
Pro Git

professional version control

Home
Book
Blog
About
Support Us
GitHub
Twitter

Recording Changes to the Repository

You have a bona fide Git repository and a checkout or working copy of the files
for that project. You need to make some changes and commit snapshots of
those changes into your repository each time the project reaches a state you
want to record.

Remember that each file in your working directory can be in one of two states:
tracked or untracked. Tracked files are files that were in the last snapshot;
they can be unmodified, modified, or staged. Untracked files are everything
else - any files in your working directory that were not in your last snapshot
and are not in your staging area. When you first clone a repository, all of your
files will be tracked and unmodified because you just checked them out and
haven’t edited anything.

As you edit files, Git sees them as modified, because you’ve changed them
since your last commit. You stage these modified files and then commit all your
staged changes, and the cycle repeats. This lifecycle is illustrated in Figure
2-1.

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

1 of 12 05/01/2011 12:43 AM

Figure 2-1. The lifecycle of the status of your files.

Checking the Status of Your Files

The main tool you use to determine which files are in which state is the git
status command. If you run this command directly after a clone, you should see
something like this:

$ git status
On branch master
nothing to commit (working directory clean)

This means you have a clean working directory — in other words, there are no
tracked and modified files. Git also doesn’t see any untracked files, or they
would be listed here. Finally, the command tells you which branch you’re on.
For now, that is always master, which is the default; you won’t worry about it
here. The next chapter will go over branches and references in detail.

Let’s say you add a new file to your project, a simple README file. If the file
didn’t exist before, and you run git status, you see your untracked file like so:

$ vim README
$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
README
nothing added to commit but untracked files present (use "git add" to track)

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

2 of 12 05/01/2011 12:43 AM

You can see that your new README file is untracked, because it’s under the
“Untracked files” heading in your status output. Untracked basically means
that Git sees a file you didn’t have in the previous snapshot (commit); Git won’t
start including it in your commit snapshots until you explicitly tell it to do so.
It does this so you don’t accidentally begin including generated binary files or
other files that you did not mean to include. You do want to start including
README, so let’s start tracking the file.

Tracking New Files

In order to begin tracking a new file, you use the command git add. To begin
tracking the README file, you can run this:

$ git add README

If you run your status command again, you can see that your README file is
now tracked and staged:

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
#

You can tell that it’s staged because it’s under the “Changes to be committed”
heading. If you commit at this point, the version of the file at the time you ran
git add is what will be in the historical snapshot. You may recall that when you
ran git init earlier, you then ran git add (files) — that was to begin tracking
files in your directory. The git add command takes a path name for either a file
or a directory; if it’s a directory, the command adds all the files in that
directory recursively.

Staging Modified Files

Let’s change a file that was already tracked. If you change a previously tracked
file called benchmarks.rb and then run your status command again, you get
something that looks like this:

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
#
Changed but not updated:

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

3 of 12 05/01/2011 12:43 AM

(use "git add <file>..." to update what will be committed)
#
modified: benchmarks.rb
#

The benchmarks.rb file appears under a section named “Changed but not
updated” — which means that a file that is tracked has been modified in the
working directory but not yet staged. To stage it, you run the git add command
(it’s a multipurpose command — you use it to begin tracking new files, to stage
files, and to do other things like marking merge-conflicted files as resolved).
Let’s run git add now to stage the benchmarks.rb file, and then run git status
again:

$ git add benchmarks.rb
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
modified: benchmarks.rb
#

Both files are staged and will go into your next commit. At this point, suppose
you remember one little change that you want to make in benchmarks.rb
before you commit it. You open it again and make that change, and you’re
ready to commit. However, let’s run git status one more time:

$ vim benchmarks.rb
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
modified: benchmarks.rb
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: benchmarks.rb
#

What the heck? Now benchmarks.rb is listed as both staged and unstaged.
How is that possible? It turns out that Git stages a file exactly as it is when you
run the git add command. If you commit now, the version of benchmarks.rb as
it was when you last ran the git add command is how it will go into the commit,
not the version of the file as it looks in your working directory when you run
git commit. If you modify a file after you run git add, you have to run git add
again to stage the latest version of the file:

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

4 of 12 05/01/2011 12:43 AM

$ git add benchmarks.rb
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
modified: benchmarks.rb
#

Ignoring Files

Often, you’ll have a class of files that you don’t want Git to automatically add
or even show you as being untracked. These are generally automatically
generated files such as log files or files produced by your build system. In such
cases, you can create a file listing patterns to match them named .gitignore.
Here is an example .gitignore file:

$ cat .gitignore
*.[oa]
*~

The first line tells Git to ignore any files ending in .o or .a — object and archive
files that may be the product of building your code. The second line tells Git to
ignore all files that end with a tilde (~), which is used by many text editors
such as Emacs to mark temporary files. You may also include a log, tmp, or pid
directory; automatically generated documentation; and so on. Setting up a
.gitignore file before you get going is generally a good idea so you don’t
accidentally commit files that you really don’t want in your Git repository.

The rules for the patterns you can put in the .gitignore file are as follows:

Blank lines or lines starting with # are ignored.
Standard glob patterns work.
You can end patterns with a forward slash (/) to specify a directory.
You can negate a pattern by starting it with an exclamation point (!).

Glob patterns are like simplified regular expressions that shells use. An
asterisk (*) matches zero or more characters; [abc] matches any character
inside the brackets (in this case a, b, or c); a question mark (?) matches a
single character; and brackets enclosing characters separated by a
hyphen([0-9]) matches any character between them (in this case 0 through 9) .

Here is another example .gitignore file:

a comment - this is ignored
*.a # no .a files
!lib.a # but do track lib.a, even though you're ignoring .a files above

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

5 of 12 05/01/2011 12:43 AM

/TODO # only ignore the root TODO file, not subdir/TODO
build/ # ignore all files in the build/ directory
doc/*.txt # ignore doc/notes.txt, but not doc/server/arch.txt

Viewing Your Staged and Unstaged Changes

If the git status command is too vague for you — you want to know exactly what
you changed, not just which files were changed — you can use the git diff
command. We’ll cover git diff in more detail later; but you’ll probably use it
most often to answer these two questions: What have you changed but not yet
staged? And what have you staged that you are about to commit? Although git
status answers those questions very generally, git diff shows you the exact lines
added and removed — the patch, as it were.

Let’s say you edit and stage the README file again and then edit the
benchmarks.rb file without staging it. If you run your status command, you once
again see something like this:

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README
#
Changed but not updated:
(use "git add <file>..." to update what will be committed)
#
modified: benchmarks.rb
#

To see what you’ve changed but not yet staged, type git diff with no other
arguments:

$ git diff
diff --git a/benchmarks.rb b/benchmarks.rb
index 3cb747f..da65585 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb
@@ -36,6 +36,10 @@ def main
 @commit.parents[0].parents[0].parents[0]
 end

+ run_code(x, 'commits 1') do
+ git.commits.size
+ end
+
 run_code(x, 'commits 2') do
 log = git.commits('master', 15)
 log.size

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

6 of 12 05/01/2011 12:43 AM

That command compares what is in your working directory with what is in your
staging area. The result tells you the changes you’ve made that you haven’t yet
staged.

If you want to see what you’ve staged that will go into your next commit, you
can use git diff --cached. (In Git versions 1.6.1 and later, you can also use git diff
--staged, which may be easier to remember.) This command compares your
staged changes to your last commit:

$ git diff --cached
diff --git a/README b/README
new file mode 100644
index 0000000..03902a1
--- /dev/null
+++ b/README2
@@ -0,0 +1,5 @@
+grit
+ by Tom Preston-Werner, Chris Wanstrath
+ http://github.com/mojombo/grit
+
+Grit is a Ruby library for extracting information from a Git repository

It’s important to note that git diff by itself doesn’t show all changes made since
your last commit — only changes that are still unstaged. This can be confusing,
because if you’ve staged all of your changes, git diff will give you no output.

For another example, if you stage the benchmarks.rb file and then edit it, you
can use git diff to see the changes in the file that are staged and the changes
that are unstaged:

$ git add benchmarks.rb
$ echo '# test line' >> benchmarks.rb
$ git status
On branch master
#
Changes to be committed:
#
modified: benchmarks.rb
#
Changed but not updated:
#
modified: benchmarks.rb
#

Now you can use git diff to see what is still unstaged

$ git diff
diff --git a/benchmarks.rb b/benchmarks.rb
index e445e28..86b2f7c 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

7 of 12 05/01/2011 12:43 AM

@@ -127,3 +127,4 @@ end
 main()

 ##pp Grit::GitRuby.cache_client.stats
+# test line

and git diff --cached to see what you’ve staged so far:

$ git diff --cached
diff --git a/benchmarks.rb b/benchmarks.rb
index 3cb747f..e445e28 100644
--- a/benchmarks.rb
+++ b/benchmarks.rb
@@ -36,6 +36,10 @@ def main
 @commit.parents[0].parents[0].parents[0]
 end

+ run_code(x, 'commits 1') do
+ git.commits.size
+ end
+
 run_code(x, 'commits 2') do
 log = git.commits('master', 15)
 log.size

Committing Your Changes

Now that your staging area is set up the way you want it, you can commit your
changes. Remember that anything that is still unstaged — any files you have
created or modified that you haven’t run git add on since you edited them —
won’t go into this commit. They will stay as modified files on your disk. In this
case, the last time you ran git status, you saw that everything was staged, so
you’re ready to commit your changes. The simplest way to commit is to type git
commit:

$ git commit

Doing so launches your editor of choice. (This is set by your shell’s $EDITOR
environment variable — usually vim or emacs, although you can configure it
with whatever you want using the git config --global core.editor command as you
saw in Chapter 1).

The editor displays the following text (this example is a Vim screen):

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: README

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

8 of 12 05/01/2011 12:43 AM

modified: benchmarks.rb
~
~
~
".git/COMMIT_EDITMSG" 10L, 283C

You can see that the default commit message contains the latest output of the
git status command commented out and one empty line on top. You can remove
these comments and type your commit message, or you can leave them there to
help you remember what you’re committing. (For an even more explicit
reminder of what you’ve modified, you can pass the -v option to git commit. Doing
so also puts the diff of your change in the editor so you can see exactly what
you did.) When you exit the editor, Git creates your commit with that commit
message (with the comments and diff stripped out).

Alternatively, you can type your commit message inline with the commit
command by specifying it after a -m flag, like this:

$ git commit -m "Story 182: Fix benchmarks for speed"
[master]: created 463dc4f: "Fix benchmarks for speed"
 2 files changed, 3 insertions(+), 0 deletions(-)
 create mode 100644 README

Now you’ve created your first commit! You can see that the commit has given
you some output about itself: which branch you committed to (master), what
SHA-1 checksum the commit has (463dc4f), how many files were changed, and
statistics about lines added and removed in the commit.

Remember that the commit records the snapshot you set up in your staging
area. Anything you didn’t stage is still sitting there modified; you can do
another commit to add it to your history. Every time you perform a commit,
you’re recording a snapshot of your project that you can revert to or compare
to later.

Skipping the Staging Area

Although it can be amazingly useful for crafting commits exactly how you want
them, the staging area is sometimes a bit more complex than you need in your
workflow. If you want to skip the staging area, Git provides a simple shortcut.
Providing the -a option to the git commit command makes Git automatically stage
every file that is already tracked before doing the commit, letting you skip the
git add part:

$ git status
On branch master
#
Changed but not updated:
#

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

9 of 12 05/01/2011 12:43 AM

modified: benchmarks.rb
#
$ git commit -a -m 'added new benchmarks'
[master 83e38c7] added new benchmarks
 1 files changed, 5 insertions(+), 0 deletions(-)

Notice how you don’t have to run git add on the benchmarks.rb file in this case
before you commit.

Removing Files

To remove a file from Git, you have to remove it from your tracked files (more
accurately, remove it from your staging area) and then commit. The git rm
command does that and also removes the file from your working directory so
you don’t see it as an untracked file next time around.

If you simply remove the file from your working directory, it shows up under
the “Changed but not updated” (that is, unstaged) area of your git status
output:

$ rm grit.gemspec
$ git status
On branch master
#
Changed but not updated:
(use "git add/rm <file>..." to update what will be committed)
#
deleted: grit.gemspec
#

Then, if you run git rm, it stages the file’s removal:

$ git rm grit.gemspec
rm 'grit.gemspec'
$ git status
On branch master
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
deleted: grit.gemspec
#

The next time you commit, the file will be gone and no longer tracked. If you
modified the file and added it to the index already, you must force the removal
with the -f option. This is a safety feature to prevent accidental removal of data
that hasn’t yet been recorded in a snapshot and that can’t be recovered from
Git.

Another useful thing you may want to do is to keep the file in your working

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

10 of 12 05/01/2011 12:43 AM

tree but remove it from your staging area. In other words, you may want to
keep the file on your hard drive but not have Git track it anymore. This is
particularly useful if you forgot to add something to your .gitignore file and
accidentally added it, like a large log file or a bunch of .a compiled files. To do
this, use the --cached option:

$ git rm --cached readme.txt

You can pass files, directories, and file-glob patterns to the git rm command.
That means you can do things such as

$ git rm log/*.log

Note the backslash (\) in front of the *. This is necessary because Git does its
own filename expansion in addition to your shell’s filename expansion. This
command removes all files that have the .log extension in the log/ directory. Or,
you can do something like this:

$ git rm *~

This command removes all files that end with ~.

Moving Files

Unlike many other VCS systems, Git doesn’t explicitly track file movement. If
you rename a file in Git, no metadata is stored in Git that tells it you renamed
the file. However, Git is pretty smart about figuring that out after the fact —
we’ll deal with detecting file movement a bit later.

Thus it’s a bit confusing that Git has a mv command. If you want to rename a file
in Git, you can run something like

$ git mv file_from file_to

and it works fine. In fact, if you run something like this and look at the status,
you’ll see that Git considers it a renamed file:

$ git mv README.txt README
$ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
#
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
renamed: README.txt -> README
#

However, this is equivalent to running something like this:

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

11 of 12 05/01/2011 12:43 AM

$ mv README.txt README
$ git rm README.txt
$ git add README

Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a
file that way or with the mv command. The only real difference is that mv is one
command instead of three — it’s a convenience function. More important, you
can use any tool you like to rename a file, and address the add/rm later, before
you commit.

prev | next
Book translated into German, Chinese, Japanese and Dutch.
Partial translations available in Arabic, Czech, Spanish, French, Indonesian,
Italian, Macedonian, Polish, Thai and Russian .
All content under Creative Commons Attribution-Non Commercial-Share Alike
3.0 license.
Theme and code by Michael Bleigh. Hosted by GitHub and powered by Jekyll.

Pro Git - Pro Git 2.2 Git Basics Recording Changes ... http://progit.org/book/ch2-2.html

12 of 12 05/01/2011 12:43 AM

