,498
local optimum 407-408
LOCAL suffix attribute 472
log, loglO function 113,458
log_file option 251,496
log_model, log_data option 252,496
logical

arithmetic, set operators, table of 456
conversion, arithmetic to 123,457
expression 80,99, 114-116,455,457
operators 114,457
parameters 122-123

loop
infinite 262, 267
name 268, 494
nested 261, 267

loss in network flow 326, 336
Lowe, Todd xxi

lower bound
.lb 35,241-242,279.470,486
.1bO .. lbl, .lb2 279

Magnanti, Thomas L. 347
marginal va lue see dual value
Marsten, Roy E. 384
rna tch function 271. 285, 460
mathematical programming xv-xvi
matrix see two-dimensional set, parameter
matrix generator xv ii , xxi
max

function 11 3,380,458
operator I 14, 456

maximize see objective declaration
maximum now model 328-329.337-339,

412
max-min objective 382
. mdb Access filename extension 199-200
Mecfalls, Alexander xxi, 20
member, dummy see dummy index
member function 463
membership test see in, wi thin
membership operators, set 78-79
memory use 88,97,448
messages see error messages
metacharacters, regular expression 460
min

function 11 3, 140,458
operator 11 4, 456

minimize see objective declaration
min-max objective 382
MINOS solver 6,208.28 1, 398
mixed-integer programmi ng 441
.mod file see file
mod operator 111 .456
model file see file
model

activity 43
advertising 2 1, 450
aggregated 55, 88
assignment 49-51,53,135,330-333,348
blending 37-39
credit scoring 386
diet 27-37,39,77-78, 135
economic equilibrium 419.422
equilibrium stress 388
input-output 37.42,354-358
maximum flow 328-329,337-339,412
nlode 143,206,256,479,496
muiticollllllodity transportation 56-59,450
multipcriod planning 67-69,452
multipcriod production 59-63

tNDEX 509

network flow 3 19, 333-339, 416
nonlinear transportation 403-410
oil refinery 24-25
piecewise-linear production 370-377
piecewise- linear transportation 366-369
production 6-12, 15,420
production and transportation 63-67
scheduling 37.359-362,451
shonest path 329-330
steel production 2-7, 10-19
stress analysis 388
transponation 44-49.52,330-333
transshipment 319-327,334-337,347

model command 11 ,206.214,256,479
model-data separation 7, 11 ,74, 143
modeling language xv i-xviii
MPEC system 426
MPS file 486
multicommodity transportation model 56-59,

450
multidimensional

list data 148- 151
tabular data 156- 160

multi period
planning model 67-69.452
production model 59-63

multiple
object ives 134-137,206,240
solutions 6,49. 137,407

Murray. Walter 4 10
Muny, Kalla G. 347

name
loop 268, 494
syntax 453

named
environments 316-317
problems 309-3 16

names
generic 249, 291,429. 492
table of generic 493

Nash equilibrium 426,433
Nemhauser, George L 450
NEOS xx
nested loop 261. 267
nested if-then-else 266
net_ in. net_ out 334.340,469
network

now, loss in 326,336
now model 3 19,333-339,4 16
graph, directed 320
linear program 319.343.353
model. integer so lutions in 344

510 INDEX

newline 144, 453,473,498
\n newline in printf 239,261,482
next

conunand 269,495
function 84-85, 463

nextw function 84-85.463
nl-perrnute option 487
Nocedal, Jorge 410
node declaration 334-340,353,468
non-ex.istent data value see default symbol
nonlinear

constraint 59, 140,492
cost functions 394
expression 114, 133,400--403
programming xvi, 391-397, 403-410
transportation model 403--4 J 0
variables 397-400

nonlinearity in
blending 38
physical models 397

nonnegative variables 3, 10,45, 130,377
Normal, NormalOl function 209,459
not

in operator 79,456
operator 114, 456
wi thin operator 79,456

null command 494
num, numO function 460
number representation see floating-point

representation
number

literal 75, III , 144, 453-454
to string, conversion from 271, 459

numbers, set of 75-76
numeric to logical conversion 457
numeric options, display 232-238

-0 command-line argument 485
obj attribute 334, 339, 341, 356, 363, 466
objective 3, 9

declaration 134-137, 470
function xv, 31, 240, 341
max-min, min-max 382

objective function, to_come 362,470
obj ecti ve conunand 135-136,206,489
obj ecti veJ)recision option 484-485
objectives

indexed 134
multiple 134-137,206,240

OOBe table handler 169, 174, 194, 198
oil refinery model 24-25
omit_zero_cols option 66,232
omit_zero_rows option 50,66,231

omitted data value see default symbol
one-dimensional

list data 145- 146
parameter 110
set 110,454
set data 473

0 ' Neill, Richard P. 411
operator

precedence 9,77, 111- 114, 116, 133,456,
459

synonyms 454
operator

- column name 177.184-185,188,190,
478

& string concatenation 270, 459
and 114, 456
complements 469
cross 98, 456
di ff 76, 98,456-457
div 111,456
exists 115, 456-457
foraH 115, 456-457
if-then-else 115, 117, 133,264, 457
in 78,98,114,455-457,465
inter 76,98,103,456-457
less 111,456
max 114, 456
min 114,456
mod 111 , 456
not 114,456
not in 79, 456
not wi thin 79, 456
or 114,456
prod 74, 114,456
setof 98,272,457
sum 74, 113, 456
symdif f 76, 98, 456-457
union 76,98, 103,456-457
wi thin 78,93,97-98, 114, 456-457,462

operators
arithmetic 456
arithmetic reduction 456
logical 114,457
relational 114, 465
set 7&-78
set membership 78-79
table of arithmetic 112
table of arithmetic, logical , set 456
tuple 98--100

optimal basis see basic solution
optimum

global 408
local 407-408

option

ampl_include 479
AMPLFUNC 498, 500
astatus table 294
bad_subscripts 253
cmdpromptl.cmdprompt2494
compl_warn 487
datapromptl.dataprompt2 494
display_lcol 63,228,231
display_eps 235
display -precision 233.263,406,

483
display_round 234-235.483
display_transpose 229
display_width 204.229
dual_initial_guesses 486
eexit 252
expand-precision 484
gentimes 250
gutter_width 230
iisfind,iis_table 299
insertprompt 268,479
integer_markers 486
linelim 467
log_file 25 1.496
log_model , log_data 252,496
nl-permute 487
objective-precision 484-485
omi t zero_cols 66.232
omit_zero_rows 50.66,231
pI_linearize 383
presol ve 139,278.290
presolve_eps,presolve_epsmax

281
presolve_fixeps,

presolve_fixepsmax 282
presolve_inteps.

presolve_intepsmax 279
presolve_warnings 252,282
print-precision 239.482--483
print_round 239,482-483
print_separator 238.482
promptl, prompt2 204, 494
randseed 122.458
relax_integrality 2 15.21 7.309.

486
reset_initial_guesses 291,297.

486
send_statuses 288
send_su f fixes 486
SHELL 495
shell_env_file 495
show_stats 250.275.282
single_step 268

INDEX 511

solution-precision 236,238,264,
484,486

solution_round 236.238.484.486
sol ve_exi tcode.

solve_exitcode_max 285
solve_message 285
solve_result.solve_result_nurn

283-284
solve_result_table 283
sol ver 37,207
sol ver_msg 260
sstatus_table 289
substout 399,4 14, 467-468
times 250
TMPDIR 285,485
var_bounds 279.486
version 500

option command 204.48 1
* in 205.481

option-name pattern 48 1
options 204-205, 481

environment 490
options

display formatting 227-230
display numeric 232-238
table of display formatting 227
table of display numeric 232

options , reset 205,490
OPTIONS_IN,OPTIONS_OUT,

OPTIONS_INOUT 490, 499
$oprioll value 460. 48 1
$$oprio1l default va lue 481
or operator 11 4. 456
ord, ordO function 85, 463
order of evaluation 100, III. 132, 467.473
ordered sets 82-87.98.223,261,463-464
ordered

attribute 83,98, 146,463
attribute, inheritance of 86.463
by attribute 86, 463

Orlin , James B. 347
OUT

read/write status 177,186,190,192,478
suffix auribute 472

output redirection. >,» 220,239,251. 273,
481

pairs
sets of ordered 9 1- 92
slices of 93-96
subsets of 93-96

Pang, Jong-Shi 432-433
parameter

512 INDEX

and set data table 476
data 477
data statement 475
data table 154
dala lemplate 147- 148, 150,475
declaration 8,110-111,465-466
definition, recursive 120,122,465
one-dimensional 110
two-dimensional 110

parameters
computed 118- 121
displaying 220-224
logical 122- 123
randomly generaled 121 - 122,209
restrictions on 116-118
symbolic 123- 124,323,328
table of built-in timing 496

Pardalos, P. M. 318
PATH solver 422
pattern, option-name 481
penally funclion 369-377,385,396

piecewise-linear 372, 375-376
Phillips, Nancy 347
physical models, nonlinearity in 397
-pid process ID 495
piecewise-linear

function at zero 367. 376
funclions 365,379-384,393,395
penally function 372,375-376
production model 370-377
transportation model 366--369

piecewise-linear expression « ... » 367,
369,376,380-382,460

Pike, Ralph 411
pipe attribute 498
pI_linearize option 383
planning model, mulliperiod 67...fJ9, 452
Poisson function 459
pre status 276
precedence,operalor 9,77, 111 -114, 116,

133,456,459
precision function 458
predefined words 74, 112,454

redefinition of 213,454
presolve 60,65,207,241,275-282,486

and complementarity 429
infeasibility in 279

presol ve option 139,278,290
preso!ve_eps.preso!ve_epsmax

option 281
presol ve_f ixeps,

presolve_fixepsmax option 282
pre sol ve_inteps,

presolve_intepsmax option 279

presol ve_warnings option 252,282
prev, prevw function 83-84, 463
price. shadow see dual value
primal variables 243, 398, 485
print command 238-239,482-484
print-precision option 239,482-483
print_round option 239,482-483
print_separator option 238,482
printf

command 124,239-240,26 1,482-484
conversion character, % 239,482
conversion characters, table of 483
\ escape sequences 482
string quotes, %q, %Q 483

. priori ty suffix 296
problem see also model
problem

caterer 347,350
complementarity 420-423
cutting-Slock 41, 305, 364,452
declaration 489
knapsack 23,306,451
set covering 362. 364

problem, Initial 311,315,489
problem command 301,307,311,489
problems, named 309-316
prod operator 74, 114,456
production

and transportation model 63-67
model 6-12, 15,420
model in algebraic form 7
model, multi period 59-63
model, piecewise-linear 370-377

programming
inleger xvi, 36, 437-438, 448-449
linear xvi, 1-5, 129
mathematical xv-xvi
mixed-integer 441
nonlinear xvi, 391-397, 403-410
stochastic 69-71

prompt
ampl, 5, 165, 204, 485
ampl? 165,204,485
ampl data 144

promptl, prompt2 option 204.494
purge command 213,488

%q, %Q printf string quotes 483
qualified name see suffix
query, SQL 184, 199
quit command 5,204,214,496
quotes 74,144, 165,204-205,453,473

-R conunand·line argument 500
random number

functions, table of 459
generator seed 122. 210. 458

random attribute 497
randomly generated parameters 121-122,209
randseed option 122.458
. rc see reduced co!tt
read

command 163, 484
table command 175, 177, 180, 477

reading files see model, data
reading scalar from table 182
read/write status

-> 189, 193,478
<- 175, 177, 182,193
<-> 193.478
IN 174, 177, 180, 182, 186,478
INOUT 186. 193, 195
OUT 177, 186, 190,192, 478

Reals set 87,464
recursive

parameter de finition 120, 122, 465
set definition 462

redeclare
check command 488
command 2 13. 488

redefinition of predefined words 213. 454
redirection

>. »output 220,239,251,273,481
< input 163, 165,48 1, 485

reduced cost 17,22, 40, 67,243-245
reduction operators. arithmctic 456
rcdundant constraint 276-278
regular expres~ ion 273, 460

functions. table of 459
metacharacler), 460

relational
operators 114, 465
table 170-171, 173, 178

. relax suffi x 486
relax_integrality option 2 15,2 17,

309.486
relaxation of integer program 309,448
reload command 498
remove command 482
repea t statement 262-264. 493
representation. floating.point 76, 87. 144.

233.235,263,271,279,453-454,483
reserved

word synonyms 454
words 74, 11 2
words. tablc or 454

reset

INDEX 513

command 17.2 14.481.490
da ta command 122, 209-210. 490
options command 205,490
problem command 491

reset_ini tial_guesses option 29 1.
297.486

restore command 2 14.489
restrictions on parameters 116-118
. result suffix 287
reversed attribu te 86. 463
reversible activitie~ 377-379
Richton, Roben E. xxi
Rinnooy Kan, Alexander H. G. xx i
roll trim problem ,\'ee cutting·stock problem
round function 2 12.458
rounding 76.87,233.237.263.27 1. 279,

454.457.483
functions. table or 2 12
to integer so lution 35,309,360.439.448

-s command·line argument 458
Saunders, Michael A, xxi
scalar from table. reading 182
scaling along arc ,\'ee loss in net work flow
scaling of variables 4 10
scheduling

airline crew 362
model 37.359-362.451
model , integer ~o lut ion s in 360

Schrage. Linu~ 414
Schrijver, Alexander xxi, 450
scope see also dummy index
scope of

durrunyindex 47,32 1
indexing expression 80.9+-95,455-456.

482
script 18. 179. 195.255.304,485.495
script

cut. run 308
diet. run 284
dietu. run 256
steel T . sal 258
steelT . sa2259
steelT.sa3 260
steelT.sa4 263
steelT.sa5266
steelT.sa7267
steel T . tabl 26 1

search path. include 479
seed. random num ber generator 122, 2 10,

458
Seip. Robert 11. xxi
self·refercncc 11 7

514 INDEX

semicolon stalemenllerminator 9, 144,204,
256,453,473,494

send_statuses option 288
send_suffixes option 486
sensitivi ty analysis 194,256,262,304
separable functions 381, 383
separator in data. comma 144
set difference see diff, symdiff
set intersection see inter
set of sets see indexed co llection
'Oct

and paramctcrdata 151-154
and parameter data table 476
arithmetic, logical operators, table of 456
covering problem 362,364
data 473-475
data, one-dimensional 473
data statement 474
data table 474
data template 147, 150,474
data. two-dimensional 475
declaration 8, 74, 461-465
definition, recursive 462
expression 455, 457
literal 74. 454
member rules 454
membership operators 78-79
of numbers 75-76
one-dimensional 110,454
operators 76-78
two-dimensional 110.455

set
ASCII 87,464
data table, +. - in 156-157.475
Display 87,464
EBCDIC 87,464
integer 86.463-464
Integers 87.464
interval 86,463-464
Reals 87,464

setof operator 98,272,457
sets

displaying 220
functions of 83-85
indexed collections of 100-104, 161-162
infinite 86, 463
of ordered pairs 91-92
of tuples 96-98
ordered 82-87. 98. 223, 261, 463-464
unordered 73-74

shadow price see dual value
shell command 214,495
SHELL option 495
shell script 500

shell_env_file option 495
Shepheard, J. R. xxi
shortest path model 329-330
show command 246, 491
show_stats option 250,275.282
side

constraint 342,345,363
variable 343

significant figures 233
simplex algorithm xvi, xxi, 279, 287. 344,

486
simplification of express ion see also presolve
simplificat ion of expression 46, 130, 134,

139
sin function 113,458
single_step option 268
single-step mode 495
singularity 406-407
sinh runction 113,458
Sinha, Lakshman P. xxi
skip command 270, 495
. slack suffix 81,241-242,244,472
slice 58,91,95,97, 147- l49, 455
slices or pairs 93-96
slope see piecewise-linear expression
smooth functions 391, 400--402
SNOPT solver 48,208
social accounting matrix 415
soft constraints see penalty runction
sol expand command 248.492
solution , basic 287,289-290,292,298,473
solution command 487
solutionJ)recision option 236,238,

264,484,486
solution_round option 236,238.484,

486
rlutions

feasible 4, 35
infeasible 34,299, 374
multiple 6,49,137,407

solve
command 206-207,485-486
problem command 315

sol ve_exitcode,
sol ve_exi tcode_max option 285

sol ve_message option 285
solve_result,solve_result_num

option 283--284
solve_result_table option 283
_solve_time parameter 251,496
solver

CPLEX 36, 50, 208, 281
MINOS 6,208,281,398
PATH 422

SNOPT 48,208
status suffixes 286. 288

solver status .. status 473
solver option 37.207
sol ver_msg option 260
solver-defined suffixes 298-304
space requirement see memory use
sparse

sel 111
subset 94

spreadsheet 238
Excel 174, 176. 196

sprintf function 271.459,483
SQL query 184. 199
SQL SELECT statement 199
sqrt function 113,458
square system 422.425,427,487
. sstatus suffix 290.292,295,473
sstatus_table option 289
5 . t. see conMraim declaration
standard input filename, - 165.283,485.495
starting guess see initial values of variab les
statement see also command, declaration
statement

parameter data 475
sci data 474
terminator, semicolon 9, 144,204,256,

453,473,494
statement

break 266, 493
check 46. 56, 117, 465
corrunands 256,479
continue 266,493
for 258-262,493
if-then-else 264-266.493-494
repeat 262-264.493

statements, control Dow 492
.status

solver status 473
suffix 295

steel production model 2-7.10-19
step command 268, 495
stepping through commands 268-270,495
stochastic programming 69-71
Stone. Richard E. 432
stress analysis model 388
string

conversion from number to 271, 459
expression 194, 197, 273, 459
functions, table of 459
literal 74. 144 ,453-454,473

string
concatenation operator, & 270,459
quotes. %q, %Q pr in t f 483

INDEX 515

sub function 273.460
subj ec t to see constrainl declaration
subscript 8. 16, 1 10. 455
subset test see in, within
subsets of pairs 93-96
substitution of variables 399-400, 414
substout option 399.414,467-468
subs tr function 271, 459
Sllch·lhat condition see logical condition
suffix declarations 471
suffix

.astatus 294-295
attribute, IN, INOUT, OUT, LOCAL 304,

472
.direction 296
· iis 299
· priori ty 296
· relax 486
· result 287
.slack 81,241-242,244,472
.sstatus 290,292.295.473
· status 295

suffix
attribute 466.469-470.489
command 296,299.302
initialization 466, 469-470, 489

suffixes
for complementarity constraint 428. 431,

471
solver status 286, 288
solver·dcfined 298-304
table of 472
user-defined 296-297. 302

Suhl. Uwe H. 449
sum of squares 388, 412
sum operator 74. 113,456
symbolic parameters 123- 124. 323, 328
symbolic attribute 123.465,476,497
symdiff operator 76,98,456-457
symmetric difference .see symdi f f
synonyms, table of 454
syntax error see error messages

. tab ASCII filename extension 201. 477
table

declaration 174, 178, 180, 186,477
entry. empty 173, 187
handler 169, 197-202.477
handler, built·in 174.201
handler.ODBC 169, 174, 194. 198
of arithmetic functions 11 3. 458
of arithmetic, logical, set operators 456
of arithmetic operators 112

516 INDEX

of auxiliary files 488
of built-in timing parameters 496
of commands 480
of environment variables 484
of funclions of sets 464
of generic names 493
of random number functions 459
of regular expression functions 459
of reserved words 454
of rounding functions 2 J 2
of string functions 459
of suffixes 472
of synonyms 454
parameter data 154
reading scalar from 182
relational 170-171, 173, 178
set data 474

table
of display formatting options 227
of display numeric options 232
of printf conversion characters 483
transposition I trl 32, 155, 157,228-229.

475-476
tables. indexed collections of 193
tabular data

multidimensional 156--160
two-dimensional 154-156

tan function 113, 458
tanh function 113,458
Tayyabkhan, Michael T. 20
template

parameter data 147-148, 150,475
set data 147, 150,474

temporary file 485
time function 458
times option 250
timing parameters, table of built-in 496
TMPDIR option 285,485
to attribute 334, 336, 338, 341, 353, 361,

363,467
to_come

constraint declaration 356, 362, 468
objective function 362,470

tolerance, feasibility 281
Itrl, table transposition 32, 155, 157,

228-229,475-476
traffic flow see maximum flow model
transitive closure of graph 462
transportation model 44-49,52,330-333

integer solutions in 51, 439-448
mu lticommodity 56-59,450
nonlinear 403-410
piecewise-linear 366-369
production and 63-67

transposition see table transposition
transshipment model 319-327.334-337,347
trunc function 212, 458
tuple operators 98-100
tuples 73,91,96.146

sets of 96-98
two-dimensional

list data 146-148
parameter 110
set 110,455
set data 475
tabu lar data 154-156

. ub upper bound 35,240-242,279,470,486

. ubO, . ubl, . ub2 upper bound 279
unfix command 215,489
unformatted data 163
Unicode 453, 459
Uni form. Uni formO 1 function 459
union operator 76, 98, 103,456-457
unload command 498
unordered sets 73-74
unspecified data value see defaulL symbol
until condition 262,267,494
update data command 209,491
user-defined suffixes 296-297,302

-v command-line argumem 500
valid column name 171-172,177, 185
validation, data 12,46,93, 118
Van Wyk, Chris J. xxi
Vanderbei, Robert J. 20
var_bounds option 279,486
variable

data 162,398,477
declaration 5. 8, 466-467

variables xv, 2, 129-132
bounds on 10, 14, 17,32,35, 130, 139.

241-242,276,279,466,470-471.486
defined 466-468
dual 162,243, 468, 472,485
environment 205,481
fixed 131 ,24 1,402
initial values of 131, 162,398,405,

408-409,466,471,477,486
initial values of dual 185,468,472,477,

486
nonlinear 397-400
nonnegative 3,10,45, 130,377
primal 243,398,485
scaling of 410
substitution of 399-400,414
zero-one 439-448

vector see one-dimensional set. parameter
verbose attribute 200
vers ion option 500
viewing data see display command
Vignali. Juliana xxi
Vukhac. Thong xxi

Waren. Allan 4 14
while condition 262.267,494
white space 144, 453, 473
wild card * 205,481
Wilkins, Bert 411
Williams. H. Paul 67
Williard. Mark 411
wi thin operator 78,93,97- 98. 114,

456-457,462
Wolsey. Laurence A. 450
words

predefined 74, 112.454

reserved 74. I 12
Wright

Margaret H. xxi. 410
Slephen J. 410

write
command 487

INDEX 517

table command 178, 186,477
www.ampl . com xviii. xx. 19.453

. xIs Excel filename extension 199-200
xref command 213,247,492

zero
piecewise-linear function at 367,376
suppression 231 - 232

zero-one programming see integer
programming

zero-one variables 439-448
zero-or-minimum restrictions 444

	Contents
	Introduction

	Chapter 1. Production Models: Maximizing Profits
	Chapter 2. Diet and Other Input Models: Minimizing Costs
	Chapter 3. Transportation and Assignment Models
	Chapter 4. Building Larger Models
	Chapter 5. Simple Sets and Indexing
	Chapter 6. Compound Sets and Indexing
	Chapter 7. Parameters and Expressions
	Chapter 8. Linear Programs: Variables, Objectives and Constraints
	Chapter 9. Specifying Data
	Chapter 10. Database Access
	Chapter 11. Modeling Commands
	Chapter 12. Display Commands
	Chapter 13. Command Scripts
	Chapter 14. Interactions with Solvers
	Chapter 15. Network Linear Programs
	Chapter 16. Columnwise Formulations
	Chapter 17. Piecewise-Linear Programs
	Chapter 18. Nonlinear Programs
	Chapter 19. Complementarity Problems
	Chapter 20. Integer Linear Programs
	AMPL Reference Manual
	Index

