Dualidad

Nelson Devia C.

IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

2011

Basado en Bertsimas, D., Tsitsiklis, J. (1997) "Introduction to Linear Optimization" Capítulo 4

Contenidos

- Introducción
- 2 El Problema Dual
- Teoremas de Dualidad
- Precios Sombra
- 6 Lema de Farkas

Introducción

Sea el problema de optimización (P):

(P) máx
$$z = c'x$$

 $Ax \le b$
 $x \ge 0$

Consideremos la siguiente relajación de (P):

$$(PR) \quad g(y) = \max_{x \ge 0} \quad [c'x + y'(b - Ax)]$$

- Las restricciones se han reemplazado por penalizaciones en la función objetivo, ponderadas por un vector $y \ge 0$
- Al tener menos restricciones, la región factible de (PR) es más grande o igual que la de (P), por lo tanto:

$$g(y) \ge z^* = c'x^*$$

donde z^* es el valor óptimo y x^* es la solución óptima de (P).

• Luego, para todo vector $y \ge 0$, se obtiene una cota superior para (P).

Introducción

Luego, la mejor cota que podemos obtener está dada por:

$$\min_{y\geq 0} g(y)$$

Pero sabemos que:

$$g(y) = \max_{x \ge 0} \left[c'x + y'(b - Ax) \right]$$
$$= y'b + \max_{x \ge 0} \left[(c' - y'A)x \right]$$

Donde:

$$\max_{x \ge 0} \left[(c' - y'A)x \right] = \begin{cases} 0 & \text{si } (c' - y'A) \le 0 \\ +\infty & \text{si no} \end{cases}$$

 Por ahora, sólo nos interesa el caso finito, por lo que se tiene que la mejor cota posible para (P) está dada por:

$$\begin{array}{ccc}
\text{mín} & y'b & & \longrightarrow \\
c' - y'A \le 0 & & \longrightarrow \\
y > 0 & & & \longrightarrow
\end{array}$$

(D) mín
$$w = b'y$$

 $A'y \ge c$

El Problema Dual

 El problema original (P) se conoce como el problema primal, mientras que (D) se conoce como el problema dual de (P).

$$(P) \quad \text{máx} \quad z = c'x \\ Ax \le b \\ x \ge 0$$

$$(D) \quad \text{mín} \quad w = b'y \\ A'y \ge c \\ y \ge 0$$

• En general:

El Problema Dual

 Notar que por cada variable en el problema primal se introduce una restricción en el dual y por cada restricción en el primal, una variable en el dual:

PRIMAL	Minimización	Maximización	DUAL
Restricciones	$\geq b_i$	≥ 0	
	$\leq b_i$	≤ 0	Variables
	$=b_i$	libre	
Variables	≥ 0	$\leq c_j$	
	≤ 0	$\leq c_j \\ \geq c_j$	Restricciones
	libre	$= c_j$	

Ejemplo

Consideremos el siguiente problema:

(P) máx
$$z = 3x_1 - 2x_2 + 7x_3$$

 $-x_1 - 2x_2 + x_3 \le 10$ (y₁)
 $5x_1 + x_2 + 4x_3 \le 6$ (y₂)
 $x_1, x_2, x_3 \ge 0$

• Si elegimos $y_1 = 1$, $y_2 = 2$, ponderamos las restricciones y las sumamos, obtenemos una cota superior de z para cualquier x factible en (P):

$$w = y_1 \cdot (-x_1 - 2x_2 + x_3) + y_2 \cdot (5x_1 + x_2 + 4x_3) \le y_1 \cdot 10 + y_2 \cdot 6$$

= $1 \cdot (-x_1 - 2x_2 + x_3) + 2 \cdot (5x_1 + x_2 + 4x_3) \le 1 \cdot 10 + 2 \cdot 6$
= $9x_1 + 0x_2 + 9x_3 \le 22$

Sabemos que término a término:

$$z = 3x_1 - 2x_2 + 7x_3 \le w = 9x_1 + 0x_2 + 9x_3 \le 22$$

• Luego, sabemos que $3x_1 - 2x_2 + 7x_3 \le 22$ para todo $x = (x_1, x_2, x_3)'$ factible en (P).

Ejemplo

- En particular, el óptimo: $z^* \le 22$
- La mejor cota está dada por el vector y que resuelva:
- Minimizar el valor de la cota:

(D) mín
$$w=10y_1+6y_2$$

$$-y_1+5y_2\geq 3 \quad (x_1)$$

$$-2y_1 + y_2 \ge -2$$
 (x_2)
 $y_1 + 4y_2 > 7$ (x_3)

$$y_1, y_2 \ge 0$$

- Nota:
 - Se puede formular este problema a partir de (P) más fácilmente usando la tabla de la lámina 6

Ejemplo

- Matricialmente:
 - Primal:

(P) máx
$$z = \begin{pmatrix} 3 & -2 & 7 \end{pmatrix} \cdot \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}'$$

$$\begin{pmatrix} -1 & -2 & 1 \\ 5 & 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \le \begin{pmatrix} 10 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix}' \ge 0$$

• Dual:

(D) mín
$$w = \begin{pmatrix} 10 & 6 \end{pmatrix} \cdot \begin{pmatrix} y_1 & y_2 \end{pmatrix}'$$
$$\begin{pmatrix} -1 & 5 \\ -2 & 1 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \ge \begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix}$$
$$\begin{pmatrix} y_1 & y_2 \end{pmatrix}' \ge 0$$

El Dual del Dual

Teorema:

- Sea un problema de minimización (P) y su correspondiente problema dual (D). Si se obtiene el problema dual de (D) se recupera el problema original (P).
- En otras palabras:

"El dual del dual es el primal"

(P)
$$\max z = c'x$$

 $Ax \le b$
 $x > 0$
(D) $\min w = b'y$
 $A'y \ge c$
 $y \ge 0$

Teorema de Dualidad Débil

 Sea x una solución factible de un problema de minimización primal (P) e y, una solución factible del problema de maximización dual (D), entonces:

$$w = b'y \le z = c'x$$

- En otras palabras:
 - w es una cota inferior para cualquier solución factible de (P)
 - z es una cota superior para cualquier solución factible de (D)
- Corolario 1
 - Si (P) es no acotado, es decir: z* = -∞, entonces (D) es infactible.
 - Si (D) es no acotado, es decir: w* = +∞, entonces (P) es infactible
- Corolario 2
 - Si b'y = c'x, entonces $x \in y$ son soluciones óptimas de los problemas primal y dual, respectivamente.

Ejemplo:

Solución factible de (P):

$$x = \begin{pmatrix} -1\\2\\2 \end{pmatrix} \Rightarrow z = 7$$

• Solución factible de (D):

$$y = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow w = 22$$

(P) máx
$$z = 3x_1 - 2x_2 + 7x_3$$

 $-x_1 - 2x_2 + x_3 \le 10$ (y_1)
 $5x_1 + x_2 + 4x_3 \le 6$ (y_2)
 $x_1, x_2, x_3 > 0$

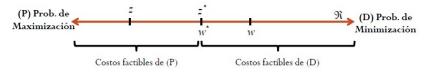
(D) mín
$$w = 10y_1 + 6y_2$$

 $-y_1 + 5y_2 \ge 3$ (x_1)
 $-2y_1 + y_2 \ge -2$ (x_2)
 $y_1 + 4y_2 \ge 7$ (x_3)
 $y_1, y_2 > 0$

Dualidad débil $\Rightarrow z \leq w$

Teorema de Dualidad Fuerte

• Si un problema de programación dual tiene una solución óptima, también la tiene su dual y los respectivos costos óptimos son iguales: $z^* = w^*$



Posibilidades para el primal y el dual:

	Óptimo Finito	No Acotado	Infactible
Óptimo Finito	Posible	Imposible	Imposible
No Acotado	Imposible	Imposible	Posible
Infactible	Imposible	Posible	Posible

Ejemplo:

Solución factible de (P):

$$x = \begin{pmatrix} 0 \\ 0 \\ 1.5 \end{pmatrix} \Rightarrow z = 10.5$$

Solución factible de (D):

$$y = \begin{pmatrix} 0 \\ 10.5 \end{pmatrix} \Rightarrow w = 22$$

(P) máx
$$z = 3x_1 - 2x_2 + 7x_3$$

 $-x_1 - 2x_2 + x_3 \le 10$ (y_1)
 $5x_1 + x_2 + 4x_3 \le 6$ (y_2)
 $x_1, x_2, x_3 > 0$

(D) mín
$$w = 10y_1 + 6y_2$$

 $-y_1 + 5y_2 \ge 3$ (x_1)
 $-2y_1 + y_2 \ge -2$ (x_2)
 $y_1 + 4y_2 \ge 7$ (x_3)
 $y_1, y_2 > 0$

Dualidad fuerte $\Rightarrow z^* = w^*$

Teorema de Holgura Complementaria

 Sean x e y soluciones factibles para el problema primal y dual, respectivamente. Los vectores x e y son soluciones óptimas de sus respectivos problemas si y sólo si:

$$y_i \cdot (a_i'x - b_i) = 0 \quad \forall i$$

 $(c_j - y'A_j) \cdot x_j = 0 \quad \forall j$

- En otras palabras:
 - La i-ésima variable dual es cero o la i-ésima restricción primal es activa.

У

- La j-ésima variable primal es cero o la j-ésima restricción dual es activa.
- Permite encontrar el óptimo del problema primal a través del óptimo del problema dual.

¡El dual puede ser más fácil de resolver!

Teorema de Holgura Complementaria

Ejemplo:

(D) mín
$$w = 10y_1 + 6y_2$$

 $-y_1 + 5y_2 \ge 3$
 $-2y_1 + y_2 \ge -2$
 $y_1 + 4y_2 \ge 7$
 $y_1, y_2 \ge 0$
 $y = \begin{pmatrix} 0 \\ 1,75 \end{pmatrix}$

$$(P) \max z = 3x_1 - 2x_2 + 7x_3 -x_1 - 2x_2 + x_3 \le 10 5x_1 + x_2 + 4x_3 \le 6 x_1, x_2, x_3 \ge 0$$

$$\mathbf{x}^* = \begin{pmatrix} 0 \\ 0 \\ 1,5 \end{pmatrix} \longleftarrow$$

Teorema de Holgura Complementaria (THC)

 $\mathbf{v_1^*} \cdot (-x_1^* - 2x_2^* + x_3^* - 10) = 0$

$$\mathbf{y_2^*} \cdot (5x_1^* + x_2^* + 4x_3^* - 6) = 0$$

$$(3 + \mathbf{y_1^*} - 5\mathbf{y_2^*}) \cdot x_1^* = 0$$

$$(-2 + 2\mathbf{y_1^*} - \mathbf{y_2^*}) \cdot x_2^* = 0$$

$$(7 - \mathbf{y_1^*} - 4\mathbf{y_2^*}) \cdot x_3^* = 0$$

$$\downarrow \downarrow$$

$$\mathbf{0} \cdot (-x_1^* - 2x_2^* + x_3^* - 10) = 0$$

$$\mathbf{1,75} \cdot (5x_1^* + x_2^* + 4x_3^* - 6) = 0$$

$$(3 + \mathbf{0} - 5 \cdot \mathbf{1,75}) \cdot x_1^* = 0$$

$$(-2 + 2 \cdot \mathbf{0} - \mathbf{1,75}) \cdot x_2^* = 0$$

$$(7 - \mathbf{0} - 4 \cdot \mathbf{1,75}) \cdot x_3^* = 0$$

Precios Sombra

Consideremos el problema en forma estándar:

$$(P) \max c'x$$

$$Ax = b$$

$$x \ge 0$$

- Supongamos que existe una sbf óptima no degenerada x, luego: $x_B = A_B^{-1}b > 0$, con A_B la base asociada.
- Si añadimos una perturbación d en b lo suficientemente pequeña:

$$x_B = A_B^{-1}(b+d) > 0$$

- Los costos reducidos no cambian al variar b $(\overline{c}'_N = c'_N c'_B A_B^{-1} A_N)$, luego la base permanece óptima.
- El costo óptimo original era:

$$c'x^* = c'_B x_B + c'_N x_N$$
 (con $x_N = 0$ y $x_B = A_B^{-1}b$)
 $c'x^* = c'_B A_B^{-1}b$

• Por dualidad fuerte se sabe que: $c'x^* = y^{*'}b^{-1} + \cdots = y^{*}$

Precios Sombra

Luego, la solución óptima del problema dual equivale a:

$$\textbf{y}^* = \textbf{c}_{\textbf{B}} \textbf{A}_{\textbf{B}}^{-1}$$

• El costo óptimo luego de la perturbación d cambia a:

$$c'x^* = c'_B A_B^{-1}(b+d)$$

= $y^{*'}(b+d)$
= $y^{*'}b + \sum_{i=1}^n y_i^* d_i$

Con esto se concluye que cada componente y_i* del vector óptimo dual y* puede interpretarse como el costo marginal (precio sombra) de aumentar en una unidad la i-ésima componente del vector b.

Precios Sombra

- Aumentar $b_2 = 6$ en (P) en 1 unidad genera un mejoramiento de la función objetivo de 1,75 unidades: $z^* = 12.25$
 - ¡Aumentar $b_1 = 10$ no sirve de nada! (marginalmente), ya que esa restricción no es activa en el óptimo.
- Aumentar $c_3 = 7$ en (D) en 1 unidad genera un empeoramiento de la función objetivo de 1,5 unidades: $w^* = 12$
 - ¡Estamos minimizando!
 - ¡Aumentar c_1 ó c_2 no sirve de nada! (marginalmente)

Lema de Farkas

- Se pretende demostrar que la infactibilidad de un sistema de inecuaciones lineales es equivalente a la factibilidad de otro sistema de inecuaciones lineales relacionado.
- En otras palabras, el segundo sistema certifica la infactibilidad del primero.
- Por ejemplo, consideremos el sistema:

$$Ax = b$$
$$x > 0$$

y supongamos que existe y tal que:

$$y'A \ge 0$$
$$y'b < 0$$

- Post-multiplicando por un $x \ge 0$ se tiene que: $y'Ax \ge 0$
- Como y'b < 0 la única opción es que: $Ax \neq b \quad \forall x \geq 0$

Lema de Farkas

Lema:

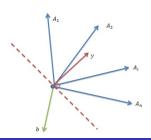
Sea A una matriz de dimensiones $m \times n$ y sea b un vector en \mathbb{R}^m . Entonces, se cumple exactamente una de las siguientes alternativas:

- (a) Existe algún $x \ge 0$ tal que Ax = b.
- (b) Existe algún vector y tal que $y'A \ge 0$ y y'b < 0

Gráficamente:

- (a) El vector b es una combinación lineal positiva de las columnas A_i .
 - A_1 A_2 A_1 A_2 A_1 A_2

(b) Existe un hiperplano y que separa al vector b de todas las columnas A_i .



Introducción El Problema Dual Teoremas de Dualidad Precios Sombra Lema de Farkas

Dudas y/o Comentarios a: ndevia@ing.uchile.cl

Introducción El Problema Dual Teoremas de Dualidad Precios Sombra Lema de Farkas