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Introduction

Analysis of variance is performed in order to determine whether
there are differences in the means between groups or across
different conditions. From a simple two-group experiment, to a

complex study involving many factors and covariates, the same core
principle applies. Why this technique is called analysis of variance
(ANOVA) and not analysis of means, has to do with the methodology used
to determine if the means are far enough apart to be considered
“significantly” different.

To examine the basic principle of ANOVA, image a simple experiment in
which subjects are randomly assigned to one of three treatment groups,
the treatments are applied, then subjects are tested on some performance
measure. One possible outcome appears below. Performance scores are
plotted along the vertical axis and each box represents the distribution of
scores within a treatment group.

Figure 1.1 Performance Scores: Distinct Populations

Chapter 1

WHY DO
ANALYSIS OF

VARIANCE?

VISUALIZING
ANALYSIS OF

VARIANCE
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Here a formal testing of the differences is almost unnecessary. The
groups show no overlap in performance scores and the group means
(medians are the dark bar at the center of each box) are well spaced
relative to the standard deviation of each group. Think of the variation,
or distances going from group mean to group mean, and compare this to
the variation of the individual scores within each group.

Let us take another example. Suppose the same experiment described
above results in the performance scores having little or no difference. We
picture this below.

Figure 1.2 Performance Scores: Identical Populations

Here the group means are all but identical, so there is little variation
or distance going from group mean to group mean compared to the
variation of performance scores within the groups. A formal ANOVA
analysis would merely confirm this.

A more realistic example involves groups with overlapping scores and
group means that differ. This is shown in the plot below.
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Figure 1.3 Performance Scores: Overlapping Groups

The formal ANOVA analysis needs to be done to determine if the
group means do indeed differ in the population, that is, with what
confidence can we claim that the group means are not the same. Once
again, think of the variation of the group means (distances) between pairs
of groups, or variation of the group means around the grand mean)
relates to the variation of the performance scores within each group.

Stripped of technical adjustments and distributional assumptions, you
are comparing the variation of group means to the variation of individual
scores within the groups constitute the basis for analysis of variance. To
the extent that the differences or variation between groups is large
relative to the variation of individual scores within the groups, we speak
of the groups showing significant differences. Another way of reasoning
about the experiment we described is to say that if the treatments
applied to the three groups had no effect (no group differences), then the
variation in group means should be due to the same sources and be of the
same magnitude (after technical adjustments) as the variation among
individuals within the groups.

WHAT IS
ANALYSIS OF

VARIANCE?



Introduction  1 - 4

SPSS Training

The technical adjustment just mentioned is required when comparing
variation in means scores to variation in individual scores. This is
because the variance of means will be less than the variance of the
individual scores on which the mean is based. The basic mathematical
relation is that the variance of the means based on a sample size of “n”
will be equal to the variance of the individual scores in the sample
divided by “n”. The standard deviation of the mean is called the standard
error or the standard error of the mean. We will illustrate this law with a
little under 10,000 observations produced by a pseudo-random number
generator in SPSS, based on a normal distribution with a mean of zero
and a standard deviation of one. The results appear in Figure 1.4.

The first histogram shows the distribution of the original 9,600 data
points. Notice almost all of the points fall between the values of –3 and
+3.

The second histogram contains the mean scores of samples of size 4
drawn from the original 9,600 data points. Each point is a mean score for
a sample of size 4 for a total of 2,400 data points. The distribution of
means is narrower than that of the first histogram; almost all the points
fall between –1.5 and +1.5.

In the final histogram each point is a mean of 16 observations from
the original sample. The variation of these 600 points is less than that of
the previous histograms with most points between -.9 and +.9. Despite
the decrease in variance, the means (or centers of the distributions)
remain at zero.

This relation is relevant to analysis of variance. In ANOVA, when
comparing the variation between group mean scores to variation of
individuals within groups, the sample sizes upon which the means are
based are explicitly taken into account.

VARIANCE OF
MEANS
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Figure 1.4 Variation in Means as a Function of Sample Size
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While we will give a formal statement of the assumptions of ANOVA and
proceed with complex variations, this basic principle comparing the
variation of group or treatment means to the variation of individuals
within groups (or some other grouping) will be the underlying theme.

The term “factor” denotes a categorical predictor variable. “Dependent
Variables” are interval level outcome variables, and “covariates” are
interval level predictor variables. ANOVA is considered a form of the
general linear model and most of the assumptions follow from that and
are listed below:

• All variables must exhibit independent variance. In other
words, a variable must vary, and it must not be a one-to-one
function of any other variable. Though it is the dream of any
data analyst to have a dependent variable that is perfectly
predicted, if such were the case, the “F-ratio” for an analysis
of variance could not be formed (Note: as a practical matter, if
you find such a perfect prediction, lack of an “F-ratio” should
not result in any lost sleep).

• Dependent variables and covariates must be measured in
interval or ratio scale. Factors may be nominal or categorized
from ordinal or interval variables. However, ordinal
hypothesis can only be tested in a pairwise fashion. Imposing
the desired metric through the appropriate set of contrasts
can test interval hypothesis.

• For fixed effect models, all levels of predictor variables that
are of interest must be included in the analysis.

• The linear model specified is the correct one; it includes all
the relevant sources of variation, excludes all irrelevant ones,
and is correct in its functional form (Note: in the words of the
Sgt. in Hill Street Blues “so, be careful out there”).

• Errors of measurement must be unbiased (have a zero mean).
• Errors must be independent of each other and of the predictor

variables.
• Error variances must be homogeneous.
• Errors must be normally distributed. This final assumption is

not required for estimation, but must be met in order for an
“F-ratio” to be accurately referred to as an “F-distribution”
(Note: that is, it is required for testing, which is why you are
doing the analysis).

We will examine some of these assumptions in the data sets used in
the rest of this course.

We use an “analysis of variance” to test for differences between
means for the following formal reason:

The formulation of the analysis of variance approach as a test
of equality of means follows a deductive format. We can show
that if it is true that two (or more) means are equal, then
certain properties must hold for other functions of the data,
such as between group and within group variation. The idea

BASIC
PRINCIPLE OF

ANOVA

A FORMAL
STATEMENT OF

ANOVA
ASSUMPTIONS
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behind the formulation of the familiar “F-ratio” is that if the
means being compared are equal, then the numerator and
denominator of the “F-ratio” represent independent estimates
of the same quantity (error variance) and their ratio must
then follow a known distribution. This allows us to place a
distinct probability on the occurrence of sample means as
different as those observed under the hypothesis of zero
difference among population means.

In this chapter we discussed the basic principle of analysis of variance
and gave a formal statement of the assumptions of the model. We turn
next to examining these assumptions and the implications if the
assumptions are not met (Note: life as it really is).

SUMMARY
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Examining Data and Testing
Assumptions

The data set comes from Cox and Snell (1981). They obtained it from a
report (Mooz, 1978) and reproduced it with the permission of the Rand
Corporation. Only a subset of the original variables is used in the data set
we will use.

The data set we will be using contains information for 32 light water
nuclear power plants. Four variables are included: the capacity and cost
of the plant; time to completion from start of construction; and experience
of the architect-engineer who built the plant. These variables are
described in more detail below.

We will use only a subset of all the variables that were in the original
data set, and have created categories from the variables capacity and
experience in order to use them as factors in an analysis of variance.

In order of the variables in the data file, they are:

Capacity Generating capacity
1 Less than 800 MW’s (Mega Watts)
2 800-1000
3 Greater than 1000

Experience Experience of the architect-engineer
in building power plants

1 1-3 plants
2 4-9 plants
3 10 or more plants

Time time in months between issuing of construction permit
and issuing of operating license.

Cost cost in millions of dollars adjusted to a 1976 base (In 1976
dollars).

The analyst should choose the analysis that best conforms to the type of
information collected in the data and the research or analysis question(s)
you wish to answer. We feel that in a short course there is an advantage
in describing the various types of analyses that can be done. However, in
practice you would run only the most appropriate analysis. In other
words if there were two factors in your study, you would run a two-factor
analysis and not begin with one factor analysis as we do here.

Chapter 2

DESCRIPTION OF
THE DATA

Note About the
Analyses That

Follow
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The researcher should state the research questions clearly and concisely,
and refer to these questions regularly as the design and implementation
of the study progresses. Without this statement of questions, it is easy to
deviate from them when engrossed in the details of planning or to make
decisions that are at variance with the questions when involved in a
complex study. Translating study objectives into questions serves as a
check on whether the study has met the objectives.

The next task is to analyze the researchable question(s). In doing this
one must

• Identify and define key terms
• Identify sub questions, which must also be answered
• Identify the scope and time frame imposed by the researchable

question

One of the most important decisions that should not be overlooked is to
set down in terms of utmost clarity exactly what information is needed. It
is usually good procedure to verify that all the data are relevant to the
purposes of the study and that no essential data are omitted. Unless this
is specified, the reporting forms may yield information that is quite
different from what is needed, since there is a tendency to request too
much data, some of which is subsequently never analyzed.

It is critical that the researcher be familiar with the data being analyzed,
whether it is primary (data you collected) or secondary (someone else
collected it) data. Not only is knowing your data important to defining
your population, but it can (1) help to spot trends on which to focus, and
(2) provide assurance that you are measuring what you want to measure.

Visually review the data for several cases (or the entire data set if it is
relatively small). Be familiar with the meaning of every variable and with
the codes associated with the variables of interest.

Before applying formal tests (ANOVA for example in this course) to your
data, it is important to first examine and check the data. This is done for
several reasons:

• To identify data errors
• To identify unusual points – outliers
• To become aware of unexpected or interesting patterns
• To check on or test the assumptions of the planned analysis
• For ANOVA:
• Homogeneity of variance
• Normality of error

Research
Question(s)

Data to be
Collected

Know the Data

Scan the Data

WHY EXAMINE
THE DATA?
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Bar charts and histograms, as well as such summaries as means and
standard deviations have been used in statistical work for many years.
Sometimes such summaries are ends in their own right; other times they
constitute a preliminary look at the data before proceeding with more
formal methods. Seeing limitations in this standard set of procedures,
John Tukey, a statistician at Princeton and Bell Labs, devised a collection
of statistics and plots designed to reveal data features that might not be
readily apparent from standard statistical summaries. In his book
describing these methods, entitled Exploratory Data Analysis (1977),
Tukey described the work of a data analyst to be similar to that of a
detective, the goal being to discover surprising, interesting, and unusual
things about the data. To further this effort Tukey developed both plots
and data summaries. These methods, called exploratory data analysis
and abbreviated EDA, have become very popular in applied statistics and
data analysis. Exploratory data analysis can be viewed either as an
analysis in its own right, or as a set of data checks and investigations
performed before applying inferential testing procedures.

These methods are best applied to variables that have at least ordinal
(more commonly interval) scale properties and can take on many
different values. The plots and summaries would be less helpful for a
variable that takes on only a few values (for example, on five point rating
scales)

We will use the SPSS EXPLORE procedure to examine the data and test
some of the ANOVA assumptions. In windows we first open the file.

All files for this class are located in the c:\Train\Anova folder on your
training machine. If you are not working in an SPSS Training center, the
training files can be copied from the floppy disk that accompanies this
course guide. If you are running SPSS Server (click File..Switch Server to
check), then you should copy these files to the server or a machine that
can be accessed (mapped from) the computer running SPSS Server.

SPSS can display either variable names or variable labels in dialog boxes.
In this course we display the variable names in alphabetical order. In
order to match the dialog boxes shown here:

Click Edit..Options

Within the General tab of the Options dialog:

Click the Display names and Alphabetical option buttons in
the Display Variables area

Click OK.

Click File..Open..Data (move to the c:\Train\Anova directory)
Select SPSS Portable file (.por) from Files of Type list
Double-click on Plant.por to open the file.
Click on Analyze..Descriptive Statistics..Explore
Move the cost variable into the Dependent List box

EXPLORATORY
DATA ANALYSIS

Plan of Analysis

A Note About
Variable Names

and Labels in
Dialog Boxes

Note on
Course Data Files
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Figure 2.1 Explore Dialog Box

The syntax for running the Explore procedure is given below:

EXAMINE
  VARIABLES=cost
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUP
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

The variable to be summarized (here cost) appears in the Dependent
List box. The Factor list box can contain one or more categorical (for
example, in our data set capacity) variables, and if used would cause the
procedure to present summaries for each subgroup based on the factor
variable(s). We will use this feature later in this chapter when we want to
see differences between the groups. By default, both plots and statistical
summaries will appear. We can request specific statistical summaries
and plots using the Statistics and Plots pushbuttons. While not discussed
here, the Explore procedure can print robust mean estimates (M-
estimators) and lists of extreme values, as well as normal probability and
homogeneity plots.

Click OK to run the Explore procedure.
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The Explore procedure provides for us in this first run a summary of the
variable cost for all 32 plants.

Figure 2.2 Descriptives for the Variable Cost

A LOOK AT THE
VARIABLE COST

Explore first displays information about missing data. The Case
Process Summary pivot table (not shown) displays the number of valid
and missing observations; this information appears at the beginning of
the statistical summary. Here we have data for the variable cost for all 32
observations. (Typically an analyst does not have all the data.)

Next several measures of central tendency appear. Such statistics
attempt to describe, with a single number, where the data values are
typically found, or the center of the distribution. The mean is the
arithmetic average. The median is the value at the center of the
distribution when it is ordered (either lowest to highest or highest to
lowest), that is, half the data values are greater than, and half the data
values are less than, the median. Medians are resistant to extreme
scores, and so are considered to be a robust measure of central tendency.
The 5% trimmed mean is the mean calculated after the extreme upper 5%
and the extreme lower 5% of the data values are dropped from the
calculation. Such a measure would be resistant to small numbers of
extreme or wild scores. In this case the three measures of central
tendency are similar (461.56, 448.11, and 455.67), and we can say that
the typical plant costs about $450 million. If the mean were considerably
above or below the median and the trimmed mean, it would suggest a

Measures of
Central Tendency
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skewed or asymmetric distribution. A perfectly symmetric distribution,
for example, the normal, would produce identical expected means,
medians, and trimmed means.

Explore provides several measures of the amount of variation across the
plants. They indicate to what degree observations tend to cluster near the
center of the distribution. Both the standard deviation and variance
(standard deviation squared) appear. For example, if all the observations
were located at the mean then the standard deviation would be zero. In
this case the standard deviation is $170.12 (million).  Another way to
express the variability is that the standard deviation is 36.86% of the
mean, which indicates that the data is moderately variable. The standard
error is an estimate of the standard deviation of the mean if repeated
samples of the same size were taken from the same population ($30.07).
It is used in calculating the 95% confidence interval for the sample mean
discussed below. Also appearing is the interquartile range, which is
essentially the range between the 25th and 75th percentile values. Thus
the interquartile range represents the range including the middle 50
percent of the sample (321.74). It is a variability measure more resistant
to extreme scores than the standard deviation. We also see the minimum
and maximum dollar amounts and the range. It is useful to check the
minimum and maximum to make sure no impossible data values are
recorded (here a cost at zero or below).

The 95% confidence interval has a technical definition: if we were to
repeatedly perform the study and computed the confidence intervals for
each sample drawn, on average, 95 out of each 100 such confidence
intervals would contain the true population mean. It is useful in that it
combines measures of both central tendency (mean) and variation
(standard error) to provide information about where we should expect the
population mean to fall. Here, we can say that we estimate the cost of the
light water nuclear power plants to be $461.56 and we are 95-percent
confident that the true but unknown cost would be between $400.23 and
$522.90.

The 95% confidence interval for the mean can be easily obtained from
the sample mean, standard deviation, and sample size. The confidence
interval is based on the sample mean, plus or minus 1.96 times the
standard error of the mean. (1.96 is used because 95% of the area under a
normal curve is within 1.96 standard deviation of the mean [when doing
in my head I cheat and use 2 since it is easier to multiply by]). Since the
sample standard error of the mean is simply the sample standard
deviation divided by the square root of the sample size, the 95%
confidence interval is equal to the sample mean plus or minus 1.96 times
(sample standard deviation divided by {square root of the sample size}).
Thus if you have the sample mean, sample standard deviation, and the
sample size, you can easily compute the 95-percent confidence interval.

Variability
Measures

Confidence
Interval for Mean
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Skewness and Kurtosis provide numeric summaries about the shape of
the distribution of the data. While many analysts are content to view
histograms in order to make judgments regarding the distribution of a
variable, these measures quantify the shape. Skewness is a measure of
the symmetry of a distribution. It is normed so that a symmetric
distribution has zero skewness. Positive skewness indicates bunching of
the data on the left and a longer tail on the right (for example, income
distribution in the U.S.); negative skewness follows the reverse pattern
(long tail on the left and bunching of the data on the right). The standard
error of skewness also appears, and we can use it to determine if the data
are significantly skewed. In our case, the skewness is .5 with a standard
error of .414. Thus, using the formula above the 95-percent confidence
interval for skewness is between –0.311 and +1.311. Since the interval
contains zero the data is not significantly skewed. (As a quick and dirty
rule of thumb, however, if the skewness is over 3 in either direction you
might want to consider a different approach in your study.)

Kurtosis also has to do with the shape of a distribution and is a
measure of how peaked the distribution is. It is normed to the normal
curve (kurtosis is zero). A curve that is more peaked than the normal has
a positive value and one that is flatter than the normal has negative
kurtosis. Again our data is not significantly peaked. (Again the same rule
of thumb can be applied although some say that the value should be
larger). The shape of the distribution can be of interest in its own right.
Also, assumptions are made about the shape of the data distribution
within each group when performing significance tests on mean
differences between groups. (As a quick rule of thumb, however, if the
kurtosis is over 3 in either direction you might want to consider a
different approach in your study.)

The stem & leaf plot is modeled after the histogram, but is designed to
provide more information. Instead of using a standard symbol (for
example, an asterisk “*” or block character) to display a case or group of
cases, the stem & leaf plot uses data values as the plot symbols. Thus the
shape of the distribution is shown and the plot can be read to obtain
specific data values. The stem & leaf plot for the cost appears below:

Figure 2.3 Stem & Leaf Plot for Cost

Shape of the
Distribution

Stem & Leaf Plot
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In a stem & leaf plot the stem is the vertical axis and the leaves
branch horizontally from the stem (Tukey devised the stem & leaf). The
stem width indicates how to interpret the units in the stem; in this case a
stem unit represents one hundred dollars in the cost scale. The actual
numbers in the chart (leaves) provide an extra decimal place of
information about the data values. For example the stem of 5 and a leaf
of 6 would indicate a cost of $560 to $569. Thus besides viewing the shape
of the distribution we can pick out individual scores. Below the diagram a
note indicates that each leaf represents one case. For large samples a leaf
may represent two or more cases and in such situations an ampersand
(&) represents two or more cases that have different data values.

The last line identifies outliers. These are data points far enough
from the center of the distribution (defined more exactly under Box &
Whisker plots below) that they might merit more careful checking –
extreme points might be data errors or possibly represent a separate
subgroup. If the stem & leaf plot were extended to include these outliers
the skewness would be apparent.

The stem & leaf plot attempts to describe data by showing every
observation. In comparison, displaying only a few summaries, the box &
whisker plot will identify outliers (data values far from the center of the
distribution). Below we see the box & whisker plot (also called a box plot)
for cost.

Figure 2.4 Box & Whisker Plot for Cost

Box & Whisker
Plot

The vertical axis is the cost of the plants. In the plot, the solid line
inside the box represents the median. The “hinges” provide the top and
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bottom borders to the box; they correspond to the 75th and 25th percentile
values of cost, and thus define the interquartile range (IQR). In other
words, the middle 50% of the data values fall within the box. The
“whiskers” are the last data values that lie within 1.5 box lengths (or
IQRs) of the respective hinge (edge of box). Tukey considers data points
more than 1.5 box lengths from the hinges to be far enough from the
center to be noted as outliers. Such points are marked with a circle.
Points more than 3 box lengths from the hinges are viewed by Tukey to
be “far out” points and are marked with an asterisk type symbol. This
plot has no outliers or far-out points. If a single outlier appears at a given
data value, the case sequence number prints out beside it (an id variable
can be substituted), which aids data checking.

If the distribution were symmetric, then the median would be
centered within the hinges and the whiskers. In the plot above, the
different lengths of the whiskers show the skewness. Such plots are also
useful when comparing several groups, as we will see shortly.

We now produce the same summaries and plots for each subgroup (here
based on plant capacity).

Click on the Dialog Recall tool  on the toolbar.

Click on the Explore procedure
When the dialog box opens move the variable capacity to the

Factors List box.

Figure 2.5 Explore Dialog Box

A LOOK AT THE
SUBGROUPS

We also request normality plots and homogeneity tests.
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Click Plots pushbutton
Click Normality plots with tests check box
Click Power estimation option button

Figure 2.6 Plots Sub-Dialog Box

Click Continue
Click OK

The command below will run the analysis

EXAMINE
  VARIABLES=cost BY capacity
  /PLOT BOXPLOT STEMLEAF NPPLOT SPREADLEVEL
  /COMPARE GROUP
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE  /NOTOTAL.

The Npplot keyword on the /Plot subcommand requests the normal
probability plots, while the Spreadlevel keyword will produce the spread
& level plots and the homogeneity of variance tests.

Below we see the statistics and the stem & leaf plot for the first
capacity group (under 800 MW). Notice that relative to the group (not the
entire set of plants as in the previous plots) there is an extreme score.
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Figure 2.7 Descriptives for the First Group

Figure 2.8 Stem & leaf Plot for the First Group

NORMALITY The next pair of plots provides some specific information about the
normality of data points within the group. This is equivalent to
examining the normality of the residuals in ANOVA and is one of the
assumptions made when the “F” tests of significance are made.
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Figure 2.9 Q-Q Plot of the First Group

Figure 2.10 Detrended Q-Q Plot of the First Group

The first plot is called a normal probability plot. Each point is plotted
with its actual value on the horizontal axis and its expected normal
deviate value (based on the point’s rank-order within the group). If the
data follow a normal distribution, the points form a straight line.

The second plot is a detrended normal plot. Here the deviations of
each point from a straight line (normal distribution) in the previous plot
are plotted against the actual values. Ideally, they would distribute
randomly around zero.

Next we look at the second group.
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Figure 2.11 Descriptives for the Second Group

Figure 2.12 Stem & Leaf Plot for the Second Group

For the second group the stem & leaf plot shows a concentration of
costs at the low end.

Figure 2.13 Q-Q Plot for the Second Group
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Figure 2.14 Detrended Q-Q Plot for the Second Group

The pattern from the stem & leaf plot carries over to the normal
probability plot where the cluster of low cost values show in the lower left
corner of the plot.

Let us examine the results for the third group.

Figure 2.15 Descriptives for the Third Group
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Figure 2.16 Stem & Leaf Plot for the Third Group

Figure 2.17 Q-Q Plot for the Third Group
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Figure 2.18 Detrended Q-Q Plot for the Third Group

In addition to a visual inspection, two tests of normality of the data
are provided. The test labeled Kolmogorov-Smirnov is a modification of it
using the Lilliefors Significance Correction (in which means and
variances must be estimated from the data) comparing the distribution of
the data values within the group to the normal distribution. The Shapiro-
Wilks test also compares the observed data to the normal distribution
and has been found to have good power in many situations when
compared to other tests of normality (see Conover, 1980). For the first
group there seem to be no problems regarding normality, nor any
strikingly odd data values. Notice also that for the second group the tests
of normality reject the null hypothesis that the data comes from a normal
distribution, while the third group the null hypothesis is not rejected.

Figure 2.19 Tests of Normality
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The box and whisker allows visual comparison of the groups.

Figure 2.20 Box and Whiskers Plot

COMPARING THE
GROUPS

The third group appears to contain higher cost plants than the first
and second groups. The variation within each group as gauged by the
whiskers seems fairly uniform. Notice the outlier in group one is
identified by its case sequence number. There does not seem to be any
increase in variation or spread as the median cost rises from the first to
third group.

Homogeneity of variance within each population group is one of the
assumptions in ANOVA. This can be tested by any of several statistics
and if the variance is systematically related to the level of the group
(mean, median) data transformations can be performed to relieve this (we
will say more on this later in this chapter). The spread and level plot
below provides a display of this by plotting the natural log of the spread
(interquartile range) of the group against the natural log of the group
median. If you can overcome a seemingly inborn aversion to logs and view
the plot, we desire relatively little variation in the log spread going across
the groups – which would suggest that the variances are stable across
groups. The reason for taking logs is technical. If there is a systematic
relation between the spread and the level (or variances and means), the
slope of the best fitting line indicates what data transformation (within
the class of power transformations) will best stabilize the variances
across the different groups. We will say more about such transformations
later.

HOMOGENEITY
OF VARIANCE
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Figure 2.21 Spread and Level Plot

Figure 2.22 Test of Homogeneity of Variance

A number of tests are available for testing homogeneity of variance,
such as the Bartlett-Box and Cochran’s C tests of homogeneity of
variance. However, these are sensitive to departures from normality as
well. The Levene tests appearing above are less sensitive to departures
from normality and might be preferred for that reason. Some statisticians
consider the former tests too powerful in general; that is, they tend to
reject the homogeneity of variance assumption when the differences are
too small to influence the analysis. Above, the Levene test suggests no
problem with the homogeneity assumption.
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Overall the data fared fairly well in terms of the ANOVA assumptions.
The only problem was normality of group 2. If inequality of variances was
a problem and a data transformation applied, that might relieve the
difficulty but no such transformation is called for. Since two of the three
groups seem fine we will proceed with the analysis.

Below we state in more detailed and formal terms the implications of
violations of the assumptions and general conditions under which they
constitute a serious problem.

In the fixed effects model this assumption is equivalent to assuming that
the dependent variable is normally distributed in the population, since all
other terms in the model are to be considered fixed effects. “F” and “t”
tests used to test for differences among means in the analysis of variance
are unaffected by non-normality in large sample (this has led to the
common practice of referring to the analysis of variance as robust with
respect to violations of the normality assumption). Less is known about
small sample behavior, but the current belief among most statisticians is
that normality violations are generally not a cause for concern in fixed
effect models.

While inferences about means are generally not heavily affected by
non-normality, inferences about variances and about ratios of variances
are quite dependent on the normality assumption. Thus random effects
models are vulnerable to violations of normality where fixed effects
models are not. More important in the general case, since most analyses
of variance involve fixed effects models, is the fact that many standard
tests of the homogeneity of error variance depend on inferences about
variances, and are therefore vulnerable to violations of the normality
assumption.

Tests of the homogeneity of variance assumption such as the Bartlett-
Box F, Cochran’s C and the F-max criterion all assume normality and are
inaccurate in the presence of nonzero population kurtosis. If the
population kurtosis is positive (signifying a peaked or leptokurtic
distribution), these tests will tend to reject the homogeneity assumption
too often, while a negative population kurtosis (indicative of a flat or
platykurtic distribution) will lead to too many failures to recognize
violations of the homogeneity assumption. For this reason the Levene test
for homogeneity of variance (included in the Explore procedure) is
strongly recommended, as it is robust to violations of the normality
assumption.

Violations of the homogeneity of variance assumption are in general more
troublesome than violations of the normality assumption. In general, the
smaller the smaller the sample sizes of the groups and the more
dissimilar the sizes of the groups, the more problematic violations of this
assumption become. Thus in a large sample with equal group sizes, even

Summary of the
Plant Data

EFFECTS OF
VIOLATIONS OF

ASSUMPTIONS IN
ANOVA

Normality of
Errors in the

Population

Homogeneity of
Population Error

Variances Among
Groups
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moderate to severe departures from homogeneity may not have large
effects on inferences, while in small samples with unequal group sizes,
even slight to moderate departures can be troublesome. This is one
reason that statisticians recommend large samples and equal group sizes
whenever possible.

The magnitude of effects on actual Type I error level of violations of
the homogeneity assumption depends on how dissimilar the variances
are, how large is the sample, and how dissimilar are the group sizes, as
mentioned above. The direction of the distortion of actual Type I error
level depends on the relationship between variances and group sizes.
Smaller sample from populations with larger variances lead to inflation
of the actual Type I error level, while smaller samples from populations
with smaller variances result in actual Type I error levels smaller than
the nominal test alpha levels.

Violations of the independence assumption can be serious even with large
samples and equal group sizes. Methods such as generalized least
squares should be used with autocorrelated data.

Two further points should be considered here. First, our discussion
has centered on the impact of violations of assumptions on the actual
Type I (alpha) error level. When considerations such as the power of a
particular test are introduced, the situation can quickly become much
more complicated. In addition, most of the work on the effects of
assumption violations has considered each assumption in isolation. The
effects of violations of two or more assumptions simultaneously are less
well known. For more detailed discussions of these topics, see Scheffe
(1959) or Kirk (1982). Also, see Wilcox (1996, 1997) for who discusses the
effects of ANOVA assumption violation and presents robust alternatives.

Many researchers deal with violations of normality or homogeneity of
variance assumptions by transforming their dependent variable in a
nonlinear manner. Such transformations include natural logarithms,
square roots, etc. These types of transformations are also employed to
achieve additivity of effects in factorial designs with non-crossover
interactions. There are, however, serious potential problems with such an
approach.

While statistical procedures such as those employed by SPSS are not
concerned with the sources of the numbers they are used to analyze, and
will produce valid probabilities assuming only that distributional
assumptions are met. The interpretation of analyses of transformed data
can be quite problematic if the transformation employed is nonlinear.

If data are originally measured on an interval scale, which the
calculation of means assumes, then nonlinearly transforming the
dependent variable and running a standard analysis results in a very
different set of questions being asked than with the dependent variable in

Population Errors
Uncorrelated with

Predictors and
with Each Other

A Note on
Transformations
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the original metric. Aside from the fact that a nonlinear transformation of
an interval scale destroys the interval properties assumed in the
calculation of means, the test of equality of a set of means of nonlinearly
transformed data does not test the hypothesis that the means of the
original data are equal, and there is no one to one relationship between
the two tests. Attempts to back-transform parameter estimates by
applying the inverse of the original transformation in order to apply the
results to the original research hypothesis do not work. The bias
introduced is a complicated one that actually increases with increasing
sample size. For further information on this bias, see Kendall & Stuart
(1968).

The practical implications of this point are that studies should be
designed such that the variables which are of interest are measured, care
should be taken to see that they meet the assumptions required to make
the computation of basic descriptive statistics meaningful, and that
commonly applied transformations in cases where ANOVA model
assumptions are violated may cause more trouble than they avert.
Accurate probabilities attached to significance tests of the equality of
meaningless quantities are of even less use than distorted probabilities
attached to tests concerning meaningful variables, especially when the
direction and magnitude of distortions are of some degree estimable and
can be taken into account when interpreting research results.

In this chapter we discussed the implications of violation of some of the
assumptions of ANOVA: homogeneity of variance, and normality of error.
We used exploratory data analysis techniques on the data set prior to
formal analysis in order to view the data and check on the assumptions.
In the next chapter we will proceed with the actual one-factor ANOVA
analysis and consider planned and post-hoc comparisons.

SUMMARY
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One-Factor ANOVA

Apply the principles of testing for population mean differences to
situations involving more than two comparison groups. Understand the
concept behind and the practical use of post-hoc tests applied to a set of
sample means.

We will run a one-factor (Oneway procedure) analysis of variance
comparing the different capacity groups on the cost of building a nuclear
power plant. Then, we will rerun the analysis requesting multiple
comparison (post hoc) tests to see specifically which population groups
differ. We will then plot the results using an error bar chart. The
appendix contains a nonparametric analysis of the same data.

We use the light water nuclear power plant data used in the last chapter.

We wish to investigate the relationship between the level of capacity of
these plants and the cost associated with building the plants. One way to
approach this is to group the plants according to their generating
capacity and compare these groups on their average cost. In our data set
we have the plants grouped into three capacity categories. Assuming we
retain these categories we might first ask if there are any population
differences in cost among these groups. If there are significant mean
differences overall, we next want to know specifically which groups differ
from which others.

Analysis of variance (ANOVA) is a general method of drawing
conclusions regarding differences in population means when two
or more comparison groups are involved. The independent-groups

t test applies only to the simplest instance (two groups), while ANOVA
can accommodate more complex situations. It is worth mentioning that
the t test can be viewed as a special case of ANOVA and they yield the
same result in the two-group situation (same significance value, and the t
statistic squared is equal to the ANOVA’s F statistic).

We will compare three groups of plants based on their capacity and
determine whether the populations they represent differ in the cost of
being built.

Chapter 3

Objective

Method

Data

Scenario

INTRODUCTION
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The basic logic of significance testing is that we will assume that the
population groups have the same mean (null hypothesis), then determine
the probability of obtaining a sample with group mean differences as
large (or larger) as what we find in our data. To make this assessment
the amount of variation among the group means (between-group
variation) is compared to the amount of variation among the observations
within each group (within-group variation). Assuming that in the
population the group means are equal (null hypothesis), the only source
of variation among the sample means would be the fact that the groups
are composed of different individual observations. Thus the ratio of the
two sources of variation (between-group/within-group) should be about
one when there are no population differences. When the distribution of
the individual observations within each group follows the normal curve,
the statistical distribution of this ratio is known (F distribution) and we
can make a probability statement about the consistency of our data with
the null hypothesis. The final result is the probability of obtaining sample
differences as large (or larger) as what we found, if there were no
population differences. If this probability is sufficiently small (usually
less than .05, i.e., less than 5 chances in 100) we conclude the population
groups differ.

When performing a t test comparing two groups there is only one
comparison that can be made: group one versus group two. For this
reason the groups are constructed so their members systematically vary
in only one aspect: for example, males versus females, or drug A versus
drug B. If the two groups differed on more than one characteristic (for
example, males given drug A versus females given drug B) it would be
impossible to differentiate between the two effects (gender and drug).

Why couldn’t a series of t tests be used to make comparisons among
three groups? Couldn’t we simply use t tests to compare group one versus
group two, group one versus group three, and group two versus group
three? One problem with this approach is that when multiple
comparisons are made among a set of group means, the probability of at
least one test showing significance even when the null hypothesis is
true is higher than the significance level at which each test is performed
(usually 0.05 or 0.01). In fact, if there is a large array of group means, the
probability of at least one test showing significance is close to one
(certainty)! It is sometimes asserted that an unplanned multiple
comparison procedure can only be carried out if the ANOVA F test has
shown significance. This is not necessarily true as it depends on what the
research question(s) are.

There remains a problem, however. If the null hypothesis is that all
the means are equal, the alternative hypothesis is that at least one of the
means is different. If the ANOVA F test gives significance, we know there
is a difference somewhere among the means, but that does not justify us
in saying that any particular comparison is significant. The ANOVA F
test, in fact, is an omnibus test, and further analysis is necessary to
localize whatever differences there may be among the individual group
means.

LOGIC OF
TESTING FOR

MEAN
DIFFERENCES

FACTORS
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The question of exactly how one should proceed with further analysis
after making the omnibus F test in ANOVA is not a simple one. It is
important to distinguish between those comparisons that were planned
before the data were actually gathered, and those that are made as part
of the inevitable process of unplanned data-snooping that takes place
after the results have been obtained. Planned comparisons are often
known as a-priori comparisons. Unplanned comparisons should be
termed a-posteriori comparisons, but unfortunately the misnomer post
hoc is more often used.

When the data can be partitioned into more than two groups,
additional comparisons can be made. This might involve one aspect or
dimension, for example four groups each representing a region of the
country. Or the groups might vary along several dimensions, for example
eight groups each composed of a gender (two categories) by region (four
categories) combination. In this latter case, we can ask additional
questions: (1) is there a gender difference? (2) is there a region difference?
(3) do gender and region interact? Each aspect or dimension the groups
differ on is called a factor. Thus one might discuss a study or experiment
involving one, two, even three or more factors. A factor is represented in
the data set as a categorical variable and would be considered an
independent variable. SPSS allows analysis of multiple factors, and has
different procedures available based on how many factors are involved
and their degree of complexity. If only one factor is to be studied use the
Oneway (or One Factor ANOVA) procedure. When two or more factors
are involved simply shift to the general factorial procedure (General
Linear Model..General Factorial). In this chapter we consider a one-factor
study (capacity relating to the cost of the plants), but we will discuss
multiple factor ANOVA in later chapters.

First we need to open our data set.

Click File..Open..Data (move to the c:\Train\Anova directory)
Select SPSS Portable (.por) from the Files of Type drop-down

list
Double-click on plant.por to open the file.

To run the analysis using SPSS for Windows:

Click Analyze..Compare Means ..One-Way ANOVA.
Move cost into the Dependent List box
Move capacity into the Factor list box.

RUNNING ONE-
FACTOR ANOVA
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Figure 3.1 One-Way ANOVA Dialog Box

Enough information has been provided to run the basic analysis. The
Contrasts pushbutton allows users to request statistical tests for planned
group comparisons of interest to them. The Post Hoc pushbutton will
produce multiple comparison tests that can test each group mean against
every other one. Such tests facilitate determination of just which groups
differ from which others and are usually performed after the overall
analysis establishes that some significant differences exist. Finally, the
Options pushbutton controls such features as missing value inclusion and
whether descriptive statistics and homogeneity tests are desired.

Click on the Options pushbutton
Click to select both the Descriptive and Homogeneity-of-

variance
Click the Exclude cases analysis by analysis option button

Figure 3.2 One-way ANOVA Options Dialog Box
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Click Continue
Click OK

The missing value choices deal with how missing data are to be
handled when several dependent variables are given. By default cases
with missing values on a particular dependent variable are dropped only
for the specific analysis involving that variable. Since we are looking at a
single dependent variable, the choice has no relevance to our analysis.

The following syntax will run the analysis:

ONEWAY
    cost BY capacity
    /STATISTICS DESCRIPTIVES HOMOGENEITY
    /MISSING ANALYSIS .

The ONEWAY procedure performs a one-factor analysis of variance.
Cost is the dependent measure and the keyword BY separates the
dependent variable from the factor variable. We request descriptive
statistics and a homogeneity of variance test. We also told SPSS to
exclude cases with missing data on an analysis by analysis basis.

Information about the groups appears in the figure below. We see that
costs increase with the increase in capacity. 95-percent confidence
intervals for the capacity groups are presented in the table. One should
note that the standard deviations for the three groups appear to be fairly
close.

Figure 3.3 Descriptive Statistics

ONE-FACTOR
ANOVA RESULTS

Descriptive
Statistics
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We also requested the Levene test of homogeneity of variance.

Figure 3.4 Levene Test of Homogeneity of Variance

Homogeneity of
Variance

This assumption of equality of variance for all groups was tested in
Chapter 2 using the EXPLORE (Examine) procedure. The Levene test
also shows that with this particular data set the assumption of
homogeneity of variance is met, indicating that the variances do not
differ across groups.

What do we do if the assumption of equal variances is not met? If the
sample sizes are close to the same size and sufficiently large we could
count on the robustness of the assumption to allow the process to
continue. However, there is no general adjustment for the F test in the
case of unequal variances, as there was for the t test. A statistically
sophisticated analyst might attempt to apply transformations to the
dependent variable in order to stabilize the within-group variances
(variance stabilizing transforms). These are beyond the scope of this
course. Interested readers might turn to Emerson’s chapter in Hoaglin,
Mosteller, and Tukey (1991) for a discussion from the perspective of
exploratory data analysis, and note that the spread & level plot in
EXPLORE will suggest a variance stabilizing transform. A second and
conservative approach would be to perform the analysis using a
statistical method that does not assume homogeneity of variance. A one-
factor analysis of group differences assuming that the dependent variable
is only an ordinal (rank) variable is available as a nonparametric
procedure within SPSS. This analysis is provided in the appendix to this
chapter. However, one should note that corresponding nonparametric
tests are not available for all analysis of variance models.

Figure 3.5 ANOVA Summary TableThe ANOVA Table
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The output includes the analysis of variance summary table and the
probability value we will use to judge statistical significance.

Most of the information in the ANOVA table is technical in nature
and is not directly interpreted. Rather the summaries are used to obtain
the F statistic and, more importantly, the probability value we use in
evaluating the population differences. Notice that in the first column
there is a row for the between-group and a row for the within-group
variation. The df column contains information about the degrees of
freedom, related to the number of groups and the number of individual
observations within each group. The degrees of freedom are not
interpreted directly, but are used in estimating the between-group and
within-group variation (variances). Similarly, the sums of squares are
intermediate summary numbers used in calculating the between and
within-group variances. Technically they represent the sum of the
squared deviations of the individual group means around the total grand
mean (between) and the sum of the squared deviations of the individual
observations around their respective sample group mean (within). These
numbers are never interpreted and are reported because it is traditional
to do so. The mean squares are measures of between and within group
variances. Recall in our discussion of the logic of testing that under the
null hypothesis both variances should have the same source and the ratio
of between to within would be about one. This ratio, the sample F
statistic, is 4.05 and we need to decide if it is far enough from one to say
that the group means are not equal. The significance (Sig.) column
indicates that under the null hypothesis of no group differences, the
probability of getting mean costs this far (or more) apart by chance is
under three percent (.028). If we were testing at the .05 level, we would
conclude the capacity groups differ in average cost. In the language of
statistical testing, the null hypothesis that power plants of these different
capacities do not differ in cost is rejected at the 5% level.

From this analysis we conclude that the capacity groups differ in terms of
cost. In addition, we would like to know which groups differ from which
others (Are they all different? Does the high capacity group differ from
each of the other two?). This secondary examination of pairwise
differences is done via procedures called multiple comparison testing
(also called post hoc testing and multiple range testing). We turn to this
issue next.

The purpose of post hoc testing is to determine exactly which groups
differ from which others in terms of mean differences. This is usually
done after the original ANOVA F test indicates that all groups are not
identical. Special methods are employed because of concern with
excessive Type I error.

In statistical testing, a Type I error is made if one falsely concludes
that differences exist when in fact the null hypothesis of no differences is
correct (sometimes called a false positive). When we test at a given level
of significance say 5% (.05), we implicitly accept a five percent chance of a
Type I error occurring. The more tests we perform, the greater the overall
chances of one or more Type I errors cropping up.

Conclusion

POST-HOC
TESTING
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This is of particular concern in our examination of which groups
differ from which others since the more groups we have the more tests we
make. If we consider pairwise tests (all pairings of groups, the number of
tests for K groups is {[(K)*(K-1)]/2}. Thus for three groups, three tests are
made, but for 10 groups, 45 tests would apply. The purpose of the post
hoc methodology is to allow such testing since we have interest in
knowing which groups differ, yet apply some degree of control over the
Type I error.

There are different schemes of controlling for Type I error in post hoc
testing. SPSS makes many of them available. We will briefly discuss the
different post hoc tests, and then apply some of them to the nuclear plant
data. We will apply several post hoc methods for comparison purposes, in
practice, usually only one would be run.

The ideal post hoc test would demonstrate tight control of Type I error,
have good statistical power (probability of detecting true population
differences), and be robust over assumption violations (failure of
homogeneity of variance, nonnormal error distributions). Unfortunately,
there are implicit tradeoffs involving some of these desired features (Type
I error and power) and no one current post hoc procedure is best in all
areas. Couple to this the facts that there are different statistical
distributions on which pairwise tests can be based (t, F, studentized
range, and others) and that there are different levels at which Type I
error can be controlled (per individual test, per family of tests, variations
in between), and you have a huge collection of post hoc tests.

We will briefly compare post hoc tests from the perspective of being
liberal or conservative regarding the control of the false positive rate and
apply several to our data. There is a full literature (including several
books) devoted to the study of post hoc (also called multiple comparison or
multiple range tests, although there is a technical distinction between the
two) tests. More recent books (Toothaker, 1991) summarize simulation
studies that compare post hoc tests on their power (probability of
detecting true population differences) as well as performance under
different scenarios of patterns of group means, and assumption violations
(homogeneity of variance).

The existence of numerous post hoc tests suggests that there is no
single approach that statisticians agree will be optimal in all situations.
In some research areas, publication reviewers require a particular post
hoc method, which simplifies the researcher’s decision.

Below we present some tests roughly ordered from the most liberal
(greater statistical power and greater false positive rate) to the most
conservative (smaller false positive rate, less statistical power), and
mention some designed to adjust for the lack of homogeneity of variance.

WHY SO MANY
TESTS?
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The LSD or least significant difference method simply applies the
standard t tests to all possible pairs of group means. No adjustment is
made based on the number of tests performed. The argument is that since
an overall difference in group means has already been established at the
selected criterion level (say .05), no additional control is necessary. This is
the most liberal of the post hoc tests.

The SNK (Student-Newman-Keuls), REGWF (Ryan-Einot-Gabriel-Walsh
F), REGWQ (Ryan-Einot-Gabriel-Walsh Q [based on studentized range
statistic]), and Duncan methods involve sequential testing. After ordering
the group means from lowest to highest, the two most extreme means are
tested for a significant difference using a critical value adjusted for the
fact that these are extremes from a larger set of means. If these means
are found not to be significantly different, the testing stops; if they are
different then the testing continues with the next most extreme pairs,
and so on. All are more conservative than the LSD. REGWF and REGWQ
improve on the traditionally used SNK in that they adjust for the slightly
elevated false positive rate (Type I error) that SNK has when the set of
means tested is much smaller than the full set.

The Bonferroni (also called the Dunn procedure) and Sidak (also called
Dunn-Sidak) perform each test at a stringent significance level to ensure
that the overall (experiment wide) false positive rate does not exceed the
specified value. They are based on inequalities relating the probability of
one or more false positives for a set of independent tests. For example,
the Bonferroni is based on an additive inequality, so the criterion level for
each pairwise test is obtained by dividing the original criterion level (say
.05) by the number of pairwise comparisons made. Thus with three
means and therefore 3 pairwise comparisons, each Bonferroni test will be
performed at the .05/3 or .016667 level.

The Tukey(b) test is a compromise test, combining the Tukey (see below)
and the SNK criterion producing a test that falls between the two.

Tukey (also called Tukey HSD, WSD, or Tukey(a) test): Tukey’s HSD
(Honestly Significant Difference) controls the false positive rate
experiment wide. This means if you are testing at the .05 level, that when
performing all pairwise comparisons, the probability of obtaining one or
more false positives is .05. It is more conservative than the Duncan and
SNK. If all pairwise comparisons are of interest, which is usually the
case, Tukey’s test is more powerful than the Bonferroni and Sidak.

Scheffe’s method also controls the overall (or experiment wide) error rate.
It adjusts not only for the pairwise comparisons, but for any possible
comparison the researcher might ask. As such it is the most conservative
of the available methods (false positive rate is least), but has less
statistical power.

LSD

SNK, REGWF,
REGWQ, and

Duncan

Bonferroni &
Sidak

Tukey(b)

Tukey

Scheffe
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Most post hoc procedures mentioned earlier (excepting LSD, Bonferroni,
and Sidak) were derived assuming equal sample sizes in addition to
homogeneity of variance and normality of error. When subgroup sample
sizes are unequal, SPSS substitutes a compromise value (the harmonic
mean) for the sample sizes. Hochberg’s GT2 and Gabriel’s post hoc test
explicitly allow for unequal sample sizes.

The Waller-Duncan takes an interesting approach (Bayesian) that
adjusts the criterion value based on the size of the overall F statistic in
order to be sensitive to the types of group differences associated with the
F (for example, large or small). Also, you can specify the ratio of Type I
(false positive) to Type II (false negative) error in the test. This feature
allows for adjustments if there are differential costs to the two types of
error.

Each of these post hoc tests adjusts for unequal variances and sample
sizes in the groups. Simulation studies suggest that although Games-
Howell can be too liberal when the group variances are equal and sample
sizes are unequal, it is more powerful than the others.

An approach some analysts take is to run both a liberal (say LSD)
and a conservative (Scheffe or Tukey HSD) post hoc test. Group
differences that show up under both criteria are considered solid findings,
while those found different only under the liberal criterion are viewed as
tentative results.

To illustrate the differences among the post hoc tests we will request
six different post hoc tests: (1) LSD, (2) Duncan, (3) SNK, (4) Tukey’s
HSD, (5) Bonferroni, and (6) Scheffe.

Click Dialog Recall button 

Select One-Way ANOVA

Within the One-Way ANOVA Dialog Box

Click on the Post Hoc pushbutton.
Select the following types of post hoc tests: LSD, Duncan, SNK,

Tukey, Bonferroni, and Scheffe.

Specialized Post
Hocs Unequal

 Ns:

Hochberg’s GT2
& Gabriel

Waller-Duncan

Unequal
Variances and

Unequal Ns:

Tamhane T2,
Dunnett’s T3,

Games-Howell,
Dunnett’s C
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Figure 3.6 Post Hoc Dialog Box

By default, statistical tests will be done at the .05 level. For some
tests you may supply your preferred criterion level. The command to run
the post hoc analysis appears below.

ONEWAY
   cost BY capacity
  /MISSING ANALYSIS
  /POSTHOC = SNK TUKEY DUNCAN SCHEFFE LSD

BONFERRONI ALPHA(.05).

Post hoc tests are requested using the POSTHOC subcommand. The
STATSISTICS subcommand need not be included here since we have
already viewed the means and discussed the homogeneity test.

Click Continue
Click OK

The beginning part of the output contains the ANOVA table,
descriptive statistics, and the homogeneity test, which we have already
reviewed. We will move directly to the post hoc test results.
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Figure 3.7 LSD Post Hoc Results

All tests appear in one table. However, the Post Hoc Tests and
Homogeneous Subsets pivot tables were edited in the Pivot Table Editor
so that each test can be viewed and discussed separately. (To do so,
double-click on the pivot table to invoke the Pivot Table Editor, then click
Pivot..Pivot Trays so that the Pivot Trays option is checked and the Pivot
Trays window is visible. Next click and drag the pivot tray icon for Test
(to see an icon's label, just click on the icon) from the Row dimension tray
into the Layer dimension tray. Now test results for any single post hoc
test can be viewed by selecting the desired test from the Test drop-down
list located just above the table.)

The rows are constructed from every possible pairing of groups. For
example, the less than 800 Mwe group is paired against the other two
groups, then the 800-1000 Mwe group is paired against the other two
groups, etc. The column label “Mean Difference  (I-J)” contains the mean
difference between each pairing of groups. We see that the <800 group
has a mean cost difference of -$35.7866 with the 800-1000 group and a
difference of -$193.5885 with the >1000 group. If a difference is
statistically significant at the specified level after applying any post hoc
adjustments (none for LSD), then an asterisk (*) appears beside the mean
difference. Notice the actual significance value for the test appears in the
column labeled “Sig.”

The first LSD block indicates that in the population those plants
having less than 800 Mwe’s differ significantly in cost from the plants
having a capacity of greater than 1000 Mwe’s. In addition, the standard
errors and 95% confidence intervals for each mean difference are
displayed. These provide information of the precision with which we have
estimated the mean differences. Note that, as you expect, if a mean
difference is not significant, the confidence interval contains zero. Using
LSD, the high capacity group differs from each of the other two, but the
lower capacity groups do not differ from each other.

Note
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Figure 3.8 Duncan Results

SPSS does not present the Duncan results in the same format as we
saw for the LSD. This is because for some of the post hoc test methods
standard errors and 95-percent confidence intervals are not defined (for
multiple-range tests, recall testing stops once the remaining most
extreme means are not found different). Rather than display results with
empty columns in such situations, a different format, homogeneous
subsets, is used. A homogeneous subset is a set of groups for which no
pair of group means differs significantly. Depending on the post hoc test
requested SPSS will display a multiple comparison table, a homogeneous
subset table, or both. In this data set, it shows that the two lower
capacity groups do not differ in cost, but differ from the highest capacity
group.

Figure 3.9 SNK Results
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The SNK results display the same pattern as the Duncan tests.

Figure 3.10 Tukey Results for Multiple Comparisons

The Tukey multiple comparison tests show that the less than 800
Mwe group is significantly different from the greater than 1000 Mwe
group, but this is the only pairwise difference.

Figure 3.11 Tukey Results for Homogeneous Subsets

The Tukey homogeneous subset table is consistent with the multiple
comparison table. The first homogeneous subset contains the two lower
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capacity plants (they do not differ). The second homogeneous subset is
made up of the second and third groups (they do not differ). Thus the only
difference is between the less than 800 Mwe group and the greater than
1000 Mwe group. It should be pointed out that the second and third
groups are barely not significant (.07) and had the sample sizes been
larger their difference might have been significant.

Figure 3.12 Bonferroni Results

The test shows that the less than 800 Mwe’s group has a significantly
different cost than the greater than 1000 Mwe’s group.

Figure 3.13 Scheffe Results for Multiple Comparisons
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Figure 3.14 Scheffe Results for Homogeneous Subsets

From these results we can see that similar to the Bonferroni test,
only the high and low capacity groups differ.

As discussed before, the different post hoc procedures offer different
trade-offs between Type I error (falsely claiming a significant difference)
and power (ability to detect a real difference). Your choice in the matter
depends on how you want to balance the two. In this analysis it appears
that the high and low capacity groups do differ in cost, while the low and
middle groups do not. The middle to high capacity difference might be
usefully considered as a tentative finding.

Post hoc tests compare all pairs of groups and most of the methods
discussed apply a penalty function (adjusting the critical value) because
so many tests are being made. In some experiments and studies, the
researcher has in mind some specific comparisons to be made between
group means. Compared to post hoc tests, planned comparisons are fewer
in number and are to be formulated before viewing the data. Because
they are limited in number (based on between-group degrees of freedom
(the number of groups minus one)) and specified beforehand, the
adjustments made for post hoc tests are not required.

A broad variety of planned comparisons (sometimes called a priori
comparisons) can be requested: all treatment groups might be compared
to a control group; a linear trend line could be fit; step comparisons could
be made to detect a threshold.

To demonstrate this method, let us suppose that there is interest in
making some specific comparisons between capacity groups. The idea is
that at some point the change in capacity would result in a large change
in cost. To see if and where this occurs, we can compare the low to middle
capacity plants, then the middle to high capacity plants. If either of these

Conclusion

PLANNED
COMPARISONS
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comparisons is significant, we have an idea of where the big cost increase
will occur.

Planned comparisons between groups are done by applying a set of
coefficients to the group means and testing whether the result is zero. For
example, to compare the low and middle plant groups, multiply the mean
of the low plants by one, the mean of the middle plants by negative one,
the mean of the large plants by zero, and sum the result. Thus, we
compare the means, and if this difference is significantly different from
zero, then the low capacity plants differ from the middle capacity plants.
In ONEWAY you can request planned comparisons by providing sets of
coefficients.

To request tests of low versus middle, and the middle versus high
capacity groups we use the Contrasts pushbutton and apply the
necessary coefficients.

Click Dialog Recall tool 

Select One-Way ANOVA
Click the Contrasts pushbutton
Type 1 in the Coefficients text box and click Add pushbutton
Type –1 in the Coefficients text box and click Add pushbutton
Type 0 in the Coefficients text box and click Add pushbutton
Click Next pushbutton
Type 0 in the Coefficients text box and click Add pushbutton
Type 1 in the Coefficients text box and click Add pushbutton
Type -1 in the Coefficients text box and click Add pushbutton

Figure 3.15 Contrasts Dialog Box

HOW PLANNED
COMPARISONS

ARE DONE

Each set of contrast coefficients is assigned a number (1,2, …) and
appears as a column in the Coefficients list box.
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Click Continue to process the Contrasts
Click OK to run the analysis

This leads to the syntax below (note the PostHoc subcommand is not
included although our previous post hoc requests are still stored in the
Post Hoc dialog.

ONEWAY
  cost BY capacity
  /CONTRAST= 1 –1 0 /CONTRAST = 0 1 –1
  /MISSING ANALYSIS.

The first contrast requests the difference between the low and middle
groups; the second compares the middle and high groups. We are limited
to two planned comparisons because with three groups we have but two
between-group degrees of freedom.

Scroll to the Contrast Coefficients Pivot Table in the Viewer
window.

Figure 3.16 Contrast Coefficients

The requested comparisons are first reproduced along with the group
labels. We verify that the first compares the low to middle group, and the
second compares the middle to high group.

Figure 3.17 Contrast Results

Notice that there are two sets of results, one labeled “assume equal
variances” and the other “does not assume equal variances”. Results
labeled “does not assume equal variances” are adjusted results that can
be used if the homogeneity of variance assumption is not met. We
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previously determined the variances are equal and will use the “assume
equal variances” statistics.

The column labeled "Value of Contrast" contains the values of the
contrast coefficients applied to the sample means, which here represent
the mean difference between pairs of groups. This can be verified by
checking the group means appearing earlier. The first comparison
(between the low and middle groups) is not significant, but the second one
(comparing the middle and high capacity groups) is. This suggests that
the big cost increase comes when shifting from the middle to high
capacity plants. A t test is used since each comparison involves one
degree of freedom; it is equivalent to using an F test (the t statistic
squared would equal the F).

Thus a limited number of planned comparisons between group means
can be specified as part of the general analysis. Performing planned
comparisons does not preclude running post hoc analyses later.

For presentations it is useful to display the sample group means along
with their 95-percent confidence intervals. In SPSS for Windows

Click on Graphs..Error Bar
Verify that Simple is selected, then click Define pushbutton
Move cost into the Variable list box
Move capacity into the Category Axis list box.

Figure 3.18 Error Bar Dialog Box

GRAPHING THE
RESULTS

Click on OK
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The command below will produce the error bar chart using a
standard graph (there is also Interactive graph that produces an error
bar chart).

GRAPH
  /ERRORBAR( CI 95 )=cost BY capacity
  /MISSING=REPORT.

Figure 3.19 Error Bar Chart of Cost by Capacity Group

The chart provides a visual sense of how far the groups are separated.
The confidence bands are determined for each group separately (thus
inspection of the confidence band overlap is not formally equivalent to
testing for group differences) and no adjustment is made based on the
number of groups that are compared. However, from the graph we have a
clearer sense of the relation between capacity and cost.

In this chapter we tested for population mean differences with more than
two groups when these groups constitute a single factor. We examined
the data to check for assumption violations, discussed alternatives, and
interpreted the ANOVA results. Having found significant differences we
performed post hoc tests to determine which specific groups differed from
which others, and summarized the analysis with an error bar graph. The
appendix contains a nonparametric analysis of the same data.

Analysis of variance assumes that the dependent measure is interval
scale, that its distribution within each group follows a normal curve, and
that the within-group variation is homogeneous across groups. If any of
these assumptions fail in a gross way, one may be able to apply
techniques that make fewer assumptions about the data. Such tests fall
under the class of nonparametric statistics (they do not assume specific
data distributions described by the parameters such as the mean and

SUMMARY

APPENDIX:
GROUP

DIFFERENCES
ON RANKS
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standard deviation). Since these methods make few if any distributional
assumptions, they can often be applied when the usual assumptions are
not met. If you are tempted to think that something is obtained for
nothing, the downside of such methods is that if the stronger data
assumptions hold, the nonparametric tests are generally less powerful
(probability of finding true differences) than the appropriate parametric
method. Also, there are some parametric statistical analyses that
currently have no corresponding nonparametric method. It is fair to say
that the boundaries concerning when to use parametric versus
nonparametric methods are in practice somewhat vague, and statisticians
can and often do disagree about which approach is optimal in a specific
situation.

For the purposes of this appendix let us assume that we needed to
run the test using nonparametric methods. We will perform a
nonparametric procedure that only assumes that the dependent measure
has ordinal properties. The basic logic behind this test, the Kruskal-
Wallis test, is as follows. If we rank order the dependent measure
throughout the entire sample, we would expect under the null hypothesis
(of no population differences) that the average rank (technically the sum
of the ranks adjusted for sample size) should be about the same for each
group. The Kruskal-Wallis test calculates the ranks, each sample group’s
mean rank, and the probability of obtaining group average ranks
(weighted summed ranks) as far apart (or further) as what is observed in
the sample, if the population groups were identical.

To run the Kruskal-Wallis test in SPSS we would

Click Analyze..Nonparametric Tests..K Independent
Samples

Move cost into the Test Variable List
Move capacity into the Grouping Variable box
Click the Define Range button and enter a Minimum of 1 and

Maximum of 3.
Click Continue

Figure 3.20 Analysis of Ranks Dialog Box
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By default, the Kruskal-Wallis test will be performed. The
organization of this dialog box closely resembles that of the One-Way
ANOVA. The command to run this analysis using SPSS follows.

NPAR TESTS
  /K-W=cost BY capacity(1 3)

The K-W subcommand instructs the nonparametric testing routine to
perform the Kruskal-Wallis analysis of variance of ranks on the
dependent variable cost with capacity as the independent or grouping
variable.

Click OK to run the analysis

Figure 3.21 Results of Kruskal-Wallis Nonparametric Analysis

We see the pattern of mean ranks (remember smaller ranks imply
lower cost) follows that of the original means of cost, increasing as the
capacity increases. The chi-square statistic is used in the Kruskal-Wallis
indicates that it is very unlikely (fewer than 4 chances in 100) to obtain
samples with average ranks so far apart if the null hypothesis (no cost
differences between groups) were true. This is consistent with our
conclusion from the initial one-way ANOVA analysis.
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Multi-Way Univariate ANOVA

We will apply the principles of testing for differences in population means
to situations involving more than one factor. Also we will show how the
two-factor ANOVA is a generalization of the one-factor design that we
covered in the last chapter. We will develop some understanding of the
new features of the analysis. We will then discuss the implications of
unequal sample sizes and empty cells.

We wish to test whether there are any differences in the cost of the
nuclear power plants based on capacity or the experience of the architect/
engineer. First we use the EXPLORE procedure to explore the subgroups
involved in the analysis. Next, we make use of the Univariate procedure
to run the two-factor ANOVA, specifying cost as the dependent variable
with capacity and experience as factors. We display the results using an
error bar chart. In the appendix we perform post hoc tests based on the
results of our analysis.

We continue to use the nuclear plant data. The data set is an SPSS
portable file (plant.por) containing information about 32 light water
nuclear power plants. Four variables are included: the capacity and cost
of the plant; time to completion; and experience of the architect-engineer
who built the plant.

Analysis of variance (ANOVA) is a general method for drawing
conclusions about differences in population means when two or
more comparison groups are involved. In an introductory statistics

class you have seen how a “t” test is used to contrast two groups, and in
the last chapter we saw how one-way ANOVA compares more than two
groups which differ along a single factor. In this chapter, we expand our
consideration of ANOVA to allow multiple factors in a single analysis.
Such an approach is efficient in that several questions are addressed
within one study. The assumptions and issues considered in the last
chapter (normality of the dependent variable within each group,
homogeneity of variance, and the importance of both) apply to general
ANOVA and will not be repeated here.

We will investigate whether there are differences in the average cost
of a plant for the different plant capacities and levels of experience of the
designer/engineer. Since two factors, capacity and experience, are under
consideration, we can ask three different questions: (1) Are there cost
differences based on capacity? (2) Are there differences based on
experience? (3) Do capacity and experience interact?

Chapter 4

Objective

Method

Data

INTRODUCTION
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A multi-factor analysis involves the same approach and principles, as
did a one-way ANOVA. The between-groups variation can now be
partitioned into pieces attributable to main effects and interaction
components, but the method is much the same. Some complications arise
with unequal cell sizes and empty cells that were not a problem when we
tested a single factor. We will discuss these issues and illustrate the
analysis.

As in earlier chapters, we begin by running an exploratory data
analysis, then proceed with more formal testing.

As before, we wish to draw conclusions about the populations from which
we sample. The main difference in moving from a one-way ANOVA to the
general ANOVA is that more questions can be asked about the
populations. However, the results will be stated in the same terms: how
likely is it that we would obtain means as far apart as what we observe in
our sample, if there were no mean differences in the populations.
Comparisons are again framed as a ratio of the variation among the
group means (between-group variation) to the variation among
observations within each group (within-group variation). When statistical
tests are performed, homogeneity of variance and normality of the
dependent variable within each group are assumed. Comments made
earlier regarding robustness of the means analysis when these
assumptions are violated apply directly.

The new aspect we consider is how to include several factors, or ask
several different questions of the data, within a single analysis of
variance. We will test whether there are differences in cost based on
capacity, whether there are differences based on the experience of the
engineer, and finally, whether capacity and experience interact
concerning the cost of the plants. The interpretation of an interaction is
discussed in the next section.

Although our example involves only two factors (capacity and
experience), ANOVA can accommodate more. Usually, the number of
factors is limited by either the interests of the researcher, who might
wish to examine a few specific issues, or by sample size considerations.
Sample size plays a role in that the greater the number of factors, the
greater the number of cell means that must be computed, and the smaller
the sample for each mean. For example, suppose we have a sample of 800
plants and wish to look at cost differences due to whether the plant was
light water or heavy water (2 levels), capacity (3 levels), experience (3
levels), region of the country (9 levels), and age of the plant (4 levels).
There are 2*3*3*9*4 or 648 subgroup means involved. If the data were
distributed evenly across the levels, each subgroup mean would be based
on approximately two observations, and this would not produce a very
powerful analysis. Such analyses can be performed, and technically,
questions involving single effects like capacity or experience would be
based on means involving fairly large samples. Also, some planned
experiments permit many subgroups to be dropped (for example,
incomplete designs). Yet the fact remains that with smaller samples,
there are practical limitations in the number of questions you can ask of
the data.

LOGIC OF
TESTING, AND
ASSUMPTIONS

HOW MANY
FACTORS?
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When moving beyond one-factor ANOVA, the distinction between main
effects and interactions becomes relevant. A main effect is an effect (or
group difference) attributable to a single factor (independent variable).
For example, when we study cost differences across capacity groups and
experience groups, the effect of capacity alone, and the effect of
experience alone, would be considered main effects. The two-way
interaction would test whether the effect of one factor is the same at each
level of the other factor.

In our example, this can be phased in either of two ways. We could
say the interaction tests whether the cost difference due to capacity
(which could be zero) is the same for each level of experience.
Alternatively, we can say that the two-way interaction tests whether the
experience difference in cost is the same for each capacity group. While
these two phrasings are mathematically equivalent, it can sometimes be
simpler (based on the number of levels in each factor) for you to present
the information from one perspective instead of the other. The presence of
a two-way interaction is important to report, since it qualifies our
interpretation of a main effect. For example, a capacity by experience
interaction implies that the magnitude of the capacity difference varies
across levels of experience. In fact, there may be no difference or a
reversal in the pattern of the capacity means for some experience levels.
Thus statements about capacity differences must be qualified by
experience information.

Since we are studying two factors, there can be only one interaction.
If we expand our analysis to three factors (say capacity, experience, and
age of plant) we can ask both two-way (capacity by experience, capacity
by age, experience by age) and three-way (capacity by experience by age)
interaction questions. As the number of factors increases, so does the
possible complexity of the interactions. In practice, significant high-order
(three, four, five-way, etc.) interactions are relatively rare compared to
the number of significant main effects.

Interpretation of an interaction can be done directly from a table of
relevant subgroup means, but it is more convenient and common to view
a multiple-line chart of the means. We illustrate this below under several
scenarios.

Suppose that we have four levels of one independent variable (say
location) and two levels for the second independent variable (say gender).
In our scenario, suppose that women are more highly educated than men,
there are regional differences in education, and that the gender
differences are the same across regions. The line chart below plots a set of
means consistent with this pattern.

INTERACTIONS
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Illustration 4.1 Main Effects, No Interaction

In the illustration we see that the mean line for women is above that
of the men. In addition, there are differences among the four locations.
However, note that the gender differences are nearly identical across the
four locations. This equal distance between the lines (parallelism of lines)
indicates that there is no interaction present.

Illustration 4.2 No Main Effects, Strong Interaction

Here the overall means for men and women are about the same, as
are the means for each location (pooling the two gender groups).
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However, the gender differences vary dramatically across the different
locations: in location B women have higher education, in locations A and
D there is no gender difference, and in location C males have higher
education. We cannot make a statement about gender differences without
qualifying it with location information, nor can we make location claims
without mentioning gender. Strong interactions are marked by this
crossover pattern in a multiple-line chart.

Illustration 4.3 One Main Effect, Weak Interaction

We see a gender difference for each of the four locations, but the
magnitude of this difference varies across locations (substantially greater
for location D). This difference in magnitude of the gender effect would
constitute an interaction between gender and location. It would be
termed a weak interaction because there is no crossover of the mean
lines.

Additional scenarios can be charted, and we have not mentioned
three-way and higher interactions. Such topics are discussed in
introductory statistics and analysis of variance books (see the reference
page for suggestions). We will now proceed to analyze our data set.

We begin by applying exploratory data analysis to the cost of the plants
within subgroups defined by combinations of capacity and experience. In
practice, you would check each group’s summaries, look for patterns in
the data, and note any unusual points. Also, we will request that the
Explore procedure perform a homogeneity of variance test.

Click on File..Open..Data (move to the  c:\Train\Anova folder)
Select SPSS Portable (*.por) from the Files of Type drop-

down list
Double-click on plant.por

EXPLORING THE
DATA
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Click on Analyze..Descriptive Statistics..Explore
Move cost into the Dependent List box
Move the exper and capacity into the Factor List box.

Figure 4.1 Explore Dialog Box

Click on the Plots pushbutton
Click the Power estimation option button in the “Spread vs.

Level with Levene Test” area

Figure 4.2 Plots Dialog Box

By default, no homogeneity test is performed (“None” option button).
Each of the remaining choices will lead to homogeneity being tested. The
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second (Power estimation) and third (Transformed) choices are used by
more technical analysts to investigate power transformations of the
dependent measure that would yield greater homogeneity of variance.
These issues are of interest to serious practitioners of ANOVA, but are
beyond the scope of this course (see Emerson in Hoaglin, Mosteller, and
Tukey (1991), also a brief discussion in Box, Hunter, and Hunter (1978),
and the original (technical) paper by Box and Cox (1964)). The
Untransformed choice builds a plot without transforming the scale of the
dependent measure.

Click on the Continue button to return to the Explore dialog
box

Since we are comparing capacity by experience subgroups, we
designate exper (experience) and capacity as the factors (or nominal
independent variables). However, if we were to run this analysis, it would
produce a set of summaries for each capacity group, then a set for each
experience group. In other words, each of the two factors would be treated
separately, instead of being combined, which we desire. To instruct SPSS
to treat each capacity by experience combination as a subgroup we must
use SPSS syntax. The easiest way to accomplish this would be to click the
Paste pushbutton that opens a syntax window and builds an Examine
command that will perform an analysis for each factor.

Click on the Paste pushbutton to paste the syntax into a Syntax
window

Figure 4.3 Examine Command in Syntax Window

The Examine command requires only the Variables subcommand in
order to tun. We also include the Plot subcommand since we desire the
homogeneity test (controlled by the SPREADLEVEL keyword). The
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other subcommands specify default values and appear in order to make it
simple for the analyst to modify the command when necessary. Note the
keyword BY separates the dependent variable cost from the exper and
capacity factors. Currently, both exper and capacity follow the BY
keyword and thus have the same status: an analysis will be run for each
separately. To indicate we wish a joint analysis, we insert an additional
BY keyword between exper and capacity on the VARIABLES
subcommand.

Figure 4.4 Examine Command Requesting Subgroup Analysis

SPSS now interprets the factor groupings to be based on each
capacity by experience combination (exper BY capacity ).

Click Run..Current or click the Run button  .

Looking at the descriptives for each of our subgroups we see the
following information.

All descriptive statistics appear in a single pivot table; the figures present
separate sections of the table

Note
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Figure 4.5 Descriptives for 1-3 Plants and <800 MWe

We find in this subgroup that the mean cost is 404.0829 and other
descriptive information is available to us.

Figure 4.6 Descriptives for 1-3 Plants and >1000 MWe

Figure 4.7 Descriptives for 4-9 Plants and <800 MWe
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Figure 4.8 Descriptives for 4-9 Plants and 800-1000 MWe

Figure 4.9 Descriptives for 4-9 Plants and > 1000 MWe

Figure 4.10 Descriptives for 10 or more Plants and <800 MWe
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Figure 4.11 Descriptives for 10 or more Plants and 800-1000 MWe

Figure 4.12 Descriptives for 10 or more Plants and >1000 MWe

In the Viewer window we find a warning message concerning the
spread and level plot and the test for homogeneity of variance. This
message tells us that because we had a small number of cases in some of
our subgroups that the median and/or the interquartile range was not
defined. Thus the test and plot are not produced.

Figure 4.13 Test of Homogeneity of Variance
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Figure 4.14 Warning Messages

Now we move to view the Box and Whiskers Plot.

Figure 4.15 Box and Whisker Plot of Cost

We see variation in the lengths of the boxes that suggests that the
variation of cost within the subgroups is not homogeneous. We can see
that there are differences in the median cost across our subgroups, but
with the small sample sizes are they different enough to be statistically
significant? An outlier is visible at the high end. Does it seem so extreme
as to suggest a data error?
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To run the analysis in SPSS we choose Analyze..General Linear
Model menu. Please note that the General Linear Model menu choices
will vary depending on your version of SPSS and whether you have the
SPSS Advanced Models option installed. We will use the Univariate
procedure.

The Univariate choice permits the analyst to handle designs from the
simple to the more complex (incomplete block, Latin square, etc.) and also
provides the user with control over various aspects of the analyses. The
Multivariate menu choice performs multivariate (multiple dependent
measures) analysis of variance, while the Repeated Measures menu
choice is used for studies in which an observation contributes to several
factor levels (these are commonly called split-plot or repeated measure
designs). Finally, the Variance Components menu choice performs an
analysis that estimates the variation in the dependent variable
attributable to each random effect in a model (see discussion of random
and fixed effects below). Thus it assesses the relative influence of each
random effect in a model containing multiple random effects.

Click on Analyze..General Linear Model..Univariate
Move cost and to the Dependent Variable list box
Move exper and capacity to the Fixed Factor(s) list box.

Figure 4.16 Univariate Dialog Box

TWO-FACTOR
ANOVA

Our analysis does not include random factors (other than the plant to
plant variation that is already accounted for as the within-group
variation. Briefly, fixed factors have a limited (finite) number of levels
and we wish to draw population conclusions about only those levels.
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Random factors are those in which a random sample of a few levels from
all possible ones are included in the study, but population conclusions are
to be applied to all levels. For example, an institutional researcher might
randomly select schools from a large school district to be included in a
study investigating sex differences in learning mathematics. Here sex is a
fixed factor while school is a random factor. It is important to distinguish
between fixed and random factors since error terms differ.

Our analysis also does not include covariates. They are interval scale
independent variables, whose relationships with the dependent measure
you wish to statistically control, before performing the ANOVA itself.

The OK button is active, so we can run the analysis. However, we will
request some additional information.

Click on the Model pushbutton.

Figure 4.17 Model dialog box

Within the Model dialog you can specify the model you want applied
to the data. By default a model containing all main effects and
interactions is run. Analysts who analyze data based on incomplete
designs (some combinations of factors are not evaluated in order to
reduce the sample size requirements) would use this dialog to indicate
which effects should be evaluated. Also, if your sample sizes are unequal
across subgroups you can choose among several sums of squares
adjustments. This issue is discussed later in the chapter.

Click the Cancel button.

The next pushbutton we will look at is the Options button. We ask
Univariate to provide us with means for the main effects and the two-way
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interaction. Also we will request a test of homogeneity of variance.

Click the Options pushbutton
Move (Overall), exper , capacity, and exper *capacity  into

the Display Means for list box
Click the Homogeneity tests check box

Figure 4.18 Univariate: Options Dialog Box

Click on Continue
Click the Save pushbutton
Click the check boxes for Unstandardized Predicted Values

and both the Unstandardized and Standardized
Residuals.
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Figure 4.19 Univariate: Save Dialog Box

Click on Continue
Click on OK.

The following syntax will also run the analysis:

UNIANOVA
cost BY exper capacity
/METHOD = SSTYPE(3)
/INTERCEPT=INCLUDE
/SAVE=PRED RESID ZRESID
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(exper)
/EMMEANS=TABLES(capacity)
/EMMEANS=TABLES(exper*capacity)
/PRINT=HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN=exper capacity exper*capacity.

Now we will look at the output from our analysis. The first result is a
listing of the Between-Subjects Factors.
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Figure 4.20 Between Subjects Factors

Next we see the result of the Levene’s test of equality of error
variances (homogeneity of variance test).

Figure 4.21 Levene’s Test of Homogeneity of Variance

The significance level is .014 which means that if the error variances
were equal in the population, we would get an “F” statistic this large only
14 times in one thousand. Thus the homogeneity of variance assumption
does not hold. A technical analyst might move to the spread and level
plots to see if the dependent variable can transformed such that
homogeneity of variance holds. A nonparametric analysis could be done,
although SPSS currently does not contain a two-factor nonparametric
Anova procedure). We will proceed with the analysis, realizing that the
test results may not be completely accurate.
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The ANOVA table contains the information, much of it technical,
necessary to evaluate whether there are significant differences in cost
across capacity groups, across experience groups, and whether the two
factors interact.

Figure 4.22 The ANOVA Table

THE ANOVA
TABLE

The first column lists the different sources of variation. We are
interested in the capacity and experience main effects, as well as the
capacity by experience interaction. The source labeled “Error” contains
summaries of the within-group variation (or Residual term) which will be
used when calculating the “F” ratios (ratios of between-group to within-
group variation). The remaining sources in the list are simply totals
involving the sources already described, and as such are generally not of
interest. The Sum of Squares column contains a technical summary (sum
of the squared deviations of group means around the overall mean, or of
individual observations around their group mean) that is not interpreted
directly, but is used in calculating the later column values. The “df”
(degrees of freedom) column contains values that are functions of the
number of levels of the factors (for capacity, experience, and capacity by
experience) or the number of observations (for residual). Although this is
a gross oversimplification, you might think of degrees of freedom as
measuring the number of independent values (whether means or
observations) that contribute to the sum of squares in the previous
column. As with sums of squares, degrees of freedom are technical
measures, not interpreted themselves, but used in later calculations.

Mean Square values are variance measures attributable to the
various effects (capacity, experience, capacity by experience) and to the
variation of individuals within groups (error). The ratio of an effect mean
square to the mean square of the error provides the between-group to
within-group variance ratio, or “F” statistic. If there were no group
differences in the population, then the ratio of the between-group
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variation to the within-group variation should be about one. The column
“Sig” contains the most interpretable numbers in the table: the
probabilities that one can obtain “F” ratios as large or larger (or group
means as far or farther apart) as what we find in our sample, if there
were no mean differences in the population.

The ANOVA table summarizes the statistical testing. Both experience
and capacity are marginally significant at the .046 and .050 respectively.
The result for capacity is similar but not identical to its result in the one
factor ANOVA for several reasons. First, the within-groups error term is
now based on nine cells and not only three as before. Also, since the
sample sizes are neither equal nor proportional, the effects of capacity
and experience are not independent of each other and the test for
capacity adjusts for the experience factor. In the one factor analysis the
second factor was ignored. The interaction is not significant indicating
that the capacity differences do not change across different levels of
experience.

Average cost shows significant differences across levels of plant capacity
and levels of building experience. The two factors do not seem to interact.

In the Options dialog box we asked for the means to be displayed for each
main effect and the interaction. The following figures provide those
requested means.

Figure 4.23 Grand Mean and Means for Experience Levels

Conclusion

PREDICTED
MEANS
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Note that surprisingly, the mean cost is lowest for the middle level of
experience.

Figure 4.24 Means for Capacity Levels

Figure 4.25 Means for Capacity*Experience Levels

We have found that both main effects are statistically significant
although the assumption of homogeneity of the variances is not met and
may compromise the results. Also the analyst must ask him or herself if
any differences are significant in a practical sense. It is again important
to recall that a statistically significant mean difference implies that the
population difference is not zero. Differences can be small yet statistically
significant when the sample size is large. This effect of large samples is
certainly not a problem in this study.

ECOLOGICAL
SIGNIFICANCE
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To view the predicted values and residuals we turn to the case summary
procedure, although we could simply examine them in the Data Editor
window.

Click Analyze..Reports..Case Summaries
Move cost, pre_1, res_1, and zre_1 to the Variables list box
Click on OK

The following syntax will also produce the case summary report.

SUMMARIZE
/TABLES=cost pre_1 res_1 zre_1
/FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100
/TITLE=’Case Summaries’ /FOOTNOTE ‘ ‘
/MISSING=VARIABLE
/CELLS=COUNT.

Figure 4.26 Case Summary Report

RESIDUAL
ANALYSIS
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POST HOC
TESTS OF

ANOVA RESULTS

Notice the predicted values are identical for all cases in the same cell,
that is, group membership determines the predicted value. The
standardized residuals are in standard deviation units; do you see any
surprisingly large residuals?

To run post hoc tests on our results we will need to re-open the
Univariatel dialog box.

Click the Dialog Recall Tool , then click Univariate

Click the Post Hoc pushbutton
Move exper and capacity into the Post Hoc Tests for box
Select the LSD, Games-Howell, and Scheffe post hoc tests

(click their check boxes)

Figure 4.27 Post Hoc Test Dialog Box

Click Continue
Click OK.

As shown below, the Posthoc subcommand requests the post hoc tests.
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UNIANOVA
cost BY exper capacity
/METHOD = SSTYPE(3)
/INTERCEPT=INCLUDE
/SAVE=PRED RESID ZRESID
/POSTHOC = capacity exper ( SCHEFFE LSD GH )
/EMMEANS=TABLES(OVERALL)
/EMMEANS=TABLES(exper)
/EMMEANS=TABLES(capacity)
/EMMEANS=TABLES(exper*capacity)
/PRINT=HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN=exper capacity exper*capacity.

We have selected the LSD, Games-Howell (because of the failure of
the homogeneity of variance assumption), and Scheffe tests. We will
examine the post hoc tests only for capacity (since this chapter is lengthy
as it is). In practice you would examine the results for both capacity and
experience if they were found to be significant. If time permits, review the
post hoc test results for experience. What do you find?

Figure 4.28 Post Hoc Tests For Capacity

We can see from the post hoc results with the LSD testing that both
the less than 800 MWe and 800-1000 MWe plants were different from the
over 1000 MWe plants. This however is the most liberal test. The two
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other tests find only that the less than 800MWe plants are different from
the over 1000MWe plants.

Figure 4.29 Homogenous Subsets for Capacity

As we would expect given the post hoc results, the homogeneous
subsets produced by the Scheffe test confirms that only the lowest and
highest capacity groups differ.

Up to now we have not discussed the implications of unequal sample
sizes. The basic problem arises when the sample sizes are not equal
across groups (or not proportional if you are mainly interested in main
effects). When this occurs, or if cells are missing entirely, the effects in
the analysis become correlated, that is, they overlap. As the cell size
imbalance increases, it becomes increasingly difficult to speak of
independent effects. For example, if almost all high-capacity plants were
built by people with experience building 10 or more plants, how can we
speak of separate effects? The same problem, high correlation among
predictor variables, is frequently discussed in the literature on
regression. There are different methods for adjusting for such overlap of
effects and we discuss some of these approaches and their implications
below.

UNEQUAL
SAMPLES AND
UNBALANCED

DESIGNS
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From the Model dialog box you can choose a type of sums of squares. Type
III is the most commonly used and is the default. Each type adjusts for
unequal sample sizes in a different way. When all subgroup sample sizes
are the same, the various sums of squares’ calculations yield the identical
result.

• Type I. This method is also known as hierarchical
decomposition of the sum-of-squares. Each term is adjusted
for only the terms that precedes it in the model. Type I sums
of squares are commonly used in situations in which the
researcher has a prior ordering of effects in mind. For
example, if previous research has always found a factor to be
significant there might be interest in determining if a second
factors makes a substantial contribution. In this situation,
the known factor might be entered first in the model (not
adjusting for the second factor), while the new factor follows
in the model (so it is tested after adjusting for the first factor).

• Type II. This method calculates the sums of squares of an
effect in the model adjusted for all other “appropriate” effects.
An appropriate effect is one that corresponds to all effects
that do not contain the effect being examined. Thus a main
effect would adjust for all other main effects but interactions.
A two-way interaction would adjust for all main effects and
other two-way interactions, but ignore three-way and higher
effects.

• Type III. This is the default. This method calculates the sums
of squares of an effect in the design as the sums of squares
adjusted for any other effects that do not contain it and
orthogonal to any effects (if any) that contain it. Essentially,
each effect is adjusted for all other effects (main effects, same
order interactions, higher order interactions) in the model.
Thus you can speak of an effect independent of all other
effects. The Type III sums of squares have a major advantage
in that they are invariant with respect to the cell frequencies
as long as the general form of estimability remains constant.
In practice, this means that Type III sums of squares is often
considered useful for an unbalanced model with no missing
cells. In a factorial design with no missing cells, this method
is equivalent to the Yates’ weighted-squares-of-means
technique. Type III is recommended on the strength of the
fact that a statistical test for an effect adjusts for all other
effects in the model. However, if there are missing data cells,
Type IV is preferred.

• Type IV. This method is designed for situations in which
there are missing cells. The technical description of Type IV
sums of squares follows. For any effect F in the design, if F is
not contained in any other effect, the Type IV = Type III =
Type II. When F is contained in other effects, Type IV
distributes the contrasts being made among the parameters
in F to all higher-level effects equitably. To give a practical
example, suppose we were testing salary differences due to

SUMS OF
SQUARES
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two factors: experience (in three categories) programming in a
computer language, and the computer language itself (two
categories). If there were no programmers with the highest
experience level for one of the languages (say Java), then that
experience category would not be used when evaluating the
computer language main effect. Thus the computer language
effect would be evaluated from only those experience
categories containing programmers of both languages. This is
the source of the equity mentioned above. The Type IV sum-
of-squares method is commonly used for an unbalanced model
with empty cells.

All of these types of sums of squares are equivalent when there is only
one effect to be tested. Thus the one-way ANOVA procedure does not offer
any options in terms of sums of squares. Also as mentioned above, they
give identical results for a balanced design. In practice today, the Type III
sums of squares method is usually used if there are no missing cells. If
cells are missing the Type IV method is generally chosen. When a
researcher wants to test effects after adjusting for certain effects, but
ignoring others, then the Type I or Type II methods are employed.

Any time that the between-subject portion of an analysis cannot be laid
out in a full factorial setup with all cells filled (having at least one
observation), matters can become quite complicated, and knowledge of
the theory of estimable functions is required in order to determine just
what hypotheses can be tested. The best advice that can be given here is
to consult a statistician knowledgeable in experimental design in order to
determine the appropriate, testable hypotheses in a particular case

Virtually any testable hypothesis can be tested using the General
Linear Model - Univariate procedure with its flexible DESIGN
subcommand, but determining the appropriate hypothesis to test when
there are missing cells can be extremely difficult. It should be noted in
particular that simply applying standard sets of commands to such data
can produce results that are uninterpretable, since the particular
hypotheses tested have not been identified.

For further information on the analysis of such data, see Searle
(1987) or Milliken and Johnson (1984). Of the two, Searle’s book is more
complete but rather technical. Milliken and Johnson’s book is more
accessible.

In this chapter we generalized ANOVA to the case with two or more
factors and discussed post hoc comparisons in the context. In addition,
the effects of unequal sample size and missing cells were presented. We
turn next to another generalization: ANOVA with multiple dependent
measures – multivariate analysis of variance.

EQUIVALENCE
AND

RECOMMENDATIONS

EMPTY CELLS
AND NESTED

DESIGNS

SUMMARY
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Multivariate Analysis Of
Variance

The purpose of this chapter is to understand the properties of
multivariate analysis of variance, drawing on our previous discussions of
univariate ANOVA.

We run the EXPLORE procedure to check on some of the assumptions of
the multivariate ANOVA. We will use the General Linear Model-
Multivariate procedure to run a two-factor multivariate analysis of
variance with two dependent variables.

We use the same data set as in the prior chapters, i.e., the nuclear power
plant data set (plant.por).

A two-factor two dependent variable multivariate analysis of variance –
experience and plant capacity are the two fixed factors (3 levels each),
cost and time (time before plant was licensed) are the dependent
measures.

Multivariate analysis of variance (MANOVA) is a generalization
of analysis of variance that permits testing for mean differences
on several dependent measures simultaneously. In this chapter

we will explore the rationale and assumptions of multivariate analysis of
variance, review the key summaries to examine in the results, and then
step through an analysis looking at group differences on two measures in
our data set.

Multivariate analysis of variance is used when there is an interest in
testing for mean differences between groups on several dependent
variables simultaneously. ANOVA will test whether the mean of a single
variable (scalar) differs across groups. MANOVA covers the broader case
of testing for mean differences in several variables (vector) across groups.

Chapter 5

Objective

Method

Data

Design

INTRODUCTION
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Multivariate analysis of variance (MANOVA) tests for population group
differences on several dependent measures simultaneously. Instead of
examining differences for a single outcome variable (as analysis of
variance does), MANOVA tests for differences on a set or vector of means.
The outcome measures (dependent variables) are typically related; for
example, a set of ratings of employee performance, multiple physiological
measures of stress, several scales assessing an attitude, a collection of
fitness measures, multiple scales measuring a product's appearance,
several measures of the fiscal health of a company.

MANOVA is typically performed for two reasons: statistical power
and control of false positive results (also known as Type I error).

First, there can be greater statistical power, that is, the ability to
detect true differences, in a multivariate analysis. The argument is that if
you have several imperfect measures of an outcome, for example, several
physiological measures of stress, the joint analysis will be more likely to
show a true difference in stress than any individual analysis. A
multivariate analysis compares mean differences across several variables
and takes formal account of their intercorrelations. In this way a small
difference appearing in several related outcome variables may result in a
significant multivariate test, although no single outcome measure shows
a significant difference. This is not to say there is a power advantage in
throwing 20 or so unrelated variables into a multivariate analysis of
variance, since a true difference in a single outcome measure can be
diluted in a joint test involving many variables that display no effect.
However, if you are interested in studying group differences in outcomes
for which various measures exist (this occurs in marketing, social science,
medical, ecological, and engineering studies), then MANOVA probably
carries greater statistical power.

The second argument for running MANOVA in place of separate
univariate (single outcome variable) analyses concerns controlling the
false positive rate when multiple tests are done. If a separate ANOVA is
run for every outcome variable, each tested at the 0.05 level, then the
overall (or experiment-wise) false positive rate (chance of obtaining one or
more false positive test results) is well above 5 in 100 (0.05 or 5%)
because of the multiple tests. A MANOVA applied to a study with seven
outcome measures would result in a single test performed at the 0.05
level. Although there are certainly alternative methods for controlling the
false positive rate when multiple tests are performed (for example,
Bonferroni adjustments), using a multivariate test accomplishes this as
well. Some researchers follow the procedure of first performing a
multivariate test and only if the results are significant would they
examine the individual univariate test results. This provides some control
over the false positive rate. It is not a perfect solution (it is similar to the
argument for the LSD multiple comparison procedure) and has received
some criticism (see Huberty (1989)).

WHY PERFORM
MANOVA?
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First, the good news, MANOVA is similar to ANOVA in that variation
between group means is compared to variation of individuals within
groups. Since this variation is measured on several variables, MANOVA
computes a matrix containing the variation and covariation (there are
several variables!) of the vector of group means and a second matrix
containing within-group variances and covariances. When testing in
MANOVA, a ratio is taken not of the two variances (two numbers), but of
two matrices. Instead of the usual “F” test, the multivariate form – called
a generalized “F” is used. The summary table will contain some
unfamiliar statistics, but in the end will report the probability of
obtaining means as far (or farther) apart as you did by chance alone, just
as ANOVA did.

In short, while the required matrix notation used while deriving or
describing MANOVA is a bit intimidating, the same principles that have
guided us so far in analysis using ANOVA – variation between group
means compared to variation within groups – still holds true in
MANOVA. The statistics change because we are now talking about
vectors of means (a set of means) being tested jointly.

The assumptions made when performing multivariate analysis of
variance are largely extensions of those made under ordinary analysis of
variance. In addition to the usual assumptions for a linear model
(additivity, independence between the error and model effects,
independence of the errors), MANOVA testing assumes that the residual
errors follow a multivariate normal distribution in the population; this is
a generalization of the normality assumption made in ANOVA. In SPSS
you can examine and test individual variables for normality within each
group. This is not equivalent to testing for multivariate normality, but is
still quite useful in evaluating the assumption. In addition, homogeneity
of variance, familiar from ANOVA, has a multivariate extension
concerning homogeneity of the within-group variance-covariance
matrices. A multivariate test of homogeneity of variance (Box’s M test) is
available to check this assumption.

For large samples, we expect departures from normality to make
little difference. This is due to the central limit theorem argument
combined with the fact that in MANOVA we are generally testing simple
functions of group means. If the samples are small and multivariate
normality is violated, the results of the analysis may be effected. Data
transformations (for example, logs) on the dependent measure(s) may
alleviate the problem, but have potential problems of their own
(interpretation, incomplete equivalence between tests in the transformed
and untransformed scales). Unfortunately, a general class of multivariate
nonparametric tests is not currently available; developments in this area
would help provide a solution.

Concerning homogeneity of variance, in practice if the sample size is
similar across groups then moderate departures from homogeneity of the
within-group variance-covariance matrices do not effect the analysis. If
homogeneity does not hold and the sample size varies substantially
across groups, then test results can be effected. In the simplest scenarios,

HOW MANOVA
DIFFERS FROM

ANOVA

ASSUMPTIONS
OF MANOVA
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CHECKING THE
ASSUMPTIONS

the direction of the effect depends on which sized group has the larger
variances, but specific situations can be far more complex, in which case
little is known.

After investigating whether the assumptions are met, primary interest
would be in the multivariate statistical tests. If significant effects are
found you might then examine univariate results. Additionally, you can
perform post hoc comparisons to discover just where the differences
reside.

When testing for mean differences between groups on a single dependent
variable the test comes down to a ratio of between-group to within-group
variation – a single number. In multivariate analysis, we are left with
two matrices containing the between and within-group variation and
covariation. There are different test statistics that can apply. Most of
them involve computing the latent roots of some function of the ratio of
the two matrices. In depth discussion of these test measures is beyond
the scope of this course, but some comments about their characteristics
will be made when we review the results.

We will perform MANOVA with experience and plant capacity as the
factors with time to completion (licensing) and cost as dependent
variables. This pairing of dependent variables makes sense if you believe
the adage that time is money. We expect that plants that require more
time to build should also be more costly. By using both variables we hope
to tap a more general measure of cost.

The analysis we conducted in Chapter 4 investigated the properties of the
cost measure. There was some evidence for heterogeneity of variance,
although the tests were not in complete agreement. The normal plot of
the errors suggested some skewness. We will now proceed to look at some
of the information from the EXPLORE procedure for the time variable.
One caution, these plots look at each variable separately while the
assumptions for MANOVA involve the joint distribution of the variables.
As a practical matter, if the assumptions are met for the variables singly,
things look good for the multivariate assumptions, but if the assumptions
fail for the single variables, they should fail for the multivariate situation
as well.

Click File..Open..Data
Move to the c:\Train\Anova directory (if necessary)
Select SPSS Portable (*.por) from the Files of Type drop-down

list
Double-click on plant.por

WHAT TO LOOK
FOR IN MANOVA

SIGNIFICANCE
TESTING

Proposed
Analysis
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Click on Analyze..Descriptive Statistics..Explore
Move time into the Dependent List box
Move capacity and exper into the Factor List box

Figure 5.1 Explore Dialog Box

Click the Plots pushbutton
Click the Normality plots with tests checkbox
Click the Untransformed option button in the Spread vs.

Level with Levene Test area

Figure 5.2 Plots Dialog Box
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Click Continue.
Click Paste to paste the syntax into a Syntax Editor window

Figure 5.3 Syntax Editor Before Change

Since we want to analyze the results for time in all the combinations
of capacity and experience we must insert the keyword BY between
capacity and experience in the Examine syntax command.

Type BY between capacity and exper in the Examine syntax
command

Figure 5.4 Syntax Editor After Change

Click Run..Current to run the Examine command
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We show the normal plots for the time variable below, noting that in
most groups there are too few observations to perform a normality test,
but in the few cases that tests of normality could be made, the data was
consistent with it.

Figure 5.4A Tests of Normality

Figure 5.5 Q-Q Plot of <800 MWe and 1-3 Plants
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Figure 5.6 Q-Q Plot of <800 MWe and 4-9 Plants

Figure 5.7 Q-Q Plot of <800 MWe and 10 or more Plants

Figure 5.8 Q-Q Plot of 800-1000 MWe and 4-9 Plants
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Figure 5.9 Q-Q Plot of 800-1000 MWe and 10 or more Plants

Figure 5.10 Q-Q Plot of >1000 MWe and 1-3 Plants

Figure 5.11 Q-Q Plot of >1000 MWe and 4-9 Plants
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Figure 5.12 Q-Q Plot of >1000 MWe and 10 or more Plants

Next we see the Box and Whisker plot for time.

Figure 5.13 Box and Whisker Plot for Time

There seems to be a fair amount of variation among the groups in
time taken to license the plant. It looks as if there is more spread for
groups with less experience than there is for those with more experience.
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The Advanced Models module within SPSS adds several General Linear
Model (GLM) procedures (multivariate (GLM) and repeated measures
(GLM)) to Univariate within the SPSS Base system. These procedures
have several desirable features from the perspective of MANOVA: 1) Post
hoc tests on marginal means (univariate only), 2) Type I through Type IV
sums of squares available (greater flexibility in handling unbalanced
designs/ missing cells), 3) Multiple Random Effect models can be easily
specified, and 4) Residuals, predicted values and influence measures can
be saved as new variables to the data set. However, the MANOVA
procedure (which was the original procedure within SPSS performing
MANOVA, and it is still available through syntax) contains several useful
advanced functions. Within the MANOVA procedure are: 1) Roy-
Bargmann step-down tests (testing for mean differences on a single
dependent measure while controlling for the other dependent measures),
and 2) Dimension reduction analysis and discriminant coefficients. These
latter functions provide information as to how the dependent variables
interrelate within the context of group differences (for a single main-
effect analysis, this is equivalent to a discriminant analysis).

In short, while we expect the SPSS General Linear Model procedure
will be your first choice for multivariate analysis of variance, the
MANOVA procedure can contribute additional information. (Please note,
MANOVA can only be run from syntax.)

Click Analyze..General Linear Model..Multivariate
Move cost and time into the Dependent Variables list box
Move capacity and exper into the Fixed Factors list box

Figure 5.14 Multivariate Dialog Box

THE
MULTIVARIATE

ANALYSIS
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We must specify the dependent measure(s) and at least one factor.
The dialog box for Multivariate contains list boxes for the dependent
variables, factors and covariates. The term “Fixed Factor(s)” in the
Multivariate dialog box reminds us that the factors are assumed to be
fixed, that is, levels of the factor(s) used in the analysis were chosen by
the researcher (not randomly sampled) and cover the range to which
population conclusions will be drawn. The Multivariate dialog box also
permits a weight variable to be incorporated in the analysis (performs
weighted least squares). Although rarely used in multivariate analyses
(when used it is typically for univariate analysis), it adjusts the analysis
based on different levels of precision (or heterogeneity of variance) for
different individuals or groups.

The Multivariate dialog box contains several pushbuttons. The Plots
pushbutton produces for each dependent measure a profile plot
displaying group means. The Post Hoc pushbutton performs post hoc
tests on the marginal means (for multivariate analyses, each dependent
variable is analyzed separately). The Contrasts pushbutton performs any
planned contrasts that the researcher wants to conduct; while the
Options pushbutton controls many options for the analysis. Finally the
Save pushbutton permits you to save predicted values, residuals, and
influence measures for later examination.

We could run the analysis at this point, but will examine the dialog
boxes within Multivariate and request some additional options.

Click Model pushbutton

Figure 5.15 Multivariate: Model Dialog Box

For most analyses the Model dialog box is not used. This is because
by default a full factorial model (all main effects, interactions, covariates)
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is fit and the various effects tested using Type III sums of squares (each
effect is tested after statistically adjusting for all other effects in the
model). If there are any missing cells in your analysis, you might switch
to Type IV sums of squares, which better adjusts for missing cells. If you
are running specialized factorial designs that are incomplete (by plan
every possible combination of factor levels is not present), or in which
there are no replicates (interaction effects are used as error terms), you
would click the Custom option button in the Specify Model area and
indicate which main effects and interactions to be included in the model.
A custom model is sometimes used if there is no interest in testing high
order interaction effects. Since we are interested in both main effects and
the one interaction there is no need to modify this dialog box.

Click Cancel to exit the Model dialog box
Click Contrasts pushbutton

Figure 5.16 Multivariate: Contrasts Dialog Box

The Contrasts dialog box is identical for multivariate and univariate
analyses. You would use it to specify main effect group comparisons of
interest, for which parameter estimates can be displayed and tests
performed. In statistical literature, these contrasts are sometimes called
planned comparisons. For example, in an experiment in which there are
three treatment groups and a control group there is a very specific
interest in testing each experimental group against the control. One of
the contrast choices (Simple) allows this. Several types of contrasts are
available within the dialog box and using syntax you can specify your
own (Special). To request a set of contrasts, select the factor from the
Factor(s) list box, select the desired contrast from the Contrast drop-down
list, and click the Change pushbutton. Since we have no specific planned
contrasts that we wished to apply to the main effects, we will exit the
Contrast dialog box.

Click Cancel to exit the Contrasts dialog box
Click Post Hoc pushbutton
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Figure 5.17 Multivariate: Post Hoc Dialog Box

The Post Hoc dialog box is used to request post hoc comparisons on
the observed subgroup means. Post hocs test for significant differences
between every possible pairing of levels of a factor. Since many tests may
be involved, most post hocs adjust the significance criterion based on the
number of tests in order to control the false positive error rate (Type I
error). Usually post hocs are performed after a significant main effect is
found (in the initial analysis), and we will visit this dialog box later in
this chapter.

Click Cancel pushbutton to exit the Post Hoc dialog box
Click Save pushbutton

Click the Unstandardized Predicted Values,
Unstandardized Residual, and Standardized Residual
check boxes
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Figure 5.18 Multivariate: Save Dialog Box

The Save dialog box allows you to save predicted values, and various
types of residuals and influence measures as new variables in the data
file. Examining them might identify outliers and influential data points
(data points whose exclusion substantially effects the analysis). Such
analyses are standard for serious practitioners of regression and can be
applied in this context. In addition, the coefficient statistics (coefficient
estimates, standard errors, etc.) can be saved to an SPSS data file (in
matrix format) and manipulated later (for example, apply the coefficients
to generate predictions for future cases). Although we strongly
recommend an examination of the residuals, with the limited amount of
time available in this class, we will skip this step.

Click Continue to process the residual requests
Click Options pushbutton
Select capacity, exper, and the capacity*exper interaction,

and move them into the Display Means for list box
Click the Homogeneity tests check box in the Display area.
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Figure 5.19 Multivariate: Options Dialog Box

Click Continue to process our option requests.
Click OK to run the analysis.

Moving these factor variables and their interaction term into the
Display Means for list box will result in estimated means, predicted from
the chosen model, appearing for the subgroups. These means can differ
from the observed means if covariates are specified or if an incomplete
model (one not containing all main effects and interactions) is used. If no
covariates are included (our situation), then post hoc analyses can be
applied to the observed marginal means using the Post Hoc pushbutton.
The Compare main effects’ checkbox can be used to have SPSS test for
significant differences between every pair of estimated marginal means
for each of the main effects in the Display Means for list box. Note that by
default, a significance level of .05 (see Significance level text box) is
applied to each test. Also notice the confidence intervals for the mean
differences have no adjustment (LSD (none)) based on the number of
tests made, although Bonferroni and Sidak adjustments can be
requested.

In the Display area, we requested that homogeneity of variance tests
be performed. The Display choices allow you to view supplemental
information. Checking Descriptive Statistics will display means, standard
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deviations, and counts for each cell (subgroup) in the analysis. If effect
size is checked, then partial eta-square values will be presented for each
effect (main effects, interactions). Eta-square is equivalent to the r-
square in regression; the partial eta-square measures the proportion of
variation in the dependent measure that can be attributed to each effect
in the model after adjusting for the other effects. Parameter estimates
are the estimates for the coefficients in the model. Typically, they would
be requested if you wanted to construct a prediction equation. The
various sums of square matrices are computational summaries and not
interpreted directly.

The Significance level text box allows you to specify the significance
level used to test for differences in the estimated marginal means (default
.05), and the confidence intervals around parameter estimates (default
.95).

We are now ready to proceed. The SPSS command below will run the
analysis.

GLM
cost time BY capacity exper
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/SAVE = PRED RESID ZRESID
/EMMEANS = TABLES(capacity)
/EMMEANS = TABLES(exper)
EMMEANS = TABLES(capacity*exper)
/PRINT = HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = capacity  exper  capacity*exper.

In the GLM command the dependent variables (cost, time) precede
the BY keyword while the factor variables (capacity, exper) follow it. Type
III (each effect is evaluated after adjusting for all other effects) sums of
squares is requested (the default). The Emmeans subcommand will print
a table of estimated marginal means for the factor variables.
Homogeneity tests are obtained from the print subcommand and the
alpha value (used for confidence intervals and significance tests of the
estimated marginal means) is set to .05 (default). The Design
subcommand is used to specify the model to be applied to the data; if
nothing were specified, a full factorial model would be fit.

The first piece of Multivariate output describes the factors involved in the
analysis. They are labeled between-subject factors; this is appropriate
because the three capacity groups and the three experience groups were
composed of different plants. We will see within-subject analysis of
variance (repeated measures) in a later chapter.

EXAMINING THE
RESULTS
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Figure 5.20 Between-Subject Factor Summary

The next two pivot tables provide information about the homogeneity
of variance assumption. Box’s M tests for equality of covariance matrices
(since there is more than a single dependent measure) across the
different subgroups. Levene’s homogeneity test is a univariate test and is
applied separately to each dependent variable.

Figure 5.21 Box’s Test of Equality of Covariance Matrices
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Figure 5.22 Levene’s Test of Equality of Error Variances

As mentioned above, Box’s M statistic can be used to test for equality
of variance-covariance matrices in the population. This generalizes the
homogeneity of variance test to a multivariate situation, testing for
equality of group variances (as univariate homogeneity tests would) and
covariances (which univariate tests cannot) for all dependent measures in
one test. Box’s test is not significant (.541) indicating no group differences
in the covariance matrices made up of the dependent measures. As a
univariate statistic, Levene’s test is applied to each dependent measure.
The time measure is consistent with homogeneity assumption (sig. =
.427), while cost measure does show group differences in variance (sig. =
.014). Given that the Box’s test is not significant, we will proceed to view
the multivariate test results.

As with ANOVA, MANOVA is robust under failure of homogeneity if the
sample sizes in the cells are large and roughly equal. If the sample sizes
are unequal, and larger variances are associated with larger cells, the
MANOVA tests are conservative so you can be confident of significant
findings. If smaller cells have larger variances, the MANOVA tests are
liberal so the Type I error is greater than it should be (see Hakstian,
Roed, and Lind (1979)). If variance is related to the mean level of the
group, a variance stabilizing transform is a possibility.

There are four multivariate test statistics commonly applied: Pillai’s
criterion, Hotelling’s Trace criterion, Wilk’s Lambda, and Roy’s largest
root. The first three give identical results in a two-group analysis, and
then can differ. They all test the null hypothesis of no group mean
differences in the population. Results of Monte Carlo simulations
focussing on robustness and statistical power, suggest that under general
circumstances Pillai’s test is preferred. However, there are specify
situations, for example when the dependent measures are highly related
(forming a strong core), that one of the others is the most powerful test.
As a general rule, if different multivariate tests give you markedly
different results, it suggests something about the dimensionality and type
of group differences. For an accessible discussion of this see Olsen (1976).

WHAT IF
HOMOGENEITY

FAILED?

MULTIVARIATE
TESTS
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The distribution of the first three multivariate statistics follows the
generalized “F” distribution. While more complicated than the simple “F”,
and having 3 sets of degrees of freedom it yields a probability value just
as the regular “F” does. This generalized “F” test assumes a multivariate
normal distribution of the errors.

Figure 5.23 Multivariate Analysis of Variance Table

The upper part of the table tests whether the overall mean (Intercept)
differs from zero in the population. It is not interesting since all it shows
is that overall, cost and time were not both zero.

The Value column displays the sample value of each of the four
multivariate test statistics. They are converted to “F” statistics (“F”
column) and the associated hypothesis (Hypothesis df) and error (error df)
degrees of freedom follow. These four columns are technical summaries;
we are primarily interested in the significance values that appear under
the “Sig.” Heading. Here we see that for the capacity factor, three of the
four tests show that there are differences in the dependent measures
(significance values of .055, .043, .034, .007). Notice the tests are not in
agreement if you test at the .05 level. While Pillai’s is often the
recommended test, it would be safe to conclude at least there is a
marginal effect, perhaps something worth looking at with a larger
sample. We also see that for the experience factor, all four tests show that
there are group differences in the means (significance values of .035, .028,
.023, and .005). The test of an interaction between capacity and
experience was not significant (significance values of .307, .294, .286, and
.073). Given these findings, we are next interested in looking at whether
both cost and time show differences (univariate tests), and knowing
which groups differ from which others (post hocs).



Multivariate Analysis of Variance   5 - 21

SPSS Training

Two additional columns can appear in the multivariate (or
univariate) analysis of variance table, but do not do so by default. The
noncentrality parameter is a technical summary that describes the
magnitude of the mean group differences in the form of a parameter for
the “F” distribution. It can be used to calculate the appropriate sample
size (statistical power analysis) if this study were to be repeated while
expecting to find the same group differences. The Observed Power
indicates how likely you are to obtain a significant group difference
(testing at the .05 level) if the population group means matched the
means in the sample. This can be useful in conducting postmortems of
your analysis, that is, exploring why you failed to find significant
differences.

We now examine the test results for each dependent measure.

Figure 5.24 Univariate Test Results

Although both dependent measures appear in this table the results
are calculated independently, and are identical to what you would obtain
if separate analyses were run on each dependent measure (univariate
ANOVA). Thus we find whether both of the dependent measures showed
significant group differences. The sums of squares, df (degrees of
freedom), mean square, and “F” columns are what we would expect in an
ordinary table. We described and disregarded the Intercept information
in the multivariate summary. Moving to the capacity section, we find cost
is right on the border of significance (.05) while time is not significant
(.101). From the experience summary we find that again cost is
significant (.046) while time is not (.066). In the interaction area we find
that neither cost nor time are significant (.701 and .089). The Error
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section summarizes the within-group variation. The Corrected Model
summary pools together all model effects (excluding the intercept), and is
equal to the Corrected Total minus the Error Total. Some analysts turn
to this overall test first to see if any effects are significant, and then
proceed to examine individual effects. However, most researchers move
directly to the tests of specific main effects and interactions. The Total
summary pools together everything in the analysis (including the error. It
should be noted that if the sample sizes are not equal when multiple
factors are included in the analysis, then under Type III sums of squares
(the default), the sums of squares for the totals will not generally be
equal to the sums of their component sums of squares.

Finally, r-square values (based on the corrected model) for each
variable appear as footnotes. Notice that the adjusted r-square for time
(.320) is higher than that of cost (.222). This is consistent with time
having a higher “F” statistic in the corrected model section.

Figure 5.25 Estimated Marginal Means for Capacity

Figure 5.26 Estimated Marginal Means for Experience
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Figure 5.27 Estimated Marginal Means for Capacity by Experience
Subgroups

Estimated marginal means are means estimated for each level of a
factor averaging across all levels of other factors (marginals), based on
the specified model (estimated). By default, SPSS fits a complete model
(all main-effects and interactions), and in such cases these estimated
means are identical to the (unweighted) observed means. However, if a
partial model were fit (for example, if all main effects were included but
higher order interactions were not) then the estimated means will differ
from the (unweighted) observed means. We see in the tables above that
the average time and cost increase with the plant capacity. Interestingly,
regarding experience, time and cost have their lowest means in the
middle experience group.

We first view the casewise listing of residuals for time. We will skip the
listing for cost since it is identical to that seen in Chapter 4, when we ran
the same model on cost alone.

Click Analyze..Reports..Case Summary
Move time, pre_2, res_2, and zre_2 into the Variables list box.

CHECKING THE
RESIDUALS
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Figure 5.28 Case Summary Dialog Box

Click on OK

The following syntax will also produce the case summary table.

SUMMARIZE
/TABLE=time pre_2 res_2 zre_2
/FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100
/TITLE=’Case Summaries’ /FOOTNOTE ‘ ‘
/MISSING=VARIABLE
/CELLS=COUNT.
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Figure 5.29 Casewise Listing of Residuals

There seem to be no especially large standardized residuals. Once
again the predicted values are identical for all members of the same
group.

From the multivariate analysis of variance we conclude that the
dependent variables show significant mean differences across experience
groups, although not in a strictly increasing fashion. There is a modest
effect across capacity groups and no sign of an interaction. Of the two
measures, cost seems more sensitive to the group differences. What might
qualify the result? You could argue that the groupings of experience and
capacity levels are arbitrary and different groupings could yield different
results. Also, with only 32 observations over a nine-cell design with two
dependent measures, we expect very little power to detect differences.

CONCLUSION
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At this point of the analysis it is natural to ask just which groups differ
from which others. The GLM procedure in SPSS will perform separate
post hoc tests on each dependent variable in order to determine this. Post
hoc tests are usually performed to investigate which pairs of levels within
a factor differ after an overall (main effect) difference has been
established. SPSS offers many post hoc tests and characteristics of them
were reviewed in Chapter 3. Recall the basic idea behind post hoc testing
is that some adjustment of the Type I (false positive or alpha) error rate
must be made due to the number of pairwise comparisons made. In our
example, only three tests need to be performed within each factor (group
1 vs. 2, 1 vs. 3, and 2 vs. 3). However, if there were ten levels of
experience (or capacity or both), then there would be [10*9]/2 or 45
pairwise tests, and the probability of one or more false positive results
would be quite substantial. We asked for the following types of post hoc
tests to be performed: LSD (the most liberal), Scheffe (the most
conservative), and the Games-Howell (does not assume equal variances—
recall the Levene test indicated there might be a homogeneity of variance
problem with cost). Although both experience and capacity were found
significant, below we request post hocs only for experience. In practice
you would view post hoc results for each significant main effect.

Click the Dialog Recall tool  , then select Multivariate

Click Post Hoc pushbutton
Move exper into the Post Hoc Tests for list box
Click LSD, Scheffe, and Games-Howell checkboxes

Figure 5.30 Post Hoc Dialog Box

POST HOC
TESTS
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Click Continue to process the post hoc requests
Click OK to run

The SPSS syntax below will produce the post hoc analysis.

GLM
cost time BY capacity exper
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE
/SAVE = PRED RESID ZRESID
/POSTHOC = exper ( SCHEFFE LSD GH
/EMMEANS = TABLES(capacity)
/EMMEANS = TABLES(exper)
EMMEANS = TABLES(capacity*exper)
/PRINT = HOMOGENEITY
/CRITERIA = ALPHA(.05)
/DESIGN = capacity  exper  capacity*exper.

The Posthoc subcommand instructs GLM to apply Scheffe, LSD and
Games-Howell (GH) multiple comparison tests to the experience (exper)
factor.

Although both multiple comparison and homogeneous subset tables
will be produced, we present only the former. Also note that for ease of
reading, the post hoc results, which appear in a single pivot table, are
displayed below as three figures (within the pivot table editor, the pivot
tray window was opened and the post hoc test (Test) icon was moved into
the layer dimension).

Figure 5.31 LSD Post Hoc Test for Experience

Note The multiple comparison table was edited in the Pivot Table Editor and
the tests (TEST icon) were placed in the layer dimension (see Chapter 4
for instructions) so we can separately view the results from each post hoc.
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Figure 5.32 Scheffe Post Hoc Test for Experience

Figure 5.33 Games-Howell Post Hoc Test for Experience

We can see that for both cost and time, every possible group pairing
appears for the factor. The “Mean Difference” column contains the
difference in sample means between the two groups, and the “Standard
Error” column contains the standard error of the difference between the
means. The “Sig” column contains the significance value when the
particular test is applied to the group differences. These post hoc test
results provide detail concerning significant main effects.

Not surprisingly, the Scheffe results show fewer significant group
differences than LSD. Notice that there are no group differences on time
using the Games-Howell tests, although both Scheffe and LSD show
differences. This is probably due to the Games-Howell being less powerful
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SUMMARY

when homogeneity of variance holds, as it does for time.

In this chapter we discussed multivariate analysis of variance and
applied it to the plant data. We examined residuals from the analysis and
performed post hoc tests.
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Within-Subject Designs:
Repeated Measures

The objective of this chapter is to understand the distinguishing
characteristics, assumptions, and methods of approaching within-subject
(repeated measures) ANOVA, and to see how SPSS implements such
analyses. We will discuss the univariate and multivariate approaches to
the repeated measures analysis.

We discuss the logic and assumptions of repeated measures and use the
Explore procedure to examine the data. We then use the GLM Repeated
Measures procedure to run a repeated-measures ANOVA with a single
within-subject factor. Pairwise comparisons are run and planned
comparisons are set up.

The data set contains vocabulary test scores obtained from the same
children over four years (grades 8 through 11). The sex of each child is
also recorded, but not used in this analysis.

In this chapter, we discuss yet another species of ANOVA, the special
case where each subject (or unit of analysis) appears in several
conditions. We will see that this repeated measurement feature

requires some additional assumptions and a more complicated approach
to computing error terms. The variation within each group, our constant
companion to this point, must undergo some revision to accommodate the
fact the same subject is tested in multiple conditions. We will discuss the
general features and assumptions of within-subject ANOVA, then anchor
the discussion with an actual analysis.

Chapter 6

Objectives

INTRODUCTION

Method

Data
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Repeated measures (also called within-subject) studies are used for
several reasons. First, by using a subject as her own control a more
powerful (greater likelihood of finding a real difference) analysis is
possible. For example, consider testing me under two drug conditions
compared to testing two individuals, each under a single condition. By
testing me twice instead of different people each time, the variability due
to person-to-person differences is reduced when comparing the two
means, which should provide a more sensitive analysis. A second reason
in practice is cost reduction; recruitment costs are less if an individual
can contribute data to multiple conditions.

However, repeated measures analyses have potential problems. Since
an individual appears in multiple conditions there may be practice,
fatigue, or carryover effects. Counterbalancing the order of conditions
addresses the carryover problem, and the different trials or conditions are
often well spaced to reduce the practice and fatigue issues.

Examples of Repeated Measures Analysis:

1. Marketing – Compare customer’s rating on four different
brands, or different products, for example four different
perfume fragrances.

2. Medicine – Compare test results before, immediately after,
and six months after a procedure.

3. Education – Compare performance test scores before and
after an intervention program.

4. Engineering – Compare output from different machines after
running 1 hour, 8 hours, 16 hours, and 24 hours.

5. Agriculture – The original research area for which these
methods were developed. Different chemical treatments are
applied to different areas within a plot of land (split plots).

6. Human Factors – Compare performance (reaction time,
accuracy) under different environmental conditions. For
example, examine pilot accuracy in reading different types of
dials under varying lighting conditions.

For an accessible introduction to repeated measures with a number of
worked examples, see Hand and Taylor (1987). For more technical and
broad (beyond ANOVA) discussions of repeated measures analysis see
Lindsey (1993) or Crowder and Hand (1990).

In the simplest case of repeated measures analysis two values are
compared for each subject. For example, suppose that for each individual
we record a physiological measure under two conditions. We can obtain
sample means for each drug and want to determine whether there are
significant differences between the drugs in the larger population. One
direct way to approach this would be to compute a difference or change
score for each individual, obtained by subtracting the two drug measures,
and testing whether the mean difference score is different from zero. We
illustrate this in the spreadsheet below.

WHY DO A
REPEATED
MEASURES

STUDY?

THE LOGIC OF
REPEATED
MEASURES
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Table 6.1 Difference Scores with Two Conditions

We see a difference score is calculated for every individual and these
scores are averaged together. If there were no drug differences then we
would expect the average difference score to be about zero. To determine
if the population mean difference score is different from zero, we need
some measure of the variability of sample mean difference scores. We can
obtain such a variability measure by calculating the variation of
individual difference scores around the sample mean difference score. If
the sample mean difference score is far enough from zero that it cannot
be accounted for by the variation of individual difference scores, we say
there is a significant population difference. This is what a paired t test
does.

The analysis becomes a bit more complex when each subject (unit of
analysis) appears in more than two levels (conditions) of a repeated
measure factor. Now no single difference score can summarize the
differences. We illustrate this below.

Table 6.2 Difference Scores with Four Conditions
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Although no one difference score can summarize all drug differences
here, we can compute additional difference scores, and thus account for
drug effects. As you would imagine the number of these differences, or
contrasts, is equal to the degrees of freedom available (one less than the
number of levels in the factor). For two conditions, only one contrast is
possible; for four conditions, there are three; for k conditions, k-1
contrasts are required. If the assumptions of repeated measures ANOVA
are met then these differences, or contrasts between conditions, can be
pooled together to provide a significance test for an overall effect.

We used simple differences to compare the drug conditions (drug 1
minus drug 2, etc.) There are many other contrasts that could be applied.
For example, we could have calculated drug 1 minus the mean of drugs 2,
3, and 4; then drug 2 versus the mean of drugs 3 and 4; and finally drug 3
versus drug 4. As long as the assumptions of repeated measures are met,
the specific choice of contrasts doesn’t matter when the overall test is
calculated. However, if you have planned comparisons you want tested,
then you would request those.

In each of the two above examples, we wound up with one fewer
difference variable than the original number of conditions. There is
another variable that is calculated in repeated measures, which
represents the mean across all conditions. It is used when testing effects
of between-group factors, having averaged across all levels of the
repeated measure factor(s). This mean effect is shown in the illustration
below:

Table 6.3 Mean and Difference Scores with Four Conditions

The mean score across drug conditions for each subject is recorded in
the mean column. As mentioned above any tests involving only between-
group factors (for example, sex, age group) would use this variable.

This idea of computing difference scores or contrasts across conditions
for each subject, then using the means and subject to subject variation as
the basis of testing whether the average contrast value is different from
zero in the population, is the core concept of repeated measures ANOVA.
Once you become comfortable with it, the rest falls into place. SPSS
performs repeated measures ANOVA by computing contrasts across the
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repeated measures factor levels for each subject, and then testing
whether the means of the contrasts are significantly different from zero.
A matrix of coefficients detailing these contrasts can be displayed and is
called the transformation matrix.

A repeated measure ANOVA has several assumptions common to all
ANOVA. First, that the model is correctly specified and additive.
Secondly, that the errors follow a normal distribution and are
independent of the effects in the model. This latter assumption implies
homogeneity of variance when more than a single group is involved. As
with general ANOVA, moderate departures from normality do not have a
substantial effect on the analysis, especially if the sample sizes are large
and the shape of the distribution is similar from group to group (if
multiple groups are involved). In multi-group studies, failure of
homogeneity of variance is a problem unless the sample sizes are about
equal.

In addition to standard ANOVA assumptions, there is one specific to
repeated measures when there are more than two levels to a repeated
measures factor. If a repeated measures factor contains only two levels,
there is only one difference variable that can be calculated, and you need
not be concerned about the assumption. However, if a repeated measures
factor has more than two levels, you generally want an overall test of
differences (main effect). Pooling the results of the contrasts (described
above) between conditions creates the test statistic (F). The assumption
called sphericity deals with when such pooling is appropriate. The basic
idea is that if the results of two or more contrasts (the sums of squares)
are to be pooled, then they should be equally weighted and uncorrelated.
To illustrate why this is important, view the spreadsheet below:

Table 6.4 Scale Differences and Redundancies in Contrasts

ASSUMPTIONS

The first contrast variable represents the difference between drug 1
and drug 2 (Drug 1 – Drug 2). However, the second is 100 times the
difference between Drug 2 and Drug 3. It is clear from the mean and
standard deviation values of the second difference variable that this
variable would dominate the other difference variables if the results were
pooled.  In order to protect against this, normalization is applied to the
coefficients used in creating the contrasts (each coefficient is divided by
the square root of the sum of the squared coefficients).
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Also, notice that the third contrast is a duplicate of the first.
Admittedly, this is an extreme example, but it serves to make the point
that since the results from each contrast are pooled (summed), then any
correlation among the contrast variables will yield incorrect test
statistics. In order to provide the best chance of uncorrelated contrasts
variables, the contrasts or transformations are forced to be orthogonal
(uncorrelated) before applying them to the data.

This combination of normalization and forcing the original contrasts
to be orthogonal (uncorrelated) is called orthonormalization. Again, when
actually applied to the data, these properties may not hold, and that is
where the test of sphericity plays an important role.

This combination of assumptions, equal variances of the contrast
variables and zero correlation among them, is called the sphericity
assumption. It is called sphericity because a sphere in multidimensional
space would be defined by an equal radius value along each
perpendicular (uncorrelated) axis. Although contrasts are chosen so that
sphericity will be maintained, when applied to a particular data set,
sphericity may be violated. The variance-covariance matrix of a group of
contrast variables that maintain sphericity would exhibit the pattern
shown below.

Table 6.5 Covariance Matrix of Contrast Variables when Sphericity
Holds

The diagonal elements represent the variance of each contrast when
applied to the data and the off-diagonal elements are the covariances. If
the sphericity assumption holds in the population, the variances will
have the same value (represented by the V) and the covariances will be
zero.

A test of the sphericity assumption is available. If the sphericity
assumption is met then the usual “F” test (pooling the results from each
contrast) is the most powerful test. When sphericity does not hold, there
are several choices available. Technical corrections (Greenhouse-Geisser,
Huynh-Feldt) can be made to the “F” tests (adjusting the number of the
degrees of freedom) that modify the results based on the degree of
sphericity violation. Another alternative is to take a multivariate
approach in which contrasts are tested simultaneously while taking
explicit account of the correlation and variance differences. The difficulty
in choosing between these approaches is that no single method has been
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found (in Monte Carlo studies) to be best under all conditions examined.
Also, the test for sphericity itself is not all that sensitive. For a summary
of the various approaches and a suggested strategy for testing, see
Looney and Stanley (1989).

The data are reported in Bock (1975, p.454) and consist of vocabulary
scores obtained from a cohort of pupils at the eighth through eleventh
grade level. Alternative forms of the vocabulary section of the
Cooperative Reading Tests were administered and rescaled to an
arbitrary origin. Interest is in the growth rate of vocabulary at a time
when physical growth is slowing. Sixty-four subjects were studied.

We will perform a repeated measures analysis on the vocabulary growth
data. There is specific interest in the trend over time – is it linear? The
data will be examined then repeated measures ANOVA applied with
attention paid to the assumptions mentioned above.

The key concept to repeated measures analysis is that the contrasts
(which are data transformations) will be applied across conditions of the
within-subject factors, and if we conclude the contrasts are non-zero in
the population, there are significant differences between the conditions.

Click File..Open..Data (move to the c:\Train\Anova directory)
Select SPSS Portable (.por) on the Files of Type drop-down list
Double-Click on Vocab
Click on Analyze..Descriptive Statistics..Explore
Select the variables Grade8, Grade9, Grade 10, and Grade11

and move them to the Dependent List box.

Data Set

PROPOSED
ANALYSIS

KEY CONCEPT
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Figure 6.1 Explore Dialog Box

Click on the Plots pushbutton
Click Dependents together option button in the Boxplots area
Click the Normality tests with plots check box

Figure 6.2 Plots Dialog Box

Placing the dependent variables together in a single boxplot, instead
of separate plots (Factor levels together), permits direct comparison of the
variables. Normal probability plots and tests are also requested.
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Click Continue
Click OK

The command below will run the analysis.

EXAMINE
  VARIABLES=grade8 grade9 grade10 grade11
   /PLOT BOXPLOT STEMLEAF NPPLOT
  /COMPARE VARIABLES
  /STATISTICS DESCRIPTIVES
   /CINTERVAL 95
  /MISSING LISTWISE
   /NOTOTAL.

We request summaries of the four variables, a normal probability plot
with normality test will appear (/Plot Npplot) for each variable. Also, the
four variables will appear in a single boxplot (/Compare Variables).

Figure 6.3 Descriptives for Grade 8
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Figure 6.4 Descriptives for Grade 9

Figure 6.5 Descriptives for Grade 10

Figure 6.6 Descriptives for Grade 11
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As we can see from the descriptive statistics, the mean score for the
reading tests is going up in each year (from 1.1372 in Grade 8 to 3.4716
in Grade 11), but the variances are fairly constant across the years (from
3.568 to 4.704).

Figure 6.7 Normality Tests

The normality tests show that there is no problem with the
assumption of normality for grades 8 and 10. However, grades 9 and 11
show that there is some deviation from normality in those grade results.
Although the assumption of normality is violated, the sample size is large
enough that we can probably ignore that violation.

Figure 6.8 Q-Q Plot for Grade 8
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Figure 6.9 Q-Q Plot for Grade 9

Figure 6.10 Q-Q Plot for Grade 10

Figure 6.11 Q-Q Plot for Grade 11
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These Q-Q plots also give us some indication of the degree to which
the normality assumption is violated. Although the normality tests
showed that grades 9 and 11 had some deviation from the normal, the Q-
Q plots are similar for all the grades. Again, we should note that the
sample size is somewhat large and that we can probably not worry about
these violations of normality.

Figure 6.12 Box and Whiskers Plot

The Box plot indicates that the variation of scores within a test year is
fairly constant. There are a few outliers; the case id information indicates
that for the most part, the same few individuals stand out. From the
medians we see that vocabulary scores grow over the several year period,
and this growth seems to be slowing.

We have only one group of subjects. Each subject has a vocabulary
score under the four grade levels. Notice all four of the vocabulary scores
are attached to a single case (examine data in Data Editor window – not
shown). If the four measures for a subject were spread throughout the
file, the analysis can still be run within SPSS, but only by using the
General Linear Model Univariate dialog box.

Click Analyze..General Linear Model..Repeated Measures

COMPARING THE
GRADE LEVELS
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Here we provide names for any repeated measures factors and
indicate the number of levels for each. Unlike a between-group factor
which would be a variable (for example, region), a repeated measures
factor is expressed as a set of variables.

Replace factor1 with Time in the Within-Subject Factor Name
text box

Press Tab key to move to the Number of Levels text box
Type 4
Click Add pushbutton

Figure 6.13 Define Repeated Measures (Within-Subject) Factor

We have defined one factor with four levels. In a more complex study
(we will see one later in this chapter) additional repeated measures can
be added. The Measure pushbutton is used to provide two pieces of
information. First if there are multiple dependent measures involved in
the analysis (for example, suppose we also took four measures of
mathematical skills for each of our 64 subjects), this is declared in the
measure area. Secondly, you can use the Measure area to provide a label
for the dependent measure in the results. Recall we named our four
variables Time1 to Time4 so there would be no ambiguity about which
factor level each represented. However, this choice on names does not
indicate that these variables all measure vocabulary scores. You can
supply such labeling information in the Measures area.

Click Define pushbutton
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In this dialog box we link the repeated measures factor levels to
variable names, and declare any between-subject factors and covariates.
Notice the Within-Subjects Variables box lists Time as the factor and
provides four lines labeled with level numbers 1 through 4. We must
match the proper variable to each of the factor levels. This step should be
done very carefully since incorrect matching of names and levels will
generally produce an incorrect analysis (especially if more than one
repeated measure factor is involved). We can move the variables one by
one, but since they are in the correct order we will move them as a group.

Move grade8, grade9, grade10, and grade11 into the Within-
Subjects Variables box (maintain this variable order)

Click grade11 to select it.

Figure 6.14 Main Repeated Measures Dialog Box

The variable corresponding to each grade level is matched with the
proper time level. Since grade11 is selected, the up arrow button is active.
These up and down buttons will move variables up and down the list, so
you can easily make changes if the original ordering is incorrect. We have
neither between-subject factors nor covariates and can proceed with the
analysis, but first let us examine some of the available features.
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In the model dialog box (not shown) by default a complete model (all
factors and interactions) will be fit. As with procedures we saw earlier in
the course, a customized model can be fit for either between or within-
subject factors. This is usually done when specialty designs (Latin
squares, incomplete designs) are run. The Contrasts pushbutton is used
to request that particular contrasts be applied to a factor (recall our
discussion of difference or contrast variables earlier).

Click Contrasts pushbutton

Figure 6.15 Contrasts Dialog Box

Check to see which contrast is selected
If it is not polynomial then change it to Polynomial
Click Continue
Click Plots pushbutton

The Plots pushbutton generates profile plots that graph means at
factor level combinations for up to three factors at a time. Such plots are
powerful tools in understanding interaction effects. We will only request
a plot for time, our repeated measure factor.
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Click on Time and move it to the Horizontal Axis list box
Click Add

Figure 6.16 Plots Dialog Box

Click Continue

The Post Hoc dialog box was discussed earlier in the class; it performs
post hoc tests of means for between-subject factors. We will look at the
available tests for repeated measures factors shortly. The Save dialog box
allows you to save predicted values, various residuals and influential
point measures. Also, you can save the estimated coefficients to a file for
later manipulation (perhaps in a prediction model, or to compare results
from different data sets). We will look at the Option dialog box more
closely.

Click Options pushbutton
Move Time into the Display Means for list box
Click to check the Compare Main Effects checkbox
Select Bonferroni on the Confidence interval adjustment

drop-down list
Click on Descriptive statistics check box
Click Transformation Matrix check box
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Figure 6.17 Options Dialog Box

We request descriptive statistics. Estimated marginal means can be
produced for any factors in the model (here time). Since we are fitting a
complete model, the estimated marginal means are identical to the
estimated means. We request pairwise comparisons for the time factor
using Bonferroni adjustments (the available adjustments for repeated
measure factors are LSD, Bonferroni and Sidak). In addition, we have
asked to see the transformation matrix. The transformation matrix
contains the contrast coefficients that are applied to the repeated
measures factor(s) to create the difference or contrast variables used in
the analysis. Here we display it only to reinforce our earlier discussion of
this topic. Diagnostic residual plots are available and there is a control to
modify the confidence limits (default is 95%). The SSCP (sums of squares
and cross products) matrices are not ordinarily viewed. However, they do
contain the sums of squares for each of the contrast variables. By viewing
them you can see that the overall test simply sums up the individual
contrast sums of squares, which is why sphericity is necessary.
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Click Continue to process the option requests
Click OK to run the analysis

The SPSS syntax below will run the repeated measures analysis.

GLM
   grade8 grade9 grade10 grade11
   /WSFACTOR = time 4 Polynomial
   /METHOD = SSTYPE(3)
   /PLOT = PROFILE( time )
  /EMMEANS = TABLES(time) COMPARE ADJ(BONFERRONI)
  /PRINT = DESCRIPTIVE TEST(MMATRIX)
  /CRITERIA = ALPHA(.05)
  /WSDESIGN = time .

First the variables that constitute the repeated measures factor are
listed. The WSFACTOR (within-subject factor) subcommand declares
time to be a within-subject factor with four levels. In addition, polynomial
contrasts will be applied when creating the contrast variables.
Polynomial contrasts will perform linear, quadratic, and cubic contrasts
on the time factor. If there are significant changes in vocabulary over
time, as we expect, these contrasts will allow us to examine its specific
form. The Print TEST (MMATRIX) specification will have the
transformation (called the M Matrix) display. Method declares the sums
of squares type.

The first summary displays information about the factors in the model.

Figure 6.18 Factor Summary

EXAMINING
RESULTS

There is only a single within-subject (repeated measures) factor and
no between-subject factors.
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Figure 6.19 Descriptive Statistics

Means, standard deviations, and sample sizes appear for each factor
level. If you were unsure of your matching the variable names to factor
levels in the Define Repeated Measures Factors dialog box, you can
compare these means to those you would obtain from the Descriptives,
Means, or Explore procedures to insure the proper variables are matched
with the proper factor levels. Again, we see the increase in the mean
scores as grade level increases.

Multivariate test results appear next. Since they would typically be
used only if the sphericity assumption fails, we will skip these results for
now and examine the sphericity test.

Figure 6.20 Mauchly’s Sphericity Test

We see from the Significance (Sig.) information that the data are
consistent with the sphericity assumption. The significance value is above
.05 (.277), indicating that the covariance matrix of orthonormalized
transformation variables is consistent with sphericity (diagonal elements
identical and off-diagonal elements zero in the population). Since
sphericity has been maintained we can use the standard (pooled) ANOVA
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results, and need not resort to alternative (multivariate) or adjusted
(degree of freedom adjustment) tests. The Epsilon section of the pivot
table provides the degree of freedom modification factor that should be
applied if the sphericity result were significant. Let us take a brief look at
the multivariate results.

Figure 6.21 Multivariate Tests

Remember these results need not be viewed since sphericity has been
maintained. Here the test is whether all of the contrast variables
(representing vocabulary score differences) are zero in the population,
while explicitly taking into account any correlation and variance
differences in the contrast variables. So if sphericity were violated these
results could be used. Explanations about the various multivariate tests
were given in Chapter 5. The multivariate tests indicate there are
vocabulary score differences by grade.

Figure 6.22 Within-Subject Effects

This table contains the standard repeated measures output based on
summing the results from each contrast, as well as sphericity corrected
results. It shows the results for (1) sphericity assumed, and then (2)



Within-Subject Designs: Repeated Measures   6 - 22

SPSS Training

Greenhouse-Geisser, (3) Huynh-Feldt, and (4) Lower Bound adjustments.
The test result (sphericity assumed) is highly significant, more so than
the multivariate test, which is what we expect if sphericity holds: the
pooled test is more powerful. Thus, we conclude there are significant
differences in vocabulary across grade levels.

Figure 6.23 Test of Contrasts

Significant tests will be performed on each of the contrast variables
used to construct a repeated measure factor. Recall that by default,
polynomial contrasts are used. Since the repeated measure factor is time,
these contrasts test whether there are significant linear, quadratic and
cubic trends in vocabulary growth over time. Note that linear and
quadratic trends are significant (the linear contrast has a very large F
value), while cubic is not. This is consistent with the earlier comment
that vocabulary scores increase over time, but the growth seemed to be
slowing down.

Figure 6.24 Test of Between-Subjects Effects

There were no between-subject factors in this study. If there were,
the test results for them would appear in this section. There is a test of
the intercept, or grand mean; this simply tests whether the average of all
vocabulary scores is equal to zero in the population – not an interesting
hypothesis to test.
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Figure 6.25 Transformation Matrix

The transformation variables are split into two groups: one
corresponding to the average across the repeated measures factor, the
others defining the repeated measures factor. The coefficients for the
Average variable are all .5, meaning each variable is weighted equally in
creating the Average transformation variable. If you wonder why the
weights are not .25, recall that normalization requires the sum of the
squared weights to equal one. Turning to the transformed variables that
represent the time effect, the three sets of coefficients are orthogonal
polynomials corresponding to linear, quadratic, and cubic terms. Looking
at the first we see that there is a constant increase (of about .447) in the
value of the coefficients across the four grade levels. In a similar way, the
second transformation variable has two sign changes (negative to
positive, then positive to negative) over the grade levels; this constitutes
a quadratic effect. The SPSS Advanced Models manual has additional
information about the commonly used transformations.

Recall that the transformations are orthogonal; you can verify this for
any pair by multiplying their coefficients at each level of the factor and
summing these products. The sum should be zero. For linear and
quadratic we can calculate (-.671*.5 -.224*.5 +.224*.5 +.671*.5), which is
indeed zero.
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Figure 6.26 Transformation Matrix (M Matrix)

Since we ask for analyses to compare main effects in the Options
dialog box, a new transformation matrix is used to create four variables
equivalent to the four grade levels: the identity transformation. Notice
this is a separate analysis after the others have been completed using the
original transformation matrix.

Also, note the estimated marginal means match the observed means
(this pivot table is not shown).

Figure 6.27 Pairwise Test Results
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Each grade level mean is tested against every other; essentially we
are performing all pairwise tests with a Bonferroni correction. The
footnotes indicate that each test is performed at an adjusted level of
significance using a Bonferroni correction. Thus the probability of
obtaining one or more false positive results is .05. We find in our study
that the grade 8 (time 1) scores are significantly different from all the
others; grade 9 (time 2) is different from grade 8 and grade 11 (time 4);
grade 10 (time 3) is different from grade 8 and 11; while grade 11 is
significantly different from grades 8, 9, and 10. Substituting Bonferroni
corrected paired t tests for post hoc comparisons provides a means to
investigate differences within a repeated measures factor.

The program will also run a multivariate ANOVA attempting to test
the pairwise comparisons simultaneously; this is of no interest to us.

Figure 6.28 Profile Plot of Means

This plot (not really necessary since with one factor there can be no
interaction) shows us how the mean of the vocabulary scores is increasing
with grade level.
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Suppose we had some specific hypothesis about the grade levels that we
wished to test. For example, if we thought that the grade to grade
promotion made a difference in the student’s vocabulary score, we might
want to test grade 8 versus grade 9; grade 9 versus grade 10; and grade
10 versus grade 11. The Contrast pushbutton provides a variety of
planned comparisons and customized contrasts can be input using
syntax.

Click the Dialog Recall tool  , then click Repeated

Measures
Click Define pushbutton
Click Contrasts pushbutton
Click Contrast drop-down arrow and select Repeated
Click Change pushbutton

Figure 6.29 Requesting Planned Comparisons

PLANNED
COMPARISON

Repeated contrasts will compare each category to the one adjacent.
Right click on any contrast on the list to obtain a brief description of it.
The SPSS Advanced Models manual contains more details. Also be aware
that you can provide custom contrasts using the Special keyword in
syntax.

Click Continue to process the contrasts
Click OK to run the analysis

The command below will run the analysis.
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GLM
  grade8 grade9 grade10 grade11
  /WSFACTOR = time 4 Repeated
  /METHOD = SSTYPE(3)
  /PLOT = PROFILE( time )
  /EMMEANS = TABLES(time) COMPARE ADJ(BONFERRONI)
  /PRINT = DESCRIPTIVE TEST(MMATRIX)
  /CRITERIA = ALPHA(.05)
  /WSDESIGN = time .

The Wsfactor subcommand now requests that repeated contrasts be
used in place of the default polynomials.

Again, most of the output is identical to the previous runs; we focus
on the contrast tests and the transformation matrix.

Figure 6.30 Tests of Contrasts

We see that all three contrasts are significant at the .05 level. The
first contrast, comparing grade 8 to grade 9 has by far the greatest F
value. The second compares grade 9 to grade 10, and the third compares
grade 10 to grade 11. These seem inconsistent with the pairwise tests we
just ran in which the grade 9 scores were not different from the grade 10
scores. However, recall that we performed Bonferroni corrections on those
tests and the second contrast (here with significance level of .013) would
not be significant we testing at the adjusted Bonferroni level (about .008).
If you return to the pairwise analysis you will see the results are quite
close.

To confirm our understanding of the contrasts, we view the
transformation matrix.
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Figure 6.31 Transformation Matrix

We see the transformed variables do compare each grade level to the
adjacent one. The transformed matrix is very useful in understanding
and verifying which contrasts are being performed. These contrasts are
not orthogonal, and would not be used without modification
(orthonormalization) in the sphericity and pooled significance tests
appearing earlier.

In this chapter we reviewed how repeated measures ANOVA differs from
between-group ANOVA and why it is used. Assumptions were discussed
and an analysis was run based on student vocabulary scores measured
over time. A second analysis applied planned comparisons (a priori
contrasts) to a repeated measure analysis.

SUMMARY
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Between and Within-Subject
ANOVA: (Split-Plot)

In this chapter we will expand upon the last chapter to include both
between and within-subject factors in one analysis. We will discuss the
assumptions of this design and show an example. We will also explore the
interactions using simple effects.

We will first use the Explore command to examine the data and then run
the repeated measures ANOVA to do the basic mixed-model analysis
(split-plot) and look at information regarding the assumptions.

The data set we will use is the same data as we used in Chapter 6,
containing vocabulary test scores obtained from the same children over
four years (grades 8 through 11). However, in this analysis we will use
the sex of the subject as a between-subject factor.

The term “mixed model” technically refers to ANOVA models containing
fixed and random factors. The designs we discuss, where subject is a
random effect, are a special case of the mixed model. The common usage
of “mixed model” refers to designs with between and within-subject
factors.

Many studies, especially experimental work, incorporate both
between and within-subject factors. Within-subject factors will
hopefully lead to a more sensitive analysis, while between-

subject factors are necessary if any demographic characteristics are
included or if there is reason to believe there would be strong carry-over
effects. Mixed model refers to a mixture of between and within factors
and is a direct generalization of the within-subjects analysis. These
designs are also called split-plot designs, the term taken from
agricultural experiments in which a given plot of land would receive
single level of one treatment factor, but would be split into subplots that
would receive all treatment levels of a second factor. This would yield
between-plot and within-plot factors equivalent to the between and
within-subject effects we have covered. We will discuss the features and
assumptions of such analysis and run an example.

Chapter 7

Objective

Method

Data

Technical Note

INTRODUCTION
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If we take the assumptions of within-subject analyses as a starting point,
normality of the variables and sphericity when there are more than two
levels of a within-subject factor, mixed model analyses involve little more.
Since there are multiple groups, the normality of the variables now
applies to the variation within each group. Also, homogeneity of
covariance matrices is assumed (this can be applied to the original
variables or the transformed variable – homogeneity of one implies
homogeneity of the other). This combination of assumptions, homogeneity
and sphericity, is sometimes called compound symmetry.

We will fit a model with one between-subject factor (Sex) and one within-
subject factor (Time) with four levels. Thus for this analysis the
sphericity issue is relevant and will be approached just as it was in
Chapter 6. While we deal with a single between and a single within-
subject factor, no additional assumptions are required to expand the
analysis to handle multiple factors of each type.

As before, we will use the Explore procedure to examine the distribution
of vocabulary scores across grades and sex groups. Since we know from
Chapter 6 that there are changes in vocabulary scores over time (grades),
we will focus on the comparison of the two sex groups. This will provide
some indication of normality and homogeneity of the vocabulary scores.

Click File..Open..Data
Move to the c:\Train\Anova directory
Select SPSS Portable (.por) from the Files of Type drop-down

list
Double-click on vocab

Figure 7.1 Data from Vocabulary Study

ASSUMPTIONS
OF MIXED

MODEL ANOVA

PROPOSED
ANALYSIS

A LOOK AT THE
DATA
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Click Analyze..Descriptive Statistics..Explore
Move Grade8, Grade9, Grade10, and Grade 11 into the

Dependent list box.
Move Sex into the Factors box

Figure 7.2 Explore Dialog Box

Click on the Statistics pushbutton
Make sure that the Descriptives checkbox is the only one

selected

Figure 7.3 Explore Statistics Dialog Box

Click on Continue to process the Statistics choices
Click on the Plots pushbutton
Verify that the Factor levels together option is selected.
Verify that the Stem-and-leaf checkbox is checked
Click Normality plots with tests checkbox
Select Power Estimation option button in Spread vs. Level with

Levene Test area
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Figure 7.4 Explore Plots Dialog Box

Click on Continue to process the Plots choices
Click on OK to run the EXPLORE procedure.

The syntax command below will run the analysis.

EXAMINE
  VARIABLES=grade8 grade9 grade10 grade11 BY sex
  /PLOT BOXPLOT STEMLEAF NPPLOT SPREADLEVEL
  /COMPARE GROUP
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Normality tests and plots are generated by the Npplot keyword and
homogeneity tests are due to the Spreadlevel keyword on the Plot
subcommand.

Figure 7.5 Descriptives for Grade 8 Males
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Figure 7.6 Stem and Leaf for Grade 8 Males

Figure 7.7 Descriptives for Grade 8 Females

Figure 7.8 Stem and Leaf for Grade 8 Females
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Notice that the range for 8th grade males is about half the range for
females, but the interquartile ranges are about the same. This is due in
part to an outlier among the females. While not shown, the vocabulary
scores of the females were consistent with the normal distribution using
the Shapiro-Wilks criterion, while the males showed a significant
departure from normality.

Figure 7.9 Box Plots for Grade 8 Scores

The medians for the sex groups are very similar and the variation in
the female group seems greater. Despite appearances in the plot, the 8th

grade sex groups do not show significant differences in variation of test
scores as evidenced by the Levene homogeneity test (not shown).

Figure 7.10 Descriptives for Grade 11 Males



Between and Within-Subject ANOVA: (Split-Plot)   7 - 7

SPSS Training

Figure 7.11 Stem and Leaf for Grade 11 Males

Figure 7.12 Descriptives for Grade 11 Females

Figure 7.13 Stem and Leaf for Grade 11 Females
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Most of the summary statistics are similar for males and females in
the grade 11th grade. The normality tests (not shown) indicate that the
scores for males, but not females, are consistent with normal distribution.

Figure 7.14 Box Plots for Grade 11

Once again, the medians are very close and there are a few outliers.
The Levene test (not shown) indicated that the sex populations do not
differ in variance on 11th grade vocabulary scores.

The distribution of vocabulary scores within sex group was consistent
with the normal for 9th and 10th grade, the only exception being 10th grade
females. Neither grade departed from homogeneity of variance between
sex groups. (These results are not shown.)

Overall, the data look good as far as homogeneity is concerned, and the
departures from normality are not dramatic. If we had access to the
original test sheets, we might want to check the accuracy of the scores for
the outliers. We will proceed with the mixed-model ANOVA.

Click Analyze..General Linear Model..Repeated Measures
Replace factor1 with Time in the Within-Subject Factor

Name text box
Press Tab and type 4 in the Number of Levels text box
Click Add pushbutton

9th and 10 th

Grades

SUMMARY OF
EXPLORE

SPLIT-PLOT
ANALYSIS
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Figure 7.15 Define Factors Dialog Box

Click Define pushbutton
In the Repeated Measures dialog box, click and drag Grade8,

Grade9, Grade10, and Grade 11 to the Within-Subject
Variables list box.

Move Sex into the Between-Subjects Factors list box

Figure 7.16 Between and Within-Subject Factors Defined

Click Contrasts pushbutton
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Select time in the Factors: list box
Select Repeated from the Contrast drop-down list
Click Change button
Verify Sex is set to none for the contrast

Figure 7.17 Contrasts Dialog Box

Repeated contrasts will compare each factor level with the one
following it. Thus with four time level (8, 9, 10 and 11), the three
repeated contrasts compare 8th to 9th, 9th to 10th, and 10th to 11th grades,
respectively.

Click Continue to process the Contrast changes
Click Options pushbutton
Individually move Sex and Time into the Display Means for

list box
Click the Compare Main Effects checkbox
Click Descriptive statistics, Transformation matrix, and

Homogeneity tests option buttons



Between and Within-Subject ANOVA: (Split-Plot)   7 - 11

SPSS Training

Figure 7.18 Options Dialog Box

Click on Continue to process the Options requests
Click on OK to run the analysis

Besides descriptive statistics, we request estimated marginal means
(which equal the observed means since we are fitting a full model) for
each of the factors. Since there are several groups involved in the
analysis, we ask for homogeneity of variance tests. We also request
pairwise comparisons for sex and time with no adjustement (LSD (none)).
Since sex has only two levels, pairwise tests are not needed.

We will proceed with the analysis. The GLM command shown below
will produce this analysis (obtained by clicking the Dialog Recall tool

, then Repeated Measures, and the Paste pushbutton)
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Figure 7.19 Syntax for This Analysis

The four vocabulary variables form the basis of the time factor.
Estimated marginal means will be computed for the sex and time main
effects. The Print subcommand requests that descriptive statistics, the
transformation matrix (TEST(MMATRIX)) and homogeneity test
summaries appear. The Wsdesign subcommand declares time as the only
repeated measure factor in the model; similarly sex (see Design
subcommand) is the only between-subject factor.

Figure 7.20 Factors in the AnalysisEXAMINING
RESULTS

The factors in the analysis are listed along with the sample sizes for
the between-subject factor.
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Figure 7.21 Descriptive Statistics

Subgroup means appear separately for each of the repeated measure
variables.

Although they do not appear together in the output, we will first examine
results pertaining to the assumptions of the analysis. Concerning
homogeneity of variance, the program provides Box’s M statistic and
Levene’s test. Box’s M is a multivariate statistic testing whether the
variance-covariance matrices composed of the four repeated measures
variables are equal across the between-subject factor subgroup
populations (multivariate homogeneity). Levene’s test is univariate and
tests homogeneity of variance for each of the four repeated measure
variables separately (univariate homogeneity).

Figure 7.22 Box’s M Test of Homogeneity

TESTS OF
ASSUMPTIONS
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Box’s M is not significant (significance value is .158), indicating that
the data are consistent with the hypothesis of homogeneity of covariance
matrices (based on the four repeated measures variables) across the
population subgroups.

Figure 7.23 Levene’s Test of Homogeneity

Not surprisingly, the results of Levene’s test are consistent with Box’s
M. Box’s M test has the advantage of being a single multivariate test.
However, Box’s M test is sensitive to both homogeneity and normality
violations, while Levene’s is relatively insensitive to lack of normality.
Since homogeneity of variance violations are generally more problematic
for ANOVA, Levene’s test is useful.

Since the within-subject factor (Time) has more than two levels, we will
test for the sphericity assumption. As discussed in Chapter 6, if the
assumption is met the usual averaged F tests are correct and are the test
of choice. If sphericity conditions are not met, several choices are
available: multivariate tests may be used, corrections to the averaged F
test can be made (Greenhouse-Geisser, Huynh-Feldt, etc.), or more
complicated decision rules may be applied (Looney & Stanley, 1989). We
now view the sphericity test results.

Figure 7.24 Mauchly’s Sphericity Test

SPHERICITY

The Mauchly test shows no evidence of sphericity violations and the
Greenhouse-Geisser and Huynh-Feldt degree of freedom adjustments are
close to or equal to one. This result indicates we can proceed directly to
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the averaged F tests for effects involving Time. However for comparison
purposes, we will also view the multivariate tests.

Figure 7.25 Multivariate TestsMULTIVARIATE
TESTS

INVOLVING TIME

As expected from the analysis in Chapter 6, there are significant
differences in vocabulary scores over time. In addition, there is a
significant interaction between Sex and Time. This can be phrased in two
ways; the population sex difference is not uniform across grades, or the
trend over time is not identical for the two sex populations.

Figure 7.26 Between-Subjects TestsTESTS OF
BETWEEN-

SUBJECT
FACTORS

The Repeated Measures procedure also presents the tests for the
between-subject factors, in this case Sex. There is no significant
difference in overall vocabulary score between the females and males
(significance value is .101).
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Figure 7.27 F Tests

AVERAGED F
TESTS

INVOLVING TIME

The averaged F tests indicate a significant effect of time and a sex by
time interaction. Here we view only the test results labeled “sphericity
assumed” since the sphericity assumption was met.

Figure 7.28 Repeated Measures Contrasts

As we saw in Chapter 6, the contrasts show that there are significant
differences between each pair of grades on the vocabulary scores.
However, the only significant sex by time interaction term involves
grades 8 and 9. Thus the interaction between sex and time centers on
these two grades. The means involving both sex and time (see Figure
7.21) can be examined for more detail.
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Figure 7.29 Transformation Matrix

This is shown only to verify that the repeated contrasts were used.

Figure 7.30 Pairwise Comparisons Involving Time

Pairwise comparisons appear for both sex and time. Since there are
only two sex groups, the pairwise comparisons tell us no more than the
overall main effect, and so are not of interest (not shown). The pairwise
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comparisons involving time (with no adjustment due to the number of
tests performed) are all significant.

The sphericity assumption applies to all within-subject factors with more
than two levels. In such designs Repeated Measures will perform
sphericity tests for the appropriate within-subject factors and relevant
interactions (effects involving within-subject interactions). The approach
taken above applies to these situations as well.

A technique that can be used to explore interactions involves simple
effects, that is, looking at the differences in one factor within a single
level of a second factor. For example, an interaction might be clarified by
a factor showing a significant difference at one level of a second factor
while showing no difference at a second level. Below we run simple effects
examining sex differences within each grade and also examine time
differences with each sex group. Typically, both analyses would not be
run, but we wish to demonstrate how to set them up.

Within the SPSS Univariate (Unianova) or Repeated Measures
(GLM) procedures, the method to obtain simple effects involves
requesting the estimated marginal means table for the two factors
involved, and then obtaining tests on the factor of interest, applied to the
means table. For example, if we want tests performed on the time factor
within each sex group, we need to request tests on the time factor, based
on the sex-by-time table of estimated marginal means. Currently, this
analysis cannot be run directly from the Univariate and Repeated
Measures dialog boxes, but involves only a minor change to syntax pasted
from the dialogs. To demonstrate, we first return to the Repeated
Measures dialog box.

Click the Dialog Recall tool , and then click Repeated

Measures
Click the Define pushbutton
Click the Options pushbutton
Move sex*time into the Display Means for list box

ADDITIONAL
WITHIN-SUBJECT

FACTORS AND
SPHERICITY

EXPLORING THE
INTERACTION -

SIMPLE EFFECTS
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Figure 7.31 Requesting the Sex by Time Table

We have requested estimated margin means for the sex*time table
and must later indicate the tests we want performed. We could have
dropped the means display and main effects comparison for the
individual factors, sex and time, but will keep them to better illustrate
the changes we must make concerning the sex*time table.

Click Continue
Click Paste pushbutton
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Figure 7.32 Syntax for Repeated Measures Analysis

There are three EMMEANS (estimated marginal means)
subcommands. The first two, involving the sex, and time tables, contain
the COMPARE keyword. It requests that main- or simple main-effect
tests (depending on how many factors are specified under TABLES) and
pairwise comparisons be performed. Pairwise tests can be adjusted using
Bonferroni or Sidak adjustments, but, by default, no adjustment (LSD) is
made. Our task is to obtain these tests for time within the sex*time table.
We must add the COMPARE keyword referencing one of the factors to
the /EMMEANS subcommand that contains the sex*time table.

Type COMPARE (SEX) at the end of the /EMMEANS =
TABLES (sex*time) line

Copy and paste the modified /EMMEANS = TABLES (sex*time)
line just below the original

Change COMPARE (SEX) to COMPARE (TIME) in the second
/EMMEANS = TABLES (sex*time) subcommand
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Figure 7.33 Syntax Requesting Tests for Simple Effects

Now significance tests will be applied to the sex factor and then to the
time factor, each performed within every level of the other factor, based
on the sex-by-time table of estimated marginal means. Since the table
involves more than one factor, the tests will be run separately at each
level of the other factor(s). This logic can be extended to additional
factors, so you can perform simple effect tests on one factor within a table
involving more than two factors.

Note that we do not need the estimated marginal means and tests for
the individual factors sex and time (/EMMEANS subcommands
containing TABLES(SEX) and TABLES(TIME)) and these subcommands
could be removed. They were left in the “Display means for” list box in
the Repeated Measures Options dialog so we could see the syntax needed
to request the tests.

Click Run..Current to run the analysis

Most of the results are identical to those viewed earlier. Here we
focus on the summaries involving simple effects.

Scroll down to the first Sex * Time section under Estimated
Marginal Means heading
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Figure 7.34 Estimated Marginal Means

The simple effects analysis will be based on this table. Even if a more
complex model were being analyzed, say with three or four between-
subject factors, then the simple effects analysis of a two-factor
interaction, would be based on the estimated means table involving the
two factors of interest.

Figure 7.35 Pairwise Comparisons of Sex within Grade Levels (Time)

Recall that the COMPARE keyword on the /EMMEANS subcommand
will produce both overall tests and pairwise comparisons for the specified
factor. The Pairwise Comparisons table presents for each level of the time
factor (which represent grades 8, 9, 10 and 11), the female-male
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comparison. Because there are only two levels to sex, there is only one
unique comparison at each grade level. However, for factors with more
than two levels, all pairwise comparisons would appear.

Examining the comparisons, we see that only at time 2 (9th grade)
was there a significant difference between males and females. Thus we
can describe the nature of the sex by time interaction: there are no
significant differences between males and females in vocabulary scores
except in the 9th grade.

Figure 7.36 Univariate Tests (Simple Effects)

In addition to the simple pairwise comparisons, overall simple effect
tests are presented. As the caption indicates, each F test represents a test
of the simple effect of sex within a grade level (time). Since sex has only
two levels, these tests match the pairwise results viewed above, which
were already discussed. However, for a factor with more than two levels,
this summary would present an overall test of a factor within each level
of the second factor.

Now we examine the interaction question using simple effects of time
within each sex group.

Scroll down to the second Sex * Time section under Estimated
Marginal Means heading
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Figure 7.37 Pairwise Comparisons for Time Performed Separately for
Males and Females (Complete Table Not Shown)

Multiple comparisons of the grade levels are done separately for
females and the males (levels of the sex factor). A caption appears at the
below the table (not shown) indicating that the comparisons are based on
the estimated marginal means. All grade (time) comparisons are
significant for the males, while all but two (9th versus 10th, and 10th versus
11th) are significant for females. Thus males show a significantly increase
in vocabulary scores at each grade level, while females didn’t show
significant change from 9th to 10th or 10th to 11th grades. Females and
males thus show different patterns of vocabulary change over time, which
is the basis of the interaction.

In this way, understanding of a two-way interaction can be improved
by examining the simple effects of either factor. A plot is also helpful
(shown later).
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Figure 7.38 Multivariate Tests (Simple Effects)

When examining the simple effects of sex within grade, overall F
tests were presented in the “Univariate Tests” table. This will be the case
for simple effects of any between-subject factor. Multivariate tests are
used to perform overall tests of simple effects for within-subject factors.
Multivariate tests are used to avoid complications that would occur if
Bonferroni or Sidak corrections were requested and sphericity were
violated. However, this means that when the sphericity assumption
holds, which is the case here, the simple effects test used (multivariate
test) is not the most powerful test. We find that there are significant
overall grade differences in vocabulary scores for both males and females.
In this instance the overall test sheds less light on the nature of the
interaction than did the pairwise comparisons. For this reason, it is
useful to examine both results.

Profile plots, seen earlier in the course, provide a means of visualizing a
two- or three-factor interaction. We will request a plot of vocabulary
means for the grade and sex groups.

Click the Dialog Recall tool , and then click Repeated

Measures
Click the Define pushbutton
Click Plots pushbutton
Move time into the Horizontal Axis box
Move sex into the Separate Lines box
Click Add pushbutton

GRAPHING THE
INTERACTION
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Figure 7.39 Requesting a Profile Plot

Click Continue, and then OK

Figure 7.40 Profile Plot of Vocabulary Scores Across Grades for Males
and Females

The plot of the estimated marginal means (here identical to the
observed means) shows the steady increase in vocabulary score over time
for the males. In comparison, the females show a sharper increase from
grade 8 to grade 9, and more gradual increases in the later grades. The
greatest difference between males and females occurs in grade 9. These
patterns, as you would expect, are consistent with the simple effects tests
we performed earlier.
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More Split-Plot Design

Understand the issues involved with more complex split-plot analyses.

Use GLM to run a between- and within-subject analysis (split-plot)
involving multiple between- and multiple within-subject factors.

A marketing study in which different groups of subjects (groups based on
sex and current brand used) rated different brands before and after
viewing a commercial. The aim of the analysis was to determine if ratings
improved for a specific brand and whether this related to sex or brand
used.

The example in this chapter will involve a more complex analysis,
but will be done with fewer variations. A marketing experiment
was devised to evaluate whether viewing a commercial produces

improved ratings for a specific brand. Ratings on three brands (on a 1 to
10 scale, where 10 is the highest rating) were obtained from subjects
before and after viewing the commercial. Since the hope was that the
commercial would improve ratings of only one brand (A), researchers
expected a significant brand by pre-post commercial interaction (only
brand A ratings would change). In addition, there were two between-
group factors: sex and brand used by subject. Thus the study had four
factors overall: sex, brand used, brand rated, and pre-post commercial.
We view the data below.

Chapter 8

Objective

Method

Data

INTRODUCTION:
AD VIEWING

WITH PRE-POST
BRAND RATINGS
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Click File..Open..Data (move to the c:\Train\Anova directory if
necessary)

Click SPSS Portable(*.por) in the Files of Type drop-down list
Double-click on brand

Figure 8.1 Data from the Brand Study

SETTING UP THE
ANALYSIS

Sex and user are the between-subject factors. The next six variables
pre_a to post_c contain the three brand ratings before and after viewing
the commercial.

Click Analyze..General Linear Model..Repeated Measures
Replace factor1 with prepost in the Within-Subject Factor

Name text box
Press Tab and type 2 in the Number of Levels text box
Click Add pushbutton
Type brand in the Within-Subject Factor Name text box
Press Tab and type 3 in the Number of Levels text box
Click the Add pushbutton
Click the Measure pushbutton
Type rating in the Measure Name text box
Click the Add pushbutton in the Measure Name area
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Figure 8.2 Two Within-Subject Factors Declared

SPSS now expects variables that comprise two within-subject factors.
The order you name the factors only matters in that SPSS will order the
factor levels list in the next dialog so that the last factor named here has
its levels change most rapidly. Therefore depending on how your
variables are ordered in the data, some factor orders make the later
declarations easier.

Click the Define pushbutton
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Figure 8.3 Repeated Measures Dialog with Two Factors

Both prepost and brand are listed as within-subject factors. There are
six rows, so every possible combination of levels between the two factors
is represented. Notice that the brand level changes first going down the
list. This was due to defining brand last in the Repeated Measures Define
Factor dialog. Defining the factors in an order consistent with the order of
variables in your data file makes this step easier.

Move the following variables into the Within-Subjects
Variables list in the order given: pre_a  pre_b  pre_c
post_a  post_b  post_c

Move sex and user into the Between-Subjects Factors list box
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Figure 8.4 Between and Within-Subject Factors Defined

We can proceed with the analysis, but first let us request some
options.

Click the Options pushbutton
Click the Descriptives checkbox
Individually move sex, user, prepost, and brand into the

Display Means for list box
Click the Homogeneity check box
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Figure 8.5 Options Dialog Box

Besides the descriptive statistics, we request estimated marginal
means (which equal observed means since we are fitting a full model) for
each of the factors. Since there are several groups involved in the
analysis, we ask for homogeneity of variance tests.

We will proceed with the analysis. Contrasts can be applied to any
factors in the same way as we have done earlier.

Click Continue to process the options
Click OK to run the analysis

The command syntax below will produce this analysis.
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Figure 8.6 Syntax to Run Analysis

Variables which comprise the repeated-measures factors precede the
BY keyword and the between-subject factors follow it. Notice the repeated
measure variables are ordered so that brand levels change first and
brand is mentioned last in the WSFACTOR subcommand. This order is
critical for the analysis, so care must be taken when running from syntax.
The levels of each repeated measures factor are given and polynomial
contrasts (here uninteresting) are used. We requested estimated
marginal means for each of the factors. The PRINT subcommand will
display the descriptive statistics and the homogeneity tests.

Figure 8.7 Factors in the AnalysisEXAMINING
RESULTS
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The factors in the analysis are listed along with the sample sizes for
the between-subject factor groups.

Figure 8.8 Descriptive Statistics (Beginning)

Subgroup means appear separately for each repeated measure
variable. Means for the repeated measures factors can be seen in the
estimated marginal means pivot tables, or viewed in profile plots.

Although they do not appear together in the output, we first examine
some assumptions of the analysis. Concerning homogeneity of variance,
the program provides Box’s M statistic and Levene’ test. Box’s M is a
multivariate statistic testing whether the variance-covariance matrices
composed of the six repeated measures variables are equal across the
between-subject factor subgroup populations. Levene’s test is univariate
and tests for homogeneity across subgroup populations for each of the six
repeated measure variables separately.

TESTS OF
ASSUMPTIONS
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Figure 8.9 Box’s M Test of Homogeneity

Box’s M test is not significant, indicating that the data are consistent
with the assumption of homogeneity of covariance matrices (based on the
six repeated measures variables) across the population subgroups.

Figure 8.10 Levene’s Test of Homogeneity

Not surprisingly, the results of Levene’s test are consistent with Box’s
M. Box’s test is sensitive to both homogeneity and normality violations,
while Levene’s is relatively insensitive to lack of normality. Since
homogeneity of variance violations are generally more problematic for
ANOVA, the Levene’s test is useful.
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Now let us examine the sphericity assumption since this determines
whether we simply view the pooled ANOVA results, or move to
multivariate or degree of freedom adjusted results.

Figure 8.11 Sphericity Tests

Notice no sphericity test is applied to the prepost factor. This is
because it has only two levels, so only one difference variable is created,
and there is no pooling of effects. The sphericity test for brand is not
significant (Sig. = .832), nor is the sphericity test for the brand by prepost
interaction (Sig. = .975). Thus the data are consistent with sphericity. As
a result we will not view the multivariate test results or the adjusted
pooled results (Huynh-Feldt, etc.), and instead focus on the standard
(averaged) results.
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Figure 8.12 Within-Subject TestsANOVA RESULTS

Note that this table has been edited in Pivot Table Editor (epsilon
corrected results with sphericity assumed were placed in the top layer) to
display only these results.

This table contains all tests that involve a within-subject factor; those
involving only between-subject effects appear later. Looking at the
significance (Sig.) column, we see a highly significant difference for pre-
post commercial and a brand by user interaction. The brand by pre-post
commercial effect is not significant, indicating that although the
commercial may have shifted ratings (pre-post commercial is significant)
it did not differentially improve the rating of brand A, which was the aim
of the commercial. We will view the means and profile plots to
understand the significant effects.

We will not view the multivariate results or the degree of freedom
corrected (appropriate if sphericity is violated) results. Nor will we
examine the tests of specific contrasts since we had no planned contrasts
and the polynomial contrasts over brand categories make no conceptual
sense.

Note
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Figure 8.13 Between-Subjects Tests

Of the between-subjects effects, only sex shows a significant
difference. Let us take a look at some of the means.

Figure 8.14 Means for Sex and Pre-Post Commercial

We see males give higher ratings than females and the post-
commercial ratings are higher than the pre-commercial ratings. It seems
that the commercial was a success, but a success for all brands, not just
brand A as hoped.
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To better view the interaction between user (brand used) and brand
(brand rated) we request a profile plot

Click the Dialog Recall tool  , then select Repeated

Measures
Click Define pushbutton
Click Plots pushbutton
Move user into the Horizontal Axis list box
Move brand into the Separate Lines list box
Click Add pushbutton

Figure 8.15 Requesting a Profile Plot

PROFILE PLOTS

As many as three factors can be displayed in a profile plot, and so up
to a three-way interaction can be examined. Note that multiple profile
plots can be requested, which allows for many views of your data.

Click Continue to process the plot request
Click OK to run the analysis

The command below will produce the profile plot.
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GLM
Pre_a pre_b pre_c post_a post_b post_c BY sex user
/WSFACTOR = prepost 2 Polynomial brand 3 Polynomial
/MEASURE = rating
/METHOD = SSTYPE(3)
/PLOT = PROFILE(user*brand)
/EMMEANS = TABLES(sex)
/EMMEANS = TABLES(user)
/EMMEANS = TABLES(prepost)
/EMMEANS = TABLES(brand)
/PRINT = DESCRIPTIVES HOMOGENEITY
/CRITERIA = ALPHA(.05)
/WSDESIGN
/DESIGN .

The Plot subcommand requests a profile plot of user by brand.

Figure 8.16 Profile Plot of Brand Used by Brand Rating

In the plot, brand levels 1, 2, and 3 correspond to brands A, B, and C,
respectively. The Brand used by Brand interaction shows (as we surely
would expect) that those who regularly use a particular brand rate it
higher than the other brands. Especially when there are many factor
levels, or several factors involved, profile plots can be very helpful in
practice.



More Split-Plot Design  8 - 15

SPSS Training

The homogeneity and sphericity assumptions were met. We did not
examine normality, but could do so by requesting residual plots in the
Options dialog box. We found that men gave higher brand ratings than
women, that the post-commercial ratings were higher than pre-
commercial ratings, and that respondents rated their own brand highest.
The expected brand by pre-post commercial interaction was not evident.

In this chapter we examined a more complex split-plot ANOVA involving
two between and two within-subject factors. We also used a profile plot to
describe an interaction effect.

SUMMARY OF
RESULTS

SUMMARY
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Analysis of Covariance

In this chapter we will discuss the purpose, assumptions, and
interpretation of analysis of covariance. In addition, we will demonstrate
an approach if the parallelism assumption is not met. We will then
extend the analysis to include within-subject designs while using
constant and varying covariates.

We will use the General Linear Model Univariate and Repeated
Measures procedures to perform the various runs to do the analyses and
check the assumptions.

The data presented here are taken from page 806 of Winer(1971).
However, we provide a different scenario that will influence the
interpretation of the results. It should be noted that the data file is very
small and is only for illustrative purposes. Suppose a study was done to
evaluate the effectiveness of three treatment drugs on pain-reduction of
ankle injuries. There are three types of treatment drugs (variable Drug
with labels A, B, and C) and each patient is in one of the three drug
groups (between-subjects factor). There is within-subject factor, which
involves measures taken during the early and later stages of the drug
intervention (time periods 1 and 2). The dependent measure is a pain
rating scale. Also, physical therapy was performed throughout the study,
and the amount of physical therapy varied from patient to patient. Since
physical therapy may influence the level of pain reported, it is treated a
covariate in the study. There are two measures of the hours of physical
therapy a patient experienced, one taken from the period just after the
drug treatment was initiated (time period 1) and one taken later in the
course of treatment (time period 2).

The main question concerns whether the drugs are effective in pain
reduction after controlling for the amount of physical therapy.

We will run various designs using the same data set. There will be a fixed
between-subject factor Drug with 3 levels and a within-subject factor
(time) with two levels. The dependent variable is reflected in PAIN1 and
PAIN2. The covariate (hours of physical therapy)  was measured at the
same time points as the dependent variable and is stored in PT1 and
PT2.

We will run many different analyses on the same data set to demonstrate
the flexibility of the technique and reduce possible confusion to constantly
switching data. In practice, you would be interested in a specific set of
models.

Chapter 9

Objective

Method

Data and
Scenario

Design

Note
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Analysis of covariance can be viewed as an attempt to provide some
statistical control in place of lack of experimental control.
Inclusion of a covariate allows the researcher to run the usual

ANOVAs while controlling for some other variable. This is not control in
the experimental sense, but control in the sense of making a statistical
adjustment to equate all groups on the covariate. Covariates are interval
scale variables; if they were categorical then they would be included as
additional factors in the design.

One purpose of analysis of covariance is to obtain a more sensitive
ANOVA by reducing the within-group variability. If the covariate is
related to the dependent variable the same way in each group, the within
group variation can be reduced by removing the effect of the covariate.
The classic case is an experiment in which subjects are randomly
assigned to groups, but vary on some background measure; analysis of
covariance (ANCOVA) will control for this source of variation.

Analysis of covariance is often spoken of as a conditional analysis.
Removing the effect of the covariate essentially equates all subjects on
the covariate, so instead of speaking of factor A having an effect we speak
of factor A having an effect if subjects had identical values on the
covariate. A common example of analysis of covariance is the adjusting
for body weight in medical experiments. In this context, analysis of
covariance adjusts the analysis as if each subject began at the same
weight.

ANCOVA is also used in non-experimental studies to substitute
statistical control for factors beyond the control of the researcher. Care
must be taken since if the covariate relates to factors in the study,
controlling for covariate modifies the estimated effects of the factors
themselves.

Basically, the dependent variable is regressed on the covariate, but the
relevant variation of the dependent variable is not its variation around
the grand mean but instead is based on the pooled within-group
variation. Thus a within-group regression with the covariate(s) is run and
the analysis of variance is performed on the residuals from the
regression.

The major assumptions specific to ANCOVA are: 1) The relationship
between the covariate and the dependent variable (within groups) is
linear; 2) The within-group distribution of the residuals is normal; and 3)
The relationship between the covariate and the dependent variable (the
slopes in the within-group regressions) is the same across all groups.

Assumption (1) need not hold, but the routines available in most
software are based on a linear relationship. Assumption (2) is the usual
normality assumption, this time after the covariate has been applied. The

HOW IS
ANALYSIS OF
COVARIANCE

DONE?

ASSUMPTIONS
OF ANCOVA

INTRODUCTION
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last assumption is important and can be tested. The degree of adjustment
made is based on the pooled within-groups regression. If the slope
relating the covariate to the dependent variable varies across groups,
then the common slope used to adjust each group does not reflect the true
relationship for that group. We will see that a different slope can be fit to
each group, but this requires rethinking just what we hope to accomplish
with the analysis.

Plots of the dependent variable and the covariate can be made separately
for each group (if there are relatively few cells in the analysis) to take an
informal look at the homogeneity of slopes. The residuals can be
displayed in normal plots. The homogeneity of slopes assumption can be
formally tested.

We first run a one-factor ANOVA to provide a baseline. We use the
Univariate procedure instead of a One-Way ANOVA in order to use the
same procedure throughout.

Click File..Open..Data
Move to the c:\Train\Anova directory (if necessary)
Select SPSS Portable (.por) from the Files of Type drop-down

list
Double-click on PainTreat.por

Figure 9.1 Data for Analysis of Covariance Example

CHECKING THE
ASSUMPTIONS

BASELINE
ANOVA

Click Analyze..General Linear Model..Univariate
Move PAIN1 into the Dependent Variable list box
Move Drug into the Fixed Factors list box
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Figure 9.2 Univariate Dialog Box

Click on OK to run the analysis.

PAIN1 (pain during period 1) is the dependent variable and there is
one between-subjects factor (Drug) with three levels. The following
command will run this analysis.

UNIANOVA
  pain1  BY drug
  /METHOD = SSTYPE(3)
  /INTERCEPT = INCLUDE
  /CRITERIA = ALPHA(.05)
  /DESIGN = drug .
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Figure 9.3 ANOVA Table

This table shows no suggestion of a main effect of Drug in this
analysis (significance level is .376). Thus during the early treatment
period, there were no differences attributable to drug found in the pain
measure.

In the second run we will include the covariate and the interaction term
of the covariate and the between-subject factor. The assumption of
equality (homogeneity) of regression slopes can be tested by fitting a
model containing the main effects of Drug and PT1, as well as the
Drug*PT1 interaction. The interaction term provides the test of the null
hypothesis of equal slopes. If the slopes relating the covariate to the
dependent variable are identical (parallel) across the different groups,
this interaction will not be significant.

Click the Dialog Recall tool  , then click Univariate

(Verify that PAIN1 is in the Dependent variable box and Drug is
in the Fixed Factor(s) list box)

Move PT1 into the Covariate(s) list box
Click the Model pushbutton
Select Custom model option button
Click Drug, then click the Build Term arrow to add Drug to the

model
Click PT1, and then click the Build Term arrow to add PT1 to

the model
Select both Drug and PT1 in the Factors & Covariates list box

(use Ctrl-click), then click the Build Term arrow to add the
Drug*PT1 interaction term to the model

ANCOVA –
HOMOGENEITY

OF SLOPES
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Figure 9.4 Univariate Dialog Box

Click Continue to process the model requests
Click on OK to run the analysis

The following command will also run the analysis:

UNIANOVA
  pain1  BY drug  WITH pt1
  /METHOD = SSTYPE(3)
  /INTERCEPT = INCLUDE
  /CRITERIA = ALPHA(.05)
  /DESIGN = drug pt1 drug*pt1 .

The keyword WITH precedes covariates in UNIANOVA, just as BY
precedes factors. From the first command line alone, UNIANOVA would
run a standard analysis of covariance, not testing the interaction term. In
the DESIGN subcommand we include the between-subjects factor (Drug),
the covariate (PT1), and the factor by covariate interaction (Drug BY
PT1). This interaction effect is the main focus of our interest.
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Figure 9.5 ANCOVA Table with Homogeneity of Slopes Test

The summary table indicates that the interaction is not significant
(Sig. = .390), so the homogeneity of slopes assumption seems to be met.
Thus the linear relationship between hours of physical therapy and pain
level does not differ across drug treatment groups. There is a suggestion
of an effect of the covariate (Sig. = .067), but no effect due to Drug. To
repeat, with such a small sample there is little power to detect
assumption violations, but we wish to demonstrate the method.

Having checked the parallelism of slopes assumption, we proceed with
the standard ANCOVA.

Click the Dialog Recall tool , then click Univariate

Click the Model pushbutton
Select the Full factorial model option button
Click Continue to process the change
Click Options pushbutton
Click Parameter Estimates checkbox
Click Continue
Click OK to run the analysis.

The following command will run the analysis using syntax.

UNIANOVA
  pain1  BY drug  WITH pt1
  /METHOD = SSTYPE(3)
  /INTERCEPT = INCLUDE
  /PRINT = DESCRIPTIVE PARAMETER
  /CRITERIA = ALPHA(.05)
  /DESIGN = pt1 drug.

STANDARD
ANCOVA
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Figure 9.6 ANCOVA Summary Table

The results are similar to the previous analysis, no effect due to factor
Drug, and a significant relationship between the covariate and dependent
measure. The reason for the covariate now being significant probably has
to do with the extra degrees of freedom added to the error term – going
from 3 to 5 degrees of freedom is a big jump.

The Univariate procedure also presents some information to characterize
the relation between the covariate and dependent variable.

Figure 9.7 Parameter Estimates

In the GLM parameterization, the intercept parameter estimate gives
the estimated value of the last category of Drug (Drug = 3) when the
covariate is equal to 0. The Drug = 1 and Drug =2 coefficients subtract
the level 3 predicted value from the level 1 and level 2 predicted values,
respectively. Adding one of these coefficients to the intercept estimate
gives the estimated value for that level of Drug when the covariate is
equal to 0.

The B coefficient for PT1 is the regression coefficient used to predict
the dependent variable based on the covariate. Its positive coefficient
indicates that higher levels of physical therapy are associated with

DESCRIBING THE
RELATIONSHIP
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greater pain levels. This is not the expected relationship and if this were
real data, it should be examined more carefully (perhaps patients with
more serious and painful injuries received more physical therapy). The
95% confidence band for the regression coefficient is rather wide.

If an interaction between a covariate and a factor in the model is
significant, it indicates that the slopes relating the covariate to the
dependent variable vary across groups. If there is interest in modeling
this, that is, fitting different slopes to each group, this can be specified in
the Univariate procedure. It is no longer the standard analysis of
covariance since the degree of adjustment varies with the group, but the
analysis may be of interest in its own right.

Click the Dialog Recall tool , then click Univariate

Click the Model pushbutton
Select the Custom Model option button
If Drug and Drug*PT1 are not already in the Model list box (from

our earlier analysis) then move Drug and Drug*PT1 (Ctrl-
click to select both) into the Model box

Remove PT1 from the Model list box (if necessary)

Figure 9.8 Model for Separate Slope Analysis

FITTING NON-
PARALLEL

SLOPES

Since PT1 is removed from the model, Univariate will assign three
degrees of freedom to the PT1 by Drug interaction. Thus it will fit a
separate slope (between PT1 and the dependent measure) for each level
of Drug. If we left PT1 in the model, as we did when testing slope
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homogeneity, then the PT1 effect would represent the overall slope
between PT1 and the dependent measure, while the two degrees of
freedom PT1 by Drug effect would test the interaction of PT1 and Drug.

Click Continue to process the change
Click OK to run the analysis

The following syntax will run the analysis.

UNIANOVA
  pain1  BY drug  WITH pt1
  /METHOD = SSTYPE(3)
  /INTERCEPT = INCLUDE
  /PRINT = PARAMETER
  /CRITERIA = ALPHA(.05)
  /DESIGN = drug drug*pt1 .

Figure 9.9 Between-Subject Tests

We notice that neither the main effect of Drug, nor the covariate
main effect or interaction of the factor and the covariate (bundled
together in Drug*PT1) are significant (.577 and .109, respectively).
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Figure 9.10 Parameter Estimates

The values for the intercept and Drug = 1, Drug = 2, and Drug = 3 are
the same as explained earlier. Notice that there are 3 degrees of freedom
for Drug*PT1: one for each of the three slopes. The parameter estimates
for Drug*PT1 provide the slope estimates, relating hours of physical
therapy to reported pain level, for each of the three groups.

To illustrate analysis of covariance in the context of repeated measures
we will first run a split-plot analysis (between-subject factor Drug,
within-subject factor time with two levels), using only the first
measurement of the covariate PT1 to illustrate the analysis. This is also
termed repeated measures with a constant covariate since a single
covariate value applies across levels of the repeated measure factors.

Click Analyze..General Linear Model..Repeated Measures
Replace factor1 with time
Enter 2 in the number of levels box
Click the Add pushbutton

Click the Measure pushbutton
Type pain in the Measure Name text box
Click the Add pushbutton in the Measure Name area

REPEATED
MEASURES

ANCOVA WITH A
SINGLE

COVARIATE
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Figure 9.11 Repeated Measures Define Factors Dialog Box

Click the Define pushbutton
Move PAIN1 and PAIN2 into the Within-Subject Variables

list box in that order
Move Drug into the Between-subject Factor(s) list box
Move PT1 into the Covariates list box

Figure 9.12 Repeated Measures Dialog Box



Analysis of Covariance   9 - 13

SPSS Training

Click the Options pushbutton
Select Descriptives, Parameter Estimates, Transformation

Matrix, and Homogeneity Tests

Figure 9.13 Options Dialog Box

Click Continue to process the request
Click OK to run the analysis

The following command will also run the analysis.

GLM
  pain1 pain2 BY drug  WITH pt1
  /WSFACTOR = time 2 Polynomial
  /MEASURE = pain
  /METHOD = SSTYPE(3)
  /PRINT = DESCRIPTIVE PARAMETER TEST(MMATRIX)

HOMOGENEITY
  /CRITERIA = ALPHA(.05)
  /WSDESIGN = time
  /DESIGN = pt1 drug .

Scroll down to Transformation section of results
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Figure 9.14 Transformation Matrix

The first transformation is the average of PAIN1 and PAIN2. Thus
the covariate will be applied to the effects that involve the average of
PAIN1 and PAIN2, that is, only between-subject effects.

Scroll up to the Tests of Between-Subjects Effects’ pivot table

Figure 9.15 Tests of Between-Subject Effects

The covariate is not quite significant (Sig. = .066). If it were
significant, this would indicate that the amount of physical therapy
during the early phase of drug treatment is related to overall (period 1
and period 2 measures, averaged together) pain ratings. The effect of the
Drug factor, adjusted for the covariate, is not significant.
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Figure 9.16 Tests of Within-Subjects Effects (Sphericity Assumed)

Note: the pivot table above was edited in the Pivot Table Editor so only
the sphericity assumed results appear. Since there are only two levels of
the repeated measure factor, the sphericity test and corrections are not
relevant). We find no effects significant: main effect of time, interaction
between time and factor Drug, interaction between the covariate and
time. This latter effect (Time by PT1) tests whether the slope relating the
covariate (physical therapy) to the dependent measure (pain) is the same
(parallel) for each of the two time periods.

Figure 9.17 Parameter Estimates

This is the standard ANCOVA table of parameters under the general
linear model. Note a separate slope coefficient (for covariate PT1) is
calculated for PAIN1 and PAIN2; the model effects are adjusted for both.
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Since covariates are not always fixed measures at one time point,
covariates that are measured under each condition can be used in the
analysis. We will analyze the same data using PT1 and PT2, measures of
the covariates at the two time points. Note that GLM will adjust each
level of the repeated measure factor (PAIN1, PAIN2) for every covariate.
Thus a covariate that varies over time is treated identically to the
situation in which multiple covariates are recorded at a single time point.

Click on the Dialog Recall tool  , then click Repeated

Measures
Click on the Define button
Add PT2 to the Covariates box
Click on OK

The following command will run this analysis.

GLM
  pain1 pain2 BY drug  WITH pt1 pt2
  /WSFACTOR = time 2 Polynomial
 /MEASURE = pain
  /METHOD = SSTYPE(3)
  /PRINT = PARAMETER TEST(MMATRIX) HOMOGENEITY
  /CRITERIA = ALPHA(.05)
  /WSDESIGN = time
  /DESIGN = pt1 pt2 drug .

Figure 9.18 Test of Within-Subjects Factors

REPEATED
MEASURES

ANCOVA WITH  A
VARYING

COVARIATE

As before, the pivot table has been edited so only the results that
assume sphericity appear.

As we can see Time, the interaction of Time and PT1, and the
interaction of Time and PT2 are both significant, but the Time by Drug
interaction is not significant. This suggests that there is a change in pain
level over time and that this change is related to the amount of physical
therapy in both the early and late stages of drug treatment. Although not
significant, a Drug by Time interaction would suggest that the effect of
Drug is not uniform across the two time periods.
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Figure 9.19 Test of Between-Subjects Factors

The only significant effect is the covariate PT2 (the amount of
physical therapy during the second time period). The results of the other
effects are consistent with the previous analysis.

Figure 9.20 Parameter Estimates

The interpretation of the parameter estimates is identical to our
earlier discussion (see Figure 9.17); each of the covariates is summarized
separately. As we found earlier with PT1 (physical therapy during the
first period), the estimates for the covariate coefficients of PT2 (physical
therapy during the second period) indicate that pain level increases with
more physical therapy. Oddly, higher levels of physical therapy during
the first period relate to lower pain levels during the second period.
Notice a coefficient relates PT2 (amount of physical therapy during the
second period) to the first period pain measure; it might be argued on
logical grounds that this coefficient should not be included in the model.

The fact that the intercept for the second period is greater (11.583)
than that for the first period (7.342) indicates that pain levels increased
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over time! This could be shown more clearly by requesting the estimated
marginal means for the Time factor using the Options dialog.

This process can be generalized to additional covariates and repeated
measures factors, and even more complicated variations. If you attempt
these analyses, make sure you display the transformation matrix that
will inform you of the actual analysis that the General Linear Model
procedures are performing.

FURTHER
VARIATIONS
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Special Topics

We will discuss the setups for some specialty statistical models: Latin
Square Designs and Random Effects Designs. We will not discuss
substantive interpretation of the results.

In addition to the more or less standard analyses discussed in the
previous chapters, there are a number of more specialized ANOVA
applications. The family of incomplete designs, which includes Latin

Squares, allows experimenters to control for nuisance factors, or to study
a number of factors without including all possible combinations of the
factor levels in the analysis. The price of this involves giving up the
opportunity to test for interaction effects. In this chapter we demonstrate
that the GLM procedure can perform such analyses with experimental
data collected from a Latin Square design. A second application we will
explore involves ANOVA designs that contain more than a single random
factor. Again, such models can be run using the GLM procedure.

Chapter 10

Objective

INTRODUCTION
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Latin Square designs are useful when there is interest in performing a
multiple factor ANOVA, but it is impossible or undesirable to represent
all combinations of levels of factors in the analysis. For example, a three-
factor design with each factor containing five levels implies 125 groups!
Another common use of Latin Square designs involves controlling for
nuisance factors, that is, controlling for the effects of factors that may
influence the outcome, but are not themselves of experimental interest.

The basic idea is that not all combinations of levels of levels of factors
are included, but those included are counterbalanced so that independent
main effects can be tested. The counterbalancing is designed to confound
main effects with certain interaction terms, and an assumption is made
that the interaction terms are not significant. As a result of not including
all cells, at least some and possibly all interaction questions cannot be
tested. When there are no replicates within cells, the variation usually
attributed to higher-order interactions is used as the error term in testing
main effects.

To illustrate a Latin Square design, Montgomery (1984) provides an
example of a dynamite manufacturer interested in evaluating the results
of five chemical formulations on the explosive force of the resulting
compound. In addition, two other factors have been identified as
potentially influencing the compound, namely the quality of the raw
materials and the person mixing the materials. These will be considered
to be systematic sources of error (nuisance factors) that need to be
removed from the analysis. Thus we consider three factors: formulation,
batch of raw materials, and operator. Ideally, an experiment would be
performed so that each operator uses each batch of raw materials in
preparing each formulation (5 x 5 x 5, or 125 cells). Here we run into the
practical problem of there being not enough raw materials in a batch to
supply each operator for each formulation (25 combinations). For this
reason the researcher cannot perform the fully balanced experiment and
instead a Latin Square will be used.

Below we show the formulation assignments (A-E) with five operators
(1-5) and five batches of material (1-5). The equal number of levels within
each factor is required for balancing and is a feature of such designs.

LATIN SQUARE
DESIGNS

AN EXAMPLE

Notice that each formulation appears once in each row and column of
the table – that is, once with each batch of materials and once with each
operator. If interactions between batches, operators, and compounds are
negligible, then we can test for the effects of different formulations of
compounds on explosive force without the noise introduced by raw
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materials and operators (by adjusting for it).

Click on File..Open..Data
Move to the c:\Train\Anova directory
Select SPSS Portable (.por) from Files of Type drop-down list
Double click on Latinsq

Figure 10.1 Data from Latin Square Design

Click Analyze..General Linear Model..Univariate
Move Force into the Dependent Variable list box
Move Batch, Operator, and Form into the Fixed Factors list

box



Special Topics   10 - 4

SPSS Training

Figure 10.2 Univariate Dialog Box

Click the Model pushbutton
Select Main Effects on the Build Term(s) drop-down list
Separately move Batch, Operator, and Form into the Model

list box

Figure 10.3 Univariate: Model Dialog Box
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Instead of the full model (all main effects and interactions), we will fit
a custom model consisting of only main effects. The residual variation
from this model will be used as the error term.

Click on Continue to process Model
Click on OK to run the analysis.

The following syntax will also run the analysis.

UNIANOVA
  force  BY batch operator form
  /METHOD = SSTYPE(3)
  /INTERCEPT = INCLUDE
  /CRITERIA = ALPHA(.05)
  /DESIGN = batch operator form .

The DESIGN subcommand indicates that only a main effects model
will be tested. The remaining effects will be pooled together into a
residual term, which will be used as the error term in significance
testing. This is why the assumption of no interactions is so important.
Since Unianova is the univariate version of the GLM procedure, the GLM
command could have been used instead.

Figure 10.4 ANOVA Table

We see the tests of main effects performed using the residual as the
error term. The main effect of Form (formulation) is of greatest interest
and is highly significant. For some designs, if there were replication
within each cell, the within-cell error term could be used for significance
testing.
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There are additional variants along this theme of Latin Square designs
(Greco-Latin Square, etc.) as well as other classes of designs (for example,
fractional factorial). They can be set up in GLM in much the same way as
demonstrated above. Such designs generally demand more knowledge of
the user to plan the experiment, to understand which effects (main
effects, main effects and some two-way interactions, etc.) can be tested,
and to interpret the results. For those who need to perform such studies,
SPSS Trial Run is a design of experiments program that can generate a
variety of complex designs. It can then analyze the results using the GLM
procedure, which is included in the program.

The preceding designs in this course contained only single random
factors: plant variation within group, subject variation within group, and
Y variation within levels of A. In SPSS, by default GLM assumes there is
a single random factor reflected in the case to case variation. GLM can
accommodate multiple random factors quite easily using dialog boxes
when the random factors are crossed with the other factors, and can be
run using syntax when the random factors are nested. This is because the
nesting operation cannot be expressed currently in the GLM – General
Factorial Model dialog box.  Most applied statistics books that discuss
experimental design either cover the common designs or supply rules to
determine the correct error terms in the presence of multiple random
effects (for example, Kirk (1982) or Milliken and Johnston (1984)).

To illustrate we will consider a simple two random-effect design. An
experiment is performed in which subjects (5) inflate rubber rafts (6). The
time it takes to inflate each raft is recorded. Rafts are sampled from a
production line and each subject inflates each raft once. Here we have a
completely crossed (each subject inflates each raft) two-factor design with
both factors assumed random. In this case the interaction term is used to
test each of the main effects, and if there had been replications (if each
subject inflated each raft several times), the interaction itself would be
tested using the within-cells error term.

Click on File..Open..Data
Move to the c:\Train\Anova directory (if necessary)
Select SPSS Portable (.por) from the Files of Type drop-down

list
Double click raft.por to open the file
Click No when asked to save the Data Editor’s contents

COMPLEX
DESIGNS

RANDOM
EFFECTS
MODELS
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Figure 10.5 Raft Data

Notice the data are arranged so each subject by raft combination
appears as a different case. If we structured the data as we ordinarily
would for repeated measures, each respondent on a single row of data, we
would not be able to declare raft as a random factor (there is no Random
Factor(s) list box in the General Linear Model – Repeated Measures
dialog box).

Click on Analyze..General Linear Model..Univariate
Move time into the Dependent Variable list box
Move subject and raft into the Random Factor(s) list box
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Figure 10.6 Univariate Dialog Box

Click OK to run the analysis

The following syntax will run the analysis

Figure 10.7 Syntax for Two Random Effects Analysis

The Random subcommand declares both subject and raft to be
random factors.
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Figure 10.8 Results

We have tests for both subject and raft main effects. Notice that the
interaction could not be tested (the error term for it has 0 degrees of
freedom) because there were no replications.

A specific extension to the multiple random effects model is that in which
random effects are nested within random effects. A common example of
this involves analyzing student test scores within schools when the
schools are sampled from school districts. A variation of random effect
models, named hierarchical linear analysis, can be applied to such data.
SPSS will perform such analyses for a balanced design, but does not
currently handle the general case. Specialized programs are available to
run hierarchical linear analysis.

Armed with knowledge of experimental design and the appropriate error
terms, incomplete and random effects designs can be tested using SPSS.

SUMMARY

Extensions
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Exercises

The exercise file for this class (Workload.por) is located in the
c:\Train\Anova folder on your training machine. If you are not working
in an SPSS Training center, the training files can be copied from the
floppy disk that accompanies this course guide. If you are running SPSS
Server (click File..Switch Server to check), then you should copy these
files to the server or a machine that can be accessed (mapped from) the
computer running SPSS Server.

These exercises are based on a single, rich data file. You will perform a
variety of analyses (for example, a one-factor and a three-factor ANOVA)
on the same data. Typically, if three factors were believed to be relevant,
then a one-factor ANOVA would not be run. Thus analyses suggested
here conform to the topical sequence in the training guide and are not
necessarily optimal to answer a specific research question. In fact, some
analyses that might be performed on this data (doubly-multivariate
analysis of variance) are not discussed in the course.

One-Factor ANOVA
Open the SPSS portable file Workload.por. This file contains data from
an experimental investigation of the effects of a training workshop into
stress and workload reduction techniques in airline pilots. The variables
are in four sets - descriptive grouping information, workload measures
taken before a flight, workload measures taken after a training course on
stress and workload management, and a follow-up set of workload
measures taken three months after the training course. Each pilot was
measured once each (to avoid distraction) per flight and the two
subsequent flights were on the same route for comparative purposes. In
all two hundred pilots were measured over three time periods.

AGE Age in years
HRSEXP Previous flying experience in flying hours
TYPE Type of aircraft cockpit (1=Automated, 2=Manual)
ROUTE Designation of journey (1=Short Haul, 2=Medium Haul,

3=Long Haul)
STAGE Stage of flight (1=Take Off, 2=Cruise, 3=Approach,

4=Landing)
FLYTIME Length of flight (measured in seconds, presented in date/

time format)

(Before Stress and Workload Training Course)

HEART Heart Rate (Beats Per Minute)
BLOOD Blood pressure (mmhg)
TEMP Core Body Temperature (deg. f)

Note on Exercise
Data

Note About the
Exercises

Chapter 3
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STRESS Stress Rating  (1=Low stress up to 7=High stress)
CAPACITY Spare Mental Capacity Rating (1=All used up to 10 None

used up)
ATTEN Percent of attention remaining (in percent)
TIRED Tiredness Rating scale (1=Invigorated up to 10=Asleep)

(After Stress and Workload Training Course)

HEART2 Heart Rate (after training)
BLOOD2 Blood pressure (after training)
TEMP2 Core Body Temperature (after training)
STRESS2 Stress rating (after training)
CAPACIT2 Spare Mental Capacity (after training)
ATTEN2 Percent of attention remaining (after training)
TIRED2 Tiredness ratings (after training)

(Three Months After the Stress and Workload Training Course)

HEART3 Heart Rate (after 3 months)
BLOOD3 Blood Pressure (after 3 months)
TEMP3 Core Body Temperature (after 3 months)
STRESS3 Stress Rating (after 3 months)
CAPACIT3 Spare Mental Capacity (after 3 months)
ATTEN3 Percent of attention remaining (after 3 months)
TIRED3 Tiredness Rating (after 3 months)

Familiarize yourself with the variables and data within this dataset by
using the Frequencies, Descriptives and Explore procedures (with any
associated graphical plots you choose).

Using the Means procedure and error bar graphs, compare the mean
stress levels (use the stress variable, which measures stress before the
training course) at different flight stages (use the variable type). Recall
that a pilot was tested at a single flight stage.  Before performing a one-
factor ANOVA, explore the data (asking for means, error bars etc.) and
try to predict the outcome of the analysis. Do you think there will be a
significant difference between the groups?

Perform a one-factor ANOVA, testing for stage differences in stress level.
If differences are found, perform post hoc tests to explore these
differences in more detail. How would you summarize the results?

If the assumptions of ANOVA were not met, perform a nonparametric
test of group (stage) differences in stress. Are the results consistent with
the ANOVA analysis?
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Multi-Way Univariate ANOVA

Open the SPSS portable file Workload.por. Now we are going to examine
stress differences as a function of flight stage, route, and type of aircraft.
Run an exploratory analysis examining stress (use the stress variable,
which reports stress before taking the training course) within subgroups
based on flight stage (stage), length of route (route) and aircraft type
(type). Does the stress measure conform to the ANOVA assumptions?

Perform a three-factor ANOVA of stress with type, route, and stage as
the factors. Are there significant interactions among aircraft type, route
length, and flight stage as they relate to stress? If there are no
interactions, but there are significant main effects, then perform the
appropriate post hoc tests to identify which subgroups differ from each
other.

Multivariate Analysis of Variance
Open the SPSS portable file Workload.por. Perform a three-factor (route,
type and stage) multivariate analysis of variance on several physiological
measures of stress: blood pressure (blood), heart rate (heart), and body
temperature (temp). Which effects and interactions are significant?
Examine the univariate results. Are the effects consistent across the
three dependent measures?

Request a profile plot to examine the three-way interaction of route by
stage by type as it relates to core body temperature (temp)? Describe the
nature of the interaction.

For those with extra time: Perform a multivariate analysis using the
same factors, but on the subjective measures of workload (stress,
capacity, atten, and tired)? Are the results similar to what you found for
the physiological measures?

Within-Subject Designs: Repeated Measures
Open the SPSS portable file Workload.por. Perform and exploratory data
analysis on stress measured at the three time points (stress, stress2,
stress3). Run a one-factor repeated-measures analysis examining the
stress measure (stress, stress2, stress3) at the three time points of the
study.

If there is a significant main effect of the time factor, explore the nature
of it with post hoc tests and plots.

Chapter 4

Chapter 5

Chapter 6



SPSS Training

Exercises   E - 4

Between- and Within-Subject ANOVA: Repeated Measures
Open the SPSS portable file Workload.por. Perform a repeated measures
analysis with time (three levels) as a within-subject factor and type,
route, and stage as between-subject factors. The dependent measure will
be stress (stress, stress2, stress3). Which effects are significant?

If there are significant interactions, explore then using simple effects and
profile plots.

For those with extra time: Run the same analysis using one of the
physiological measures.

Analysis of Covariance
Open the SPSS portable file Workload.por. We will add a covariate to the
analysis run in Chapter 4. Run an analysis of covariance on stress with
type, route, and stage as between-subject factors and age as a covariate.
The dependent measure will be stress.

Test for the parallelism of slope assumption (test for a four-way
interaction among, age, type, route and stage).

If the parallelism of slopes assumption is met, then run the analysis of
covariance and assess the relevance of the age covariate. Ask for
parameter estimates and interpret the relationship between age and
stress (even if nonsignificant).

Chapter 7

Chapter 9
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