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Chapter 3: Solutions and Thermodynamics of 
Multicomponent Systems 

3.1 Introduction 
n the previous chapter, we introduced thermodynamic tools that allow us to predict the equilibrium 
mineral assemblage under a given set of conditions.  For example, having specified temperature, we 
were able to determine the pressure at which the assemblage anorthite+forsterite is in equilibrium 

with the assemblage diopside+spinel+enstatite.  In that reaction the minerals had unique and invariant 
compositions.  In the Earth, things are not quite so simple: these minerals are present as solid solu-
tions*, with substitutions of Fe for Mg, Na for Ca, and Cr and Fe3+ for Al, among others.  Indeed, most 
natural substances are solutions; that is, their compositions vary.  Water, which is certainly the most in-
teresting substance at the surface of the Earth and perhaps the most important, inevitably has a variety 
of substances dissolved in it.  These dissolved substances are themselves often of primary geochemical 
interest.   More to the point, they affect the chemical behavior of water.  For example, the freezing tem-
perature of an aqueous NaCl solution is lower than that of pure water.  You may have taken advantage 
of this phenomenon by spreading salt to de-ice sidewalks and roads, or adding salt to ice to make ice 
cream. 
 In a similar way, the equilibrium temperature and pressure of the plagioclase+olivine ® clinopy-
roxene+spinel+orthopyroxene reaction depends on the composition of these minerals.  To deal with 
this compositional dependence, we need to develop some additional thermodynamic tools, which is the 
objective of this chapter.  This may seem burdensome at first: if it were not for the variable composition 
of substances, we would already know most of the thermodynamics we need.  However, as we will see 
in Chapter 4, we can use this compositional dependence to advantage in reconstructing conditions un-
der which a mineral assemblage or a hydrothermal fluid formed. 
 A final “difficulty” is that the valance state of many elements may vary.  Iron, for example, may 
change from its Fe2+ state to Fe3+ when an igneous rock weathers.  The two forms of iron have very dif-
ferent chemical properties; for example Fe2+ is considerably more soluble in water than is Fe3+.  Another 
example of this kind of reaction is photosynthesis, the process by which CO2 is converted to organic 
carbon.  These kinds of reactions are called “oxidation–reduction”, or “redox” reactions.  The energy 
your brain uses to process the information you are now reading comes from oxidation of organic car-
bon — carbon originally reduced by photosynthesis in plants.  To fully specify the state of a system, we 
must specify its “redox” state.  We treat redox reactions in the final section of this chapter. 
 Though Chapter 4 will add a few more tools to our geochemical toolbox, and treat a number of ad-
vanced topics in thermodynamics, it is designed to be optional.  With completion of this chapter, you 
will have a sufficient thermodynamic background to deal with a wide range of phenomena in the 
Earth, and most of the topics in the remainder of this book.   

3.2 Phase Equilibria 
 3.2.1 Some Definitions 

3.2.1.1 Phase  

 Phases are real substances that are homogeneous, physically distinct, and (in principle) mechanically 
separable.  For example, the phases in a rock are the minerals present.  Amorphous substances are also 
phases, so glass or opal would be phases.  The sugar that won't dissolve in your ice tea is a distinct 
phase from the tea, but the dissolved sugar is not.  Phase is not synonymous with compound.   Phases 

                                                
*The naturally occurring minerals of varying composition are referred to as plagioclase rather than anorthite, olivine 
rather than forsterite, clinopyroxene rather than diopside, and orthopyroxene rather than enstatite. 
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need not be chemically distinct: a glass of ice water has two distinct phases: water and ice.  Many solid 
compounds can exist as more than one phase.  Nor need they be compositionally unique: plagioclase, 
clinopyroxene, olivine, etc., are all phases even though their composition can vary.  Thus a fossil in 
which the aragonite (CaCO3) is partially retrograded into calcite (also CaCO3) consists of 2 phases.  Sys-
tems, and reactions occurring within them, consisting of a single phase are referred to as homogenous; 
those systems consisting of multiple phases, and the reactions occurring within them, are referred to as 
heterogeneous. 

3.2.1.2 Species 

 Species is somewhat more difficult to define than either phase or component.  A species is a chemical 
entity, generally an element or compound (which may or may not be ionized).  The term is most useful 
in the context of gases and liquids.  A single liquid phase, such as an aqueous solution, may contain a 
number of species.    For example, H2O, H2CO3, HCO

3

– , CO
3

2 + , H+, and OH– are all species commonly 
present in natural waters.  The term species is generally reserved for an entity that actually exists, such 
as a molecule, ion, or solid on a microscopic scale.  This is not necessarily the case with components, as 
we shall see.  The term species is less useful for solids, although it is sometimes applied to the pure end-
members of solid solutions and to pure minerals.   

3.2.1.3 Component 

 In contrast to a species, a component need not be a real chemical entity, rather it is simply an algebraic 
term in a chemical reaction.  The minimum number of components* of a system is rigidly defined as the 
minimum number of independently variable entities necessary to describe the composition of each and every phase 
of a system.  Unlike species and phases, components may be defined in any convenient manner:  what 
the components of your system are and how many there are depend on your interest and on the level of 
complexity you will be dealing with.  Consider our aragonite-calcite fossil.  If the only reaction occur-
ring in our system (the fossil) is the transformation of aragonite to calcite, one component, CaCO3, is 
adequate to describe the composition of both phases.  If, however, we are also interested in the precipi-
tation of calcium carbonate from water, we might have to consider CaCO3 as consisting of 2 compo-
nents: Ca2+ and CO

3

2 . 
 There is a rule to determine the minimum number of components in a system once you decide what 
your interest in the system is; the hard part is often determining your interest.  The rule is: 
  c = n - r 3.1 
where n is the number of species, and r is the number of independent chemical reactions possible between these 
species.  Essentially, this equation simply states that if a chemical species can be expressed as the alge-
braic sum of other components, we need not include that species among out minimum set of compo-
nents.   Let’s try the rule on the species we listed above for water.  We have 6 species: H2O, H2CO3, 
HCO

3

– , CO
3

2 + , H+, and OH–.  We can write 3 reactions relating them: 
  HCO

3

–= H+ + CO
3

2 –   
  H2CO3 = H+ + HCO

3

–  
  H2O = H+ + OH–  
Equation 3.1 tells us we need 3 = 6 – 3 components to describe this system: CO

3

2 + , H+, and OH–.  Put 
another way, we see that carbonic acid, bicarbonate, and water can all be expressed as algebraic sums 
the hydrogen, hydroxyl, and carbonate ions, so they need not be among our minimum set of compo-
nents. 
 In igneous and metamorphic petrology, components are often the major oxides (though we may often 
chose to consider only a subset of these).  On the other hand, if we were concerned with the isotopic 

                                                
*Caution: some books use the term number of components as synonymous with minimum number of components. 



W. M. White  Geochemistry 

 Chapter 3: Solutions   
 

 63 September 26, 2005 

equilibration of minerals with a hydrothermal fluid, 18O would be considered as a different component 
than 16O. 
 Perhaps the most straightforward way of determining the number of components is a graphical ap-
proach.  If all phases can be represented on a one-dimensional diagram (that is, a straight line repre-
senting composition), we are dealing with a two component system.  For example, consider the hydra-
tion of Al2O3 (corundum) to form boehmite (AlO(OH)) or gibbsite Al(OH)3.  Such a system would con-
tain 4 phases (corundum, boehmite, gibbsite, water), but is nevertheless a two component system be-
cause all phases may be represented in one-dimension of composition space, as is shown in Figure 3.1.  
Because there are two polymorphs of gibbsite, one of boehmite, and two other possible phases of water, 
there are 9 phases possible phases in this two-component system.  Clearly, a system may have many 
more phases than components. 
 Similarly, if a system may be represented in 2 dimensions, it is a three-component system.  Figure 3.2 

is a ternary diagram illustrating the sys-
tem Al2O3–H2O–SiO2.  The graphical rep-
resentation approach reaches it practical 
limit in a four component system because 
of the difficulty of representing more than 
3 dimensions on paper.  A four compo-
nent system is a quaternary one, and can 
be represented with a three-dimensional 
quaternary diagram. 
 It is important to understand that a 
component may or may not have chemical 
reality.  For example in the exchange reac-
tion: 

NaAlSi3O8 + K+ = KAlSi3O8 + Na+ 
we could alternatively define the exchange 
operator KNa-1 (where Na-1 is -1 mol of Na 
ion) and write the equation as: 

NaAlSi3O8 + KNa–1 = KAlSi3O8   
In addition, we can also write the reaction: 
  K – Na = KNa-1 

Here we have 4 species and 2 reactions 
and thus a minimum of only 2 compo-
nents.  You can see that a component is 
merely an algebraic term. 
 There is generally some freedom in 
choosing components.  For example, in 
the ternary (i.e., 3 component) system 
SiO2 – Mg2SiO4 – MgCaSi2O6, we could 
choose our components to be quartz, 
diopside, and forsterite, or we could 
choose them to be SiO2, MgO, and CaO.  
Either way, we are dealing with a ternary 

aa

Al2O3 AlO(OH) Al(OH)3 H2O  
Figure 3.1.  Graphical Representation of the System Al2O3-H2O. 
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Figure 3.2.  Phase diagram for the system Al2O3–H2O–
SiO2.  The lines are called joins because they join phases.  
In addition to the end-members, or components, phases 
represented are g: gibbsite, by: bayerite, n: norstrandite 
(all polymorphs of Al(OH)3), d: diaspore, bo: boehmite 
(polymorphs of AlO(OH)), a: andalusite, k: kyanite, s: 
sillimanite (all polymorphs of Al2SiO5), ka: kaolinite, ha: 
halloysite, di: dickite, na: nacrite (all polymorphs of 
Al2Si2O5(OH)4), and p: pyrophyllite (Al2Si4O10(OH)2).  
There are also 6 polymorphs of quartz (coesite, 
stishovite, tridymite, cristobalite, α-quartz, and β-
quartz). 
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system (which contains MgSiO3 as well as the three other phases). 

3.2.1.4 Degrees of Freedom  

 The number of degrees of freedom in a system is equal to the sum of the number of independent in-
tensive variables (generally T & P) and independent concentrations (or activities or chemical potentials) 
of components in phases that must be fixed to define uniquely the state of the system.  A system that 
has no degrees of freedom (i.e., is uniquely fixed) is said to be invariant, one that has one degree of 
freedom is univariant, etc.  Thus in an univariant system, for example, we need specify only the value 
of one variable, for example, temperature or the concentration of one component in one phase, and the 
value of pressure and all other concentrations are then fixed, i.e., they can be calculated (assuming the 
system is at equilibrium). 

3.2.2 The Gibbs Phase Rule  

 The Gibbs‡ Phase Rule is a rule for determining the degrees of freedom, or variance, of a system at equi-
librium.  The rule is: 
   

� 

ƒ = c!" + 2  3.2  
where ƒ is the degrees of freedom, c is the number of components, and φ is the number of phases.  The 
mathematical analogy is that the degrees of freedom are equal to the number of variables less the num-
ber of equations relating those variables. For example, in a system consisting of just H2O, if two phases 
of coexist, for example, water and steam, then the system in univariant.  Three phases coexist at the tri-
ple point of water, so the system is said to be invariant, and T and P are uniquely fixed: there is only 
one temperature and one pressure at which the three phases of water can coexist (273.15 K and 0.006 
bar).  If only one phase is present, for example just liquid water, then we need to specify 2 variables to 
describe completely the system.  It doesn’t matter which two we pick.  We could specify molar volume 
and temperature and from that we could deduce pressure.  Alternatively, we could specify pressure 
and temperature.  There is only 1 possible value for the molar volume if temperature and pressure are 
fixed.  It is important to remember this applies to intensive parameters.  To know volume, an extensive 
parameter, we would have to fix one additional extensive variable (such as mass or number of moles).  
And again, we emphasize that all this applies only to systems at equilibrium. 
 Now consider the hydration of corundum to form gibbsite.  There are 3 phases, but there need be 
only two components.  If these 3 phases (water, corundum, gibbsite) are at equilibrium, we have only 1 
degree of freedom, i.e., if we know the temperature at which these 3 phases are in equilibrium, the pres-
sure is also fixed. 
 Rearranging equation 3.2, we also can determine the maximum number of phases that can coexist at 
equilibrium in any system.  The degrees of freedom cannot be less than zero, so for an invariant, one 
component system, a maximum of three phases can coexist at equilibrium.  In a univariant one-
component system, only 2 phases can coexist.  Thus sillimanite and kyanite can coexist over a range of 
temperatures, as can kyanite and andalusite.  But the three phases of Al2SiO5 coexist only at one unique 
temperature and pressure.  
 Let's consider the example of the three-component system Al2O3–H2O–SiO2 in Figure 3.2.  Although 
many phases are possible in this system, for any given composition of the system only three phases can 
coexist at equilibrium over a range of temperature and pressure.  Four phases, e.g., a, k, s and q, can co-
exist only along a one-dimensional line or curve in P-T space.  Such points are called univariant lines 
(or curves).  Five phases can coexist at invariant points at which both temperature and pressure are 
uniquely fixed.  Turning this around, if we found a metamorphic rock whose composition fell within 

                                                
‡ J. Williard Gibbs (1839-1903) is viewed by many as the father of thermodynamics.  He received the first doctorate in 
engineering granted in the U. S., from Yale in 1858.  He was Professor of Mathematical Physics at Yale from 1871 until 
his death.  He also helped to found statistical mechanics.  The importance of his work was not widely recognized by 
his American colleagues, though it was in Europe, until well after his death. 
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the Al2O3–H2O–SiO2 system, and if the rock contained 5 phases, it would be possible to determine 
uniquely the temperature and pressure at which the rock equilibrated. 

3.2.3 The Clapeyron Equation 

 A common problem in geochemistry is to know how a phase boundary varies in P-T space, e.g., how 
a melting temperature will vary with pressure.  At a phase boundary, two phases must be in equilib-
rium, i.e., ∆G must be 0 for the reaction Phase 1 ® Phase 2.  The phase boundary therefore describes the 
condition:  
  d(∆Gr) = ∆VrdP - ∆SrdT = 0.  
Thus the slope of a phase boundary on a temperature-pressure diagram is: 

  

� 

dT

dP
=
!V

r

!S
r

 3.3 

where ∆Vr and ∆Sr are the volume and entropy changes associated with the reaction.  Equation 3.3 is 
known as the Clausius-Clapeyron Equation, or simply the Clapeyron Equation.  Because ∆Vr and ∆Sr are 
functions of temperature and pressure, this, of course, is only an instantaneous slope.  For many re-
actions, however, particularly those involving only solids, the temperature and pressure dependencies 
of ∆Vr and ∆Sr will be small and the Clapeyron slope will be relatively constant over a large T and P 
range.   
 Because ∆S = ∆H/T, the Clapeyron equation may be equivalently written as: 

  

� 

dT

dP
=
T!V

r

!H
r

 3.4 

 Slopes of phase boundaries in P-T space are generally positive, implying that the phases with the 
largest volumes also generally have the largest entropies (for reasons that become clear from a statis-
tical mechanical treatment).  This is particularly true of solid-liquid phase boundaries, although there is 
one very important exception: water.  How do we determine the pressure and temperature dependence 
of ∆Vr and why is ∆Vr relatively T and P independent in solids? 
 We should emphasize that application of the Clapeyron equation is not limited to reactions between 
two phases in a one-component system, but may be applied to any univariant reaction. 

3.3 Solutions 
 Solutions are defined as homogeneous phases produced by dissolving one or more substances in another sub-
stance.  In geochemistry we are often confronted by solutions: as gases, liquids, and solids.  Free energy 
depends not only on T and P, but also on composition.  In thermodynamics it is generally most con-
venient to express compositions in terms of mole fractions, Xi, the number of moles of i divided by the 
total moles in the substance (moles are weight divided by atomic or molecular weight).  The sum of all 
the Xi must, of course, total to 1. 
 Solutions are distinct from purely mechanical mixtures.  For example, salad dressing (oil and vine-
gar) is not a solution.  Similarly, we can grind anorthite (CaAl2Si2O8) and albite (NaAlSi3O8) crystals into 
a fine powder and mix them, but the result is not a plagioclase solid solution.  The Gibbs Free Energy of 
mechanical mixtures is simply the sum of the free energy of the components.  If, however, we heated 
the anorthite-albite mixture to a sufficiently high temperature that the kinetic barriers were overcome, 
there would be a reordering of atoms and the creation of a true solution.  Because this reordering is a 
spontaneous chemical reaction, there must be a decrease in the Gibbs Free Energy associated with it.  
This solution would be stable at 1 atm and 25°C.  Thus we can conclude that the solution has a lower 
Gibbs Free Energy than the mechanical mixture.  On the other hand, vinegar will never dissolve in oil 
at 1 atm and 25°C because the Gibbs Free Energy of that solution is greater than that of the mechanical 
mixture. 
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Example   3.1:   The   Graphite-Diamond
Transition

At 25°C the graphite-diamond transition
occurs at 1600 MPa (megapascals, 1 MPa =10 b).
Using the standard state (298 K, 0.1 MPa) data
below, predict the pressure at which the trans-
formation occurs when temperature is 1000°C.

Answer: We can use the Clapeyron equation
to determine the slope of the phase boundary.
Then, assuming that ∆S and ∆V are independent
of temperature, we can extraplate this slope to
1000° C to find the pressure of the phase transi-
tion at that temperature.

First, we calculate the volumes of graphite
and diamond at 1600 MPa as (equ. 2.139):

V = V°(1 – β∆P) 3.5
where ∆P is the difference between the pressure
of interest (1600 MPa in this case) and the refer-
ence pressure (0.1 MPa).  Doing so, we find the
molar volumes to be 5.037 for graphite and 3.405
for diamond, so ∆Vr is –1.6325 cc/mol.  The next
step will be to calculate ∆S at 1600 MPa.  The
pressure dependence of entropy is given by equa-
tion 2.143: ∂S/∂P)T = –αV.  Thus to determine
the effect of pressure we integrate:  
SP = S°+ ∂S

∂P
T

dP
Pref

P1
= S°+ –αV dP

Pref

P1
3.6

(We use Sp to indicate the entropy at the pres-
sure of interest and S° the entropy at the refer-
ence pressure.)  We need to express V as a func-
tion of pressure, so we substitute 3.5 into 3.6:

  SP = S° + –αV°(1 – βP)dP
Pref

P1

= S° – αV° ΔP – β
2(P1

2 – Pref
2 )

3.7

The reference pressure, Pref, is negligible com-
pared to P1 (0.1 MPa vs 1600 PMa), so that this
simplifies to:

  SP = S° –αV° ΔP – β
2P1

2

For graphite, Sp is 5.66 J/K-mol, for diamond, i t
is 2.34 J/K-mol, so ∆ Sr at 1600 MPa is -3.32 J-K-1-
mol-1.

The Clapeyron slope is therefore:
∆S
∆V  = 

–3.322
–1.63   = 2.035 JK-1cm-3

One distinct advantage of the SI units is tha t
cm3 = J/MPa, so the above units are equivalent to
K/MPa.  From this, the pressure of the phase
change at 1000° C can be calculated as:

P1000 = P298 + ∆T × 
∆S
∆V  

 =1600 + 975 × 2.035 = 3584 MPa
The Clapeyron slope we calculated (solid

line) is compared with the experimentally de-
termined phase boundary in Figure 3.3.  Our cal-
culated phase boundary is linear whereas the
experimental one is not.  The curved nature of
the observed phase boundary indicates ∆V and
∆S are pressure and temperature dependent.
This is indeed the case, particularly for graph-
ite.  A more accurate estimate of the volume
change requires β be expressed as a function of
pressure.

Figure 3.3.  Comparison of the graphite-dia-
mond phase boundary calculated from thermo-
dynamic data and the Clapeyron slope (solid
line) with the experimentally observed phase
boundary (dashed line).

Graphite Diamond
α (K– 1) 1.05 ×10-05 7.50 ×10-06

β (MPa-1) 3.08 ×10-05 2.27 ×10-06

S°  (J/K-mol) 5.74 2.38
V (cm3/mol) 5.2982 3.417
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3.3.1 Raoult's Law 

 Working with solutions of ethylene bromide and propylene bromide, Raoult¶ noticed that the vapor 
pressures of the components in a solution were proportional to the mole fractions of those components: 
  

� 

P
i

= X
i
P
i

o  3.8 
where Pi is the vapor pressure of component i above the solution, Xi is the mole fraction of i in solution, 
and 

� 

P
i

o is the vapor pressure of pure i under standard conditions.  Assuming the partial pressures are 
additive and the sum of all the partial pressures is equal to the total gas pressure (ΣPi = Ptotal): 

 

� 

P
i

= X
i
P
total  3.9 

Thus partial pressures are proportional to their mole fractions.  This is the definition of the partial pres-
sure of the ith gas in a mixture.   
 Raoult's Law holds only for ideal solutions, i.e., substances where there are no intermolecular forces.  
It also holds to a good approximation where the forces between like molecules are the same as between 
different molecules.  The two components Raoult was working with were very similar chemically, so 
that this condition held and the solution was nearly ideal.  As you might guess, not all solutions are 
ideal.  Fig. 3.4 shows the variations of partial pressures above a mixture of water and dioxane.  Signif-
icant deviations from Raoult's Law are the rule except where Xi approaches 1. 

                                                
¶ Francois Marie Raoult (1830-1901), French chemist. 

 
Figure 3.4.  Vapor pressure of water and dioxane in a water-dioxane 
mixture showing deviations from ideal mixing.  Shaded areas are areas 
where Raoult's Law (dashed lines).  Henry's Law slopes are shown as 
dot-dashed lines.  After Nordstrom and Munoz (1986). 
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3.3.2 Henry's Law  

 Another useful approximation occurs when Xi approaches 0.   In this case, the partial pressures are 
not equal to the mole fraction times the vapor pressure of the pure substance, but they do vary linearly 
with Xi.  This behavior follows Henry’s Law£, which is: 
  Pi =hXi   for Xi << 1 3.10 
where h is known as the Henry's Law constant. 

3.4 Chemical Potential  

3.4.1 Partial Molar Quantities  

 Free energy and other thermodynamic properties are dependent on composition.  We need a way of 
expressing this dependence.  For any extensive property of the system, such as volume, entropy, en-
ergy, or free energy, we can define a partial molar value, which expresses how that property will depend 
on changes in amount of one component.  For example, we can define partial molar volume of compo-
nent i in phase φ as: 

  

� 

vi
!

=
"V
"ni

# 

$ 
% 

& 

' 
( 

T ,P, n j , j)i

 such that 

� 

V = n
i
v
i

i

!  3.11 

(we will use small letters to denote partial molar quantities; the superscript refers to the phase and the 
subscript refers to the component).  The English interpretation of equation 3.11 is that the partial molar 
volume of component i in phase φ tells us how the volume of phase φ will vary with an infinitesimal addition of 
component i, if all other variables are held constant.  For example, the partial molar volume of Na in an 
aqueous solution such as seawater would tell us how the volume of that solution would change for an 
infinitesimal addition of Na.  In this case i would refer to the Na component and φ would refer to the 
aqueous solution phase.  In Table 2.2, we see that the molar volumes of the albite and anorthite end-
members of the plagioclase solid solution are different.  We could define v

Ab

Pl  as the partial molar vol-
ume of albite in plagioclase, which would tell us how the volume of plagioclase would vary for an in-
finitesimal addition of albite.  (In this example, we have chosen our component as albite rather than Na.  
While we could have chosen Na, the choice of albite simplifies matters because the replacement of Na 
with Ca is accompanied by the replacement of Si by Al.)  
 The second expression in 3.11 says that the volume of a phase is the sum of the partial molar vol-
umes of the components times the number of moles of each component present.  Thus the volume of 
plagioclase would be sum of the partial molar volumes of the albite and anorthite components 
weighted by the number of moles of each. 
 Another example might be a solution of water and ethanol.  The variation of the partial molar vol-
umes of water and ethanol in a binary solution is illustrated in Figure 3.5.  This system illustrates very 
clearly why the qualification “for an infinitesimal addition” is always added: the value of a partial mo-
lar quantity of a component may vary with the amount of that component present. 
 Equation 3.11 can be generalized to all partial molar quantities and also expresses an important 
property of partial molar quantities: an extensive variable of a system or phase is the sum of it’s partial molar 
quantities for each component in the system.  In our example above, this means that the volume of plagio-
clase is the sum of the partial molar volume of the albite and anorthite components. 
 Generally, we find it more convenient to convert extensive properties to intensive properties by di-
viding by the total number of moles in the system, Σn.  Dividing both sides of equation 3.11 by Σn we 
have: 

 

� 

V = X
i
v

i

i

!  3.12 

                                                
£ named for English chemist William Henry (1775-1836), who formulated it. 
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This equation says that the molar volume of a sub-
stance is the sum of the partial molar volumes of 
its components times their mole fractions.  For a 
pure phase, the partial molar volume equals the molar 
volume since X=1. 

3.4.2 Definition of Chemical Potential and 
Relationship to Gibbs Free Energy  

  We define µ as the chemical potential, which is 
simply the partial molar Gibbs Free Energy: 
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µi =
!G
!ni
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' 
P ,T ,n j , j(i

 3.13 

The chemical potential thus tells us how the Gibbs 
Free Energy will vary with the number of moles, 
ni, of component i holding temperature, pressure, 
and the number of moles of all other components 
constant.  We said that the Gibbs Free Energy of a 
system is a measure of the capacity of the system 
to do chemical work.  Thus the chemical potential 
of component i is the amount by which this capac-
ity to do chemical work is changed for an infini-
tesimal addition of component i at constant tem-
perature and pressure.  In a NiCd battery (com-
mon rechargeable batteries) for example, the 
chemical potential of Ni in the battery (our system) is a measure of the capacity of the battery to pro-
vide electrical energy per mole of additional Ni for an infinitesimal addition. 
 The total Gibbs Free Energy of a system will depend upon composition as well as on temperature 
and pressure.  The equations we introduced for Gibbs Free Energy in Chapter 2 fully describe the Gibbs 
Free Energy only for single components systems or systems containing only pure phases.  The Gibbs 
Free Energy change of a phase of variable composition is fully expressed as: 

  dG = VdP ! SdT + µ
i
dn

i

i

"  3.14 

3.4.3 Properties of the Chemical Potential 

 We now want to consider two important properties of the chemical potential.  To illustrate these 
properties, consider a simple two-phase system in which an infinitesimal amount of component i is 
transferred from phase β to phase α, under conditions where T, P, and the amount of other components 
is held constant in each phase.  One example of such a reaction would be the transfer of Pb from a hy-
drothermal solution to a sulfide mineral phase.  The chemical potential expresses the change in Gibbs 
Free Energy under these conditions: 
  dG = dG

!
+ dG

"
= µ

i

!
dn

i

!
+ µ

i

"
dn

i

"  3.15 
since we are holding everything else constant, what is gained by α must be lost by β, so –dnαi   = dnβi    
and:   
  

� 

dG = µ
i

!
" µ

i

#( )dni  3.16 

At equilibrium, dG = 0, and therefore 

� 

µ
i

!
= µ

i

"  3.17 
 Equation 3.17 reflects a very general and very important relationship, namely: 
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Figure 3.5.  Variation of the partial molar volumes 
of water and ethanol as a function of the mole 
fraction of ethanol in a binary solution.  This fig-
ure also illustrates the behavior of a very non-ideal 
solution. 
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 In a system at equilibrium, the chemical potential of every component in a phase is 
equal to the chemical potential of that component in every other phase in which 

that component is present. 
 Equilibrium is the state toward which systems will naturally transform.  The Gibbs Free Energy is 
the chemical energy available to fuel these transformations. We can regard differences in chemical potentials 
as the forces driving transfer of components between phases.  In this sense, the chemical potential is similar to 
other forms of potential energy, such as gravitational or electromagnetic.  Physical systems spontane-
ously transform so as to minimize potential energy.  Thus for example, water on the surface of the 
Earth will move to a point where it’s gravitational potential energy is minimized, i.e., downhill.  Just as 
gravitational potential energy drives this motion, the chemical potential drives chemical reactions, and 
just as water will come to rest when gravitational energy is minimized, chemical reactions will cease 
when chemical potential is minimized.  So in our example above, the spontaneous transfer of Pb be-
tween a hydrothermal solution and a sulfide phase will occur until the chemical potentials of Pb in the 
solution and in the sulfide are equal.  At this point, there is no further energy available to drive the 
transfer. 
 We defined the chemical potential in terms of the Gibbs Free Energy.  However, in his original work, 
Gibbs based the chemical potential on the internal energy of the system.  As it turns out, however, the 
quantities are the same: 

  µi =
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 It can be further shown (but we won’t) that: 
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3.4.4 The Gibbs-Duhem Relation 

 Since µ is the partial molar Gibbs Free Energy, the Gibbs Free Energy of a system is the sum of the 
chemical potentials of each component: 
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The differential form of this equation (which we get simply by applying the chain rule) is:   
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dG = n
i
dµ

i

i

! + µ
i
dn

i

i

!  3.20 

 Equating this with equation 3.14, we obtain: 
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n
i
dµ

i

i

! + µ
i
dn

i

i

! = VdP " SdT + µ
i
dn

i

i

!  3.21 

Rearranging, we obtain the Gibbs-Duhem Relation:  

  VdP ! SdT ! n
i
dµ

i

i

" = 0  3.22 

 The Gibbs-Duhem Equation describes the relationship between simultaneous changes in pressure, 
temperature and composition in a single-phase system.  In a closed system at equilibrium, net changes 
in chemical potential will occur only as a result of changes in temperature or pressure.  At constant tem-
perature and pressure, there can be no net change in chemical potential at equilibrium: 

  n
i
dµ

i

i

! = 0  3.23 
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This equation further tells us that the chemical potentials do not vary independently, but change in a related way.  
In a closed system, only one chemical potential can vary independently.  For example, consider a two 
component system.  Then we have n1dµ1 + n2dµ2 = 0 and dµ2 = – (n1/n2)dµ1.  If a given variation in 
composition produces a change in µ1 then there is a concomitant change in  µ2. 
 For multi-phase systems, we can write a version of the Gibbs-Duhem relation for each phase in the 
system.  For such systems, the Gibbs-Duhem relation allows us to reduce the number of independently 
variable components in each phase by one.  We will return to this point later in the chapter. 
 We can now state an additional property of chemical potential: 

 In spontaneous processes, components or species are distributed between phases 
so as to minimize the chemical potential of all components.  

This allows us to make one more characterization of equilibrium: equilibrium is point where the chemical 
potential of all components is minimized. 

3.4.5 Derivation of the Phase Rule  

 Another significant aspect of the Gibbs-Duhem Equation is that the phase rule can be derived from 
it.  We begin by recalling that the variance of a system (the number of variables that must be fixed or 
independently determined to determine the rest) is equal to the number of variables less the number of 
equations relating them.  In a multicomponent single-phase system, consisting of c components, there 
are c +2 unknowns required to describe the equilibrium state of the system: T, P, µ1, µ2, ...µc.  But in a 
system of φ phases at equilibrium, we can write φ versions of equation 3.23, which reduces the inde-
pendent variables by φ.  Thus the number of independent variables that must be specified to describe a 
system of c components and φ phases is: 
  f = c + 2 -φ 
which is the Gibbs phase rule. 
 Specification of ƒ variables will completely describe the system, at least with the qualification that in 
thermodynamics we are normally uninterested in the size of the system, that is, in extensive properties 
such as mass, volume, etc. (though we are interested in their intensive equivalents) and outside forces 
or fields such as gravity, electric or magnetic fields, etc.  Nevertheless, the size of the system is de-
scribed as well, provided only that one of the ƒ variables is extensive. 

3.5 Ideal Solutions  
 Having placed another tool, the chemical potential, in our thermodynamic toolbox, we are ready to 
continue our consideration of solutions.  We will begin with ideal solutions, which, like ideal gases, are 
fictions that avoid some of the complications of real substances.  For an ideal solution, we make an as-
sumption similar to one of those made for an ideal gas, namely that there were no forces between mole-
cules.  In the case of ideal solutions, which may be gases, liquids, or solids, we can relax this as-
sumption somewhat and require only that the interactions between different kinds of molecules in an ideal so-
lution are the same as those between the same kinds of molecules. 

3.5.1 Chemical Potential in Ideal Solutions 

 How does chemical potential vary in an ideal solution?  Consider the vapor pressure of a gas.  The 
derivative of G with respect to pressure at constant temperature is volume:  

  !G
!P

"
#$

%
&'
T

= V  

Written in terms of partial molar quantities:  
!µ
!P

"
#$

%
&'
T

= v  
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If the gas is ideal, then: !µ
!P

"
#$

%
&'
T ,ideal

=
RT

P
 3.24 

and if we integrate from P° to P we obtain: 

  µ
P
! µ

P
o

= RT ln
P

P
o

 3.25 

where µP° is the chemical potential of the pure gas at the reference (standard state) pressure P°.  This is 
the standard-state chemical potential and is written as µ°.  If we let P° be the vapor pressure of pure i 
and P be the vapor pressure of i in an ideal solution, then we may substitute X for P/P° into Raoult's 
Law (Equation 3.8) and to obtain the following: 

  

� 

µ
i,ideal

= µ
i

o
+ RT lnX

i  3.26 
This equation describes the relationship between the chemical potential of component i and its mole 
fraction in an ideal solution. 

3.5.2 Volume, Enthalpy, Entropy, and Free Energy Changes in Ideal Solutions 

 We will be able to generalize a form of this equation to non-ideal cases a bit later.  Let's first consider 
some other properties of ideal mixtures.  For real solutions, any extensive thermodynamic property 
such as volume can be considered to be the sum of the volume of the components plus a volume 
change due to mixing: 
  

� 

V = XiV i
i

! + "Vmixing  3.27 

The first term on the right reflects the volume resulting from mechanical mixing of the various compo-
nents.  The second term reflects volume changes associated with solution.  For example, if we mixed 
100 ml of ethanol and 100 ml of water (Figure 3.5), the volume of the resulting solution would be 193 
ml.  Here, the value of the first term on the right would be 200 ml, the value of the second term would 
be -7 ml.  We can write similar equations for enthalpy, etc.  But the volume change and enthalpy change 
due to mixing are both 0 in the ideal case.  This is true because both volume and enthalpy changes of 
mixing arise from intermolecular forces, and, by definition, such intermolecular forces are absent in the 
ideal case.  Thus: 
  ∆Videal mixing = 0 

therefore: 
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V 
ideal

= X
i
v

i

i

! = X
i
V 

i

i

!  

and ∆Hideal mixing = 0 
and therefore: 
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H 
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= X
i
h

i

i

! = X
i
H 

i

i

!  

This, however, is not true of entropy.  You can imagine why: if we mix two substances on an atomic 
level, the number of possible arrangements of our system increases even if they are ideal substances.  
The entropy of ideal mixing is (compare equation 2.110): 
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#  3.28 
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i
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i
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Because ∆Gmixing = ∆Hmixing – T∆Smixing and ∆Hmixing = 0, it follows that: 

  

� 

!G ideal mixing = RT Xi lnXi

i

"  3.30 

We stated above that the total expression for an extensive property of a solution is the sum of the par-
tial molar properties of the pure phases (times the mole fractions) plus the mixing term.  The partial 
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molar Gibbs Free Energy is the chemical potential, so the full expression for the Gibbs Free Energy of 
an ideal solution is: 

  

� 

Gideal = X
i
µ
i

o

i

! + RT X
i

i

! lnX
1
 3.31 

Rearranging terms, we can re-express equation 3.31 as: 

  

� 

Gideal = X
i
(µ

i

o

i

! + RT ln X1) 3.32 

The term in parentheses is simply the chemical potential of component i, µi, as expressed in equation 
3.26.  Substituting equation 3.26 into 3.32, we have 

  

� 

Gideal = X
i
µ
i

i

!  3.33 

Note that for an ideal solution, µi is always less than or equal to µ
i
o because the term RTln Xi is always 

negative (because the log of a fraction is always negative). 
 Let's consider ideal mixing in the simplest case, namely binary mixing.  For a two component (bi-
nary) system, X1 = (1 – X2), so we can write equation 3.30 for the binary case as: 

  

� 

!G ideal mixing = RT (1" X2 ) ln(1" X2 ) + X2 lnX2[ ]  3.34 
Since X2 is less than 1, ∆G is negative and becomes increasingly negative with temperature, as illus-
trated in Figure 3.6.  The curve is symmetrical with respect to X; i.e., the minimum occurs at X2 = 0.5. 
 Now let’s see how we can recover information on µi from plots such as Figure 3.6, which we will call 
G-bar—X plots.  Substituting X1 = (1 – X2) into equation 3.33, it becomes: 

  !G
ideal solution

= µ
1
(1" X

2
) + µ

2
X
2
= µ

1
+ (µ

2
" µ

2
)X

2
 3.35 

This is the equation of a straight line on such a plot with slope of (µ2 – µ1) and intercept µ1. This line is il-
lustrated in Figure 3.7.  The curved line is described by equation 3.31.  The dashed line is given by 
equation 3.35.  Both equation 3.31 and 3.35 give the same value of G 

—
  for a given value of X2, such as 

X´2.  Thus the straight line and the curved one in Figure 3.7 much touch at X´2.   In fact, the straight line 
is the tangent to the curved one at X´2.  The intercept of the tangent at X2 = 0 is µ1 and the intercept at X2 
= 1 is µ2.  The point is, on a plot of molar 
free energy vs. mole fraction (a G-X dia-
gram), we can determine the chemical potential 
of component i in a two component system by 
extrapolating a tangent of the free energy curve 
to Xi = 1.  We see that in Figure 3.7, as X1 
approaches 1 (X2 approaches 0), the inter-
cept of the tangent approaches µ

1
o , i.e., µ1 

approaches µ
1
o .  Looking at equation 3.26, 

this is exactly what we expect.  Figure 3.7 
illustrates the case of an ideal solution, but 
the intercept method applies to non-ideal 
solutions as well, as we shall see. 
 Finally, the solid line connecting the µ°’s 
is the Gibbs Free Energy of a mechanical 
mixture of components 1 and 2, which we 
may express as: 

  !G
mixture

= X
i
µ
i

o

i

"  3.36 
 

Figure 3.6.  Free energy of mixing as a function of tem-
perature in the ideal case. 
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You should satisfy yourself that the 
∆Gmixing is the difference between this 
line and the free energy curve: 

� 

G 
ideal mix .

= G 
ideal sol .

! G 
mixture

 3.37 

3.6 Real solutions 
 We now turn our attention to real 
solutions, which are somewhat more 
complex than ideal ones, as you might 
imagine.  We will need to introduce a 
few new tools to help us deal with 
these complexities. 

3.6.1 Chemical Potential in Real 
Solutions 

 Let’s consider the behavior of a real 
solution in view of the two solution 
models we have already introduced: 
Raoult’s Law and Henry’s Law.  Fig-
ure 3.8 illustrates the variation of 
chemical potential as a function of 
composition in a hypothetical real so-
lution.  We can identify 3 regions 
where the behavior of the chemical 
potential is distinct: 

 1.) The first is where the mole fraction of component Xi is close to 1 and Raoult's Law holds.  In this 
case, the amount of solute dissolved in i is trivially small, so molecular interactions involving solute 
molecules do not significantly affect the thermodynamic properties of the solution, and the behavior of 
µi is close to that in an ideal solution: 
  µ

i,ideal
= µ

i

o
+ RT ln X

i
 (3.26) 

 2.) At the opposite end is the case where Xi is very small.  Here interactions between two component 
i molecules are extremely rare, and the behavior of µi is essentially controlled by interactions between i 
and those of the solvent.  While the behavior of µi is not ideal, it is nonetheless a linear function of ln Xi.  
This is the region where Henry’s Law holds.  The compositional dependence of the chemical potential 
in this region can be expressed as: 
  µ

i
= µ

i

o
+ RT lnh

i
X
i
 3.38 

where h is the Henry’s Law constant defined in equation 3.10.  This equation can be rewritten as: 
   µ

i
= µ

i

o
+ RT ln X

i
+ RT lnh

i
 3.39 

By definition, h is independent of composition at constant T and P and can be regarded as adding a 
fixed amount to the standard state chemical potential (a fixed amount to the intercept in Fig. 3.8).  By 
independent of composition, we mean it is independent of Xi, the mole fraction of the component of in-
terest.  h will, of course depend on the nature of the solution.  For example, if Na is our component of 
interest, hNa will not be the same for an electrolyte solution as for a silicate melt.  We can define a new 
term, µ*, as: 
  µ

i

*
! µ

i

o
+ RT lnh

i
 3.40 

Substituting 3.40 into 3.39 we obtain: 

� 

µ
i

= µ
i

*
+ RT ln X

i
 3.41 

When plotted against ln Xi, the chemical potential of i in the range of very dilute solutions is given by a 
straight line with slope RT and intercept µ* (the intercept is at Xi = 1 and hence ln Xi = 0 and µi = µ*).  

 
Figure 3.7.  Molar free energy in an ideal mixture and graphi-
cal illustration of equation 3.31.  After Nordstrom & Munoz, 
1986. 
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Thus  µ* can be obtained by extrapolating the 
Henry's Law slope to X = 1.  We can think of µ* as 
the chemical potential in the hypothetical standard 
state of Henry's Law behavior at X = 1.   
 3.) The third region of the plot is that region of 
real solution behavior between the regions where 
Henry's Law and Raoult's Law apply.   In this re-
gion, µ is not a linear function of ln X.  We will 
introduce a new parameter, activity, to deal with 
this region. 

3.6.2 Fugacities 

 The tools we have introduced to deal with 
ideal solutions and infinitely dilute ones are 
based on observations of the gaseous state: 
Raoult’s Law and Henry’s Law.  We will con-
tinue to make reference to gases in dealing with 
real solutions that follow neither law.  While this 
approach has a largely historical basis, it is never-
theless a consistent one.  So following this pat-
tern, we will first introduce the concept of fugac-
ity, and derive from it a more general parameter, 
activity. 
 In the range of intermediate concentrations, 
the partial pressure of the vapor of component i 
above a solution is generally not linearly related to the mole fraction of component i in solution. Thus 
chemical potential of i cannot be determined from equations such as 3.26, which we derived on the as-
sumption that the partial pressure was proportional to the mole fraction.  To deal with this situation, 
chemists invented a fictitious partial pressure, fugacity.  Fugacity may be thought of as the ‘escaping 
tendency’ of a real gas from a solution.  It was defined to have the same relationship to chemical po-
tential as the partial pressure of an ideal gas: 

  µi = µi

o
+ RT ln

fi

fi
o

 3.42 

where ƒ° is the standard-state fugacity, which is analogous to standard-state partial pressure.  We are 
free to choose the standard state, but the standard state for ƒ° and µ° must be the same.  ƒ° is analogous 
to the standard state partial pressure, P°, of an ideal gas.  If we chose our standard state to be the pure 
substance, then ƒ° is identical to P°, but we may wish to choose some other standard state where this 
will not be the case.  Since the behavior of real gases approaches ideal at low pressures, the fugacity will 
approach the partial pressure under these circumstances.  Thus the second part of the definition of fu-
gacity is: 

  lim
P!0

fi

Pi
= 1  3.43 

For an ideal gas, fugacity is identical to partial pressure.  Since, as we stated above, fugacity bears the 
same relationship to chemical potential (and other state functions) of a non-ideal substance as pressure 
of a non-ideal gas, we substitute fugacity for pressure in thermodynamic equations. 
 The relationship between pressure and fugacity can be expressed as: 
  ƒ = φP 3.44 
where φ is the fugacity coefficient, which will be a function of temperature and pressure differ for each 
real gas.   The fugacity coefficient expresses the difference in the pressure between a real gas and an 

 
Figure 3.8.  Schematic plot of the chemical potential 
of component i in solution as a function of ln Xi.  
Here µ° is the chemical potential of pure i at the 
pressure and temperature of the diagram.  After 
Nordstrom and Munoz (1986). 



W. M. White  Geochemistry 

 Chapter 3: Solutions   
 

 76 September 26, 2005 

ideal gas under comparable conditions.  Kerrick and Jacobs (1981) fitted the Redlich-Kwong equation 
(equation 2.15) to observations on the volume, pressure and volume of H2O and CO2 to obtain values 
for the coefficients a and b in equation 2.15.  From these, they obtained fugacity coefficients for these 
gases at a series of temperatures and pressures.  These are given in Table 3.1. 

3.6.3 Activities and Activity Coefficients 

  Fugacities are thermodynamic functions that are directly related to chemical potential and can be 
calculated from measured P-T-V properties of a gas, though we will not discuss how.  However, they 
have meaning for solids and liquids as well as gases since solids and liquids have finite vapor pres-
sures.  Whenever a substance exerts a measurable vapor pressure, a fugacity can be calculated.  Fugaci-
ties are relevant to the equilibria between species and phase components, because if the vapor phases of 
the components of some solid or liquid solutions are in equilibrium with each other, and with their re-
spective solid or liquid phases, then the species or phases components in the solid or liquid must be in 
equilibrium.  One important feature of fugacities is that we can use them to define another thermo-
dynamic parameter, the activity, a: 

  ai !
fi

fi
o

 3.45 

ƒ° is the standard state fugacity.  Its value depends on the standard state you choose.  You are free to 
choose a standard state convenient for whatever problem you are addressing. 
 If we substitute equation 3.45 into equation 3.42, we obtain the important relationship: 
  

� 

µ
i

= µ
i

o
+ RT lna

i
 3.46 

The ‘catch’ on selecting a standard state for ƒ°, and hence for determining ai in equation 3.46, is that this 
state must be the same as the standard state for µ°.  Thus we need to bear in mind that standard states 
are implicit in the definition of activities and that those standard states are tied to the standard-state 
chemical potential.  Until the standard state is specified, activities have no meaning. 
 Comparing equation 3.46 with 3.26 leads to: 
   ai,ideal = Xi 3.47 
Thus in ideal solutions, the activity is equal to the 
mole fraction. 
 Chemical potentials can be thought of as 
driving forces that determine the distribution 
of components between phases of variable 
composition in a system.  Activities can be 
thought of as the effective concentration or the 
availability of components for reaction.  In real 
solutions, it would be convenient to relate all 
non-ideal thermodynamic parameters to the 
composition of the solution, because compo-
sition is generally readily and accurately 
measured.  To relate activities to mole frac-
tions, we define a new parameter, the rational 
activity coefficient, λ.  The relationship is: 
  ai = Xi λi 3.48 

Table 3.1. H2O and CO2Fugacity Coefficients 
H2O  T °C   
P, MPa 400 600 800 1000 

50 0.4 0.78 0.91  
200 0.2 0.52 0.79 0.94 
400 0.21 0.54 0.84 1.03 
600 0.28 0.67 1.01 1.22 
800 0.4 0.89 1.27 1.49 

     
CO2  T °C   
P, MPa 377 577 777 977 

50 1.02 1.1 1.12 1.12 
200 1.79 1.86 1.82 1.75 
400 4.91 4.18 3.63 3.22 
600 13.85 9.48 7.2 5.83 
800 38.73 21.33 14.15 10.44 

From Kerrick and Jacobs (1981). 
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Example! 3.2. ! ! Using ! Fugacity ! to ! Calculate ! Gibbs ! Free ! Energy !
 The minerals brucite (Mg(OH)2) and periclase (MgO) are related by the reaction: 

  Mg(OH)2 ® MgO + H2O 

Which side of this reaction represent the stable phase assemblage at 600° C and 200 MPa? 
 Answe r :  We learned how to solve this sort of problem in Chapter 2: the side with the lowest Gibbs 
Free Energy will be  the stable assemblage.  Hence, we need only to calculate !Gr at 600°  C and 200 
MPa.  To do so, we use equation 2.129: 

  

� 

!GT 'P ' = !Go " !SrdTTref

T '

# + !VrdPT ref

T '

#  (2.129) 

Our earlier examples dealt with solids, which are incompressible to a g ood approximation, and we 
could simply treat !Vr as being independent of pressure.  In that case, the solution to the first integral 
on the left was simply !Vr(P´- Pref).  The reaction in this case, like most metamorphic reactions, involves 
H2O, which is certainly not incompressible: the volume of H2O, as steam or a supercritical fluid, is very 
much a function of pressure.  Let’s isolate the difficulty by dividing !Vr into two parts: the v olume 
change of reaction due to the solids, in this case the difference between molar volumes of periclase and 
brucite, and the volume change due to H2O.   We will denote the former as !VS and assume that it is 
independent of pressure.  The second integral in 2.131 then becomes: 
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!VrdPPref

P'

# = !V s
(P '"Pref ) + VH 2OPref

P '

# dP  3.49 

 How do we solve the pressure integral above?  One approach is to assume that H2O is an ideal gas. 

For an ideal gas: 

� 

V =
RT

P
 

so that the pressure integral becomes:
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RT

P
dP = RT ln

P'

PrefPref

P '

#  

 Steam is a very non-ideal gas, so this approach would not yield a very accurate answer.  The con-
cept of fugacity provides us with an alternative solution.  For a non-ideal substance, fugacity bears the 
same relationship to volume as the pr essure of an ideal gas.  Hence  we may substitute fugacity for 
pressure so that the pressure integral in equation 2.129 becomes: 
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RT

ffref

f '

# df = RT ln
f '

fref
 

where we take the reference fugacity to be 0.1 MPa.  Equation 3.47 thus becomes: 
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P '

# = !V s
(P'"Pref ) + VH2O

df
fref

f '

# = !V s
(P'"Pref )+ RT ln

f '

f ref
 3 . 5 0  

We can then compute fugacity using equation 3.44 and the fugacity coefficients in Table 3.1. 
 Using the data in Table 2.2 and solving the temperature integral in 2.129 in the usual way (equation 
2.131), we calculate the !GT,P is 3.29 kJ.  Since it is po sitive, the left side of the reaction, i.e., brucite, we 
predict that brucite is stable. 
 The !S of  this reaction is positive, however, implying that at some temperature, periclase plus 
water will eventually replace brucite.  To calculate the actual temperature of the phase boundary re-
quires a trial and error approach: for a given pressure, we must first guess a temperature, then look up 
a value of  in Table 2.1 (i nterpolating as necessary), and calculate !Gr. Depending on our answer, we 
make a revised guess of T and repeat the process until !G is 0.  Using a spreadsheet, however, this goes 
fairly quickly.  Using this method, we calculate that brucite breaks down at 660° C at 200 MPa, in 
excellent agreement with experimental observations. 
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The rational activity coefficient differs slightly in definition from the practical activity coefficient, γ, used 
in aqueous solutions.  λ is defined in terms of mole fraction, whereas γ is defined in terms of moles of 
solute per moles of solvent.  Consider for example the activity of Na in an aqueous sodium chloride so-
lution.  For  λNa, X is computed as: 

  X
Na

=
n
Na

n
Na
+ n

Cl
+ n

H
2
O

 

whereas for γNa, XNa is:  nNa
n
H
2
O

 

where n indicates moles of substance. In very dilute solution, the difference is trivial. γ is also used for 
other concentration units that we will introduce in section 3.7. 

3.6.4 Excess Functions  

 The ideal solution model provides a useful reference for solution behavior.   Comparing real solu-
tions with ideal ones leads to the concept of excess functions, for example: 
  

� 

G
excess

!G
real

"G
ideal

 3.51   
which can be resolved into contributions of excess enthalpy and entropy: 
  Gexcess = Hexcess  - TSexcess 3.52 
The excess enthalpy is a measure of the heat released during mixing the pure end-members to form the 
solution, and the excess entropy is a measure of all the energetic effects resulting from a nonrandom 
distribution of species in solution.  We can express excess enthalpy change in the same way as excess 
free energy, i.e.: 
  

� 

H
excess

! H
real

"H
ideal

 3.53   
But since ∆Hideal mixing = 0, ∆Hexcess = ∆Hreal; in other words, the enthalpy change upon mixing is the ex-
cess enthalpy change.  Similar expressions may, of course, be written for volume and entropy (bearing 
in mind that unlike volume and enthalpy, ∆Sideal is not zero). 
 Combining equation 3.46 with equation 3.48 leads to the following: 
  

� 

µ
i

= µ
i

o
+ RT ln X

i
!
i
 3.54 

We can rewrite this as: 

� 

µ
i

= µ
i

o
+ RT ln X

i
+ RT ln!

i
 3.55 

Equation 3.55 shows how activity coefficients relate to Henry's and Raoult's Laws.  Comparing equa-
tion 3.55 with equation 3.39, we see that in the region where Henry's Law holds, that is dilute solutions, 
the activity coefficient is equal to Henry's law constant.  In the region where Raoult's Law holds, the ac-
tivity coefficient is 1 and equation 3.55 reduces to equation 3.26 since RT ln λi = 0.   

 Since we know that !G
!ni

"

#$
%

&'
T ,P,nj , j(i

= µi = µi

o
+ RT ln Xi)i   

comparing equations 3.51 and 3.55, we find that: 

  !Gexcess

!ni

"

#$
%

&'
T ,P,nj , j(i

= RT ln)i   

which is the same as: G
excess,i

= RT ln!
i
 3.56 

So that the molar excess free energy associated with component i is simply RT times the log of the ac-
tivity coefficient.  The total molar excess free energy of the solution is then: 

  G
excess

= RT X
i
ln!

i

i

"  3.57 
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We will see the usefulness of the concept of excess free energy shortly when we consider activities in 
electrolyte solutions.  It will also prove important in our treatment of non-ideal solid solutions and 
exsolution phenomena in the next chapter. 

Depression ! of ! the ! Melting ! Point
In northern climates such as Ithaca, NY

salting road and sidewalks to melt snow and
ice is a common practice in winter.  We have
now acquired the thermodynamics tools to
show why salt melts ice and that this effect
does not depend on any special properties of
salt or water.  Depression of the melting point
by addition of a second component to a pure sub-
stance is a general phenomenon.  Suppose tha t
we have an aqueous solution containing sodium
chloride coexisting with pure ice.  If the two
phases are at equilibrium, then the chemical
potential of water in ice must equal that of wa-
ter in the solution, i.e.:

� 

µH 2O

ice
= µH 2O

aq
3.58

(we are using subscripts to denote the compo-
nent, and superscripts to denote the phase; a q
denotes the liquid aqueous solution).  We de-
fine our standard state as that of the pure sub-
stance.  According to equ. 3.48, the chemical po-
tential of water in the solution can be expressed
as:

� 

µH 2O

aq
= µH 2O

o
+ RT ln aH 2O

aq
3.59

µ
H2O
o denotes the chemical potential of pure

liquid water.  Substituting 3.59 into 3.58 and
rearranging, we have:

� 

µH 2O

ice
!µH 2O

o,aq
= RT lnaH2O

aq
3.60

  Ice will incorporate very little salt; if we as-
sume it is a pure phase, we may write 3.60 as:

� 

µH 2O

o,ice
!µH 2O

o,aq
= RT lnaH2O

aq
3.60a

or

� 

µH 2O

o,aq
!µH 2O

o,ice
= !RT lnaH 2O

aq
3.61

(The order is important: equation 3.60a de-
scribes the freezing process, 3.61 the melting
process.  These processes will have equal and
opposite entropies, enthalpies, and free ener-
gies).  The left hand side of 3.61 is the Gibbs
Free Energy of melting for pure water, which
we denote as !G

m
o  (!G

m
o  is 0 at the melting

temperature of pure water, which we denote
T
m
o , but non-zero at any other temperature).

We may rewrite 3.61 as:

� 

"Gm

o
= !RT lnaH 2O

aq
3.62

If we assume that !H and !S are independent
of temperature (which is not unreasonable over
a limited temperature range) and we assume
pressure is constant as well, the left hand side
of the equation may also be written as:

� 

"Gm

o
= "Hm

o
! T"Sm

o
3.63

 Substituting 3.63 into 3.62:

� 

"Hm

o
! T"Sm

o
= !RT lnaH 2O

aq
3.64

At the melting temperature of pure water,
!G

m
o is zero, so that:

� 

"Hm

o
= Tm

o
"Sm

o

Substituting this into 3.64 and rearranging:

� 

"Sm
o
Tm

o
! T( ) = !RT lnaH 2O

aq
3.65

Further rearrangement yields:

� 

Tm
o

T
!1 =

!R

"Sm
o lnaH 2O

aq

For a reasonably dilute solution, the activity
of water will approximately equal its mole
fraction, so that:

� 

Tm
o

T
!1 =

!R

"Sm
o ln XH 2O

aq
3.66

The entropy of melting is always positive and
since X is always less than 1, the left hand side
of 3.66 must always be positive.  Thus the ratio
T
m
o /T must always be greater than 1.  So the

temperature at which an aqueous solution will
freeze will always be less than the melting
point of pure water.  Salting of roads is not a
question of geochemical interest, but there are
many examples of depression of the freezing
point of geological interest.  For example, the
freezing point of the ocean is about –2° C.  And
this phenomenon is important in igneous pe-
trology, as we shall see in the next chapter.  A
related phenomenon of geological interest is
elevation of the boiling point of a liquid: for
example hydrothermal solutions boil at tem-
peratures significantly above that of pure wa-
ter.  Can you demonstrate that elevation of the
boiling point of an ideal solution depends only
on the mole fraction of the solute?
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3.7 Electrolyte Solutions 
 Electrolyte solutions are solutions in which the 
solute dissociates to form ions, which facilitate elec-
tric conduction.  Seawater is an obvious example of a 
natural electrolyte solution, but all natural waters are 
also electrolytes, though generally more dilute ones.  
These solutions, which Lavoisier* called the “rinsings 
of the Earth” are of enormous importance in many 
geologic processes. 

3.7.1 The Nature of Water and Water-
Electrolyte Interaction 

 There is perhaps no compound more familiar to 
us than H2O.  Common place though it might be, 
H2O is the most remarkable compound in nature.  Its 
unusual properties include: the highest heat capacity 
of all solids and liquids except ammonia, the highest 
latent heat of vaporization of all substances, the 
highest surface tension of all liquids, its maximum 
density is at 4° C, with density decreasing below that 
temperature (negative coefficient of thermal ex-
pansion), the solid form is less dense than the liquid 
(negative Clapeyron slope), and finally, it is the best 
solvent known, dissolving more substances and in 
greater quantity than any other liquid.  We will di-
gress here briefly to consider the structure and prop-
erties of H2O and the nature of water-electrolyte in-
teractions from a microscopic perspective. 
 Many of the unusual properties of water arise 
from its non-linear polar structure, which is illus-
trated in Figure 3.9a.  The polar nature of water gives rise to van der Waals forces and the hydrogen 
bond discussed in Chapter 1.  The hydrogen bond, which forms between hydrogens and the oxygens of 
adjacent molecules, imposes a dynamic partial structure on liquid water (Fig. 3.9b).  These bonds con-
tinually break and new ones reform, and there is always some fraction of unassociated molecules.  On 
average, each water molecule is coordinated by 4 other water molecules.  When water boils, all hy-
drogen bonds are broken.  The energy involved in breaking these bonds accounts for the high heat of 
vaporization. 
 The dissolving power of water is due to its dielectric nature.  A dielectric substance is one that re-
duces the forces acting between electric charges.  When placed between two electrically charged plates 
(a capacitor), water molecules will align themselves in the direction of the electric field.  As a result, the 
molecules oppose the charge on the plates and effectively reduce the transmission of the electric field.  
The permittivity, ε, of a substance is the measure of this effect.  The relative permittivity, or dielectric con-
stant, εr, of a substance is defined as the ratio of the capacitance observed when the substance is placed 
between the plates of a capacitor to the capacitance of the same capacitor when a vacuum is present be-
tween the plates:  

  !
r
=

!

!
o

 3.67 

                                                
*Antoine Lavoisier (1743-1794) laid the foundations of modern chemistry in his book, Traité de Elémentaire de Chemie, 
published in 1789.  He died at the guillotine during the French Revolution. 

aa

a

b

H

H
H

H

H

H

H

H
HO

H

H

H

O

O

O

O
O

O

O

O

O

O

H
H

H

H

H

H

H

H

H

H

108°+ +
H H

O

-

 

Figure 3.9. (a.) Structure of the water molecule.  
Bond angle in the liquid phase is 108°, 105° in 
the gas.  The hydrogens retain a partial positive 
charge and the oxygen retains a partial positive 
charge.  (b.) Partial structure present in liquid 
water.  Lines connecting adjacent molecules 
illustrate hydrogen bonds. 
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where ε0 is the permittivity of a vacuum (8.85 × 10-12 
C2/J m).  The relative permittivity of water is 78.54 at 
25°C and 1 atm.  For comparison, the relative permit-
tivity of methane, a typical non-polar molecule, is 1.7. 
 Water molecules surrounding a dissolved ion will 
tend to align themselves to oppose the charge of the 
ion.  This insulates the ion from the electric field of 
other ions.  This property of water accounts in large 
measure for its dissolving power.  For example, we 
could easily calculate that the energy required dis-
sociate NaCl (i.e., the energy required to move Na+ 
and Cl– ions from their normal interatomic distance in 
a lattice, 2.36Å to infinite separation) is about 585 
kJ/mol.  Because water has a dielectric constant of 
about 80, this energy is reduced by a factor of 80, so 
only 7.45 kJ are required for dissociation. 
 The charged nature of ions and the polar nature of 
water result in the solvation of dissolved ions.  Imme-
diately adjacent to the ion, water molecules align 
themselves to oppose the charge on the ion, e.g., the 
oxygen of the water molecule will be closest to a 
cation (Figure 3.10).  These water molecules are called 
the first solvation shell or layer and they are effectively 
bound to the ion, moving with it as it moves.  Beyond 
the first solvation shell is a region of more loosely 
bound molecules that are only partially oriented, 
called the second solvation shell or layer.  The boundary of this latter shell is diffuse: there is no sharp 
transition between oriented and unaffected water molecules.  The energy liberated, called the solvation 
energy, in this process is considerable.  For NaCl, for example, it is -765 kJ/mol (it is not possible to de-
duce the solvation energies of Na+ and Cl– independently).  The total number of water molecules bound 
to the ion is called the solvation number.  Solvation effectively increases the electrostatic radius of cations 
by about 0.9 Å and of anions by about 0.1Å per unit of charge.   
 An additional effect of solvation is electrostriction.  Water molecules in the first solvation sphere are 
packed more tightly than they would otherwise be.  This is true, to a lesser extent, of molecules in the 
secondary shell.  In addition, removal of molecules from the liquid water structure causes partial col-
lapse of this structure.  The net effect is that the volume occupied by water in an electrolyte solution is 
less than in pure water, which can lead to negative apparent molar volumes of solutes, as we shall see.  
The extent of electrostriction depends strongly on temperature and pressure. 
 A final interesting property of water is that some fraction of water molecules will autodissociate.  In 
pure water at standard state conditions, one in every 10-7 molecules will dissociate to form H+ and OH– 
ions.  Although in most thermodynamic treatments the protons produced in this process are assumed 
to be free ions, most will combine with water molecules to form H3O+ ions.  OH+ is called the hydroxl 
ion; the H3O+ is called hydronium. 

3.7.2 Some Definitions and Conventions 

 The first two terms we need to define are solvent and solute.  Solvent is the substance present in 
greatest abundance in a solution; in the electrolyte solutions the we will discuss here, water is always 
the solvent.  Solute refers to the remaining substances present in solution.  Thus in seawater, water is 
the solvent and NaCl, CaSO4, etc., are the solutes.  We may also refer to the individual ions as solutes. 

 

Figure 3.10.  Solvation of a cation in aqueous 
solution.  In the first solvation shell, water 
molecules are bound to the cation and ori-
ented so that the partial negative charge on 
the oxygen faces the cation.  In the second 
solvation shell molecules are only loosely 
bound and partially oriented. 



W. M. White  Geochemistry 

 Chapter 3: Solutions   
 

 82 September 26, 2005 

3.7.2.1 Concentration Units 

  Geochemists concerned with aqueous solutions commonly use a variety of concentration units other 
than mole fraction.  The first is molality (abbreviated as lower-case m), which is moles of solute per kg of 
solvent (H2O).  Molality can be converted to moles solute per moles solvent unit by dividing by 55.51 
mol/kg.  A second unit is molarity (abbreviated as uppercase M), which is moles of solute per liter of solu-
tion.  To convert molality to mole fraction, we would divide by the molecular weight of solvent and use 
the rational activity coefficient.  Natural solutions are often sufficiently dilute that the difference be-
tween molality and molarity is trivial (seawater, a relatively concentrated natural solution, contains 
only 3.5 weight percent dissolved solids).   Another common unit is weight fraction (i.e., grams per 
gram solution), which may take several forms, such as weight percentage, parts per thousand or parts 
per million (abbreviated %, ppt or ‰, ppm or mg/kg).  To convert to mole fraction, one simply divides 
the weight of solute and H2O by the respective molecular weights.   

3.7.2.2 pH 

 One of the most common parameters in aqueous geochemistry is pH.  pH is defined as the negative 
logarithm of the hydrogen ion activity: 
  pH ! " loga

H
+  3.68 

3.7.2.3 Standard State and Other Conventions 

 The first problem we must face in determining activities in electrolyte solutions is specifying the 
standard state.  With gases, the standard state is generally the pure substance (generally at 298 K and 1 
atm), but this is generally not a reasonable choice for electrolytes.  A NaCl solution will become satu-
rated at about 0.1 XNaCl, and crystalline NaCl has very different properties from NaCl in aqueous solu-
tion.  By convention, a hypothetical standard state of unit activity at 1 molal concentration is chosen: 
 a° = m = 1 3.69 
Activity is generally given units of molality in this case (it is dimensionless as we defined it in equation 
3.45), so that in this hypothetical standard state, activity equals molality.  The standard state is hypo-
thetical because, for most electrolytes, the activity will be less than 1 in a 1 m (molal) solution.  Because 
the standard state generally is unattainable in reality, we must also define an attainable reference state, 
from which experimental measurements can be extrapo-
lated.  By convention, the reference state is that of an infi-
nitely dilute solution, i.e., the Henry’s Law state.  For mul-
ticomponent solutions, we also specify that the concen-
trations of all other components be held constant.  Hence 
the reference state is: 

  lim
m!0

ai

mi

= 1!(mj !constant)  3.70 

This convention is illustrated in Figure 3.11.  In such so-
lutions, the activity coefficient can be shown to depend 
on the charge of the ion, its concentration, and the con-
centration of other ions in the solution as well as tem-
perature and other parameters of the solute.  Comparing 
3.70 with equations 3.46 and 3.48, we see that under 
these conditions, the activity coefficient is 1.  By re-
ferring to infinite dilution, we are removing the effect of 
solute-solute interactions.  The standard state properties 
of an electrolyte solution therefore only take account of 
solvent-solute interactions. 

 
Figure 3.11.  Relationship of activity and 
molality, reference state, and standard state 
for aqueous solutions.  After Nordstrom and 
Munoz (1986). 
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 Clearly, it is impossible to measure the properties of the solute, 
such as chemical potential or molar volume, at infinite dilution.  
In practice, this problem is overcome by measuring properties at 
some finite dilution and extrapolating the result to infinite dilu-
tion.  Indeed, even at finite concentrations, it is not possible to 
measure directly many properties of electrolytes.  Volume is a 
good example.  One cannot measure the volume of the solute, but 
one can measure the volume change of the solution as a function 
of concentration of the solute.  Then by assuming that the partial 
molar volume of water does not change, a partial molar volume 
of the solute can be calculated.  This is called the apparent molar 
volume, V

–
 A.  The apparent molar volume of NaCl as a function of 

molarity is shown in Figure 3.12.  In essence, this convention as-
signs all deviations from non-ideality to the solute, and allow us 
to use the partial molar volume of pure water in the place of the 
true, but unknown, molar volume of water in the solution.  Thus 
the volume of NaCl solution is given by: 
  V = nwVw + nNaClVNaCl

aq  3.71 
 This convention leads to some interesting effects.  For exam-
ple, the apparent molar volume of magnesium sulfate increases 
with pressure, and many other salts, including NaCl (Fig. 3.13), 
exhibit the same behavior.  Just as curiously, the apparent molar 
volume of sodium chloride in saturated aqueous 
solution becomes negative above ~200° C (Figure 
3.13).  Many other salts show the same effect.  
These examples emphasize the “apparent” nature 
of molar volume when defined in this way.  Of 
course, the molar volume of NaCl does not actually 
become negative; rather this is result of the interac-
tion between Na+ and Cl– and H2O (electrostriction) 
and the convention of assigning all non-ideality to 
sodium chloride. 
 The concentration of a salt consisting of νA 
moles of cation A and νB moles of cation B is re-
lated to the concentration of its constituent ionic 
species as: 
  mA=νAmAB  
and mB = νBmAB 3.72 
By convention, the thermodynamic properties of 
ionic species A and B are related to those of the salt AB by: 
  ΨAB ≡ νAΨA + νBΨB 3.73 
where Ψ is some thermodynamic property.  Thus the chemical potential of MgCl2 is related to that of 
Mg2+ and Cl– as: 
  µMgCl2 = µMg+ + 2 × µCl-  
The same holds for enthalpy of formation, entropy, molar volume, etc. 
   A final important convention is that the partial molar properties and energies of formation for the proton 
are taken to be zero under all conditions. 

 
Figure 3.12.  Apparent molar vol-
ume of NaCl in aqueous solution 
as a function of molality.  The stan-
dard molar volume, V°, is the ap-
parent molar volume at infinite di-
lution. 

 
Figure 3.13.  Standard molar volume of NaCl in 
aqueous solution as a function of temperature 
and pressure. 
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3.7.3 Activities in Electrolytes 

 The assumption we made for ideal solution behavior was that interactions between molecules (spe-
cies might be a better term in the case of electrolyte solutions) of solute and molecules of solvent were 
not different from those interactions between solvent ions only.  In light of the discussion of aqueous 
solutions earlier, we can see this is clearly not going to be the case for an electrolyte solution.  We have 
seen significant deviations from ideality even where the components have no net charge (e.g., water-
ethanol); we can expect greater deviations due to electrostatic interactions between charged species. 
 The nature of these interactions suggests that a purely macroscopic viewpoint, which takes no ac-
count of molecular and ionic interactions, may have severe limitations in predicting equilibria in-
volving electrolyte solutions.  Thus chemists and geochemists concerned with the behavior of elec-
trolytes have had to incorporate a microscopic viewpoint into electrolyte theory.  On the other hand, 
they did not want to abandon entirely the useful description of equilibria based on thermodynamics.  
We have already introduced concepts, the activity and the activity coefficient, which allow us to treat 
non-ideal behavior within a thermodynamic framework.  The additional task imposed by electrolyte solu-
tions, and indeed all real solutions, therefore, is not to rebuild the framework, but simply to determine activities 
from readily measurable properties of the solution.   The dependence of all partial molar properties of a sol-
ute on concentration can be determined once the activity coefficient and its temperature and pressure 
dependence are known.  

3.7.3.1 The Debye-Hückel and Davies Equations 

 Both solvent-solute and solute-solute interactions in electrolytes give rise to excess free energies and 
non-ideal behavior.  By developing a model to account for these two kinds of interactions, we can de-
velop an equation that will predict the activity of ions in electrolyte solution. 
 In an electrolyte solution, each ion will exert an electrostatic force on every other ion.  These forces 
will decrease with the increase square of distance between ions.  The forces between ions will be re-
duced by the presence of water molecules, due to its dielectric nature.  As total solute concentration in-
creases, the mean distance between ions will decrease.  Thus we can expect that activity will depend on 
the total ionic concentration in the solution.  The extent of electrostatic interaction will also obviously 
depend on the charge of the ions involved: the force between Ca2+ and Mg2+ ions will be greater at the 
same distance than between Na+ and K+ ions. 
 In the Debye-Hückel Theory (Fig. 3.14), a given ion is considered to be surrounded by an atmo-
sphere or cloud of oppositely charged ions (this atmos-
phere is distinct from, and unrelated to, the solvation 
shell).  If it were not for the thermal motion of the ions, 
the structure would be analogous to that of a crystal lat-
tice, though considerably looser.  Thermal motion, how-
ever, tends to destroy this structure.  The density of 
charge in this ion atmosphere increases with the square 
root of the ionic concentrations, but increases with the 
square of the charges on those ions.  The dielectric effect of 
intervening water molecules will tend to reduce the in-
teraction between ions.  Debye–Hückel Theory also as-
sumes that: 

• all electrolytes are completely dissociated into ions, 
• the ions are spherically symmetrical charges (hard 

spheres), 
• the solvent is structureless; the sole property is its 

permittivity, 
• the thermal energy of ions exceeds the electrostatic 

interaction energy. 
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Figure 3.14.  An ion surrounded by a cloud 
of oppositely charged ions, as assumed in 
Debye-Hückel Theory. 
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 With these assumptions, Debye and Hückel (1923) used the Poisson–Boltzmann equation, which de-
scribes the electrostatic interaction energy between ion and a cloud of opposite charges, to derive the 
following relationship (see Morel and Hering, 1993 for the full derivation): 

 

� 

log10 ! i =
"Az

i

2
I

1+ Bå
i
I

 3.74 

I is ionic strength, in units of molality or molarity, calculated as:    

  

� 

I =
1

2
m jz j

2

j

!  3.75 

where m is the concentration and z the ionic charge.  The parameter å is known as the hydrated ionic ra-
diu, or effective radius (significantly larger than the radius of the same ion in a crystal).  A and B con-
stants known as solvent parameters and are functions of T and P. Equation 3.74 is known as the Debye-
Hückel Extended Law; we will refer to it 
simply as the Debye-Hückel Equation.  Table 
3.2a summarizes the Debye-Hückel solvent 
parameters over a range of temperature 
and Table 3.2b gives values of å for a num-
ber of ions. 
 For very dilute solutions, the denom-
inator of equation 3.74 approaches 1 (be-
cause I approaches 0), hence equation 3.74 
becomes: 
  log10 ! i

= "Az
i

2
I  3.76 

This equation is known as the Debye-Hückel 
Limiting Law (so called because it applies in 
the limit of very dilute concentrations). 
 Davies (1938, 1962) introduced an em-
pirical modification of the Debye-Hückel 
equation.  Davies equation is: 

log10 ! i
= "Az

i

2 I

1+ I
" bI

#

$
%

&

'
(  3.77 

where A is the same as in the Debye-
Hückel equation and b is an empirically de-
termined parameter with a value of around 
0.3.  It is instructive to see how the activity 
coefficient of Ca2+ would vary according to 
Debye-Hückel and Davies equations if we 
vary the ionic strength of the solution.  This 
variation is shown in Figure 3.15.  The Da-
vies equation predicts that activity coeffi-
cients begin to increase above ionic 
strengths of about 0.5 m.  For reasons dis-
cussed below and in greater detail in Chap-
ter 4, activity coefficients do actually in-
crease at higher ionic strengths.  On the 
whole, the Davies equation is slightly more 
accurate for many solutions at ionic 
strengths in the range of 0.1 to 1 m.  Be-

Table 3.2a Debye-Hückel Solvent Parameters 
T °C A B (108 cm) 

 0 0.4911 0.3244 
 25 0.5092 0.3283 
 50 0.5336 0.3325 
 75 0.5639 0.3371 
 100 0.5998 0.3422 
 125 0.6416 0.3476 
 150 0.6898 0.3533 
 175 0.7454 0.3592 
 200 0.8099 0.3655 
 225 0.8860 0.3721 
 250 0.9785 0.3792 
 275 1.0960 0.3871 
 300 1.2555 0.3965 
from Helgeson and Kirkham (1974). 

Table 3.2b Debye-Hückel Effective Radii 

 Ion å (10–8 cm) 

Rb+, Cs+, NH+, Ag 2.5 
K+, Cl–, Br–, I–, NO

3

–  3 
OH–, F–, HS–, BrO

3

– , IO
4

– , MnO
4

–  3.5 
Na+, HCO

3

– , H2PO
4

– , HSO
3

– , SO
4

2 ! , HPO
3

2 ! , PO
3

3!  4.0-4.5 
Pb2+, CO

3

2 ! , SO
3

2 ! , 4.5 
 Sr2+, Ba2+,  Cd2+, Hg2+, S2– 5 

Li+, Ca2+, Cu2+, Zn2+, Sn2+,  Mn2+,  Fe2+,  Ni2+ 6 
Mg2+, Be2+  8 
H+, Al3+, trivalent rare earths 9 
Th4+, Zr4+, Ce4+  11 
from Garrels and Christ (1982). 
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cause of this, as well as its simplicity, 
the Davies equation is widely used. 

3.7.3.2 Limitations to the Debye–
Hückel Approach 

 None of the assumptions made by 
Debye and Hückel hold in the absolute.  
Furthermore, the Poisson-Boltzmann 
equation provides only an approximate 
description of ion interactions, and De-
bye and Hückel used an approximate 
solution of this equation.  Thus we 
should not expect the Debye-Hückel 
equations to provide an exact prediction 
of activity coefficients under all condi-
tions. 
 Perhaps the greatest difficulty is the 
assumption of complete dissociation.  
When ions approach each other closely, 
the electrostatic interaction energy ex-
ceeds the thermal energy, which vio-
lates the assumption made in the ap-
proximate solution of the Poisson-Boltzmann equation.  In this case, the ions are said to be associated.  
Furthermore, the charge on ions is not spherically symmetric and this asymmetry becomes increasingly 
important at short distances.  Close approach is obviously more likely at high ionic strength, so not 
surprisingly the Debye-Hückel equation breaks down at high ionic strength. 
 We can distinguish two broad types of ion associations: ion pairs and complexes.  These two classes 
actually form a continuum, but we will define a complex as an association of ions in solution that in-
volves some degree of covalent bonding (i.e., electron sharing).  Ion pairs, on the other hand, are held 
together purely by electrostatic forces.  We will discuss formation of ion pairs and complexes in greater 
detail in subsequent chapters.  Here we will attempt to convey only a very qualitative understanding of 
these effects. 
 An ion pair† can be considered to have formed when ions approach closer than some critical dis-
tance where the electrostatic energy, which tends to bind them, exceeds twice the thermal energy, 
which tends to move them apart.  When this happens, the ions are electrostatically bound and their mo-
tions are linked.  This critical distance depends on the charge of the ions involved and is therefore much 
greater for highly charged ions than for singly charged ones.  As we will show in Chapter 4, ion pairs 
involving singly charged ions will never form, even at high ionic strengths.  On the other hand, multi-
ply charged ions will tend to form ion pairs even at very low ionic strengths. 
 Formation of ion pairs will cause further deviations from ideality.  We can identify two effects.  First, 
the effective concentration, or activity, of an ionic species than forms ionic associations will be reduced.  
Consider, for example, a pure solution of CaSO4.  If some fraction, α, of Ca2+ and SO

4

2 ! ions forms ion 
pairs, then the effective concentration of Ca2+ ions is: 
  [Ca2+]eff = [Ca2+]tot (1 – α) 
(here we follow the usual convention of using brackets to denote concentrations).  The second effect is 
on ionic strength.  By assuming complete dissociation, we similarly overestimate the effective concen-
tration in this example by a factor of (1 – α). 

                                                
† The term ion pair is a bit of a misnomer because such associations can involve more than two ions.  In concentrated 
solutions, ion pairs may consist of a cation plus several anions. 

 
Figure 3.15. Variation of the Ca2+ activity coefficient with 
ionic strength according to the Debye-Hückel (black solid 
line) and Davies equations (red dashed line). 
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 A second phenomenon that causes devia-
tions from ideality not predicted by Debye-
Hückel is solvation.  As we noted, an ion in 
aqueous solution are surrounded by a 
sphere of water molecules that are bound to 
it.  Since those water molecules bound to the 
ion are effectively unavailable for reaction, 
the activity of water is reduced by the frac-
tion of water molecules bound in solvation 
shells.  This fraction is trivial in dilution so-
lutions, but is important at high ionic 
strength.  The result of this effect is to in-
crease the activity of ions. 
 Despite these problems, Debye-Hückel 
has proved to be remarkably successful in 
predicting activity coefficients in dilute so-
lution.  The extended Debye-Hückel Equa-
tion (Equation 3.74) is most useful at concen-

trations less than 0.1 M, which includes many natural waters and provides adequate approximation for 
activity coefficients up to ionic strengths of about 1 M, which would include most solutions of geo-
logical interest, including seawater.  As we noted above, the Davies equation is slightly more accurate 
in the range of 0.1 to 1 M ionic strength.  Above these concentrations, both the Davies and Debye-
Hückel equations are increasingly inaccurate.  There are thus a variety of geological solutions for which 
the Debye-Hückel and Davies equations cannot be used, including hydrothermal solutions, highly sa-
line lakes, formation brines, and aerosol particles.  Figure 3.16 summarizes the typical ionic strengths of 
natural solutions and the applicability of these equations.  The Debye-Hückel Limiting Law is useful 
only for very dilution solutions, less than 10-5 mol/kg, which is more dilute than essentially all solu-
tions of geological interest.  We will consider several methods of estimating activities in higher ionic 
strength solutions in Chapter 4. 

3.8 Ideal Solid Solutions and Their Activities 
 When we deal with solid solutions, we are again faced with the inadequacy of the purely macro-

 
Figure 3.16.  Ionic strength of natural electrolyte solu-
tions and the applicability of the Debye-Hückel and 
Davies equations. 

Example ! 3.3: ! Calculating ! Activities
Using !the !Debye-Hückel !Equation

Given the composition for the average
river water in column A in the adjacent table,
calculate the activity of the Ca2+ ion at 25° C
using the Debye-Hückel equation.
Answer:  Our first step is to convert these

concentrations to molality by dividing by the
respective molecular weights.  We obtain the
molal concentrations in column B.  We also

need to compute z2 (column C), and the product z2m (column D).  Using equation 3.75, we calculate
the ionic strength to be 0.00202 m. (note, one  must use the ionic strength in molal or molar, and
not millimolar, units in the Debye-Hückel Equation.
 We substitute this value for I, then find å = 6, A = 0.5092, and B = 0.3283 in Table 3.1, and
obtain a value for the activity coefficient of 0.8237, and an activity of 0.308 !10-3 m.  If we did
the calculation for other temperatures, we would see that for a dilute solution such as this, the
activity coefficient is a only weak function of temperature, decreasing to 0.625 at 300° C.

A B C D
Ion g/kg mol/kg ! 103 z2 mz2 ! 103

Cl– 0.0078 0.2201 1 0.2201
SO

4

2 " 0.0112 0.1167 4 0.4667
HCO

3

– 0.0583 0.9557 1 0.9557
Mg2+ 0.0041 0.1687 4 0.6746
Ca2+ 0.015 0.3742 4 1.4970
K+ 0.0023 0.0588 1 0.0588
N a+ 0.0041 0.1782 1 0.1782
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scopic approach of classical thermodynamics.  There is little disadvantage to this approach for gases, 
where the arrangement of molecules is chaotic.  But the crystalline state differs from that of gases in 
that the arrangement of atoms in the crystal lattice is highly ordered, and the properties of the crystal 
depend strongly on the nature of the ordering.  For this reason, we cannot afford to ignore the ar-
rangement of atoms in solids, particularly with respect to solutions. 
 Solid solutions differ from those of gases and liquids in several respects.  First, solution in the solid 
state inevitably involves substitution.  While we can increase the concentration of HCl in water simply 
by adding HCl gas, we can only increase the concentration of Fe in biotite solid solution if we si-
multaneously remove Mg.  Second, solid solutions involve substitution at crystallographically distinct 
sites.  Thus in biotite a solid solution between phlogopite (KMg3AlSi3O10(OH)2) and annite 
(KFe3AlSi3O10(OH)2) occurs as Fe2+ replaces Mg2+ in the octahedral site; the tetrahedral Si site and the 
anion (O) sites remain unaffected by this substitution.  Third, substitution is often coupled.  For exam-
ple, the solid solution between anorthite (CaAl2Si2O8) and albite (NaAlSi3O8) in plagioclase feldspar in-
volves not only the substitution of Na+ for Ca2+, but also the substitution of Al3+ for Si4+.  The anorthite-
albite solution problem is clearly simplified if we choose anorthite and albite as our components rather 
than Na+, Ca2+, Al3+ and Si4+.   Such components are known as phase components.  Choosing pure phase 
end members as components is not always satisfactory either because substitution on more than one 
site is possible, leading to an unreasonably large number of components, or because the pure phase 
does not exist and hence its thermodynamic properties cannot be measured. 
 However we choose our components, we need a method of calculating activities that takes account 
of the ordered nature of the crystalline state.  Here we will discuss two ideal solution models of crys-
talline solids.  We tackle the problem of non-ideal solid solutions in Chapter 4. 

3.8.1 Mixing on Site Model 

 Many crystalline solids can be successfully treated as ideal solutions.  Where this is possible, the 
thermodynamic treatment and assessment of equilibrium are greatly simplified.  A simple and often 
successful model that assumes ideality but takes account of the ordered nature of the crystalline state is 
the mixing on site model, which considers the substitution of species in any site individually.  In this 
model, the activity of an individual species is calculated as: 
  ai,ideal = (Xi)ν 3.78 
where X is the mole fraction of the ith atom and ν is the number of sites per formula unit on which mix-
ing takes place.  For example, ν=2 in the Fe-Mg exchange in olivine, (Mg,Fe)2SiO4.  One trick to sim-
plifying this equation is to pick the formula unit such that ν = 1.  For example, we would pick 
(Mg,Fe)Si1/2O2 as the formula unit for olivine.  We must then consistently choose all other thermody-
namic parameters to be 1/2 those of (Mg,Fe)2SiO4. 
 The entropy of mixing is given by: 

  !Sideal mixing = "R nj Xi, j ln Xi, j

i

#$
%&

'
()j

#  3.79 

where the subscript j refers to sites and the subscript i refers to components, and n is the number of 
sites per formula unit.  The entropy of mixing is the same as the configurational entropy, residual en-
tropy, or ‘third law entropy’, i.e., entropy when T = 0 K.  For example, in clinopyroxene, there are two 
exchangeable sites, a sixfold-coordinated M1 site, (Mg, Fe+2, Fe+3, Al+3), and an eightfold-coordinated 
M2 site (Ca+2, Na+).  Here j ranges from 1 to 2 (e.g., 1 = M1, 2 = M2), but n = 1 in both cases (because 
both sites accept only one atom).  i must range over all present ions in each site, so in this example, i 
ranges from 1 to 4 (1 = Mg, 2 = Fe2+, etc.) when j=1 and from 1 to 2 when j = 2.  Since we have assumed 
an ideal solution, ∆H = 0 and ∆Gideal = –T∆S.  In other words, all we need is temperature and equ. 3.91 to 
calculate the free energy of solution. 
 In the mixing-on-site model, the activity of a phase component in a solution, for example pyrope in 
garnet, is the product of the activity of the individual species in each site in the phase: 
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  a! = X
"
i

i

#  3.80 

where af is the activity of phase component φ, i are the components of pure φ, and νi is the stoichio-
metric proportion of i in pure φ.  For example, to calculate the activity of aegirine (NaFe3+Si2O6) in ae-
girine-augite ([Na,Ca][Fe3+,Fe2+,Mg]Si2O6), we would calculate the product: XNaXFe3+.  Note that it would 
not be necessary to include the mole fractions of Si and O, since these are 1.  
 A slight complication arises when more than one ion occupies a structural site in the pure phase.  
For example, suppose we wish to calculate the activity of phlogopite (KMg3Si3AlO10(OH)2) in a biotite of 
composition K0.8Ca0.2(Mg0.17Fe0.83)3Si2.8Al1.2O10(OH)2.  The tetrahedral site is occupied by Si and Al in the 
ratio of 3:1 in the pure phase end members.  If we were to calculate the activity of phlogopite in pure 
phlogopite using equation 3.80, the activities in the tetrahedral site would contribute only X4

Si X
4
Al  = 

(0.75)3(0.25)1 = 0.1055 in the pure phase.  So we would obtain an activity of 0.1055 instead of 1 for 
phlogopite in pure phlogopite.  Since the activity of a phase component must be one when it is pure, we 
need to normalize the result.  Thus we apply a correction by multiplying by the raw activity we obtain 
from 3.92 by 1/(0.1055) = 9.481, and thus obtain an activity of phlogopite of 1. 

3.8.2 Local Charge Balance Model 

 Yet another model for the calculation of activities in ideal solid solutions is the local charge balance 
model.  A common example is the substitution of Ca for Na in the plagioclase solid solution 

(NaAlSi3O8—CaAl2Si2O8).  To maintain charge balance, the substitution of Ca2+ for Na+ in the octahedral 
site requires substitution of Al3+ for Si4+ in the tetrahedral site to maintain local charge balance.  In this 
model, the activity of the end-member of phase component is equal to the mole fraction of the compo-
nent (see Example 3.5).  

Example 3.4. Calculating Activities Using the Mixing on Site Model 
 Sometimes it is desirable to calculate the activities of pure end member components in solid solu-
tions.  Garnet has the general formula X3Y2Si3O12.  Calculate the activity of pyrope, Mg3Al2Si3O12, in a 
garnet solid solution of composition: 

  Mg.382Fe2.316
2+ Mn.167Ca.156 Al1.974Fe.044

3+ Si3O12 
Answer:  The chemical potential of pyrope in garnet contains mixing contributions from both Mg in the 
cubic site and Al in the octahedral site: 

  

� 

µ py

gt
= µ py

o
+ 3RT ln XMg + 2RT lnXAl = RT ln(XMg

3
XAl

2
)  

The activity of pyrope is thus given by: 
  

� 

apy
gt

= X py

gt
= XMg

3

XAl

2  
In the example composition above, the activity of Mg is: 

  

� 

aMg = XMg

3
=

[Mg]

[Mg] + [Fe
2 +

] + [Mn] + [Ca]

! 

" 
# 

$ 

% 
& = 0.126

3
= 0.002  

and that of Al is: 

� 

a
Al

= X
Al

2
=

[Al]

[Al] + [Fe
3+

]

! 

" 
# 

$ 

% 
& = 0.976

2
= 0.956  

The activity of pyrope in the garnet composition above is 0.002 x 0.956 = 0.00191.  There is, of course, no 
mixing contribution from the tetrahedral site because it is occupied only by Si in both the solution and 
the pure pyrope phase. 
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3.9 Equilibrium Constants 
 Now that we have introduced the concepts of activity and activity coefficients, we are ready for one 
of the most useful parameters in physical chemistry: the equilibrium constant.  Though we can predict 
the equilibrium state of a system, and therefore the final result of a chemical reaction, from the Gibbs 
Free Energy alone, the equilibrium constant is a convenient and succinct way express this.  As we shall 
see, it is closely related to, and readily derived from, the Gibbs Free Energy. 

3.9.1 Derivation and Definition 

 Consider a chemical reaction such as: 
   aA + bB ® cC + dD 
carried out under isobaric and isothermal conditions. The Gibbs Free Energy change of this reaction can 
be expressed as: 
  ∆G = cµc + dµd – aµa – bµb 3.81 
At equilibrium, ∆G must be zero.  A general expression then is: 

Example ! 3.5: ! Activities ! Using ! the ! Local ! Charge ! Balance ! Model
Given the adjacent analysis of a plagioclase crystal, what are the ac-
tivities of albite and anorthite in the solution?

Answer:  According to the local charge balance model, the activity of
albite will be equal to the mole fraction of Na in the octahedral site.  To
calculate this, we first must convert the weight percent oxides to for-
mula units of cation.  The first step is to calculate the moles of cation
from the oxide weight percents.  First, we can convert weight percent
oxide to weight percent cation using the formula:

wt. % cation = wt % oxide !

atomic!wt.!cation!!!formula!units!cation!in!oxide

molecular!wt.!oxide  

Next, we calculate the moles of cation:   moles cation = 
wt!%!cation

!atomic!wt.!cation   

Combining these two equations, the ‘atomic wt. cation’ terms cancel and we have:

moles cation = wt % oxide ! 
formula!units!cation!in!oxide

molecular!wt.!oxide    

Next, we want to calculate the number of moles of each cation per formula unit.  A general formula for
feldspar is: XY4O8, where X is Na, K, or Ca in the ‘A’ site and Y is Al or Si in the tetrahedral site.  So
to calculate formula units in the ‘A’ site, we divide the number of moles of Na, K, and Ca by the sum
of moles of Na, K, and Ca.   To calculate formula units in the tetrahedral site, we divide the number
of moles of Al and Si by the sum of moles of A l
and Si and multiply by 4, since there are 4 ions in
this site.  Since the number of oxygens is constant,
we can refer to these quantities as the moles per 8
oxygens.  The table below shows the results of
these calculations.

The activity of albite is equal to the mole
fraction of Na, 0.07; the activity of anorthite is
0.93.

Plagioclase
Analysis

Oxide Wt. percent

SiO2 44.35
A l2O3 34.85
CaO 18.63
N a2O 0.79
K2O 0.05

Cation ! Formula ! Units

Mol. wt. moles moles per
oxide cation 8 oxygens

S i 60.06 0.7385 2.077
A l 101.96 0.6836 1.923
Ca 56.08 0.3322 0.926
N a 61.98 0.0255 0.071
K 94.2 0.0011 0.003  
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  !G = "
i
µ
i

i

# = 0  3.82 

where νi is the stoichiometric coefficient of species i.  Equilibrium in such situations need not mean that 
all the reactants (i.e., those phases on the left side of the equation) are consumed to leave only products.  
Indeed, this is generally not so.  Substituting 3.46 into 3.82 we obtain: 

  !
i
µ
i

o
+ RT !

i
lna

i

i

"
i

" = 0  3.83 

or:  

� 

!
i
µ
l

o
+ RT ln a

i

!
i

i

" = 0#  3.84 

The first term is simply the standard state Gibbs Free Energy change, ∆G°, for the reaction.  There can 
be only one fixed value of ∆G° for a fixed standard state pressure and temperature, and therefore of the 
activity products.  The activity products are therefore called the equilibrium constant K, familiar from 
elementary chemistry: 

  

� 

K = a
i

!
i

i

"  3.85 

Substituting 3.85 into 3.84 and rearranging, we see that the equilibrium constant is related to the Gibbs 
Free Energy change of the reaction by the equation: 

  !G
r

o
= "RT lnK  3.86 

 At this point, it is worth saying some more about 'standard states'.  We mentioned that one is free to 
choose a standard state, but there are pitfalls.  In general, there are two kinds of standard states, fixed 
pressure-temperature standard states and variable P-T standard states.  If you chose a fixed tempera-
ture standard state, then equation 3.86 is only valid at that standard-state temperature.  If you chose a 
variable-temperature standard state, then 3.86 is valid for all temperatures, but ∆G° is then a function of 
temperature.  The same goes for pressure.  

3.9.2 The Law of Mass Action 

 Let’s attempt to understand the implications of equation 3.85.  Consider the dissociation of carbonic 
acid, an important geological reaction:  
  H2CO3 = HCO

� 

3

–  + H+  
For this particular case, equation 3.85 is expressed as:  

  K =

a
HCO3

!a
H

+

a
H2CO3

  

The right side of the equation is a quotient, the product of the activities of the products divided by the 
product of the activities of the reactants, and is called the reaction quotient.  At equilibrium, the reaction 
quotient is equal to the equilibrium constant.  The equilibrium constant therefore allows us to predict 
the relative amounts of products and reactants that will be present when a system reaches equilibrium. 
 Suppose now that we prepare a beaker of carbonic acid solution; it’s not hard to prepare: we just al-
low pure water to equilibrate with the atmosphere.  Let’s simplify things by assuming that this is an 
ideal solution.  This allows us to replace activities with concentrations (the concentration units will dic-
tate how we define the equilibrium constant; see below).  When the solution has reached equilibrium, 
just enough carbonic acid will have dissociated so that the reaction quotient will be equal to the equi-
librium constant.  Now let’s add some H+ ions, perhaps by adding a little HCl. The value the reaction 
quotient increases above that of the equilibrium constant and the system is no longer in equilibrium.  
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Systems will always respond to disturbances by moving toward equilibrium (how fast they respond is 
another matter, and one that we will address in Chapter 5).   The system will respond by adjusting the 
concentrations of the 3 species until equilibrium is again achieved, in this case, hydrogen and bicarbon-
ate ions will combine to form carbonic acid until the reaction quotient again equals the equilibrium 
constant.  We can also see that had we reduced the number of hydrogen ions in the solution (perhaps 
by adding a base), the reaction would have been driven the other way: i.e., hydrogen ions would be 
produced by dissociation.  Equation 3.85 is known as the Law of Mass Action, which we can state more 
generally as: changing the concentration of one species to a system undergoing reaction will cause the reaction to 
be driven in a direction that minimizes that change. 

3.9.2.1 Le Chatelier’s Principle 

 We can generalize this principle to the effects of temperature and pressure as well.  Recall that: 

  !"G
r

!P
#
$%

&
'(
T

= "V  (2.129) and  !"G
r

!T
#
$%

&
'(
T

= )"S
r
 (2.130) 

and that systems respond to changes imposed on them by minimizing G. Thus a system undergoing re-
action will respond to an increase in pressure by minimizing volume.  Similarly, it will respond to an 
increase in temperature by maximizing entropy.  The reaction ice → water illustrates this.  If the pres-

Example 3.6. Manipulating Reactions and Equilibrium Constant Expressions 
 Often we encounter a reaction for which we have no value of the equilibrium constant.  In many 
cases, however, we can derive an equilibrium constant by considering the reaction of interest to be the 
algebraic sum of several reactions for which we do have equilibrium constant values.  For example, the 
concentration of carbonate ion is often much lower than that of the bicarbonate ion. In such cases, it is 
more convenient to write the reaction for the dissolution of calcite as: 
  CaCO3 + H2O ® Ca2+ + HCO

3

– + OH– 3.87 
Given the following equilibrium constants, what is the equilibrium constant expression for the above re-
action? 
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Answer: Reaction 3.87 can be written as the algebraic sum of three reactions: 
 + CaCO3 ® Ca2++ CO

3

2!  

 + H2O ® H+ + OH– 
 – HCO

3

–® H+ + CO
3

2!  
    
 CaCO3 – HCO

3

– + H2O ® Ca2++ OH– 

The initial inclination might be to think that if we can sum the reactions, the equilibrium constant of the 
resulting reaction is the sum the equilibrium constants of the components ones.  However, this is not the 
case.  Whereas we sum the reactions, we take the product of the equilibrium constants.  Thus our new 
equilibrium constant is: 

  

� 

K =
K

cal
K

H
2
O

K
2

 

For several reasons (chief among them is that equilibrium constants can be very large or very small num-
bers), it is often more convenient to work with the log of the equilibrium constant.  A commonly used 
notation is pK.  pK is the negative logarithm (base 10) of the corresponding equilibrium constant (note 
this notation is analogous to that used for pH).  The pK’s sum and our equilibrium constant expression is: 
  pK = pKcal – pKH2O – pK2 
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sure is increased on a system containing water and ice, the equilibrium will shift to favor the phase 
with the least volume, which is water (recall that water is unusual in that the liquid has a smaller molar 
volume than the solid).  If the temperature of that system is increased, the phase with the greatest molar 
entropy is favored, which is also water. 
 Another way of looking at the effect of temperature is to recall that: 

  

� 

!S "
!Q

T
  

Combining this with equation 2.130, we can see that if a reaction A + B → C + D generates heat, then in-
creasing the temperature will retard formation of the products, i.e., the reactants will be favored. 
 A general statement that encompasses both the law of mass action and the effects we have just dis-
cussed is then: 

When perturbed, a system reacts to minimize the effect of the perturbation. 
This is known as Le Chatelier’s Principle. 

3.9.3 KD Values, Apparent Equilibrium Constants, and the Solubility Product 

 It is often difficult to determine activities for phase components or species, and therefore it is more 
convenient to work with concentrations.  We can define a new 'constant', the distribution coefficient, 
KD, as: 
  K

D
= X

i

!
i

i

"  3.88 

KD is related to the equilibrium constant K as: 

  K
D
=
K

eq

K
!

 3.89 

where Kλ is simply the ratio of activity coefficients: 

  K! = !
i

"
i

i

#  3.90 

Distribution coefficients are functions of temperature and pressure, as are the equilibrium constants, 
though the dependence of the two may differ.  The difference is that KD values are also functions of 
composition. 
 An alternative to the distribution coefficient is the apparent equilibrium constant, which we define as: 

  K
app

= m
i

!i

i

"  3.91 K
app

=
K

eq

K!

 3.92 

with Kγ defined analogously to Kλ. The difference between the apparent equilibrium constant and the 
distribution coefficient is that we have defined the former in terms of molality and the latter in terms of 
mole fraction.  Igneous geochemists tend to use the distribution coefficient, aqueous geochemists the 
apparent equilibrium constant. 
 Another special form of the equilibrium constant is the solubility product.  Consider the dissolution of 
NaCl in water.  The equilibrium constant is: 

  K =

a
Naaq

+ a
Claq

!

aNaCls  where aq denotes the dissolved ion and s denotes solid.  Because the activity of NaCl in pure sodium 
chloride solid is 1, this reduces to: 
  K = a

Naaq
+ a

Claq
! = Ksp  3.93 
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where Ksp is called the solubility product.  You 
should note that it is generally the case in dis-
solution reactions such as this that we take the 
denominator, i.e., the activity of the solid, to be 
1. 

3.9.4 Henry’s Law and Gas Solubilities 

 Consider a liquid, water for example, in 
equilibrium with a gas, the atmosphere for ex-
ample.  Earlier in this chapter, we found that 
the partial pressure of component i in the gas 
could be related to the concentration of a com-
ponent i in the liquid by Henry’s Law: 
  Pi=hiXi (3.10) 
where h is Henry’s Law constant.  We can rear-
range this as: 

  h
i
=
P
i

X
i

 3.94 

 Notice that this equation is analogous in 
form to the equilibrium constant expression 
(3.88), except that we have used a partial pres-
sure in place of one of the concentrations.  A 
Henry’s Law constant is thus a form of equilib-
rium constant used for gas solubility: it relates 
the equilibrium concentration of a substance in 
a liquid solution to that component’s partial 
pressure in a gas. 

3.9.5 Temperature Dependence of Equilibrium Constant  

 Since   ∆G° = ∆H° – T∆S° and   

� 

!G
r

o = –RT ln K, it follows that in the standard state, the equilibrium 
constant is related to enthalpy and entropy change of reaction as: 

  lnK = !
"H

r

o

RT
+
"S

r

o

R
 3.95 

 Equation 3.95 allows us to calculate an equilibrium constant from fundamental thermodynamic 
data.  Conversely, we can estimate values for ∆S˚ and ∆H˚ from the equilibrium constant, which is read-
ily calculated if we know the activities of reactants and products.  Equation 3.95 has the form: 

Example 3.7: Using the Solubility Product. 
 The apparent (molar) solubility product of fluorite (CaF2) at 25˚ C is 3.9 × 10-11.  What is the con-
centration of Ca2+ ion in groundwater containing 0.1 mM of F– in equilibrium with fluorite? 
 Answer:  Expressing equation 3.93 for this case we have: 

  

� 

Ksp-Fl =
[Ca

2+

][F
!

]
2

[CaF2 ]
= [Ca

2+

][F
!

]
2  

We take the activity of CaF2 as 1.  Rearranging and substituting in values, we have: 

� 

[Ca
2+

] =
Ksp -Fl

[F
!

]
2 =

3.9 "10
!11

[0.1"10
!3
]
2 =

3.9 "10
!11

1"10
!8 = 3.9 " 10

!3
M = 3.9mM  

 
Figure 3.17.  Log of the solubility constant of barite 
plotted against the inverse of temperature.  The slope 
of a tangent to the curve is equal to –∆H/R.  The in-
tercept of the tangent (which occurs at 1/T = 0 and is 
off the plot) is equal to ∆S/R.  After Blount (1977). 
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  lnK =
a

T
+ b  

where a and b are ∆H˚/R and ∆S˚/R respectively.  If we can assume that ∆H and ∆S are constant over 
some temperature range (this is likely to be the case provided the temperature interval is small), then a 
plot of ln K vs. 1/T will have a slope of ∆H˚/R and an intercept of ∆S˚/R.  Thus measurements of ln K 
made over a range of temperature and plotted vs. 1/T provide estimates of ∆H˚ and ∆S˚.  Even if ∆H 
and ∆S are not constant, they can be estimated from the instantaneous slope and intercept of a curve of 
ln K plotted against 1/T.  This is illustrated in Figure 3.17, which shows measurements of the solubility 
constant for barite (BaSO4) plotted in this fashion (though in this case the log10 rather than natural loga-
rithm is used).  From changes of ∆H and ∆S with changing temperature and knowing the heat capacity 
of barite, we can also estimate heat capacities of the Ba2+ and SO

4

2 ! ions, which would obviously be dif-
ficult to measure directly.  We can, of course, also calculate ∆G directly from equation 3.86.  Thus a se-
ries of measurements of the equilibrium constant for simple systems allows us deduce the fundamental 
thermodynamic data needed to predict equilibrium in more complex systems. 
 Taking the derivative with respect to temperature of both sides of equation 3.95 (while holding pres-
sure constant), we have: 

  ! lnK
!T

"
#$

%
&'
P

=
(H

r

o

RT
2

 3.96 

This equation is known as the van’t Hoff Equation.    

Example ! 3.8. ! Calculating ! Equilibrium ! Constants ! and ! Equilibrium ! Concentrations
The hydration of olivine to form chrysotile (a serpentine mineral) may represented in a pure Mg
system as:

H2O + 2H+ + 2Mg2SiO4 ® Mg3Si2O5(OH)4 +Mg2+

If this reaction controlled the concentration of Mg2+ of
the metamorphic fluid, what would be the activity of
Mg2+ be in that fluid if it had a pH of 4.0 at 300˚ C?

Answer: Helgeson (1967) gives the thermodynamic
data shown in the adjacent table for the reactants a t
300° C.  From these data, we use Hess’s Law to calculate
!Hr and ! Sr as -231.38 kJ and -253.01 J/K respectively.
The equilibrium constant for the reaction may be

calculated as:

  

� 

K = exp -
!Hr

o

RT
+
!Sr

o

R

" 

# 
$ 

% 

& 
' = exp (

(231.38 )10
3

8.134 ) 573
+

253.01

8.314

" 

# 
$ 

% 

& 
' = 7.53 )10

7

The equilibrium constant for this reaction can be written as:

  

� 

K =
a
Mg 2+ aCry

a
H +

2
aFo

2
aH 2O

 which reduces to   

  

� 

K =
a
Mg 2+

a
H +

2   if we take the activities of water, chrysotile, and

forsterite as 1.  Since pH = - log aH+, we may rearrange and obtain the activity of the magnesium ion
as:

� 

a
Mg2+ = K a

H +

2
= 7.53 ) 10

7 ) 10
(4) 2

= 7.53 ) 10
(1

Species !H˚ kJ S˚ J/K

Mg3S i2O5(OH)4 -4272.87 434.84

Mg2+ -366.46 109.05

H+ 44.87 106.68

Mg2SiO4 -2132.75 186.02

H2O -232.19 211.50
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3.9.6 Pressure Dependence of Equilibrium Constant  

 Since 
!"G

r

!P
#
$%

&
'(
T

= "V  and  !G
r

o
= "RT lnK    

then  ! lnK
!P

"
#$

%
&'
T

= (
)V

r

o

RT
 3.97 

If ∆Vr does not depend on pressure, this equation can be integrated to obtain: 

  lnK
P2
= lnK

P1
!
"V

r

o

RT
(P1 ! P2 )  

This assumption will be pretty good for solids because their compressibilities are very low, but slightly 
less satisfactory for reactions involving liquids (such as dissolution), because they are more compressi-
ble.  This assumption will be essentially totally invalid for reactions involving gases, because their vol-
umes are highly pressure dependent. 

3.10 Practical Approach to Electrolyte Equilibrium 
 With the equilibrium constant now in our geochemical toolbox, we have the tools necessary to roll 
up our sleeves and get to work on some real geochemical problems.  Even setting aside non-ideal be-
havior, electrolyte solutions, geological ones in particular, often have many components and can be ex-
tremely complex.  Predicting their equilibrium state can therefore be difficult.  There are, however, a 
few rules for approaching problems of electrolyte solutions that, when properly employed, make the 
task much more tractable. 

3.10.1 Choosing Components and Species 

 We emphasized at the beginning of the chapter the importance of choosing the components in a sys-
tem.  How well we chose components will make a difference in how easily we can solve a given prob-
lem.  Morel and Hering (1993) suggest these rules for choosing components and species in aqueous sys-
tems: 

1. All species should be expressible as stoichiometric functions of the components, the stoichiometry being de-
fined by chemical reactions. 

2. Each species has a unique stoichiometric expression as a function of the components. 
3. H2O should always be chosen as a component. 
4. H+ should always be chosen as a component.  

H+ activity, or pH, is very often the critical variable, also called the “master variable”, in problems in 
natural waters.  In addition, recall that we define the free energy of formation of H+ as 0.  For these rea-
sons, it is both convenient and important that H+ be chosen as a component. 

3.10.2 Mass Balance 

 This constraint, also sometimes called mole balance, is a very simple one, and as such it is easily 
overlooked.  When a salt is dissolved in water, the anion and cation are added in stoichiometric pro-
portions.  If the dissolution of the salt is the only source of these ions in the solution, then for a salt of 
composition Cν+Aν– we may write: 
  ν–[C] = ν+[A] 3.98  
 Thus, for example, for a solution formed by dissolution of CaCl2 in water the concentration of Cl– ion 
will be twice that of the Ca2+ ion.  Even if CaCl2 is not the only source of these ions in solution, its con-
gruent dissolution allows us to write the mass balance constraint in the form of a differential equation: 
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� 

!Cl
–

!Ca
2 +

= 2  

which just says that CaCl2 dissolution adds two Cl– ions to solution for every  Ca2+ ion added. 
 By carefully choosing components and boundaries of our system, we can often write conservation 
equations for components.  For example, suppose we have a liter of water containing dissolved CO2 in 
equilibrium with calcite (for example, groundwater in limestone).  In some circumstances, we may 
want to choose our system as the water plus the limestone, in which case we may consider Ca con-
served and write: 
  ΣCa = Ca aq2 ++ CaCO3s 
where CaCO3s is calcite (limestone) and Ca aq2 + is aqueous calcium ion.  We may want to avoid choosing 
carbonate as a component and chose carbon instead, since the carbonate ion is not conserved because of 
association and dissociation reactions such as: 

  CO
3

2 !+ H+ ® 

� 

HCO
3

–  

Choosing carbon as a component has the disadvantage that some carbon will be present as organic 
compounds, which we may not wish to consider.  A wiser choice is to define CO2 as a component.  To-
tal CO2 would then include all carbonate species as well as CO2 (very often, total CO2 is expressed in-
stead as total carbonate).  The conservation equation for total CO2 for our system would be: 

  ΣCO2 = CaCO3s + CO2 + H2CO3 + 

� 

HCO
3

– + CO
3

2 !  

Example ! 3.9. ! Determining ! the ! pH ! of ! Rain ! Water ! from ! its ! Composition
Determine the pH of the two samples of rain in the adjacent table.  Assume  that sulfuric

and nitric acid are fully dissociated and that the ions in the table, along with H+ and OH– are
the only ones present.
Answer: This problem  is simpler than i t might first appear.

Given the stated conditions,  there are no  reactions between these
species tha t we need to concern  ourselves with.  To solve the
problem,  we observe  tha t this solution must be electrically
neutral: any difference in the sum  of cations and anions must be
due to the one or both of the two species not listed: OH– and H+.

We start by making an initial guess  tha t the rain is acidic and
that the concentration  of H+ will be much  higher than tha t of
OH–, and tha t we can therefore neglect  the latter (we’ll want to
verify this assumption when we have obtained a solution).  The
rest is straightforward.  We sum  the product  of charge times
concentration (Equation 3.99) for both cations and anions and find
that anions exceed cations in both cases: the difference is equal to the concentration  of H+.
Taking the log of the co ncentration (having first converted  concentrations  to M from µM by
multiplying by 10-6) we obtain a pH of 4.6 for the first
sample and 3.14 for the second.

Now  we need to check our  simplifying assumption
that we could  neglect  OH–.  The equilibrium between
OH– and H+ is given by:

K = [H+][OH–] = 10–14

From this we compute  [OH–] as 10-10 in the first case and
10-11 in the second.  Including these would not change the
anion sum significantly, so our assumption was justified.

Analysis ! of ! Rain ! Water
Rain 1
(µM)

Rain 2
(µM)

N a 9 89
Mg 4 16
K 5 9
Ca 8 37
Cl 17 101

NO
3

10 500

SO
4

18 228

Charge ! Balance ! for ! Rainwater
Rain 1 Rain 2

! cations 38 204

! anions 63 1057

! 25 853

pH 4.60 3.07
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Here we see the importance of the distinction we made between components and species earlier in the 
chapter. 

3.10.3 Electrical Neutrality 

 There is an additional condition that electrolyte solutions must meet: electrical neutrality.  Thus the 
sum of the positive charges in solutions must equal the sum of the negative ones, or: 

  

� 

m
i
z
i

i

! = 0  3.99 

While this presents some experimental obstacles, for example we cannot add only Na+ ion to an aque-
ous solution while holding other compositional parameters constant, it also allows placement of an ad-
dition mathematical constraint on the solution.  It is often convenient to rearrange equ. 3.99 so as to 
place anions and cations on different sides of the equation: 
  

� 

m
i

+

z
i

+

=

i

! m
n

"
z
n

"

n

!  3.100 

As an example, consider an natural water in equilibrium with atmospheric CO2 and containing no other 
species.  The charge balance equation in this case is: 
  [H+] = [OH–] + [

� 

HCO
3

– ] + 2[CO
3

2 !] 
As example 3.9 illustrates, the electrical neutrality constraint can prove extremely useful. 

3.10.4 Equilibrium Constant Expressions 

 For each chemical reaction in our system, we can write one version of equation 3.85.  This allows us 
to relate the equilibrium activities of the species undergoing reaction in our system to one another.   
 Solution of aqueous equilibria problems often hinge on the degree to which we can simplify the 
problem by minimizing the number of equilibrium constant expressions we must solve.  For example, 
H2SO4 will be completely dissociated in all but the most acidic natural waters, so we need not deal with 
equilibrium between H+, SO

4

2 ! , HSO
4

– , and H2SO4, and need not consider the two latter in our list of 
species.  Similarly, though many natural waters contain Na+ and Cl–, NaCl will precipitate only from 
concentrated brines, so we generally need not consider equilibrium between NaCl, Na+, and Cl–. 
 Carbonate is a somewhat different matter.  Over the range of compositions of natural waters, H2CO3, 

Example 3.10: Soil Organic Acid 
 Consider soil water with a pH of 7 containing a weak organic acid, which we will designate HA, at a 
concentration of 1 × 10-4 M.  If the apparent dissociation constant of the acid is 10-4.5, what fraction of the 
acid is dissociated? 
 Answer: We have two unknowns: the concentration of the dissociated and undissociated acid and we 
have two equations: the equilibrium constant expression for dissociation, and mass balance equation.  
We’ll have to solve the two simultaneously to obtain the answer.  Our two equations are: 

  

� 

K
dis

=
[H

+

][A
!

]

[HA]
= 10

!4.5  ΣHA = [HA] + [A–]   

Solving the dissociation constant expression for [A–] we have: 

  

� 

[A
!

] =
[HA]K

dis

[H
+

]
 

Then solving the conservation equation for [HA] and substituting, we have 

  

� 

[A
!

] =
("HA ! [A

!

])Kdis

[H
+

]
 

Setting H+ to 10-7 and ΣHA to 10-4, we calculate [A–] as 3.16 × 10-5 M, so 31.6% of the acid is dissociated. 
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HCO
3

– , and CO
3

2 !may all be present.  In most cases, however, one of these forms will dominate and 
the concentrations of the remaining ones will be an order of magnitude or more lower than that of the 
dominant one.  In some cases, two of the above species may have comparable concentrations and will 
be have to consider equilibrium between them, but it is rarely necessary to consider equilibrium be-
tween all three.  Thus at most we will have to consider equilibrium between H2CO3 and HCO

3

– , or 
HCO

3

– and CO
3

2 ! , and we can safely ignore the existence of the remaining species.  A successful solu-
tion of problems involving carbonate equilibria often requires correctly deciding which reactions to ig-
nore.  We will discuss carbonate equilibrium in greater detail in Chapter 6. 

3.11 Oxidation and Reduction 
 An important geochemical variable that we have not yet considered is the oxidation state of a system.  
Many elements exist in nature in more than one valence state. Iron and carbon are the most important 
of these because of their abundance.  Other elements, including transition metals such as Ti, Mn, Cr, Ce, 
Eu, and U, and non-metals such as N, S, and As, are found in more than one valence state in nature.  
The valence state of an element can significantly affect its geochemical behavior.  For example, U is 
quite soluble in water in its oxidized state, U6+, but is much less soluble in its reduced state, U4+.  Many 
uranium deposits have formed when an oxidized, U-bearing solution was reduced.  Iron is reasonably 
soluble in reduced form, Fe2+, but much less soluble in oxidized form, Fe3+.  The same is true of manga-
nese.  Thus iron is leached from rocks by reduced hydrothermal fluids and precipitated when these flu-
ids mix with oxidized seawater. Eu2+ in magmas substitutes readily for Ca in plagioclase, whereas Eu3+ 
does not.  The mobility of pollutants, particularly toxic metals, will depend strongly on the whether the 
environment is reducing or oxidizing.  Thus the oxidation state of a system is an important geochemical 
variable. 
 The valence number of an element is defined as the electrical charge an atom would acquire if it 
formed ions in solution.  For strongly electronegative and electropositive elements that form domi-
nantly ionic bonds, valence number corresponds to the actual state of the element in ionic form.  How-
ever, for elements that predominantly or exclusively form covalent bonds, valence state is a somewhat 
hypothetical concept.  Carbon, for example, is never present in solution as a monatomic ion.  Because of 
this, assignment of valence number can be a bit ambiguous.  A few simple conventions guide as-
signment of valence number: 

• The valence number of all elements in pure form is 0. 
• The sum of valence numbers assigned to atoms in molecules or complex species must equal the ac-

tual charge on the species. 
• The valence number of hydrogen is +1, except in metal hydrides, when it is -1. 
• The valence number of oxygen is -2 except in peroxides, when it is -1. 

 The valence state in which an element will be present in a system is governed by the availability of 
electrons.   Oxidation-reduction (redox) reactions involve the transfer of electrons and the resultant 
change in valence.  Oxidation is the loss of electrons; reduction is the gain of electrons‡.  An example is the 
oxidation of magnetite (which consists of 1 Fe2+ and 2 Fe3+) to hematite: 
   2Fe3O4

+
1

2
O
2
®3Fe

2
O
3
 

The Fe2+ in magnetite looses an electron in this reaction and thereby oxidized; conversely oxygen gains 
an electron and is thereby reduced. 
 We can divide the elements into electron donors and electron acceptors; this division is closely related 
to electronegativity, as you might expect.  Electron acceptors are electronegative; electron donors are 
electropositive.  Metals in 0 valence state are electron donors, non-metals in 0 valence state are usually 
electron acceptors.  Some elements, such as carbon and sulfur, can be either electron donors or recep-

                                                
‡ A useful mnemonic to remember this is LEO the lion says GRR! (Loss Equals Oxidation, Gain Refers to Reduction.)  
Silly, perhaps, but effective.  Try it! 
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tors.  Oxygen is the most common electron acceptor, hence the term oxidation.  It is nevertheless impor-
tant to remember that oxidation and reduction may take place in the absence of oxygen.  
 A reduced system is one in which the availability of electrons is high, due to an excess of electron 
donors over electron acceptors.  In such a system, metals will be in a low valence state, e.g., Fe2+.  Con-
versely, when the availability of electrons is low, due to an abundance of electron acceptors, a system is 
said to be oxidized.  Since it is the most common electron acceptor, the abundance of oxygen usually 
controls the oxidation state of a system, but this need not be the case. 
 To predict the equilibrium oxidation state of a system we need a means of characterizing the avail-
ability of electrons, and the valence state of elements as a function of that availability.  Low-
temperature geochemists and high-temperature geochemists do this in different ways.  The former use 
electrochemical potential while the latter use oxygen fugacity.  We will consider both. 

3.11.1 Redox in Aqueous Solutions 

 The simplest form of the chemical equation for the reduction of ferric iron would be: 

    

� 

Feaq
3+

+ e
!®Feaq

2 +  3.101 
where the subscript aq denotes the aqueous species.  
This form suggests that the energy involved might 
be most conveniently measured in an electrochemi-
cal cell. 
 The Daniell cell pictured in Figure 3.18 can be 
used to measure the energy involved in the ex-
change of electrons between elements, for example, 
zinc and copper: 

    

� 

Zns + Cuaq
2 + ®Znaq

2 +

+ Cus  3.102 
where the subscript s denotes the solid.  Such a cell 
provides a measure of the relative preference of Zn 
and Cu for electrons.  In practice, such measure-
ments are made by applying a voltage to the sys-
tem that is just sufficient to halt the flow of elec-
trons from the zinc plate to the copper one.  What is 
actually measured then is a potential energy, de-
noted E, and referred to as the electrode potential, or 
simply the potential of the reaction. 
 If we could measure the potential of two sepa-
rate half-cell reactions: 
    

� 

Zns®Znaq

2+

+ 2e
!  

    

� 

Cus®Cuaq
2 +

+ 2e
!  

we could determine the energy gain/loss in the 
transfer of an electron from an individual element.  
Unfortunately, such measurements are not possible 
(nor would these reactions occur in the natural en-
vironment: electrons are not given up except to an-
other element or species*).  This requires the estab-
lishment of an arbitrary reference value.  Once such 
a reference value is established, the potential in-

                                                
* Ionization reactions, where free electrons are formed, do occur in nature at very high temperatures.  They occur, for 
example, in stars or other very energetic environments in the universe. 

 
Figure 3.18. Electrode reactions in the Daniell 
Cell. 



W. M. White  Geochemistry 

 Chapter 3: Solutions   
 

 101 September 26, 2005 

volved in reactions such as 3.101 can be established. 

3.11.1.1 Hydrogen scale potential, EH  

 The established convention is to measure potentials in a standard hydrogen electrode cell (at stan-
dard temperature and pressure).  The cell consists on one side of a platinum plate coated with fine Pt 
powder that is surrounded by H2 gas maintained at a partial pressure of 1 atm and immersed in a solu-
tion of unit H+ activity.  The other side consists of the electrode and solution under investigation.  A po-
tential of 0 is assigned to the half-cell reaction: 

  
 

1

2
H
2(g)

®H
aq

+
+ e

!  3.103 

where the subscript g denotes the gas 
phase. The potential measured for the 
entire reaction is then assigned to the 
half-cell reaction of interest.  Thus for 
example, the potential of the reaction: 

   Znaq
2+ +H

2(g)
®Zn

s
+ 2H

+   
is –0.763 V.  This value is assigned to 
the reaction: 

   Znaq
2+ + 2e! ®Zn

s  3.104 
and called the hydrogen scale potential, 
or EH, of this reaction.  Thus the EH for 
the reduction of Zn+2 to Zn0 is -0.763 V.  
The hydrogen scale potentials of a few 
half-cell reactions are listed in Table 
3.3.  The sign convention for EH is that 
the sign of the potential is positive 
when the reaction proceeds from left to 
right (i.e., from reactants to products).  
Thus if a reaction has positive EH, the 
metal ion will be reduced by hydrogen 
gas to the metal.  If a reaction has neg-
ative EH, the metal will be oxidized to 
the ion and H+ reduced.  The standard 
state potentials (298 K, 0.1 MPa) of 
more complex reactions can be pre-
dicted by algebraic combinations of the 
reactions and potentials in Table 3.3. 
 The half-cell reactions in Table 3.3 
are arranged in order increasing E°.  
Thus a species on the product (right) 
side of a given reaction will reduce 
(give up electrons to) the species on 
the reactant side in all reactions listed 
below it.  Thus in the Daniell Cell reac-
tion in Figure 3.18, Zn metal will re-
duce Cu2+ in solution.  Zn may thus be 
said to be a stronger reducing agent 
than Cu. 

Table 3.3. EH° and pε° for some Half-cell Reactions 
Half Cell Reaction  EH° 

(V) 
pε° 

Li+ + e– ® Li -3.05 –51.58 

Ca2+ + 2e- ® Ca -2.93 –49.55 

Th4+ + 4e- ® Th -1.83 –30.95 

U+4 +4e- ® U -1.38 –23.34 

Mn2+ +2e- ® Mn -1.18 –19.95 

Zn2+ + 2e- ® Zn -0.76 –12.85 

Cr3+ +3e- ® Cr -0.74 –12.51 

Fe2+ + 2e- ® Fe -0.44 –7.44 

Eu3+ + e– ® Eu2+ -0.36 -6.08 

Pb2+  + 2e- ® Pb -0.13 –2.2 

CO2(g) + 4H+  + 4e- ® CH2O*+2H2O -0.71 –1.2 

2H+  + 2e- ® H2(g) 0 0 

N2(g) + 6H+  + 6e- ® 2NH3 0.093 1.58 

Cu2+ + 2e- ® Cu 0.34 5.75 

UO
2

2 +  + 2e– ® UO2 0.41 6.85 

S + 2e- ® S2- 0.44 7.44 

Cu+ + e- ® Cu 0.52 8.79 

Fe3+ + e- ® Fe2+ 0.77 13.02 
NO

3

– + 2H+ + e –  ® NO2 + H2O 0.80 13.53 
Ag+ + e– ® Ag 0.80 13.53 

Hg2+ + 2e- ® Hg 0.85 14.37 

MnO2(s) + 4H+ + 2e– ® Mn2+ + 2H2O 1.23 20.8 

O2 + 4H+ + 4e- ® 2H2O 1.23 20.8 

MnO–
4  + 8H+ + 5e– ® Mn2+ + 4H2O 1.51 25.53 

Au+ + e– ® Au  1.69 28.58 

Ce4+ + e– ® Ce3+  1.72 29.05 

Pt+ +e- ® Pt 2.64 44.64 
*CH2O refers to carbohydrate, the basic product of photosynthesis. 
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 Electrochemical energy is another form of free energy and can be related to the Gibbs Free Energy of 
reaction as: 
    

� 

!G = "zFE  3.105 
and ∆G° = –zFE°  3.106 
where z is the number of electrons per mole exchanged (e.g., 2 in the reduction of zinc) and   is the 
Faraday constant (F = 96,485 coulombs;  1 joule = 1 volt-coulomb).  The free energy of formation of a 
pure element is 0 (by convention).  Thus, the ∆G in a reaction that is opposite one such as 3.104, i.e.: 
   Zn(s) ® Zn2+ + 2e–  
is the free energy of formation of the ion from the pure element. From equ. 3.105 we can calculate the 
∆G for the reduction of zinc as 147.24 kJ/mol.  The free energy of formation of Zn2+ would be –147.24 
kJ/mol.   Given the free energy of formation of an ion, we can also use 3.105 to calculate the hydrogen 
scale potential.  Since 
  !G = !G

o
+ RT ln a

i

"i

i

#  3.107 

we can substitute 3.105 and 3.106 into 3.108 and also write 

  

� 

  

� 

E = E˚!
RT

zF
ln a

i

" i

i

#  3.108 

Equation 3.108 is known as the Nernst Equation‡.  At 298K and 0.1 MPa it reduces to: 

  E = E
o
!
0.0592

z
log a

i

"i

i

#  3.109 

We can deduce the meaning of this relationship from the relationship between ∆G and E in equ. 3.105.  
At equilibrium ∆G is zero.  Thus in equation 3.108, activities will adjust themselves such that E is 0. 

3.11.1.2 Alternative Representation of Redox State: pε 

 Consider again the reaction: 
  Feaq

3+
+ e

!®Fe
aq

2+  (3.101)  
If we were to express the equilibrium constant for this reaction, we would write: 

  K =
a
Fe

2+

a
Fe

3+a
e
!

 

Thus we might find it convenient to define an activity for the electron.  For this reason, chemists have 
defined an analogous parameter to pH, called pε. pε is the negative log of the activity of electrons in so-
lution: 
  p! " # loga

e
#  3.111 

The log of the equilibrium constant for 3.101 may then be written as:  

 

� 

logK = log
a
Fe

2+

a
Fe

3+

+ p!
  

upon rearranging we have: p! = logK " log
a
Fe

2+

a
Fe

3+

 3.112 

                                                
‡ Named for Walther Nernst (1864-1941).  Nernst was born in Briesau, Prussia (now in Poland) and completed a PhD 
at the University of Würzburg in 1887.  Nernst made many contributions to thermodynamics and kinetics, including 
an early version of the third law.  He was awarded the Nobel Prize in 1920. 
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When the activities of reactants and products are in their standard states, i.e., a = 1, then 

  p!
o
=
1

z
logK  3.113 

(where z again is the number of electrons exchanged: 1 in reaction 3.101). pε° values are empirically de-
termined and may be found in various tables.  Table 3.3 lists values for some of the more important re-
actions.  For any state other than the standard state, pε is related to the standard state pε by:   

  p! = p!
o
" log

a
Fe

2+

a
Fe

3+

 3.114 

pε and EH are related by the following equation: 

  
  

� 

p! =
FEH

2.303RT
=
5039EH

T
 3.115 

(the factor 2.303 arises from the switch from natural log units to base 10 log units). 
 In defining electron activity and representing it in log units, there is a clear analogy between pε and 
pH.  However, the analogy is purely mathematical, and not physical.  Natural waters do not contain 
significant concentrations of free electrons.  Also, though a system at equilibrium can have only one 
value for pε, just as it will have only one value of pH, redox equilibrium is often not achieved in natural 
waters.  The pε of a natural system is therefore often difficult to determine.  Thus pε is a hypothetical unit, 
defined for convenience of incorporating a representation of redox state that fits readily into established 
thermodynamic constructs such as the equilibrium constant.  In this sense, equation 3.115 provides a 
more accurate definition of pε than does equ. 3.111. 
 The greater the pε, the greater the tendency of species to lose their transferable, or valence, electrons.  
In a qualitative way we can think of the negative of pε as a measure of the availability of electrons.  pε 
can be related in a general way to the relative abundance of electron acceptors.  When an electron ac-
ceptor, such as oxygen, is abundant relative to the abundance of electron donors, the pε is high and 

Example 3.11: Calculating the EH of Net Reactions 
 We can calculate EH values for reactions not listed in Table 3.3 by algebraic combinations of the re-
actions and potentials that are listed.  There is, however, a “catch”.  Let’s see how this works. 
 Calculate the EH for the reaction: 
  Fe3+ + 3e– ® Fe 
 Answer:  This reaction is the algebraic sum of two reactions listed in Table 3.2: 
  Fe3+ + e– ® Fe+2 
   Fe2+ + 2e– ® Fe 
Since the reactions sum, we might assume that we can simply sum the EH values to obtain the EH of the 
net reaction.  Doing so, we obtain an EH of 0.33 V.  However, the true EH of this reaction is –0.037 V.  
What have we done wrong? 
 We have neglected to take into consideration the number of electrons exchanged.  In the algebraic 
combination of EH values, we need to multiply the EH for each component reaction by the number of 
electrons exchanged.  We then divide the sum of these values by number of electrons exchanged in the 
net reaction to obtain the EH of the net reaction, i.e., 

  

� 

E
H (net )

=
1

z
net

z
i
E
Hi

i

!  3.110 

where the sum is over the component reactions i.  Looking at equation 3.105, we can see why this is the 
case.  By Hess’s Law, the ∆G of the net reaction must be the simple sum of the component reaction ∆G’s, 
but EH values are obtained by multiplying ∆G by z.  Equation 3.107 is derived by combining equ. 3.105 
and Hess’s Law.  Using equ. 3.107, we obtain the correct EH of -0.037 V. 
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electron donors will be in electron-poor valence states, e.g., Mn4+ instead of Mn2+.  pε, and EH, are par-
ticularly useful concepts when combined with pH to produce diagrams representing the stability fields 
of various species.  We will briefly consider how these are constructed. 

3.11.1.3 pε — pH Diagrams 

 pε – pH and EH–pH diagrams are commonly used tools of aqueous geochemistry, and it is important 
to become familiar with them.  An example, the pε–pH diagram for iron, is shown in Figure 3.19.  pε–
pH diagrams look much like phase diagrams, and indeed there are many similarities.  There are, how-
ever, some important differences.  First, labeled regions do not represent conditions of stability for 
phases, rather they show which species will be predominate under the pε–pH conditions within the 
regions.  Indeed, in Fig. 3.19 we consider only a single phase: an aqueous solution.  The bounded re-
gions are called predominance areas.   Second, species are stable beyond their region: boundaries repre-
sent the conditions under which the activities of species predominating in two adjoining fields are 
equal.  However, since the plot is logarithmic, activities of species decrease rapidly beyond their pre-
dominance areas.  
 More generally, a pε-pH diagram is a type of activity diagram, or predominance diagram, in which 
the region of predominance of a species is represented as a function of activities of two or more species 
or ratios of species.  We will meet variants of such diagrams in later chapters. 
  Let’s now see how Figure 3.19 can be constructed from basic chemical and thermodynamic data.  
We will consider only a very simple Fe-bearing aqueous solution.   Thus our solution contains only 
species of iron, the dissociation products of water and species formed by reactions between them.  
Thermodynamics allows us to calculate the predominance region for each species. To draw boundaries 
on this plot, we will want to obtain equations in the form of pε = a + b × pH.  With an equation in this 
form, b is a slope and a is an intercept on a pε-pH diagram.  Hence we will want to write all redox reac-
tions so that they contain e– and all acid-base reactions so that they contain H+. 
 In Fig. 3.18, we are only interested in the region where water is stable.  So to begin construction of 
our diagram, we want to draw boundaries outlining the region of stability of water.  The upper limit is 
the reduction of oxygen to water: 

   
1

2
O
2(g)

+ 2e
!
+ 2H

aq

+ ®H
2
O  

The equilibrium constant for this reaction is: K =
a
H2O

P
O2

1/2
a
e
!

2
a
H

+

2
 3.116 

Expressed in log form: logK = logaH2O !
1

2
logPO2 + 2p" + 2pH  

The value of log K is 41.56 (at 25° C and 0.1 MPa).  In the standard state, the activity of water and par-
tial pressure of oxygen are 1 so that 3.116 becomes: 
  pε = 20.78 - pH 3.117 
Equation 3.117 plots on a pε—pH diagram as a straight line with a slope of -1 intersecting the vertical 
axis at 20.78.  This is labeled as line ➀ on Figure 3.19.   
 Similarly, the lower limit of the stability of water is the reduction of hydrogen: 

  
 
H

aq

+
+ e

!®
1

2
H
2(g)

 

Because ∆G
o
r  = 0 and log K = 0 (by convention), we have pε = –pH for this reaction, i.e., a slope of 1 and 

intercept of 0.  This is labeled as line ② on Figure 3.19.  Water is stable between these 2 lines (region 
shown in gray on Figure 3.19). 
 Now let’s consider the stabilities of a few simple aqueous iron species.  One of the more important 
reactions is the hydrolysis of Fe3+: 
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  Feaq
3+
+ H

2
O®Fe(OH)

aq

2+
+ H

+  
The equilibrium constant for this reaction is 
0.00631.  The equilibrium constant expression 
is then: 

  logK = log
a
Fe(OH )2+

a
Fe

3+

! pH = !2.2  

Region boundaries on pε–pH diagrams rep-
resent the conditions under which the ac-
tivities of two species are equal. When the ac-
tivities of FeOH+2 and Fe+3 are equal the 
equation reduces to: 
   -log K = pH = 2.2 
Thus this equation defines the boundary be-
tween regions of predominance of Fe3+ and 
Fe(OH)2+.  The reaction is independent of pε 
(no oxidation or reduction is involved), and it 
plots as a straight vertical line pH = 2.2 (line 
➂ on Figure 3.19).  Boundaries between the 
successive hydrolysis products, e.g., 
Fe(OH)

3

o and Fe(OH)
4

– can be similarly 
drawn as vertical lines at the pH equal to 
their equilibrium constants, and occur at pH 
values of 3.5, 7.3, and 8.8.  The boundary be-
tween Fe2+ and Fe(OH)– can be similarly cal-
culated and occurs at a pH of 9.5. 
 Now consider equilibrium between Fe+2 
and Fe+3.  The pε° for this reaction is 13.0 (Ta-
ble 3.3), hence from equation 3.112 we have: 

  p! = 13.0 " log
a
Fe

2+

a
Fe

3+

 

When the activities are equal, this equation reduces to: 
   pε = 13.0 3.118 
and therefore plots as a horizontal line at pε = 13 that intersects the FeOH+2 —Fe+3 line at an invariant 
point at pH = 2.2 (line ➃ on Figure 3.19). 
 The equilibrium between Fe+2, and Fe(OH)+2 is defined by the reaction: 

  Fe(OH)aq
2+
+ e

!
+ H

+®Fe
aq

2+
+ H

2
O  

Two things are occurring in this reaction: reduction of ferric to ferrous iron, and reaction of H+ ions 
with the OH– radical to form water.  Thus we can treat it as the algebraic sum of the two reactions we 
just considered: 
  Feaq

3+
+ e

!®Fe
aq

2+    p! = 13.0 

  Fe(OH)aq
2+
+ H

+®Fe
aq

3+
+ H

2
O   pH = 2.2 

  Fe(OH)aq
2+
+ e

!
+ H

+®Fe
aq

2+
+ H

2
O   pε + pH = 15.2 

or:  pε = 15.2 – pH  

aa❁

2

Fe(OH)2+
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Figure 3.19. pε—pH diagram showing predominance 
regions for ferric and ferrous iron and their hydrolysis 
products in aqueous solution at 25°C and 1 bar. 
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Thus this boundary has a slope of -1 and an intercept of 15.2 (line ⑤ on Figure 3.19).  Slopes and inter-
cepts of other reactions may be derived in a similar manner. 
 Now let’s consider some solid phases of iron as well, specifically hematite (Fe2O3) and magnetite 
(Fe3O4).  First, let’s consider the oxidation of magnetite to hematite in the presence of an aqueous solu-
tion: 
  2Fe3O4+H2O®3Fe2O3+2H++2e– 3.119 
Assuming unit activity of all phases, the equilibrium constant expression for this reaction is: 
  log K = –2pH – 2pε 3.120 
From the free energy of formation of the phases (∆Gf = -742.2 kJ/mol for hematite, -1015.4 kJ/mol for 
magnetite, and -237.2 kJ/mol for water) we can calculate ∆Gr using Hess’s Law and the equilibrium 
constant using Equ. 3.86.  Doing so, we find log K = -5.77.  Rearranging equation 3.120 we have: 
  pε = 2.88 – pH   
The boundary between hematite and magnetite will plot as a line with a slope of -1 and an intercept of 
2.88.  Above this line, i.e., at higher pε, hematite will be stable, below that magnetite will be stable (Fig-
ure 3.20).  Thus this line is equivalent to a phase boundary. 
 Next let’s consider the dissolution of magnetite to form Fe2+ ions.  The relevant reaction is: 

  Fe3O4 + 8H+ + 2e– ® 3Fe2+ + 4H2O 
The equilibrium constant for this reaction is 7 
× 1029.  Written in log form: 
 logK = 3loga

Fe
2+ + 8pH ! 2p" = 29.85  

or:  pε = 14.92 – 4pH – 32  log aFe2+  
We have assumed that the activity of water is 
1 and that magnetite is pure and therefore 
that its activity is 1.  If we again assume unit 
activity of Fe2+, the predominance area of 
magnetite would plot as the line: 
  pε = 14.92 – 4pH 
i.e., a slope of –4 and intercept of 0.58.  How-
ever, such a high activity of Fe2+ would be 
highly unusual in a natural solution.  A more 
relevant activity for Fe2+  would be perhaps 
10–6.  Adopting this value for the activity of 
Fe2+, we can draw a line corresponding to the 
equation: 
  pε = 23.92 – 4pH 
This line represents the conditions under 
which magnetite is in equilibrium with an ac-
tivity of aqueous Fe2+ of 10-6.  For any other 
activity, the line will be shifted, as illustrated 
in Figure 3.20.  For higher concentrations, the 
magnetite region will expand, for lower con-
centrations it will contract. 
 Now consider the equilibrium between 
hematite and Fe2+.  We can describe this with 
the reaction: 
  Fe2O3 + 6H+ + 2e– ® 2Fe2+ + 3H2O  

 
Figure 3.20.  Stability regions for magnetite and hema-
tite in equilibrium with an iron-bearing aqueous solu-
tion.  Thick lines are for a Feaq activity of 10-6, finer lines 
for activities of 10-4 and 10–8.  The latter is dashed. 
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The equilibrium constant (which may again 
be calculated from ∆Gr) for this reaction is 
23.79. 
Expressed in log form: 
logK = 2 loga

Fe
2+ + 6pH + 2p! = 23.79  

Again using an activity of 10-6 for Fe2+, we 
can solve for pε as: 
  p! = 11.9 " 3pH " loga

Fe
2+  

For an activity of Fe2+ of 10-6, this is a line 
with a slope of 3 and an intercept of 17.9.  
This line represents the conditions under 
which hematite is in equilibrium with aFe2+  
= 10-6.  Again, for any other activity, the line 
will be shifted as shown in Figure 3.20. 
 Finally, equilibrium between hematite and 
Fe3+ may be expressed as: 
  Fe2O3 + 6H+ ® 2Fe3+ + 3H2O 
The equilibrium constant expression is: 
  logK = 2 loga

Fe
3+ + 6pH = !3.93  

For a Fe3+ activity of 10–6, this reduces to: 
  pH = 1.34 
Since the reaction does not involve transfer of 
electrons, this boundary depends only on 
pH. 
 The boundary between predominance of 
Fe3+ and Fe2+ is independent of the Fe con-
centration in solution, and is the same as equ. 
3.118 and Fig. 3.18, namely pε = 13. 
 Examining this diagram, we see that for realistic dissolved Fe concentrations magnetite can be in 
equilibrium only with a fairly reduced, neutral to alkaline solution.  At pH of about 7 or less, it dis-
solves and would not be stable in equilibrium with acidic waters unless the Fe concentration were very 
high.  Hematite is stable over a larger range of conditions, and becomes stable over a wider range of pH 
as pε increases.  Significant concentrations of the Fe3+ ion (> 10-6 m) will be found only very acidic, 
oxidizing environments. 
 Figure 3.21 illustrates the pH and pε values that characterize a variety of environments on and near 
the surface of the Earth.  Comparing this figure with pH–pε diagrams allows us to predict the species 
we might expect to find in various environments.  For example, Fe3+ would be a significant dissolved 
species only in the acidic, oxidized waters that sometimes occur in mine drainages (the acidity of these 
waters results from high concentrations of sulfuric acid that is produced by oxidation of sulfides).  We 
would expect to find magnetite precipitating only from reduced seawater or in organic-rich, highly sa-
line waters. 

3.11.2 Redox in Magmatic Systems 

 High temperature geochemists use oxygen fugacity to characterize the oxidation state of systems.  
Thus, equilibrium between magnetite and hematite might be written as: 
  4Fe3O4 + O2(g) ® 6Fe2O3 3.121 

 
Figure 3.21.  pε and pH of various waters on and near 
the surface of the earth.  After Garrels and Christ (1965). 
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rather than the way we expressed it in equ. 3.119.  We note, however, there is negligible molecular oxy-
gen in magmatic systems, and other species are often responsible for transfer of electrons and O2–.  For 
example, the equilibrium between magnetite and hematite may be mediated by water: 
  2Fe3O4 + H2O(g) ® 3Fe2O3 + H2 3.122 
The above two reactions are thermodynamically equivalent in terms of magnetite oxidation.  The first 
reaction is simpler, of course, and hence preferred, but it may sometimes be necessary to consider the 
proportions of the actual gas species present. 
 If we can regard magnetite and hematite as pure phases, then their activities are equal to one and the 
equilibrium constant for reaction 3.121 is the inverse of the oxygen fugacity: 

  K
MH

=
1

ƒ
O
2

 3.123 

We can rewrite equ. 3.86 as: K = e
!"Gf

o
RT  3.124 

and taking the standard state as 1000 K and 1 bar, we can write: 

  ! logK = log fO2 =
6"Gf (Fe2O3 ,1000)

o ! 4"Gf (Fe3O4 ,1000)

o

2.303RT

#

$
%

&

'
(  

Thus oxygen fugacity can be calculated directly from the difference in the free energy of formation of 
magnetite and hematite at the appropriate T and P.  
Substituting appropriate values into this equation 
yields a value for log ƒO2 of –10.86. 
 It is important to understand that the oxygen 
fugacity is fixed at this level (though the exact level 
at which it is fixed is still disputed because of un-
certainties in the thermodynamic data) simply by 
the equilibrium coexistence of magnetite and 
hematite.  The oxygen fugacity does not depend on 
the proportion of these minerals.  For this reason, it 
is appropriately called a buffer.  To understand 
how this works, imagine some amount of mag-
netite, hematite and oxygen present in a magma.  If 
the oxygen fugacity is increased by the addition of 
oxygen to the system, equilibrium in the reaction in 
equation 3.133 is driven to the right until the log of 
the oxygen fugacity returns to a value of -10.86.  
Only when all magnetite is converted to hematite 
can the oxygen fugacity rise.  A drop in oxygen fu-
gacity would be buffered in exactly the opposite 
way until all hematite were gone.  A number of 
other buffers can be constructed based on reactions 
such as:  
  3Fe2SiO4 + O2 ® 2Fe3O4 + 3SiO2 
    (fayalite) (magnetite) (quartz) 

and 
 
Fe +

1

2
O
2
®FeO  

     (iron) (wüstite)      
These can be used to construct the oxygen buffer 
curves in Figure 3.21.  

 
Figure 3.22. Oxygen buffer curves in the system 
Fe-Si-O at 1 bar.  QIF, IW, WM, FMQ, and MH 
refer to the quartz-iron-fayalite, iron-wüstite, 
wüstite-magnetite, fayalite-magnetite-quartz and 
magnetite-hematite buffers respectively.  
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Problems 

1.  Consider the following minerals: 
 anhydrite:  CaSO4  
 bassanite: CaSO4.1/2H2O   (the stuff of which plaster of paris is made) 
 gyspum:  CaSO4.2H2O 
 a.) If water vapor is the only phase of pure water in the system, how many phases are there in this 
system and how many components are there? 
 b.) How many phases are present at invariant points in such a system?  How many univariant re-
actions are possible? Write all univariant reactions, labeling each according the phase that does not par-
ticipate in the reaction. 
 
2.  Consider a system consisting of olivine of variable composition ((Mg,Fe)2SiO4) and orthopyroxene of 
variable composition ((Mg,Fe)SiO3).  What is the minimum number of components needed to describe 
this system? 
 
3.   In section 3.2.1.3, we showed that a system containing H2O, H2CO3, HCO

3

– , CO
3

2 + , H+, and OH– 
could be described in terms of components CO

3

2 + , H+, and OH–.  Find a different set of components that 
describe the system equally well. Show that each of the species in the system is an algebraic sum of 
your chosen components. 
   
4. Use the data in Table 2.2 to construct a temperature-pressure phase diagram that showing the sta-
bility fields of calcite and aragonite. 
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5.   Consider the following hypothetical gaseous solution: gases 1 and 2 form an ideal binary solution; 
at 1000°K, the free energies of formation from the elements are -50kJ/mol for species 1 and -60kJ/mol 
for species 2. 
 a.)  Calculate ∆Gmixing for the solution at 0.1 increments of X2.  Plot your results. 
 b.)  Calculate G

–
  for ideal solution at 0.1 increments of X2.  Plot your results. 

 c.)  Using the method of intercepts, find µ1 and µ2 in the solution at X2 = 0.2 
 
6.  Using the thermodynamic data in Table 2.2, determine which side of the reaction: 
  2Al(OH)3 ® Al2O3 + 3H2O 
is stable at 600° C and 400 MPa. 
 
7.  The following analysis of water is from the Rhine River as it leaves the Swiss Alps: 
 HCO

3

!  113.5 ppm SO
4

2 !  36.0 ppm 
 Cl-  1.1 ppm NO

3

!  1.9 ppm 
 Ca2+ 40.7 ppm Mg2+ 7.2 ppm 
 Na+ 1.4 ppm K+ 1.2 ppm 
 
 a.  Calculate the ionic strength of this water. (Recall that concentrations in ppm are equal to con-
centrations in mmol kg-1 multiplied by formula weight.) 
 b.  Using the Debye-Hückel equation and the data in Table 3.2, calculate the practical activity co-
efficients for each of these species at 25°C. 
 
8.  Seawater has the following composition: 
 Na+ 0.481 M Cl- 0.560 M 
 Mg2+ 0.0544 M SO

4

2 !  0.0283 M  
 Ca2+ 0.0105 M HCO

3

!  0.00238 M 
 K+ 0.0105 M 
 a.   Calculate the ionic strength. 
 b. Using the Davies equation and the data in Table 3.2, calculate the practical activity coefficients for 
each of these species at 25°C. 
  
9.  Water from Thonon, France has the following composition: 

Anions mg/L Cations mg/L 
 HCO

3

–  332 Ca2+ 103.2 
 SO

4

2 !  14 Mg2+ 16.1 
 NO

3

–  14 K+ 1.4 
 Cl– 8.2 Na+ 5.1 
 
 a. What is the ionic strength of this water? 
 b.  What are the activity coefficients for HCO

3

– and CO
3

2 ! in this water? 
 c.  Assuming an equilibrium constant for the dissociation of bicarbonate: 

  

� 

HCO
3

–® H+ + CO
3

2 !  
 of 4.68 × 10–11 and a pH of 7.3, what is the equilibrium concentration of CO2-

3   in this water? 
 
10. Given the following analysis of biotite and assuming a mixing-on-site model for all sites, calculate the 
activities of the following components: 
 a.) KMg3Si3AlO10(OH)2  (phlogopite) 
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 b.) KFe
3

+2 Si3AlO10(OH)2  (annite) 
 

Site                           Ion                  Ions per site 

Tetrahedral Si 2.773 
 Al 1.228 
Octahedral Al 0.414 
 Ti 0.136 
 Fe+3 0.085 
 Fe+2 1.390 
 Mn 0.009 
 Mg 0.850 
Interlayer Ca 0.013 
 Na 0.063 
 K 0.894 
Anion OH 1.687 
 F 0.037 

Hint: Check your result by making sure the activity of phlogopite in pure phlogopite is 1. 
 
11.  Write the equilibrium constant expression for the reaction: 
  CaCO3(s) + 2H(aq )

+ + SO4
2! + H2O(liq ) " CaSO4 # 2H2O + CO2( g)  

assuming the solids are pure crystalline phases and that the gas is ideal. 
 
12.  The equilibrium constant for the dissolution of galena: 
  PbSsolid + 2H+ ® Pbaq2 ++ H2Saq 
is 9.12 × 10-7 at 80° C.  Using the γPb2+ = 0.11 and γH2S = 1.77, calculate the equilibrium concentration of 
Pb2+ in aqueous solution at this temperature and at pH’s of 6, 5 and 4.  Assume the dissolution of galena 
is the only source of Pb and H2S in the solution and that there is no significant dissociation of H2S.  Hint:  
mass balance requires that [H2S] = [Pb2+]. 
 
13.  The first and second dissociation constants for phosphoric acid (H3PO4) are: 

K
1
=
H
+!" #$ H2

PO
4

-!" #$
H
3
PO

4[ ]
=7.52 %10-3  

K
2
=
H
+!" #$ HPO4

2-!" #$

H
2
PO

4

-!" #$
=6.23%10-8  

Assuming ideal behavior (γ = 1), a pH of 3.5, and a third dissociation constant is 0.  If you added 1 mole 
of phosphoric acid to 1 liter water, what will the concentration of H2PO

4

– be? 
 
14.  The first dissociation constant for H2S is K1 = 9.1 x 10-3.  Neglecting the second dissociation and as-
suming ideality (i.e. activity equals concentration), what is the pH of 1 liter of pure water if you dis-
solve 0.01 moles of H2S in it? What fraction of H2S has dissociated? (HINT: assume that the concentration 
of OH- is negligible (in other words, no autodissociation of water and use the quadratic equation for your final so-
lution). 
  
15.  Assuming ideal solution behavior for the following: 
 a.) Show that the boiling point of a substance is increased when another substance is dissolved in it 
assuming the concentration of the solute in the vapor is small. 
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 b.) By how much will the boiling point of water be elevated when 10% salt is dissolved in it? 
 
15. Find ∆G

–
  for the reaction: 

  Pb2+ + Mn ® Pb + Mn2+ 
Which side of the reaction is favored?  (HINT: use the data in Table 3.3) 
 
16.  What is the ∆G

–
   for the reaction: 

  Cu2+ + e– ® Cu+ 
 What is the pε° for this reaction? 
 
17.  Consider a stream with a pH of 6.7 and a total dissolved Fe concentration of 1 mg/L.  Assume ideal 
behavior for this problem. 
 a.  If the stream water is in equilibrium with the atmospheric O2 (partial pressure of 0.2 MPa), what 
is the pε of the water? 
 b.  Assuming they are the only species of Fe in the water, what are the concentrations of Fe3+ and 
Fe2+.  Use the pε you determined in part a. 
 
18.  Construct a pε–pH diagram for the following species of sulfur: HSO

4

– , SO
4

2 ! , H2S, HS-, and S2- at 
25°C and 1 MPa.  The following free energies of formation should provide sufficient information to 
complete this task.   
 species ∆Go

f   species ∆Go
f    

 S2-  (aq) +85.81 H2O -237.19 
 HS-  (aq) +12.09 H+ 0 
 H2S  (aq) -27.82 H2 (g) 0 
 SO2-

4   (aq)  -744.54 O2 (g) 0 
 HSO

4

! (aq) -755.92 
Values are in kJ/mole, standard state is 25°C and 1 MPa.  R = 8.314 J/mole-K. 
 
19.  Construct a pε–pH diagram for dissolve species of uranium: UO

2

2 +and U(OH)
5

! , and the two solid 
phases UO2 and U3O8

 at 25°C and 0.1 MPa.   Assume the activity of dissolved uranium is fixed at 10-6. 
The following free energies of formation should provide sufficient information to complete this task.   
 species ∆Go

f    
 U(OH)

5

! (aq) –1630.80 
 UO

2

2 +  (aq) -952.53 
 UO2 (s) -1031.86 
 U3O8 (s) -3369.58 
 H2O -237.19 
Values are in kJ/mole, standard state is 25°C and 0.1 MPa.  R = 8.314 J/mole-K.  


