CHAPTER 5

Plastic Equilibrium in Soils

ARTICLE 26 FUNDAMENTAL
ASSUMPTIONS

This chapter deals with the earth pressure against lateral
supports such as retaining walls or the bracing in open
cuts, with the resistance of the earth against lateral dis-
placement, with the bearing capacity of footings, and
with the stability of slopes. Problems of this type require
comparing the magnitudes of two sets of forces: those
that tend to resist a failure and those that tend to produce
it. Such an investigation is called a stability calculation.
To make a stability calculation, the position of the poten-
tial surface of sliding must be determined and the resis-
tance against sliding along this surface must be computed
or estimated.

In reality both the forces tending to resist failure and
those tending to produce it involve inherent uncertainties
and, consequently, so does the factor of safety, defined
as the quotient of these two quantities. The probabilistic
nature of both the reistances and the driving forces has
been the subject of considerable study and is recognized
in building codes applicable to structures and their foun-
dations; it will be discussed in Part III. In this chapter
the principles of stability calculations are presented as if
the pertinent quantities can be evaluated deterministically.

The sliding resistance s per unit of area depends not
only on the type of soil but also on the effective normal
stress ¢ — u on the surface of sliding and a number
of other factors. These were discussed in Articles 18
through 20.

For mathematical treatment of stability problems, sim-
plified expressions for shear strength are used. For dry
or saturated granular soils, for saturated normally consoli-
dated clays, and for fully softened stiff clays:

s = (o — u) tan ¢' (26.1)
where ¢’ is a friction angle independent of the effective
normal stress ¢ — u at failure and is constant throughout
the soil. For saturated overconsolidated or aged clays,

s=c + (o — utan ¢’ (26.2)

where ¢’ and &' are a cohesion intercept and a friction
angle, respectively; both are independent of the effective
normal stress at failure and are constant throughout the
soil mass. For unsaturated cohesive soils,

s =c¢ + otan ¢’ (26.3)

where ¢ = ¢’ + b u? (Eq. 19.9), and ¢’ and ¢’ are a
cohesion intercept and a friction angle, respectively. The
parameters a and b as well as suction u; are assumed not
to vary throughout the soil mass; constant values of ¢
and ¢’, independent of total normal stress at failure o,
are used in the analysis. In reality the failure envelopes
of dense granular soils and overconsolidated clays are
curved, and ¢’ and u, may vary with depth. Thus the
selection of appropriate values of &', ¢’ and ¢ for a
particular problem requires experience and judgment
(Article 19).

The investigation of failure based on Eqgs. 26.1 or 26.2
is called effective stress stability analysis (ESSA). The
ESSA terminology is also applicable to Eq. 26.3, because
in unsaturated soils with air voids that are connected to
the atmosphere and with constant suction, the frictional
shearing resistance determined by &’ is directly propor-
tional to 0. When ESSA is applied to drained failures,
the porewater pressure in Eqs. 26.1 and 26.2 is determined
from the ground water level, or from a flow net if steady
seepage exists. When ESSA is used for mathematical
analysis of undrained failures, the porewater pressure
term must also include porewater pressures resulting from
loading or unloading and associated shearing deforma-
tions (Article 15.5). Considerable care must be taken in
selecting ¢’ and ¢’ for undrained failure of contractive
soils (Article 20.1).

More often, the shear strength for constant volume
undrained failures is defined as

s =39, (26.4)

where s, is an average mobilized undrained shear strength
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assumed to have the same value at all depths and all
directions. Equation 26.4 is most suitable for undrained
stability analyses of saturated soft clays and silts and for
loose sands, in which the undrained shear strength s, is
independent of the total normal stress. An investigation of
failure based on Eq. 26.4 is called an undrained strength
stability analysis (USSA). Because the undrained shear
strength may vary with depth and is highly dependent on
mode of shear and time to failure, the selection of the
appropriate value of the average mobilized undrained
shear strength for a particular problem requires experience
and judgment (Article 20). When the undrained shear
strength varies with depth in an irregular but distinct
manner, the soil should be considered to consist of layers
having different values of average mobilized undrained
shear strength. In rare instances, such as in an earth dam
constructed from a homogeneous cohesive soil, the
undrained shear strength may increase linearly with depth
or with the consolidation pressure o,,. The relationship
between undrained shear strength and consolidation pres-
sure may be included in a mathematical analysis as a
linear relationship between undrained shear strength and
effective normal stress before loading or unloading; i.e.,
before the associated shear deformation.

Each of the stability problems will be solved first for
a dry (u = 0) cohesionless sand to which Eq. 26.1 is
applicable and then for a cohesive material to which Eqgs.
26.2 or 26.3 applies. After the ability to solve problems
on the basis of these two equations is achieved, similar
problems dealing with partly or completely submerged
sand or with saturated clay under undrained conditions
can readily be solved.

In a partly submerged mass of sand in which the water
is at rest, the neutral stress u at any depth z below the
water table is

U=,z

This stress reduces the effective unit weight of that
part of the sand below water level from y to the submerged
unit weight v’ (Eq. 15.6). Hence a stability calculation
dealing with a partly submerged sand can be made on
the assumption that the sand is dry, provided that the unit
weight +y of the soil below water level is replaced by v'.
The pressure exerted by a partly submerged mass of sand
against a lateral support is equal to the sum of the pressure
of the sand, computed on the basis just mentioned, and
the full water pressure. However, if the water percolates
through the voids of the soil instead of being stagnant,
this procedure is not applicable because the seepage pres-
sure of the percolating water must be taken into account.
Problems dealing with seepage pressure are discussed in
Articles 35 and 36.

Theoretical expressions derived on the basis of Eq.
26.2 or Eq. 26.3 can be applied to stability analyses in
which the shear strength is expressed by Eq. 26.4. The

equation for the undrained shear strength of saturated
soils in terms of total stress is

=c¢+otan ¢ (26.5)
where ¢ = 5, and ¢ = 0. Because the mathematical forms
of Egs. 26.2, 26.3, and 26.5 are identical, they lead to
the same mathematical expressions for solving stability
problems. Thus, by appropriate substitutions for the inter-
cept and angle, mathematical expressions for the
undrained stability of saturated soils are obtained in terms
of s,.

The condition for failure represented by Eq. 26.2 cor-
responds to Mohr’s rupture diagram in which the failure
envelope is a straight line (Fig. 26.1). Consequently, a
definite relation exists at failure between the major and
minor principal stresses o; and o3, respectively. By
geometry

op +d=0A+ AB = OA(l + sin ¢")
o3 +d = 0A — AB = OA(l — sin ¢')

whence
+ sin ¢’ + sin ¢’
ol =0'§1 and), +d 1 and), 1
1 —sind 1 —sind
But
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Figure 26.1 Mobhr rupture diagram for condition in which
failure envelope is straight line.




Or, if

Ny

tan2<45° + %) (26.6)

o] = 03Ny + 2¢' /Ny

The quantity N, is known as the flow value. If ¢’ = 0,

(26.7)

oy = 03Ny (26.8)
and if the condition for failure is represented by Eq. 26.4
(b=0,Ny =1)

oy = 03 + 25, (26.9)

ARTICLE 27 STATES OF PLASTIC
EQUILIBRIUM

27.1 Fundamental Concepts

A body of soil is in a state of plastic equilibrium if
every part of it is on the verge of failure. Rankine (1857)
investigated the stress conditions corresponding to those
states of plastic equilibrium that can be developed simul-
taneously throughout a semi-infinite mass of soil acted
on by no force other than gravity. States of plastic equilib-
rium identical with those which Rankine considered are
referred to as Rankine states of plastic equilibrium. A
discussion of the Rankine states in a semi-infinite mass
is primarily an introduction to the more complicated states
of plastic equilibrium encountered in connection with
practical problems.

The Rankine states are illustrated by Fig. 27.1. In this
figure, AB represents the horizontal surface of a semi-
infinite mass of cohesionless dry sand with a unit weight
~v, and E represents an element of the sand with a depth
z and a cross-sectional area equal to unity. Because the
element is symmetrical with reference to a vertical plane,
the effective normal stress on the base

o, =Nz (27.1)

is a principal stress. As a consequence, the effective nor-
mal stresses g, on the vertical sides of the element at
depth z are also principal stresses.

According to Eq. 26.8, the ratio between the major and
minor principal stresses in a cohesionless material cannot
exceed the value

!

DN, = tan2<45° + %)

o3
Because the vertical principal stress oy, in the mass of
sand shown in Fig. 27.1a, can be either the major or the
minor principal stress, the ratio K = o;/0, can assume
any value between the limits,
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After a mass of sand has been deposited by either a
natural or an artificial process, K has a value Kj intermedi-
ate between K, and K and

o, = Kyo, 27.4)
wherein K| is an empirical coefficient known as the coeffi-
cient of earth pressure at rest. Its value depends on the
relative density of the sand, the process by which the
deposit was formed, and its subsequent stress history
(Article 16.5).

To change the value of K for a mass of sand from K
to some other value, it is necessary to give the entire
mass an opportunity either to stretch or to be compressed
in a horizontal direction. Because the weight of sand
above any horizontal section remains unchanged, the
effective vertical pressure o, is unaltered. The horizontal
pressure o, = Koy, however, decreases if the mass
stretches and increases if it compresses.

As the mass stretches, any two vertical sections such
as ab and cd move apart, and the value of K decreases
until it becomes equal to K, (Eq. 27.2). The sand is then
in what is known as the active Rankine state. In this state

the intensity of the effective horizontal pressure at any
depth z is equal to

1
% = Kyo, = Kyyz = vz o~ (27.5)

in which K, is called the coefficient of active earth
pressure. The distribution of pressure over the sides and
base of an element such as E is shown in Fig. 27.15.
Further stretching of the mass has no effect on o}, (Eq.
27.5), but sliding occurs along two sets of plane surfaces
as indicated on the right-hand side of Fig. 27.l1a.
According to Eq. 17.5, such surfaces of sliding intersect
the direction of the minor principal stress at the angle
45° + ¢'/2. Because the minor principal stresses in the
active Rankine state are horizontal, the shear planes rise
at an angle of 45° + ¢&’/2 with the horizontal. The pattern
formed by the traces of the shear planes on a vertical
section parallel to the direction of stretching is known
as the shear pattern.

A horizontal compression of the entire mass of sand
causes ab to move toward cd, as shown in Fig. 27.1c.
As a consequence, the ratio K = ¢,/0) increases. As
soon as K becomes equal to K (Eq. 27.3) the sand is
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Figure 27.1 (a, b) Diagrams illustrating active Rankine state in semi-infinite mass of sand;
(¢, d) corresponding diagrams for passive Rankine state.

said to be in the passive Rankine state. At any depth z
the horizontal pressure is

o, = Kpo, = Kpyz = yzNy (27.6)

in which Kp is the coefficient of passive earth pressure.
Because the minor principal stress in the passive Rankine
state is vertical, the surfaces of sliding rise at an angle
of 45° — &' /2 with the horizontal, as shown in Fig. 27.1c.

The active and the passive Rankine states constitute
the two limiting states for the equilibrium of the sand.
Every intermediate state, including the state of rest, is
referved to as a state of elastic equilibrium.

27.2 Local States of Plastic Equilibrium

The Rankine states illustrated by Fig. 27.1 were produced
by uniformly stretching or compressing every part of a
semi-infinite mass of sand. They are known as general
states of plastic equilibrium. However, in a stratum of
real sand, no general state of equilibrium can be produced
except by a geologic process such as the horizontal com-
pression by tectonic forces of the entire rock foundation
of the sand strata. Local events, such as the yielding of
a retaining wall, cannot produce a radical change in the
state of stress in the sand except in the immediate vicinity
of the source of the disturbance. The rest of the sand
remains in a state of elastic equilibrium.

Local states of plastic equilibrium can be produced by
very different processes of deformation. The resulting
states of stress in the plastic zone and the shape of the
zone itself depend to a large extent on the type of deforma-
tion and on the degree of roughness of the surface of
contact between the soil and its support. These factors
constitute the deformation and the boundary conditions.
The practical consequences of these conditions are illus-
trated by Figs. 27.2 and 27.3.

Figure 27.2a is a vertical section through a prismatic
box having a length / equal to the distance between the

vertical sections ab and cd in Fig. 27.1. If dry sand is
deposited in the box by the same process that was respon-
sible for the formation of the semi-infinite mass repre-
sented in Fig. 27.1, the states of stress in both masses
are identical. They represent states of elastic equilibrium.

When the state of the semi-infinite mass of sand (Fig.
27.1a) was changed from that of rest to the active Rankine
state, the vertical section ab moved through the distance
d,. To change the state of the entire mass of sand contained
in the box (Fig. 27.2a) into the active Rankine state, the
wall ab must be moved through the same distance. This
constitutes the deformation condition. While the wall ab
(Fig. 27.2a) moves out, the height of the mass of sand
decreases, and its length increases. These movements
involve displacements between the sand and all the sur-
faces of the box which it contacts. If the contact surfaces
are rough, shearing stresses will develop along vertical
and horizontal planes. Because the shearing stresses on
these planes are zero in the active Rankine state, this state
cannot materialize unless the sides and bottom of the box
are perfectly smooth. This requirement constitutes the
boundary condition for the transition of the sand in the
box to the active Rankine state. If this condition is satis-
fied, the sand passes into an active Rankine state as soon
as the wall ab reaches the position a,b;. At this stage,
the unit stretch of the soil is d, /. Any further movement
of the wall causes slippage along the two sets of surfaces
of sliding indicated by dash lines in Fig. 27.2a, but the
stress conditions remain unchanged.

If the wall ab is perfectly smooth but the bottom of
the box is rough, the sand located between the wall ab
and the potential surface of sliding be is free to deform
in exactly the same manner as it does in a box with a
smooth bottom, but the state of stress in the balance of
the sand cannot change materially because the friction
along the bottom prevents the required deformation.
Hence, an outward movement of the wall ab produces
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Figure 27.2 (a) Diagrams illustrating local active Rankine state in sand contained in rectangu-
lar box; (b) corresponding diagrams for local passive Rankine state.

an active Rankine state within only the wedge-shaped
zone abe. Because the width of the wedge increases from
zero at the bottom to /; at the top, the unit stretch d,/!
required to establish the active Rankine state in the wedge
is attained as soon as the left-hand boundary of the wedge
moves from ab to a1b (Fig. 27.2a). This is the deformation
condition for the development of an active Rankine state
within the wedge. As soon as the wall ab passes beyond
this position, the wedge slides downward and outward
along a plane surface of sliding be which rises at an angle
of 45° + &’ /2 with the horizontal.

If the wall ab is pushed toward the sand, and if both
the walls and the bottom of the box are perfectly smooth,
the entire mass of sand is transformed into the passive
Rankine state (Fig. 27.2b) as soon as the wall moves
beyond a distance d, from its original position. The planes
of sliding rise at an angle of 45° — &'/2 with the hori-
zontal. If the wall ab is perfectly smooth but the bottom
of the box is rough, the passive Rankine state develops
only within the wedge-shaped zone abe. The transition
from the elastic to the plastic state does not occur until
ab moves into or beyond the position a3b.

If the end of the box is free to move outward at the
bottom but is restrained at the top, as indicated in Fig.
27.3, the sand fails by shear along some surface of sliding
as soon as the tilt becomes perceptible, because the defor-
mations compatible with an elastic state of equilibrium
are very small. However, even at the state of failure, the
sand between the wall and the surface of sliding does not
pass into the active Rankine state because the upper part
of the wall cannot move, and, as a consequence, the

b, b

Figure 27.3 Failure of sand behind smooth vertical wall when
deformation condition for active Rankine state is not satisfied.
(a) Section through back of wall; (b) stress against back of wall.

deformation condition for the active Rankine state within
the sliding wedge is not satisfied.

Theoretical and experimental investigations regarding
the type of failure caused by a tilt of the lateral support
about its upper edge have led to the conclusion that the
surface of sliding starts at b (Fig. 27.3a) at an angle of
45° + ¢'/2 with the horizontal and that it becomes steeper
until it intersects the ground surface at a right angle. The
upper part of the sliding wedge remains in a state of
elastic equilibrium until the lower part of the wedge has
passed completely into a state of plastic equilibrium. The
distribution of pressure against the lateral support is
roughly parabolic (Fig. 27.3b) instead of triangular
(Fig. 27.1b).

Similar investigations regarding the effect of pushing
the bottom of the support toward the soil (Fig. 27.4a)
have shown that the surface of sliding rises from & at an
angle 45° — &'/2 with the horizontal and that it also
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Figure 27.4 Failure of sand behind smooth vertical wall when
deformation condition for passive Rankine state is not satisfied.
(a) Section through back of wall; (b) stress on back of wall.

intersects the ground surface at a right angle. The corres-
ponding distribution of pressure is shown in Fig. 27.4b.
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ARTICLE 28 RANKINE’S EARTH-
PRESSURE THEORY

28.1 Earth Pressure against Retaining Walls

Retaining walls serve the same function as the vertical
sides of the box shown in Fig. 27.2. The soil adjoining
the wall is known as the backfill. It is always deposited
after the wall is built. While the backfill is being placed,
the wall yields somewhat under the pressure. The ultimate
value of the pressure depends not only on the nature of
the soil and the height of the wall but also on the amount
of yield. If the position of the wall is fixed, the earth
pressure is likely to retain forever a value close to the
earth pressure at rest (Article 27). However, as soon as
a wall yields far enough, it automatically satisfies the
deformation condition for the transition of the adjoining
mass of soil from the state of rest into an active state of
plastic equilibrium. Hence, the factor of safety of a
retaining wall capable of yielding must be adequate with
respect to the active earth pressure, but does not need to
be investigated for greater values of earth pressure.
Although the back of every real retaining wall is rough,
approximate values of the earth pressure can be obtained

on the assumption that it is smooth. In the following
paragraphs, this assumption is made. Methods for
obtaining more accurate values will be described in subse-
quent articles.

28.2 Active Earth Pressure of Cohesionless Soil
against Smooth Vertical Walls

If the surface of a sand backfill is horizontal, and if the
back of the retaining wall is vertical and perfectly smooth,
the magnitude and the distribution of pressure against the
back of the wall are identical with those of the active
pressure against the fictitious plane ab in Fig. 27.1a.
Therefore, the earth pressure can be computed on the
basis of the equations already derived. In reality, there
are no perfectly smooth surfaces. However, the equations
based on this assumption are so simple that they are quite
commonly used for evaluating the earth pressure against
real retaining walls and other structures acted on by earth
pressure. It is shown subsequently that the roughness of
the back of a wall commonly reduces the active and
increases the passive earth pressure. Hence, as a rule, the
error associated with the assumption is on the safe side.

Furthermore, in one case of great practical importance,
the assumption of a smooth vertical wall is almost strictly
correct. This case is illustrated by Fig. 28.1, which repre-
sents a cantilever wall. If such a wall yields under the
influence of the earth pressure, the sand fails by shear
along two planes rising from the heel of the wall at angles
of 45° + &’ /2 with the horizontal. Within the wedge-
shaped zone located between these two planes, the sand
is in the active Rankine state, and no shearing stresses
act along the vertical plane ab through the heel. Hence,
the earth pressure against this plane is identical with that
against a smooth vertical wall.

If the sand backfill is perfectly dry, the active pressure
against a smooth vertical wall at any depth z is

. 1
(0% —'YZN¢I

It increases in simple proportion to the depth, as indicated

(27.5)

a

4

© ¢‘
45+ ?-/ \ \1453-5’

o

Figure 28.1 Failure of sand behind cantilever retaining wall;
deformation condition for active Rankine state is almost
satisfied.



by the pressure triangle abc (Fig. 27.2a). The resultant
pressure or force against the wall is

H o 1, 1
Pi=| o,dz==vH?— (28.1)
Ny

0 2
The point of application of P, is located at a height H/3
above b.
If the wall is pushed into the position ayb in Fig. 27.2b
the pressure o, against the wall assumes a value corres-
ponding to the passive Rankine state,

o} = YNy (27.6)

and the resultant pressure against the wall becomes
equal to

H
Pp = J ohdz = % YH?Ny: (28.2)

0

28.3 Active Earth Pressure of Partly Submerged
Sand Supporting a Uniform Surcharge

In Fig. 28.2a the line ab represents the smooth vertical
back of a wall with height H. The effective unit weight
of the sand when dry is -y and when submerged is y' (see
Article 15); the unit weight of water is <y,. The surface
of the horizontal backfill carries a uniformly distributed
surcharge ¢ per unit of area. Within the backfill the water
table is located at depth H, below the crest of the wall.
The angle of internal friction of both the dry and sub-
merged sand is assumed to be ¢'.

As the wall yields from position ab into position ajb,
the pressure against its back decreases from the value of
the earth pressure at rest to that of the active Rankine
pressure. In Article 26, it was shown that the entire effect
of the porewater pressure on the effective stresses in
the sand can be taken into account by assigning to the
submerged part of the sand the submerged unit weight
v' (Eq. 15.6). Within the depth H, the pressure on the

Load ¢
per Unit of Area

Figure 28.2 Active earth pressure of partly submerged sand
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wall due to the weight of the adjoining sand is represented
by the triangle ace in Fig. 28.2b. At any depth z’ below the
water table the effective vertical pressure on a horizontal
section through the sand is

o, =Hy+ 2y

For the corresponding horizontal active Rankine pressure
we obtain by means of Eq. 27.5

O,I_G"’_(H +l!)1
h Ny 1Y Ty No

(28.3)

The resultant effective horizontal pressure below the
water level is represented by the area bced in Fig. 28.2b.
To this force must be added the resultant water pressure,

P,='%v,H, (28.4)

which acts against the lower part cb of the wall. In Fig.
28.2b, the water pressure is represented by the triangle def.

If the fill carries a uniformly distributed surcharge g
per unit of area, the effective vertical stress o, increases
at any depth by ¢, and the corresponding horizontal active
Rankine pressure increases by

Agj = -1

N (28.5)

In Fig. 28.2b the pressure produced by the surcharge ¢
is represented by the area aefihg.

28.4 Active Earth Pressure of Cohesive Soils
against Smooth Vertical Surfaces

In Fig. 28.3a the line ab represents the smooth vertical
back of a wall in contact with an unsaturated cohesive
soil having a unit weight vy located above the water table.
The shearing resistance of the soil is defined by Eq. 26.3

s=c+ octan ¢’

The relation between the extreme values of the principal

Figure 28.3 Failure of clay behind smooth vertical wall when
deformation condition for active earth pressure is satisfied. (a)
Section through back of wall; (b) pressure against back of wall.

supporting a uniform surcharge. (a) Section through back of
supporting structure; (b) pressure against back of structure.
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stresses in such soils is determined by the expression,
0, = 03Ny + 2¢/Ny (26.7)

wherein o, and @ are the major and minor total principal
stresses, respectively, and

Ne = tan2(45° + %)

is the flow value. In Article 17.4 it is also shown that
the surfaces of sliding intersect the direction of the minor
principal stress at an angle 45° + &'/2, regardless of the
value of ¢ (Eq. 26.2).

Because the back of the wall is smooth, the vertical
principal stress at depth z below the horizontal surface
of the backfill is o, = yz. Before the support ab moves,
it is acted on by the earth pressure at rest. In this state
the horizontal stress o, is the minor principal stress. An
outward movement of the support into or beyond the
position aib reduces o, to the value corresponding to the
active Rankine pressure. Substituting o, = g, = vz and
o, = 03 into Eq. 26.2, we obtain

Gh:f\{zL_zc 1

Ny /Ny
This stress at any depth z is represented by the horizontal

distance between the lines ab and cd in Fig. 28.3b. At
depth,

(26.6)

(28.6)

2c
20 = — Ny
0) Y &

(28.7)
the stress oy, is equal to zero. At a depth less than z,, the
pressure against the wall is negative, provided that a crack
does not open up between the wall and the uppermost
part of the soil. The resultant horizontal earth pressure
against the wall is

P—JHU dz—l'yH2 L 2¢ H (28.8)
A= R4z = 3 = .
0 2 Ntb' /Nd)'
If the wall has a height,
4
H=H, = f Ny = 22 (28.9)

the resultant earth pressure P, is equal to zero. Hence, if
the height of a vertical bank is smaller than H,, the bank
should be able to stand without lateral support. However,
the pressure against the wall increases from —2c/\/1_V;
at the crest to +2c/\/}T¢, at depth H,, whereas on the
vertical face of an unsupported bank the normal stress is
zero at every point. Because of this difference the greatest
depth to which a cut can be excavated without lateral
support of its vertical sides is slightly smaller than H.
(see Article 35).

If the cohesive soil above the water table is practically
saturated so that it is justifiable to express the extreme
values of the principal stresses by Eq. 26.9, then

Py = LyH? — 25,H (28.10)

and

4s,
H. = —

(28.11)
Y

Because the soil does not necessarily adhere to the
wall, it is generally assumed that the active earth pressure
of cohesive soils against retaining walls is equal to the
pressure represented in Fig. 28.3b by the triangular area
bde, equal to area cdd, — area cebd,. Therefore,

2
po=tymr L _oem L 4 2—;’— (28.12)

2 N‘b' /Nd)'

In terms of Eq. 26.9,

2
2s;,

1
P,==vyH? -2 + — 28.13
A 2"{ suH v ( )

28.5 Passive Earth Pressure of Cohesive Soils in
Contact with Smooth Vertical Surfaces

If the face ab of the wall or block that supports the soil
and its uniform surcharge ¢ is pushed toward the backfill
as indicated in Fig. 28.44, the horizontal principal stress
oy, increases and becomes greater than o,. As soon as ab
arrives at or beyond the position ayb, which represents
the deformation condition for the passive Rankine state,
the stress conditions for failure (Eq. 26.2) are satisfied.
Because g, represents the major principal stress, we may
substitute o, = 0, and 0, = o3 = yz + g into Eq. 26.2
and obtain

ap = YNy + 2¢/Ny + gNy (28.14)

The stress o, can be resolved into two parts. One part
[on); = yaNy

increases like a hydrostatic pressure in simple proportion
to depth. In Fig. 28.4b the stresses [o,]; are represented
by the width of the triangle c¢,c,d; with the area
[Ppl; = 2YH*Ny (28.15)
The point of application of [P5]; is located at an elevation
H/3 above b. The quantity {Pp]; represents the resultant
passive earth pressure of a cohesionless material with an
angle of internal friction ¢’ and a unit weight +y.
The second part of o, is

[O'h]” = 20\/N¢' + qu,r
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Figure 28.4 Failure of clay behind smooth vertical wall when deformation condition for
passive earth pressure is satisfied. (a) Section through back of wall; (b) stress on back of wall.

This part is independent of the depth. It is represented
by the width of the rectangle abc,d, in Fig. 28.4b. The
horizontal force is equal to the area of the rectangle.
Hence,

[Pely = H(2c /Ny + qNy) (28.16)

The point of application of [Pp];, is at mid-height of the
surface ab. Since Eq. 28.16 does not contain the unit
weight y, the value [Pp];; can be computed on the assump-
tion that the backfill is weightless. From Eqs. 28.15 and
28.16, we find that the resultant passive earth pressure is

Pp = [Ppl; + [Pply = 3yH*Ny + H(Q2c\/Ny + gNy)
(28.17)

According to the preceding discussion, Pp can be com-
puted by two independent operations. First, [Pp]; is com-
puted on the assumption that the cohesion and the
surcharge are zero (¢ = 0, ¢ = 0). The point of application
of [Pp); is located at the lower third point of H. Second,
[Pp)y is computed on the assumption that the unit weight
of the backfill is zero (y = 0). The point of application
of [Pp]yy is at the midpoint of H. In the following articles
this simple procedure is used repeatedly for determining
the point of application of the passive earth pressure of
cohesive soils. The subdivision of Pp into the two parts
[Ppl; and [Pp]y is strictly correct only when the back of
the wall is vertical and perfectly smooth. For all other
conditions, the procedure is approximate.

Problems

1. A wall with a smooth vertical back 3 m high retains a
mass of dry cohesionless sand that has a horizontal surface.
The sand weighs 18 kN/m? and has an angle of internal friction
of 36°. What is the approximate resultant pressure against the
wall, if the wall is prevented from yielding? If the wall can
yield far enough to satisfy the deformation condition for the
active Rankine state?

Ans. A unique relationship between K and ¢’ for densi-
fied sands does not exist. Using the correlation between K, and

¢’ in Fig. 44.6 and assuming K,, = 0.5 leads to K, = 0.65;
53 kN/m; 21 kN /m.

2. The water level behind the wall described in problem 1
rises to an elevation 1 m below the crest. The submerged unit
weight of the sand is 10 kN/m>. If the deformation condition
for the active Rankine state is satisfied, what is the resultant
pressure that the earth and water exert against the wall? At
what height above the base does the resultant of the earth and
water pressures act?

Ans. 37 kN/m; 0.86 m.

3. What is the resultant lateral pressure against the yielding
wall in problem 1, if the sand mass supports a uniformly distrib-
uted load of 20 kPa? At what height above the base of the wall
is the center of pressure?

Ans. 37 kN/m; 1.2 m.

4. The space between two retaining walls with smooth backs
is filled with sand weighing 18 kN/m?>. The foundations of the
walls are interconnected by a reinforced concrete floor, and the
crests of the walls by heavy steel tie rods. The walls are 5 m
high and 17 m apart. The surface of the sand is used for storing
pig iron weighing 15 kPa. If the coefficient of the earth pressure
at rest is Ky = 0.50, what is the resultant pressure against the
walls before and after the application of the surcharge?

Ans. 113 kN/m; 150 kN/m.

5. A smooth vertical wall 6 m high is pushed against a mass
of soil having a horizontal surface and an undrained shear
strength 5, = 35 kPa. The unit weight of the soil is 17 kN/m?,
Its surface carries a uniform load of 10 kPa. What is the total
passive Rankine pressure? What is the distance from the base
of the wall to the center of pressure? Determine the intensity
of lateral pressure at the base of the wall.

Ans. 786 kN/m; 2.61 m; 182 kPa.

6. A smooth vertical wall 4 m high is pushed against an
overconsolidated clay (y = 19 kN/m?, ¢’ = 3 kPa, ¢’ = 30°,
and average s, = 120 kPa). The water table in the overconsoli-
dated clay is 1 m below the ground surface. The surface of the
overconsolidated clay carries a uniform load of 25 kPa. Using
the Rankine theory calculate the resultant pressure per lineal
meter against the wall when the clay behind the wall fails (a)
in an undrained condition, and (b) in a drained condition. (c)



