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1 I n t r o d u c t i o n  

This part gives a concise overview of techniques that have been proposed and 
successfully used to attack precision problems in the implementation of geometric 
algorithms. 

In reference to issues of quality of spatial data in GIS as well as in reference 
to implementation issues of geometric data structures and Mgorithms, the terms 
precision and accuracy are often used interchangeably. We adopt the terminology 
used in [47]. Accuracy refers to the relationship between reality and the measured 
data modelling it. Precision refers to the level of detail with which (numerical) 
data are represented in a model or in (arithmetic) calculations with the model. 

Here, our attention is directed to precision, more precisely, to how to deal 
with the notorious problems that imprecise geometric calculations can cause. 
Inaccuracy in GIS data is not our main objective. Basically, we assume that 
the geometric data to be processed are accurate. Precision problems can make 
implementing geometric algorithms very unpleasant [27, 72] even under the as- 
sumption of perfectly accurate data, if no appropriate techniques are used to deal 
with imprecision. A quite sketchy discussion of dealing with inaccurate data is 
given in Section 5.2. 

1.1 Precision and  Correctness  

Geometric algorithms are usually designed and proven to be correct in a com- 
putational model that assumes exact computation over the reM numbers. In im- 
plementations of geometric algorithms, exact real arithmetic is mostly replaced 
by fast finite precision floating-point arithmetic provided by the hardware of 
a computer system. For some problems and restricted sets of input data, this 
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approach works well, but in many implementations the effects of squeezing the 
infinite set of real numbers into the finite set of floating-point numbers can cause 
catastrophic errors in practice. Due to (accumulated) rounding errors many im- 
plementations of geometric algorithms crash, loop forever, or in the best case, 
simply compute wrong results for some of the inputs for which they are supposed 
to work. Figure 1 gives an example. 

Fig. 1. Incorrect Delaunay triangulation. The error was caused by precision problems. 
The correct Delaunay triangulation is given in Figure 2. Courtesy of J. R. Shewchuk 
[1021 • 

Conditional tests are critical parts of an implementation, because they de- 
termine the control flow. If in every test the same decision is made as if all 
computations would have been done over the reals, the algorithm is always in a 
state equivalent to that of its theoretical counterpart. In this case, the combina- 
torial part of the geometric output of the algorithm will be correct. Numerical 
data, however, computed by the algorithm might nevertheless be imprecise. 

Rounding and cancellation errors may cause wrong decisions and hence lead 
to errors in the combinatorial part of the geometric output as well. Thereby 
imprecise calculations can destroy the correctness of the implementation of an 
otherwise correct algorithm. 

1.2 R o b u s t n e s s  a n d  S t ab i l i t y  

Along with the substitution of real arithmetic by floating-point arithmetic, cor- 
rectness is often replaced by robustness. Robustness is a measure of the ability 
to recover from error conditions, e.g., tolerance of failures of internal components 
or errors in input data. 
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Fig. 2. Correct Delaunay triangulation. Courtesy of J. R. Shewchuk[102]. 

Often an implementation of an algorithm is considered to be robust if it pro- 
duces the correct result for some perturbation of the input, tt is called stable 
if the perturbation is small. This terminology has been adopted from numeri- 
cal analysis where backward error analysis is used to get bounds on the sizes 
of the perturbations. Geometric computation, however, goes beyond numerical 
computation. Since geometric problems involve not only numerical but also com- 
binatorial data it is not always clear what perturbation of the input, especially 
of the combinatorial part, means. Perturbation of the input is justified by the 
fact that in many geometric problems the numerical data are real world data 
obtained by measuring and hence known to be inaccurate. This is certainly true 
for most of the geometric problems in GIS. 

1.3 Degene racy  

A related problem in the implementation of geometric algorithms is degeneracies. 
Theoretical papers on computational geometry often assume the input in general 
position and leave the "straightforward" handling of special cases to the reader. 
This might make the presentation of an algorithm more readable, but it can 
put a huge burden on the implementor, because the handling of degeneracies 
is often less straightforward than claimed. Since precision problems are caused 
by degenerate and nearly degenerate configurations in the input, degeneracy 
is closely related to precision and robustness. Symbolic perturbation schemes 
[31, 32, 33, 112, 113] have been proposed to abolish the handling of degeneracies. 
Exact computation is a prerequisite for applying these techniques [111]. The 
handling of degeneracies and the use of symbolic perturbation schemes are a 

257" 



point of controversy in the computational geometry literature [15, 99, 100]. For 
a discussion of degeneracy we refer the reader to [15] and [99]. 

Sometimes, the term robustness is also used with respect to degeneracies. 
Dey et al. [26] define robustness as the ability of a geometric algorithm to deal 
with degeneracies and "inaccuracies" during various numerical computations. 
The definition of robustness in [97] is similar. 

1.4 A t t a c k s  on  t h e  Prec i s ion  P r o b l e m  

There are two obvious approaches for solving the precision problem. The first 
is to change the model of computation: design algorithms that  can deal with 
imprecise computation. For a small number of basic problems this approach 
has been applied successfully but a general theory of how to design algorithms 
with imprecise primitives or how to adopt algorithms designed for exact com- 
putation with real numbers is still a distant goal. The second approach is exact 
computation: compute with a precision that is sufficient to keep the theoretical 
correctness of an algorithm designed for real arithmetic alive. This is basically 
possible, at least theoretically, in almost all cases arising in practical geometric 
computing. The second approach is very promising, because it allows exact im- 
plementations of numerous geometric algorithms developed for real arithmetic 
without modifications of these algorithms. 

1.5 F l o a t i n g - P o i n t  A r i t h m e t i c  

Floating-point numbers are the standard substitution for real numbers in sci- 
entific computation. In some programming languages the floating-point number 
type is even called r e a l  [59]. Since most geometric computations are executed 
with floating-point arithmetic, it is worth taking a closer took at floating-point 
computation. Goldberg [46] gives an excellent overview. 

A finite-precision floating-point system has a base B, a fixed mantissa length 
I and and an exponent range [emin.,emax]. 

:t=do.dt do . . .  dp-1 * 1~ ~ 

0 <_ dl < B, represents the number 

:t:(d0 + dl " B -1 + d2 " B -2 + " "  -1- dp-lB -p+I) " B ~- 

A representation of a floating point number is called normalized iff do ¢ 0. For 
example, the rational number 1/2 has representations 0.500 * 10 ° or 5.000 * 10 -1 
in a floating-point system with base 10 and mantissa length 4 and normalized 
representation 1.00 * 2 -1 in a floating-point system with base 2 and mantissa 

length 3. 
Since an infinite set of numbers is represented by finitely many floating-point 

numbers, rounding errors occur. A real number is eMled representable if it is zero 
or its absolute value is in the interval [B ~mi" , Bemaxq' l ]  • L e t  r be some real number 
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and f~ be a floating-point representation for r. Then Ir - frl is called absolute  
error  and Ir - f~ l / t r t  is called relat ive error.  The relative error of rounding a 
representable real toward the nearest floating-point number in a floating-point 
system with base B and mantissa length I is bounded by 1/2-B -z, which is called 
m a c h i n e  epsilon.  Calculations can underflow or overflow, i.e., leave the range of 
representable numbers. 

Fortunately, the times where the results of floating-point computations could 
drastically differ from one machine to another, depending on the accuracy of 
the floating-point machinery, seem be coming to an end. The IEEE standard 
754 for binary floating-point computation [104] is becoming widely accepted by 
hardware-manufacturers. The IEEE standard 754 requires that  the results of 
+, - , - ,  / and x/- are exactly rounded, i.e., the result is the exact result rounded 
according to the chosen rounding mode. The default rounding mode is round 
to nearest. Ties in round to nearest are broken such that the least significant 
bit becomes 0. Besides rounding toward nearest, rounding toward zero, round- 
ing toward c~, and rounding toward - ~  are rounding modes that have to be 
supported according to IEEE standard 754. 

The standard makes reasoning about correctness of a floating-point compu- 
tation machine-independent. The result of the basic operations will be the same 
on different machines if both support IEEE standard and the same precision is 
used. Thereby code becomes portable. 

The IEEE standard 754 specifies floating-point computation in single, single 
extended, double, and double extended precision. Single precision is specified 
for a 32 bit word, double precision for two consecutive 32 bit words. In single 
precision the mantissa length is l = 24 and the exponent range is [-126..t27]. 
Double precision has mantissa length l = 53 and exponent range [-1022_1023]. 
Hence the relative errors are bounded by 2 -23 and 2 -52 . The single and double 
precision formats usually correspond to the number types f l o a t  and double  in 
C-t-+. 

Floating-point numbers are represented in normalized representation. Since 
the zeroth bit is always 1 in normalized representation with base 2, it is not 
stored. There are exceptions to this rule. D e n o r m a l i z e d  numbers are added to 
let the floating-point numbers underfiow nicely and preserve the property x - 
y = 0 iff x = y. Zero and the denormalized numbers are represented with 
exponent emin- Besides these floating point numbers there are special quantities 
+ce,  - c ~  and NaN (Not a Number) to handle exceptional situations. For example 
-1 .0/0 .0  = - c e ,  NaN is the result of x/L-i " and ~ is the result of overflow in 
positive range. 

Due to the unavoidable rounding errors, floating-point arithmetic is inher- 
ently imprecise. Basic laws of arithmetic like associativity and distributivity are 
not satisfied by floating-point arithmetic. Section 13.2 in [83] gives some exam- 
ples. Since the standard fixes the layout of bits for mantissa and exponent in the 
representation of floating-point numbers, bit-operations can be used to extract 
information. 
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2 Geometric Computation 

Geometric computing is a combination of numerical and combinatorial compu- 
tation. 

2.1 Geomet r ic  Problems 

A geometric problem can be seen as a mapping from a set of permitted input 
data, consisting of a combinatorial and a numerical part, to a set of valid output 
data, again consisting of a combinatorial and a numerical part. A geometric 
algorithm solves a problem if it computes the output specified by the problem 
mapping for a given input. For some geometric problems the numerical data of 
the output are a subset of the data of the input. Those geometric problems are 
called selective. In other geometric problems new geometric objects are created 
which involve new numerical data that have to be computed from the input data. 
Such problems are called constructive. Geometric problems might have various 
facets, even basic geometric problems appear in different variants. 

We use two classical geometric problems for illustration, convex hull and 
intersection of line segments in two dimensions. In the two-dimensional convex 
hull problem the input is a set of points. The numerical part might consist of the 
coordinates of the input points; the combinatorial part is simply the assignment 
of the coordinate values to the points in the plane. The output might be the 
convex hull of the set of points, i.e., the smallest convex polygon containing all 
the input points. The combinatorial part of the output might be the sorted cyclic 
sequence of the points on the convex hull, given in counterclockwise order. The 
point coordinates form the numerical part of the ontput. In a variant of the 
problem only the extreme points among the input points have to be computed, 
where a point is called is extreme if its deletion from the input set would change 
the convex hull. Note that the problem is selective according to our definition 
even if a convex polygon and hence a new geometric object is constructed. 

In the line segment intersection problem the intersections among a set of line 
segments are computed. The numerical input data are the coordinates of the 
segment endpoints, the combinatorial part of the input just pairs them together. 
The combinatorial part of the output might be a combinatorial embedding of a 
graph whose vertices are the endpoints of the segments and the points of inter- 
section between the segments. Edges connect two vertices if they belong to the 
same line segment l and no other vertex lies between them on t. Combinatorial 
embedding means that the set of edges incident to a vertex are given in cyclic 
order. The numerical part is formed by the coordinates of the points assigned to 
the vertices in the graph. Since the intersection points are in general not part of 
the input, the problem is constructive. A variant might ask only for all pairs of 
segments that have a point in common. This version is selective. 

Line simplification problems in cartography can be selective or constructive 
as well, depending on whether only input points are allowed as vertices of the 
simplified polyline or not. 
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2.2 Geomet r ic  Predica tes  

Geometric primitives are the basic operations in geometric algorithms. There is 
a fairly small set of such basic operations that cover most of the computations 
in a geometric algorithm. Geometric primitives subsume constructions of basic 
geometric objects, like line segments or circles, and predicates. Geometric pred- 
icates test properties of basic geometric objects. They are used in conditional 
tests that direct the control flow in geometric algorithms. Well-known examples 
are: testing whether two line segments intersect, testing whether a sequence of 
points defines a right turn, or testing whether a point is inside or on the circle 
defined by three other points. 

Geometric predicates involve the comparison of numbers which are given 
by arithmetic expressions. The operands of the expressions are constants, in 
practical problems mainly integers, and numerical data of the geometric objects 
that are tested. Expressions differ by the operations used, but many geometric 
predicates involve arithmetic expressions over + , - , ,  only, or can at least be 
reformulated in such a way. 

2.3 Ar i thmet i c  Expressions in Geometr ic  Predica tes  

One can think of an arithmetic expression as a labeled binary tree. Each inner 
node is labeled with a binary or unary operation. It has pointers to trees defin- 
ing its operands. The pointers are ordered corresponding to the order of the 
operands. The leaves are labeled with constants or variables which are place- 
holders for numerical input values. Such a representation is called an expression 
tree. 

The numerical data that form the operands in an expression evaluated in a 
geometric predicate in the execution of a a geometric algorithm might be again 
defined by previously evaluated expressions. Tracing these expressions backwards 
we finally get expressions on numerical input data whose values for concrete 
problem instances have to be compared in the predicates. Since intermediate 
results are used in several places in an expression we get a directed acyclic graph 
(dag) rather than a tree. 

Without loss of generality we may assume that the comparison of numericM 
values in predicates is a comparison of the value of some arithmetic expression 
with zero. The depth of an expression tree is the length of the longest root-to- 
leaf path in the tree. For many geometric problems the depth of the expressions 
appearing in the predicates is bounded by some constant [111]. Expressions over 
input variables involving operations + , - , ,  only are called polynomial, because 
they define multivariate polynomials in the variables. If Mt constants in the ex- 
pression are integral, a polynomial expression is called integral. The degree of 
a polynomial expression is the total degree of the resulting multivariate poly- 
nomial. In [11, 69] the notion of the degree of an expression is extended to 
expressions involving square roots. An expression involving operations +, - ,  , ,  / 
only is called rational. 
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2.4 Geometric Computation with Floating-Point N u m b e r s  

In a branching step of a geometric algorithm, numerical values of some expression 
given by an expression dag are compared. In the theoretical model of computa- 
tion a real-valued expression is evaluated correctly for all real input data, but 
in practice only an approximation is computed. The accumulated error in the 
numerical calculation might be so large that  the truth value of the predicate with 
the expressions evaluated with inherently imprecise floating-point computation 
is different from the truth value of the predicate with an exact evaluation of the 
predicate. 

Naively applied floating-point arithmetic can set axioms of geometry out of 
order. A classical example is Ramshaw's braided lines (see Figure 3 and [83, 84]). 

Y 

2 _  

. 4 2  - - ' -  

3 8  - -  

, 3 7  - -  

............... S - f  ..... 

-•- 
. . . . . .  I I I t L I i ~ - V - i  [ - - - T - - ~ x  

• 73 .75 .~ , 8 9  .95 

Fig. 3. Evaluation of the line equations y = 4.3. x/8.3 and y = 1.4. x/2.7 in a floating- 
point system with base 10 and mantissa length 2 and rounding to nearest suggests 
that the lines have severM intersection points besides the true intersection point at the 
origin. 

Rewriting an expression to an expression dag that leads to a numerically 
more stable evaluation order can help a lot. Goldberg [46] gives the following 
example due to Kahan. Consider a triangle with sides of length a > b > c 
respectively. The area of a such a triangle is 

V~(~ - a ) ( s  - b ) ( s  - c )  

where s = (a + b + c ) /2 .  For a = 9.0, b = c = 4.53 the correct value of s in 
a floating-point system with base 10, mantissa length 3 and exact rounding is 
9.03 while the computed value g is 9.05. The area is 2.34, the computed area, 
however, is 3.04, an error of nearly 30%. Using the expression 

x / ( a +  ( b + c ) ) .  ( c -  ( a -  b)). ( c +  ( a -  b ) ) . ( a +  ( b -  c))/4 
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one gets 2.35, an error of less than 1%. For a less needle-like triangle with a = 
6.9, b = 3.68, and c = 3.48 the improvement is not so drastic. Using the first 
expression, the result computed by a floating-point system with base 10, mantissa 
length 3 and exact rounding is 3.36. The second expression gives 3.3. The exact 
area is approximately 3.11. One can show that  the relative error of the second 
expression is at most 11 times machine precision [46]. 

As the example above shows, the way a numerical value is computed can 
highly influence its precision. Summation of floating-point numbers is another 
classical example. Rearranging the summands helps to reduce imprecision due 
to extinction. 

2.5 Heuristic Epsilons 

A widely used method to deal with numerical inaccuracies is based on the rule 
of thumb 

If  something is close to zero it is zero. 

Some trigger-value Cm~gic is added to a conditional test where a numerical value 
is compared to zero. If the computed approximation is smaller than gmagic it 
is treated as zero. Adding such epsilons is popular folklore. What  should the 
Cm~gi¢ be? In practice, gmagic is usually chosen as some fixed tiny constant and 
hence not sensitive to the actual sizes of the operands in a concrete expression. 
Furthermore, the same epsilon is often taken for all comparisons, no matter 
which expression or which predicate is being evaluated. Normally, no proof is 
given that the chosen ~magi¢ makes sense, e~,~gi~ is guessed and adjusted by 
trial and error until the current value works for the considered inputs, i.e., until 
no catastrophic errors occur anymore. Yap [114] suggests calling this procedure 
epsilon-tweaking. 

Adding epsilon is justified by the following reasoning: If something is so close 
to zero, then a small modification of the input, i.e., a perturbation of the numeri- 
cal da ta  by a small amount, would lead to value zero in the evaluated expression. 
There are, however, severe problems with that  reasoning. The size of the per- 
turbation causes a problem. The justification for adding epsilons assumes that  
the perturbation of the (numerical) input is small. Even if such a small pertur- 
bation exists for each predicate, the existence of a global small perturbation of 
the input da ta  is not guaranteed. Figure 4 shows a polyline, where every three 
consecutive vertices are collinear under the "close to zero is zero" rule. In each 

J 
J 

Fig. 4. A locally straight line 

case, a fairly small perturbation of the points exists that  makes them collinear. 
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There is, however, no small perturbation that makes the whole polyline straight. 
The example indicates that collineaxity is not transitive. Generally, equality is 
not transitive under epsilon-tweaking. This might be the most serious problem 
with this approach. Another problem is that different tests might require dif- 
ferent perturbations, e.g., predicate P1 might require a larger value for input 
variable x56 while test P2 requires a smaller value, such that both expressions 
evaluate to zero. There might be no perturbation of the input data that leads to 
the decisions made by the "close to zero is zero" rule. Finally, a result computed 
with "close to zero is zero" is not the exact result for the input data but only 
for a perturbation of it. For some geometric problems that might cause trouble, 
since the computed output and the exact output can be combinatorialty very 
different [t5]. 

3 E x a c t  G e o m e t r i c  C o m p u t a t i o n  

An obvious approach to the precision problem is to compute "exactly". In this 
approach the computation model over the reals is mimiced in order to preserve 
the theoretical correctness proof. Exact computation means to ensure that all 
decisions made by the algorithm are correct decisions for the actual input, not 
only for some perturbation of it. As we shall see, it does not mean that in all 
calculations exact representations for all numerical values have to be computed. 
Approximations that are suËficiently close to the exact value can often be used 
to guarantee the correctness of a decision. Empirically it turns out to be true 
for most of the decisions made by a geometric algorithm that approximations 
are suffÉcient. Only degenerate and nearly degenerate situations cause problems. 
That is why most implementations based on floating-point numbers work very 
well for the majority of the considered problem instances and fail only occasion- 
ally. 

If an implementation of an algorithm does all branchings the saxne way as 
its theoretical counterpart, the control flow in the implementation corresponds 
to the control flow of the algorithm proved to be correct under the assumption 
of exact computation over the reals, and hence the validity of the combinatorial 
part of the computed output follows. Thus, for selective geometric problems, it 
is sufficient to guarantee correct decisions, since all numerical data are already 
part of the input. 

For constructive geometric problems, new numerical data have to be com- 
puted "exactly". A representation of a real number r should be called exact 
only if it altows one to compute an approximation of r to whatever precision, 
i.e. no information has been lost. According to Yap [114] a representation of a 
subset of the reals is exact if it allows the exact comparison of any two real num- 
bers in that representation. This reflects the necessity for correct comparisons 
in branchings steps in the exact geometric computation approach. Examples of 
exact representations are the representation of rationals by numerator and de- 
nominator, where both are arbitrary precision integers, and the representation 
of algebraic numbers by an integral polynomial P having root a and an interval 
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that isolates c~ from the other roots of P. Further examples are symbolic and 
implicit representations. For example, rather than compute the coordinates of an 
intersection point of line segments explicitly, one can represent them implicitly 
by maintaining the intersecting segments. Another similar example is the rep- 
resentation of a number by an expression dag, which reflects the computation 
history. Allowing symbolic or implicit representation can be seen as turning a 
constructive geometric problem into a selective one. 

As suggested in the discussion above, there are different flavours of exact 
geometric computation. Franklin's survey [44] already discusses the basics of 
many approaches to exact computation. Since the publication of his paper much 
progress has been made in improving the efficiency of exact computation (see 
[111] for an overview). Thus some of his conclusions have to be revisited. 

3.1 Exact Integer and Rational Arithmetic 

A number of geometric predicates in basic geometric problems include only inte- 
gral expressions in their tests. Thus, if all numerical input data are integers, the 
evaluation of these predicates involves integers only. With the integer arithmetic 
provided by the hardware only overflow may occur, but no rounding errors. The 
problem with overflow in integral computation is abolished if arbitrary precision 
integer arithmetic is used. There are several software packages for arbitrary or 
multiple precision integers, e.g., BigNum [101], GNU MP [49], LiDIA [68], or the 
number type i n t ege r  in LEDA I74]. Fortune and Van Wyk [41, 43] report on 
experiments with such pacl~ges. 

Since the integral input data are usually bounded in size, e.g., by the maximal 
representable int ,  there is not really a need for arbitrary precision integers. In- 
teger arithmetic with a fixed precision adjusted to the maximum possible integer 
size in the input and to the degree of the integral polynomial expression arising 
in the computation is adequate. If the input integers have binary representation 
with at most b-bits and if d is the maximum degree and m the maximum number 
of monomials of the integral polynomial expressions, then an integer arithmetic 
for integers with db + logm + O(1) bits suffices. Usually, m is in O(1). The de- 
gree of polynomial expressions in geometric predicates has recently gained more 
attention in the design of geometric algorithms. Liotta et al. [69] investigate the 
degree involved in some proximity problems in 2- and 3-dimensional space. 

Many predicates include only expressions involving operations +, - ,  , , / .  All 
the predicates arising in problems like map overlay in cartography and in most 
of the problems discussed in textbooks on computational geometry [70, 91, 30, 
82, 86, 66, 62, 23, 8] are of this type. Such problems are called rational [111]. 

A rational number can be exactly stored as a pair of arbitrary precision 
integers representing numerator and denominator respectively. Let us call this 
exact rational arithmetic. The intermediate values computed in rational problems 
are often solutions to systems of linear equations like the coordinates of the 
intersection point of two straight lines. 

Division can be avoided in rational predicates, e.g., exact rational arithmetic 
postpones division. With exact rational arithmetic, numerator and denominator 
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of the result of the evaluation of a rational expression are integral polynomial 
expressions in the numerators and denominators of the rational operands. A sign 
test for a rational expression can be done by two sign tests for integral polyno- 
mial expressions. Hence rational expressions in conditional tests in geometric 
predicates can be replaced by tests involving integral polynomial expressions. 

Homogeneous coordinates known from projective geometry and computer 
graphics can be used to avoid division, too. In homogeneous representation, a 
point in d-dirnensional affine space with Cartesian coordinates (x0, x l , . . . ,  Xd-1) 
is represented by a vector (hxo, h X l , . . . ,  hxd-1, hx~) such that x~ = hx~/hXd for 
all 0 < i < d - 1. Note that the homogeneous representation of a point is not 
unique; multiplication of the homogeneous representation vector with any A ~ 0 
gives a representation of the same point. The homogenizing coordinate hxd is 
the common denominator of the coordinates. Homogeneous representation al- 
lows division-free representation of the intersection point of two straight lines 
given by a- X + b. Y - c = 0 and d. X + e- Y + f = 0. The intersection point can 
be represented by homogeneous coordinates (b. f - c. e, a.  f - c- d, a .  e - b- d). 

A test including rational expressions in Cartesian coordinates transforms 
into a test including only polynomial expressions in homogeneous coordinates 
after multiplication with an appropriate product of homogenizing coordinates. 
Since all monomials appearing in the resulting expressions have the same degree 
in the homogeneous coordinates, the resulting polynomial is a homogeneous 
polynomial. For example, the test a • x0 + b • xl + c = 07, which tests whether 
point (x0, xl) is on the line given by the equation a-X + b. Y + c = 0, transforms 
into a . hxo + b. hxl  + c.  hx2 = 0?. 

Many geometric predicates that do not obviously involve only integral poly- 
nomial expressions can be rewritten so that they do. Above, we have illustrated 
this for rational problems. In principal, even sign tests for expressions involving 
square roots can be turned into a sequence of sign tests of polynomial expressions 
by repeated squaring [14, 69]. Therefore, arbitrary or multiple precision integer 
arithmetic is a powerful tool for exact geometric computation, but arbitrary pre- 
cision integer arithmetic has to be supplied by software and is therefore much 
slower than the hardware-supported fixed precision integer arithmetic. The ac- 
tual cost of an operation on arbitrary precision integers depends on the size of 
the operands, more precisely on the length of their binary representation. If ex- 
pressions of large depth are involved in the geometric calculations the size of the 
operands can increase drastically. In the literature huge slow down factors are 
reported if floating-point arithmetic is simply replaced by exact rational arith- 
metic. Karasick, Lieber, and Nackman [61] report slow-down factors of about 
I0 000. 

While in most rational problems the depth of the involved rational expres- 
sions is a small constant, there are problems where the size of the numbers has 
a linear dependence on the problem size. An example is computing minimum 
tink paths inside simple polygons [60]. Numerator and denominator of the knick- 
points on a minimum link path can have superquadratic bitlength with respect 
to the number of polygon vertices [60]. This is by the way a good example of 
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how strange the assumption of constant time arithmetic operations in theory 
may be in practice. 

Fortune and Van Wyk [41, 43] noticed that in geometric computations the 
sizes of the integers are small to medium compared to those arising in computer 
algebra and number theory. Multiple precision integer packages are mainly used 
in these areas and hence tuned for good performance with larger integers. Con- 
sequently Fortune and Van Wyk developed LN [42], a system that generates 
efficient code for integer arithmetic with fairly "little" numbers. LN takes an 
expression and a bound on the size of the integral operands as input. The gener- 
ated code is very efficient if all operands are of the same order of magnitude as 
the bound. For much smaller operands the generated code is clearly not optimal. 
LN can be used to trim integer arithmetic in an implementation of a geomet- 
ric algorithm for special applications. On the other hand, LN is not useful for 
generating general code. 

For integral polynomial expressions, modular arithmetic [1, 64] is an alter- 
native to arbitrary precision integer arithmetic. Let P0,pl , . . . ,Pk-1 be a set of 
integers that are pairwise relatively prime and let p be the product of the p~. 
By the Chinese remainder theorem there is a one-to-one correspondence be- 
tween the integers r with -[2~] _< r < [2 ~] and the k-tupels ( r 0 , h , . . . , r k _ l )  
with - L ~ ]  < r~ < [ 9 ] '  By the integer analog of the Lagrangian interpolation 
formula for polynomials [1], we have 

r=~risiq.i mod p 
i = 0  

where r~ = r mod p~, q~ = p/p~, and s~ = q~-i mod p~. Note that s~ exists be- 
cause of the relative primality and can be computed with an extended Euclidean 
gcd algorithm [64]. To evaluate an expression, a set of relatively prime integers 
is chosen such that the product of the primes is at least twice the absolute value 
of the integral value of the expression. Then the expression is evaluated modulo 
each p~. Finally Chinese remaindering is used to reconstruct the value of the 
expression. 

Modular arithmetic is frequently used in number theory, but not much is 
known about its application to exact geon~mtric computation. Fortune and Van 
Wyk [41, 43] compared modular arithmetic with multiple precision integers pro- 
vided by software packages for a few basic geometric problems without observing 
much of a difference in the performance. Recently, Brhnnimann et al. reported on 
promising results concerning the use of modular arithmetic in combination with 
single precision floating-point arithmetic for sign evaluation of determinants [9]. 

Modular arithmetic is particularly useful if intermediate results can be very 
large, but the finM result is known to be relatively small. The drawback is that 
a good bound on the size of the final result must be known in order to choose 
sufficiently many relatively prime integers, but not too many. 
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3.2 Lazy Evaluat ion 

The LEA system [7] favors the rule 

Why compute something that is never used, 

so why compute numbers to high precision, before you know that this precision 
is actually needed. Since it is hard to know in advance which precision will be 
needed in later decisions, numbers have to be presented in a way that allows 
for recomputation with higher precision if the currently available precision is 
not sufficient, tn the LEA system, numbers are represented by intervals and 
expression dags that reflects their creation history. Initially only a low precision 
representation is calculated, representations with repeatedly increased precision 
are computed only if decisions can't be made with the current precision. 

In LEA, interval arithmetic [71 with floating-point numbers is used to com- 
pute rough representations of a number. The interval is then repeatedly re- 
fined by redoing the computation along the expression dug with refined intervals 
for the operands. If the interval representation can't be refined anymore with 
floating-point evaluation, exact rational arithmetic is used to solve the decision 
problem. 

Another approach based on expression trees is described by Yap and Dub~ 
[29, 111,114]. In this approach the precision used to evaluate the operands is not 
systematically increased, but the increase is demanded by the intended increase 
in the precision of the result. The data type r e a l  in LEDA [16] also stores the 
creation history in expression dags and uses floating-point approximations and 
errors bounds as first approximations. The strategy of repeatedly increasing the 
precision is similar to [29, 111,114]. In both approaches software-based multiple 
precision floating-point arithmetic with a mantissa length that can be arbitrarily 
chosen and an unbounded exponent is used to compute representations with 
higher precision. Furthermore, both approaches include square root operations 
besides +, - ,  *,/.  

The C++-programming language is well suited for using number types that 
provide exact computation in a packed form like lazy numbers. Since arithmetic 
operators can be overloaded, software-based number types can be used exactly 
like ±at and double. Thereby lazy numbers can be used by a programmer exactly 
like the built-in number types. The user does not notice that his numbers are 
lazy-evaluated. 

Lazy evaluation has to detect whether the precision of a computation is 
sufficient or not. How this can be done is described in the following subsections. 

3.3 F loa t ing-Poin t  Fi l ter  

Replacing exact arithmetic, on which the correctness of a geometric algorithm 
was based, by imprecise finite-precision arithmetic works in practice for most of 
the given input data and fails only occasionally. Thus always computing exact 
values would putl a burden on the algorithm that. is rarely really needed. The idea 

268 



of floating-point filters is to filter out those branching steps where a floating-point 
computation gives the correct result. Only if it is not certified that the floating- 
point evaluation leads to a correct decision is the branching step reevaluated at 
a higher cost by calculating the exact value or a better approximation. 

Filter techniques allow the use of high speed floating-point arithmetic. A 
filter simply computes a bound on the error of the floating-point computation 
and compares the absolute value of the coInputed result to the computed error 
bound. If the error bound is smaller, the computed approximation and the exact 
value have the same sign. Error bounds can be computed a priori if specific 
information on the input data is available, e.g., if all input data are integers 
from a bounded range, e.g., the range of integers representable in a computer 
word. Such so-called static filters require only little additional effort at run time, 
just one additional test per branching, plus the refined reevaluation in the worst 
case. Dynamic filters compute an error bound on the fly parallel to the evaluation 
in floating point arithmetic. Since they take the actual values of the operands 
into account and not only bounds derived from the bounds on the input data, 
the estimates for the error involved in the floating-point computation can be 
much tighter than in a static filter. Thus dynamic filters can let more floating- 
point calculations pass the filter but at the cost of the online error computation. 
In the error computation one can put emphasis on speed or on precision. The 
former makes arithmetic operations more efficient while the latter lets more 
floating-point computations pass a test. 

Note the difference between static filters and heuristic epsilons. If the com- 
puted approximate value is larger than the error bound or em~gi~ respectively, the 
behavior is identical. The program continues based on the assumption that the 
computed floating-point value has the correct sign. If, however, the computed 
approximate value is too small, the behavior is completely different. Epsilon- 
tweaking assumes that the actual value is zero, which might be wrong, while a 
floating-point filter invokes a more expensive computation, which finally leads 
to a correct decision. 

Mehlhorn and N/iher use the following easily computable error bounds for in- 
tegral expressions evaluated in floating-point arithmetic in their implementation 
of the Bentley-Ottmann plane sweep algorithm for computing the intersections 
among a set of line segments in the plane [71]. It assumes that neither overflow 
nor underflow occurs. Let E be an integral expression. E is also used to denote 
the value of E while/)  is used to denote the value of the expression when eval- 
uated with floating point arithmetic, i.e., all operations are replaced by their 
floating point counterparts. 

Mehlhorn and N£her [71] define the measure  r u e s ( E )  and the index  i n d ( E )  
of a polynomial expression E such that 

IE, - Et  <_ i n d ( E )  " cprec " r u e s ( E ) .  
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where gprec is the machine precision of the floating-point system used. Both the 
index and the measure are easily computable by the following rules. 

t ] mes(E) ind! E) 
float f # 0 

f l oa t  0 , ..... 2-~0 f'l I 
E1 ! E2 2. max(mes(E1),mes(E2))l(1 + ind(E1) + ind(E2))/2] 
Et . E2 ,, mes(Ei) . mes(E2) [ 1:/2 + ind(Ei) + ind(E2) ] 

If a filter fails, a refined filter can be used. A refined filter might compute 
a tighter error bound or use floating-point arithmetic with higher precision and 
thereby get better approximations and smaller error bounds. This step can be 
iterated. Composition of more azld more refined filters leads to a lazy evaluation 
strategy. Finally, if necessary, exact arithmetic can be used. Such lazy evaluation 
strategies are called adaptive, because they do not compute more precisely than 
needed. 

For orientation predicates and incircle tests in two- and three-dimensional 
space Shewchuk [102, 103] presents such a lazy evaluation strategy. It uses an 
(exact, if neither underflow nor overflow occurs) representation of sums and prod- 
ucts of floating-point numbers as a symbolic sum of double precision floating- 
point numbers. Computation with numbers in this representation, called ex- 
panded doubles in [102], is based on the interesting results of Priest [92, 93] 
and Dekker [25] on extending the precision of floating-point computation. An 
adapted combination of these techniques allows one to reuse values computed in 
previous filtering steps in later filtering steps. 

For integral expressions scalar products delivering exactly rounded results 
can be used in filters to get best possible floating-point approximations, as sug- 
gested by Ottmann et al. [87]. 

3.4 Interval  Ar i thmet i c  

Approximation and error bound define an interval that contains the exact value. 
Interval arithmetic [2, 79, 80] is another method to get an interval with this 
property. In interval arithmetic real numbers are represented by intervals, whose 
endpoints are floating-point numbers. The interval representing the result of an 
operation is computed by floating-point operations on the endpoints of the inter- 
vals representing the operands. For example, the lower endpoint of the interval 
representing the result of an addition is the sum of the lower endpoints of the 
intervals of the summands. Since this floating-point addition might be inexact, 
either the rounding mode is changed to rounding toward -cx~ before addition or 
a correction term is subtracted. For interval arithmetic, rounding modes toward 

and toward -oo  are very useful. See, for example, [81, 105] for applications 
of interval methods to geometric computing. The combination of exact rational 
arithmetic with interval arithmetic based on fast floating-point computation has 
been pioneered by Karasick, Lieber and Nackman [61] to geometric computing. 

A refinement of standard interval arithmetic is so-called affine arithmetic 
proposed by Comba and Stolfi [22]. While standard interval arithmetic assumes 
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that  the unknown values of operands and subexpressions can vary independently, 
affine arithmetic keeps track of first-order dependencies and takes these into 
account. Thereby error explosion can often be avoided and tighter bounds on 
the computed quantities can be achieved. An extreme example is computing 
x - x where for x some interval [x.lo, x.hi] is given. Standard interval arithmetic 
would compute the interval [x.lo- x.hi, x . h i -  x.lo], while affine arithmetic gives 
the true range [0, 0]. 

3.5 E x a c t  Sign of  D e t e r m i n a n t  

Many geometric primitives can be formulated as sign computations of determi- 
nants. The classical example of such a primitive is the orientation test, which 
in two-dimensional space determines whether a given sequence of three points 
is a clockwise or a counterclockwise turn or whether they are collinear. Another 
example is the incircle test used in the construction of Voronoi diagrams of 
points. 

Recently some effort has been focused on exact sign determination. Clarkson 
[21] gives an algorithm to evaluate the sign of a determinant of a d × d matrix 
with integer entries using floating-point arithmetic. His algorithm is a variant of 
the modified Graham-Schmidt orthogonatization. In his variant, scaling is used 
to improve the conditioning of the matrix. Since only positive scaling factors 
are used, the sign of the determinant does not change. Clarkson shows that  only 
b+O(d) bits are required, if all entries are b-bit integers. Hence, for small dimen- 
sional matrices his algorithm can be used to evaluate the sign of its determinant 
with fast hardware floating-point arithmetic. 

Avnaim et al. [4] consider determinants of small matrices with integer entries, 
too. They present algorithms to compute the sign of 2 × 2 and 3 × 3 matrices with 
b-bit integer entries using precision b and b + 1 only, respectively. BrSnnimann 
and Yvinec [10] extend the method of [4] to d × d matrices and compare it with 
a variant of Clarkson's method. 

3.6 Cer t i f i ed  Eps i lons  

While the order of two different numbers can be found by computing sufficiently 
close approximations, it is not so straightforward to determine whether two 
numbers are equal or, equivalently, whether the value of an expression is zero. 
/.From a theoretical point of view arithmetic expressions arising in geometric 
predicates are expressions over the reals. Hence the value of an expression can 
in general get arbitrarily close to zero if the variable operands are replaced by 
arbitrary real numbers. In practice the numerical input data  originate from a 
finite, discrete subset of the reals, namely a finite subset of the integers or a finite 
set of floating-point numbers, i.e., a finite subset of the rational numbers. The 
finiteness of such input excludes arbitrarily small absolute non-zero values for 
expressions of bounded depth. There is a gap between zero and other values that  
a parameterized expression can take on. A separation bound for an arithmetic 
expression E is a lower bound on the size of this gap. Besides the finiteness 
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of the number of possible numerical inputs, the coarseness of the input data 
can generate a gap between zero and other values taken on. A straightforward 
example is integral expressions. If all operands are integers the number 1 is 
clearly a separation bound. 

Once a separation bound is available it is clear how to decide whether the 
value of an expression is zero or not. Representations with repeatedly increased 
precision are computed until either the error bound on the current approximation 
is less than the absolute value of the approximation or their sum is less than the 
separation bound. In the phrasing of interval arithmetic, it means to refine the 
interval until either 0 or the separation bound are not contained in the interval. 

How can we get separation bounds without computing the exact value or an 
approximation and an error bound? Most geometric computations are on linear 
objects and involve only basic arithmetic operations over the rational numbers. 
In distance computations and operations on nonlinear objects like circles and 
parabolas, square root operations are used as well. For the rational numerical 
input data  arising in practice, expressions over the operations +, - ,  * , / ,  x/- take 
on only algebraic values. 

Let E be an expression involving square roots. Furthermore we assume that  
all operands are integers. We use a (E)  to denote the algebraic value of expression 
E. Computer algebra provides bounds for the size of the roots of polynomials 
with integral coefficients. These bounds involve quantities used to describe the 
complexity of an integral polynomial, e.g., degree, maximum coefficient size, or 
less well-known quantities like height or measure of a polynomial. Once an inte- 
gral polynomial with root a (E)  is known the root bounds from computer algebra 
give us separation bounds. In general, however, we don't have a polynomial hav- 
ing root a (E)  at hand. Fortunately, all we need to apply the root bounds are 
bounds on the quantities involved in the root bounds. Upper bounds on these 
quantities for some polynomial having root a (E)  can be derived automatically 
from an expression E. Mignotte discusses identification of algebraic numbers 
given by expressions involving square roots in [75]. 

The measure of a polynomial [76] can be used for automatic derivation of a 
root bound. Table I gives the rules for (over)estimating measure and degree of an 
integral polynomial having root a(E). We have a(E) : 0 or [a(E)[ _> M(E) -1. 
This bound is easily computable but very- weak [14]. 

Other recursive formulas for an expression involving square root operations 
leading to separation bounds are given in [111]. Here, a bound on the maximum 
absolute value of the coefficients of an integral polynomial is used. The rules are 
given in Table 2. By a result of Cauchy, (h(E) + 1) -~ is a separation bound, i.e., 
a(E) = 0 or a(E) >_ (h(E) + 1) -1. 

In [17] Canny considers isolated solutions of systems of polynomial equations 
in several variables with integral coefficients. He gives bounds on the absolute 
values of the non-zero components of an isolated solution vector. The bound 
depends on the number of variables, the maximum total degree d of the multi- 
variate integral polynomials in the system and their maximum coefficient size c. 
Although Canny solves a much more general problem, his bounds can be used to 
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integer n 
E1 + E~ 
E1 - E2 
El " E2 
E~ / E2 

M(E) deg(E) 
tnl 

2d~g(E~)d~(E2) M (E~)d~g(E2) M(E2)d~g(E~) 
2d~g(E~)d~g{~2) M (E1)d~g(E2) M(E2)a~g(E~) 

M(E1)a~g(E2)M(E2)deg(Et) 
M(EJd~g(E2)M(E2)d~g(ED 

M(E1) 

1 
deg( EJ  . deg( E2 ) 
deg( EJ  . deg( E2 ) 
deg( E1) . deg( E2 ) 
deg(E 0 • deg(E2) 

2. deg(EJ 

Table  1. Automatic derivation of separation bounds for expressions involving square 
roots based on the measure of a polynomial 

integer n 
E1 + E2 
E1 - -  E2 
E1 - E2 
El~E2 

h(E) d(E) 
bl 

(h(El)2 l+d(El )) d(E2) (h(E2) %/1 J- d(E2)) d(El ) 
(h(EJ21+a(E,))~(ED(h(EJv~ +~(EJ) d(ED 

i(h(Z~ ) V~ + ~(~Tj)) ~(~)(h(E~) v~ ~)~(~) 
(h(E~)v~ + d-(~Tj)/(~)(h(E~)v~ + ~--J~7~)) ~(~I ) 

h(Et) 

1 
d(E1), d(E2) 
d(E1), d(E2) 
d(EJ . d(E2) 
d( EJ  . d(E2) 

2. d(E1) 

Table  2. Recursive formulas for quantities h(E) and d(E) of an arithmetic expression 
involving square roots. 

get fairly good separation bounds for expressions involving square roots. Canny 
shows tha t  the absolute value of a component  of an isolated solution of a sys- 
tem of n integral polynomial equations in n variables is either zero or at least 
(3dc) -~d" [17, 18]. 

Based on the structure of an expression E given by an expression tree, a 
system of polynomial equations can be built which has an isolated solution vector 
with a(E) as a component.  The system of polynomial equations consists of a 
system P(E) in nE variables X 1 , . . . , X n ~  and a distinct equation of the form 
X z  = PE(X1, . . .  ,X ,~) .  The variables correspond to subexpressions of E ,  the 
variable XE represents the value of E.  

At the basis of recurs±on we have the distinct polynomial only. If E = E1 ±E2  
then 7 ) (E) is the union of the systems 7)(El ) and 7)(E2) and the distinct equation 
becomes XE = PEt(.. .) ± PE~(...). Variables are renamed appropriately.  The  
recurs±on step is completely analogous if E = E~ - E2. 

If E = El~E2 the system 7)(E) contains the union of the systems 7)(E1) and 
7)(E2). Fur thermore the equation 

Xno~" PZ~(...)= FZl(--.) 

is added. I t  uses a new variable Xne w and is based on the distinct equations for 
the subexpressions. The new distinct equation becomes XE = Xnew. If E = V ~  
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the procedure is similar. The new equation is 

2 
Xnew : P E ( . , . ) .  

The distinct equation is XE = Xnew again. 
If the system resulting from an expression tree has maximum degree dE, 

maximum coefficient size cE, and nE equations, (3dEcE)--nEd~ E is a separation 
bound for E. Note that  nE -- 1 is the number of square root and division opera- 
tions involved in E. There are alternative ways to derive a system of polynomial 
equations for an expression E. One could also introduce a new variable and a 
new equation for each operation. That  would guarautee degree at most 2 but 
result in a system with more equations and variables. 

Recently Burnikel et al.[12] have shown that  

_> 

where k(E) is the number of (distinct) square root operations in E and the 
quantities u(E) and l(E) are defined as given in Table 3. Note that  u(E) and 
l(E) are simply the numerator and denominator of an expression obtained by 
replacing in E all + by - and all integers by their absolute value. If E is division- 

free and o~(E) is non-zero, then a (E)  > u(E) 1-:~(E)-~. 

IE1 ± E2 tu(E1)" I(E2) + l(E1) . u(E2) l(E1) . t( E2) t 
I E1. E2 t u(E1), u(E~) l(E1).l(E2)] 
I El/E2 ~(Zl). t(E~) F(E1). u(E~) I 
L ETI 1 . . . . . . . .  

Table 3. Recursive formulas for quantities u(E) and l(E) of an arithmetic expression 
involving square roots. 

This bound as well as the bound given in [111] involve square root operations. 
Hence they are not easily computable. In practice one computes ceilings of the 
results to get integers [111] or maintains integer bounds logarithmically [12, 16]. 
The Real/Expr-package [28, 88] and the number type r e a l  [16] in LEDA provide 
exact computation (in C++) for expressions with operations +, - , . ,  / and v/- and 
initially integral operands, using techniques described above. In particular, the 
recent version of the r e a l s  in LEDA [74] uses the bounds given in [12]. 

Note the difference between separation bounds and emagics in epsilon tweak- 
ing. In epsiton-tweaking a test for zero is replaced by the test ]/~l < emagic  ? " 

With separation bounds it becomes tel < s e p ( E )  - Eerror? where sep(E) is a 
separation bound and Eerro~ is a bound on the error accumulated in the eval- 
uation of E. The difference is that  the latter term is self-adjusting, it is based 

274 



on an error bound, and justified; it is guaranteed that the result is zero, if the 
condition is satisfied. While ~m~gic is always positive, it might happen that the 
accumulated error is so large that 8ep(E) - Eerror is negative. Last but not least, 
the conclusion is different if the test is not satisfied. Epsilon-tweaking concludes 
that the number is non-zero if it is larger than Cmagic while the use of separation 
bounds allows this conclusion only if ILl > sep(E) + Eerro~. 

4 Geometric Computation with Imprecision 

In this section we briefly discuss the basic aspects of the design and implemen- 
tation of geometric algorithms for calculations with imprecision. 

4.1 I m p l e m e n t a t i o n  wi th  Imprecise Pred ica tes  

Imprecise arithmetic cannot guarantee correct evaluation of a geometric predi- 
cate. It can lead to wrong decisions and wrong results. But even if the result is 
not the exact result for the considered problem instance, it can be meaningful. 
An algorithm that computes the exact result for a very similar problem instance 
can be sufficient for an application, since the input data are known not to be ex- 
act either. This observation motivates the definition of robustness and stability 
given in Section 1.2. In addition to the existence of a perturbation of the input 
data, for which the computed result is correct, Fortune's definition of robustness 
and stability [37] requires in addition that the implementation of an algorithm 
would compute the exact result, if all computations were precise. 

The output of an algorithm might be useful although it is not a correct out- 
put for any perturbation of the input. In some situations it might be feasible to 
allow perturbation of the output as well. For example, for some applications it 
might be sufficient that the output of a two-dimensional convex hull algorithm is 
a nearly convex polygon while other applications require convexity. Sometimes 
the requirements on the output are relaxed to allow "more general" perturba- 
tions of the input data. Robustness and stability are then defined with respect 
to the weaker problem formulation. For example, Fortune's and Milenkovic's 
line arrangement algorithm [40] computes a combinatorial arrangement that is 
realizable by pseudolines but not necessarily by straight lines. Shewchuk [102] 
suggests calling an algorithm quasi-robust if it computes useful information but 
not a correct output for any perturbation of the input. 

For many implementations of geometric primitives it is easy to show that the 
computed result is correct for some perturbation of the input. The major problem 
in the implementation with imprecise predicates is their combination. The basic 
predicates evaluated in an execution of an algorithm operate on the same set of 
data and and hence they might be dependent. The results of dependent geometric 
predicates might be mutually exclusive, i.e., there might be no small perturbation 
leading to correctness for all predicates. Hence an algorithm might get into an 
inconsistent state, a state that could not be reached from any input with correct 
evaluation. A relaxation of the problem sometimes helps. An illegal state can be 
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a legal state for a similar problem with weaker restrictions, e.g., a state illegal 
for an algorithm computing an arrangement of straight lines could be legal for 
arrangements of pseudolines. Although an inconsistent state cannot be reached 
from any legal input it can still contain useful information. 

Avoiding inconsistencies among the decisions is a primary goal in achieving 
robustness in implementations with imprecise predicates. Consistency is a non- 
issue if an algorithm never evaluates a basic predicate whose outcome is implied 
by the results of previous evaluations of basic predicates. Such an algorithm is 
called parsimonious [37, 65]. 

It can be hard to achieve consistency with previous evaluations. For example, 
checking whether the outcome of an orientation test is implied by previous tests 
on the given set of points is as hard as the existential theory of the reals [37]. 

For the incremental construction of Voronoi diagrams of points Sugihara et 
al. show how consistency with previous decisions can be forced [107, 108]. Their 
algorithm is extremely (quasi-)robust. Some "meaningful" output is computed 
even if the results of all numerical comparisons are chosen at random. Mean- 
ingful means that the computed result is guaranteed to have some topological 
properties of a Voronoi diagram. 

For some basic geometric problems there are stable, robust, or quasirobust 
implementations of geometric algorithms. Li and Milenkovic [67], Guibas et 
al. [53, 52], and Kawaguchi et al. [19] consider the convex hull problem in two 
dimensions, Barber [6] considers convex hulls and related problems, Hopcraft, 
Hoffmann, and Karasick [57] and Hopcroft and Kahn [58] consider intersection 
of polygons and convex polyhedra respectively. Fortune and Milenkovic [40] and 
Milenkovic [77] consider line arrangements. Fortune [39] considers the Delauney 
triangulation of point sets in two-dimensional space and Dey et al. [26] in three- 
dimensional space. For modelling polygonal regions in the plane Milenkovic [77] 
uses a technique called data normalization to modify the input such that it can be 
processed with imprecise arithmetic. Pullar [94] describes possible applications 
of these techniques to GIS. Su~hara and Iri present a solid modelling system 
free from topological errors [109]. 

The techniques used in these algorithms are fairly special and it seems un- 
likely that they can be easily transferred to other geometric problems. A general 
theory showing how to implement geometric algorithms with imprecise predi- 
cates is still a distant goal. 

4.2 Epsilon G e o m e t r y  

An interesting theoretical framework for the investigation of imprecision in geo- 
metric computation is epsilon geometry introduced by Guibas, Salesin, and Stolfi 
[52]. Instead of a boolean value~ an epsilon predicates returns a real number that 
gives some information "how much" the input satisfies the predicate. In epsiton 
geometry the size of a perturbation is measured by a non-negative real num- 
ber. Only the identity has size zero. If an input does not satisfy a predicate, 
the "truth value" of an epsilon predicate is the size of the smallest perturbation 
producing a perturbed input that satisfies the predicate. If the input satisfies 
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a predicate, the "truth value" is the non-positive number 0 if the predicate is 
still satisfied after perturbing with any perturbations of size at most -~.  In [52] 
epsilon predicates are combined with interval arithmetic. Imprecise evaluations 
of epsilon predicates compute a lower and an upper bound on the "truth value" 
of an epsilon predicate. Guibas, Salesin, and Stolfi compose basic epsilon predi- 
cates to less simple predicates. Unfortunately epsilon geometry has been applied 
successfully only to a few basic geometric primitives [52, 53]. Reasoning in the 
epsilon geometry framework seems to be difficult. 

4.3 Axiomat ic  Approach  

In [97, 98] Schorn proposes what he calls the axiomatic approach. The idea is to 
investigate which properties of primitive operations are essential for a correctness 
proof of an algorithm and to find algorithm invariants that are based on these 
properties only. 

One of the algorithms considered in [97] is computing a closest pair of a 
set of points S by plane sweep [54]. Instead of a closest pair, the distance 
(is of a closest pair is computed. In his implementation Schorn uses distance 
functions d(p,q), d~(p,q), dy(p,q), and d~(p,q) on points p = (p~,pv) and 
q = (q~, qy) in the plane. In an exact implementation these functions would com- 
pute V/(p~ - q~)2 + (py _ qy)2 p~ _q~, py _qy, and qv -py ,  respectively. Schorn 
lists properties for these functions that are essential for a correctness proof: First, 
they must have some monotonicity properties, d~ must be monotone with respect 
to the x-coordinate of its first argument, i.e., [p~ > p~ ~ d~(p,q) > d~(p',q)] 
holds, and inverse monotone in the x-coordinate of its second argument, i.e. 

' ' d / [q~ ~ q~ ~ d~(p,q) >_ d~(p,q')] holds. Similarly, [qy ~ qy ~ dy(p,q) >> y(p,q )] 
and [qy > q~ ~ d~(p, q) > dy(p, q')] must hold for dv and d~, respectively. Sec- 
ond, d:~, dy, and d~ must be "bounded by d", more precisely, ~Px >_ qx ~ d(p, q) > 
d~(p,q)], [p~ >__ qy ~ d(p,q) >_ dy(p,q)], and [p~ <_ qy ~ d(p,q) > d~(p,q)] must 
hold. Finally, d must be symmetric, i.e., d(p, q) = d(q, p). These properties, called 
axioms in [97] are sufficient to prove that for the ~ computed by Schorn's plane 
sweep implementation 

(~ = min d(s, t) 
s,t~S 

holds. No matter what d, d~, dy. and d~ are, as long as they satisfy all axioms, 
min~,~es d(s, t) is computed by the sweep. In particular, if exact distance func- 
tions could be used, the correct distance of a closest pair would be computed. 
Schorn uses floating-point implementations of the distance functions d, d~, du, 
and d~. He shows that they have the desired properties and that they guarantee 
a relative error of at most 8gprec in the computed approximation for 5s, where 
~p~¢¢ is machine precision. 

F~rther geometric problems to which the axiomatic approach is applied in 
[97] to achieve robustness are: finding pairs of intersecting line segments and 
computing the winding number of a point with respect to a not necessarily 
simple polygon. The latter involves point in polygon testing as a special case, 
which is also discussed in [36]. 
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5 Related  Issues 

5.1 Round ing  

The complexity, e.g., the bit-length of integers, of numerical data in the output 
of algorithms for constructive geometric problems is usually higher than that 
of the input data. Thus piping geometric computations can result in expensive 
arithmetic operations. If the cost caused by increased precision resulting from 
cascaded computation is not tolerable, precision must be decreased by rounding 
the geometric output data. The goal in rounding is not to deviate too much from 
the original data both with respect to geometry and topology while reducing the 
precision. Rounding geometric objects is related to simultaneous approximation 
of reals by rationals [106]. However, rounding geometric data is more complicated 
than rounding numbers and can be very difficult [78], because combinatorial a~d 
numericM data have to be kept consistent. 

An intensively studied example is rounding an arrangement of line segments, 
the underlying geometric structure of cartographic maps. Greene and Yao [50] 
were the first to investigate rounding line segments consistently to a regular grid. 
Note that simply rounding each segment endpoint to its nearest grid point can 
introduce new intersections and hence significantly violate the original topology. 
Greene and Yao break line segments into polylines such that all endpoints lie 
on the grid and the topology is largely preserved. Largely means, incidences 
not present in the original arrangement might arise, but it can be shown that 
no additional crossings are generated. Currently the most promising structure 
is "snap-rounding", also called "hot-pixel" rounding, introduced by Greene and 
Hobby. A pixel in the regular grid is called hot if it contains an endpoint of an 
original line segment or an intersection point of the originat segments. In the 
rounding process all line segments are snapped to the pixel center, cf. Fig. 5. 
Snap-rounding is used in [55, 51, 48]. Rounding can be done as a postprocessing 
step after exact computation, but it can also be seen as part of the problem and 
be incorporated into the algorithmic solution as e.g. in [51] and [48]. 

. . . . . . . . .  r . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

 ill i 
Fig. 5. Snap-rounding line segments 
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5.2 Inaccura te  Da ta  

Cartographic data are inherently inaccurate. Sometimes, they can nevertheless 
be treated as exact. In preprocessing and postprocessing steps, input and output 
data respectively might have to be "cleaned up". For example, in map overlay, 
spurious or sliver polygons [20] have to be removed that result from the overlay 
of objects which are identical in the real world but not in the overlaid maps. 
Treating inaccurate data as exact works (with exact geometric computation) as 
long as the input data are consistent. If not, we are in a situation similar to 
computation with imprecision. An algorithm might get into states it was not 
supposed to get in and which it therefore cannot handle. This similarity has led 
researchers to advocate imprecise computation and to attack both inconsisten- 
cies arising from imprecise computation and inconsistencies due to inaccurate 
data uniformly. In this approach, however, it is not clear whether errors in the 
output are caused by precision problems during computation or inaccuracies in 
the data. Source errors and processing errors become indistinguishable. Exact 
computation, on the other hand, assures that inconsistencies are due to faulty 
data. But knowing that an error was caused by a source error does not at all tell 
you how to proceed. 

The alternative to treating possibly inaccurate data as exact is to incorpo- 
rate uncertainty into the problem statement and to develop and use algorithms 
solving the resulting problems (exactly). Goodchild [47] gives an overview on 
approaches to incorporate inaccuracy and uncertainty in cartographic data in 
GIS. For example, tolerance regions can be added to geometric objects to model 
inaccuracy and uncertainty in the data, see e.g. [35]. Inaccuracies in the position 
of points can be modelled by epsilon circles, inaccuracies in lines by a Perkal 
epsilon band [90]. 

Pullar discusses consequences of using tolerance circles to point coincidence 
and point clustering problems [95]. Similar to point coincidence under the "close 
to zero is zero" rule, transitivity is a problem, cf. Fig. 6, if points are considered 
as coincident if their tolerance regions overlap. In [95] clustering of points is 
considered to solve the coincidence problem. 

Fig. 6. Points with circular tolerance regions. An obvious clustering would be 
{{p~,..., p,}, {p~,..., p~}}. 
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Enhancing tolerance regions with a probability distribution leads to a bet- 
ter model of uncertainty. An example of this approach is modelling coordinates 
x l , . .  • ,  X d  of a point position which is known to be possibly inaccurate by proba- 
bility distributions X1, . . . ,  X~ such that the mean of X~ is at x~. As with compu- 
tation with imprecision, a lot of research on modelling and handling uncertainty 
in geometric data is still needed. 

5.3 Geometr ic  Algor i thms in a Library  

The purpose of a library is to provide reusable software components. Reusability 
requires generality. The components must be usable in or adaptable to various 
applications. Generality as such is not sufficient. The components must not only 
be adaptable, they must also lead to efficient solutions. 

Library components should come with a precise description what they com- 
pute and for which inputs they are guaranteed to work. Correctness means that 
a component behaves according to such a specification. Clearly, correctness in 
the sense of reliability should be beyond question for geometric algorithms and 
primitives in a library. However, by far not all implementations of geometric 
algorithms are correct. Many implementations of geometric algorithms pretend 
to solve a geometric problem, but for a not-clearly-specified set of problems 
instances they don't. Due to missing or improper handling of special cases or 
just incorrect coding of complicated parts and especially to precision problems, 
many implementations of geometric algorithms disappoint the user occasionally 
by unexpected failures, break downs, or computing garbage. 

Exactness should not be confused with correctness in the sense of reliability. 
There is nothing wrong with approximation algorithms or approximate solutions 
as long as they do what they profess to do. Correctness can have unlike appear- 
ances: An algorithm handling only non-degenerate cases can be correct in the 
above sense. Also, an algorithm that guarantees to compute the exact result only 
if the numerical input data are integral and smaller than some given bound can 
be correct as well as an algorithm that computes an approximation to the exact 
result with a guaranteed error bound. Correctness in the sense of reliability is a 
must tbr (re-)usability and hence for a geometric algorithms library. 

A good library is more than just a collection of reusable software. It provides 
reliable, reusable components that can be combined in a fairly seamless way. 
Due to the composition problem with imprecise predicates described in Section 
4.1, even stable, imprecise predicates are not very useful as library components. 
Building a library upon exact geometric predicates is much easier. With exact 
predicates, algorithms developed under the real computation model can be im- 
plemented in a straightforward way. A redesign that deals with imprecision in 
the predicates is not necessary. Exact basic predicates can simplify the task of 
implementing approximation algorithms as well. For input data that are known 
to be inaccurate, exactness is not so important. Correctness in the sense of re- 
liability is then the primary goal, not exactness, but currently exact geometric 
computation seems to be the safest way to reach it. 
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Among the library and workbench efforts in computational geometry [3, 45, 
63, 24, 74, 85] the XYZ-Geobench and LEDA deserve special attention concern- 
ing precision and robustness. In XYZ-Geobench [85, 96] the axiomatic approach 
to robustness, described in section 4.3, is used. In LEDA [73, 74] arbitrary pre- 
cision integer arithmetic is combined with the floating-point filter technique to 
yield efficient exact components for rational problems. Recently, in Europe and 
the US, new projects called CGAL (Computational Geometry Algorithms Li- 
brary) [34, 89] and GeomLib [5] have been started. The goal of both projects 
is to enhance the technology transfer from theory to practice in geometric com- 
puting by providing reliable, reusable implementations of geometric Mgorithms. 

6 Conclusion 

In his book on randomization and geometry [82] Mulmuley writes 

Dealing with the finite nature of actual computers is an art that requires 
infinite patience. 

Nevertheless, the precision problem is almost ignored and left to the implementor 
in the textbooks on computational geometry, for sake of simplicity and readabil- 
ity of presentation. The emphasis is on understanding an algorithm and their 
correctness over the reals rather than on implementation issues of these algo- 
rithms. More than a half page description of the precision problems is hardly 
given. 

Despite a lot of research having been done on the precision and robust prob- 
lem, no satisfactory general-purpose solution has been found. There is no con- 

sensus in the geometry literature on how to deal with precision problems. Some 
researchers want to use fast floating-point arithmetic exclusively and hence in- 
vestigate design and implementation of algorithms with imprecise predicates. 
Others prefer exact geometric computation, because it allows fairly straightfor- 
ward implementation of geometric algorithms designed for the real RAM model 
[91] and sometimes because they want to use perturbation schemes. Exact geo- 
metric computation seems to be the more prazticM approach to reach reliability, 
especially if number packages supporting exact geometric computation [29, 13] 
are available. However, there need not be a consensus. Both approaches have 
their merits. 

Practitioners often ask for the impossible. Algorithms computing exact or 
at least highly accurate results are requested to be competitive in performance 
to algorithms that sometimes crash or exhibit otherwise unexpected behavior. 
Efficiency is compared for inputs that all of them handle. That is somewhat 
unfair. It should be clear that one has to pay for the detection of degenerate 
and nearly degenerate situations, but it should Mso be clear, that one gets much 
more. 

Surely, this survey is incomplete and biased. Most of the presentation is de- 
voted to exact geometric computation. Implementation with imprecise primitives 
has gained less attention here, because it lacks generality and its application is 
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much less straightforward. Related surveys on the problem of precision and ro- 
bustness in geometric computat ion are given by Fortune [38], Hoffmann [56], 
and Yap [110]. Franklin [44] especially discusses cartographic errors caused by 
precision problems. 

Acknowledgements 

Work on these notes was partially supported by the E S P R I T  IV LTR Project  

No. 21957 (CGAL). 

R e f e r e n c e s  

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer 
Algorithms. Addison-Wesley, 1974. 

2. G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic 
Press, New York, 1983. 

3. F. Avn~im. C++GAL: A C++ Library for Geometric Algorithms, 1994. 
4. F. Avnaim, :I.D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec. Eval- 

uating signs of determinants using single precision arithmetic. Technical Report 
2306, INRIA Sophia-Antipotis, 1994. 

5. J.E. Baker, R. Tamassia, and L. Vismara. GeomLib: Algorithm engineering for a 
geometric computing library, 1997. (Preliminary report). 

6. J.L. Barber. Computational geometry with imprecise data and arithmetic : Phd 
Thesis. Technical Report CS-TR-377-92, Princeton University, 1992. 

7. M.O. Benouamer, P. Jaitlon, D. Michelueci, and J-M. Moreau. A "lazy" solution 
to imprecision in computational geometry. In Proe. of the 5th Canad. Conf. on 
Comp. Geom., pages 73-78, 1993. 

8. :I.D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University 
Press, Cambridge, UK, 1997. 

9. H. Br5nnimann, I.Z. Emiris, V.Y. Pan, and S. Pion. Computing exact geometric 
predicates using modular arithmetic with single precision. In Proe. 13th Annu. 
ACM Sympos. Comput. Geom., pages 174-182, 1997. 

10. H. Br5nnimann and M. Yvinec. Efficient exact evaluation of signs of determinants. 
In Proc. 13th Annu. ACM Sympos. Comput. Geom, pages 166-173, 1997. 

11. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Inter- 
sections. PhD Thesis, Universit£t des Saarlandes, Saarbriicken, Germany, 1996. 

12. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily 
computable separation bound for arithmetic expressions involving square roots. 
In Proc. of the 8th ACM-SIAM Syrup. on Discrete Algorithms, pages 702-709, 
1997. 

13. C. Burnikel, J. K5nemann, K. Mehlhorn, S. N£her, S. Schirra, and C. Uhrig. Exact 
geometric computation in LEDA. In Proceedings of the 11th ACM Symposium on 
Computational Geometry, pages C18-C19, 1995. 

14. C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram 
of line segments: Theoretical and experimentM results. In ESA94, pages 227-239, 
t994. 

15. C. Burnikel~ K. Mehlhorn, and S. Schirra. On degeneracy in geometric compu- 
tations. In Proc. of the 5th ACM-SIAM Syrup. on Discrete Algorithms, pages 
16-23, 1994. 

282 



16. C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Tech- 
nical Report MPI-I-96-1-001, Max-Planck-Institut flit Informatik, 1996. 

17. J.F. Canny. The Complexity of Robot Motion Planning. PhD Thesis, 1987. 
18. J.F. Canny. Generalised characteristic polynomials. J. Symbolic Computation, 

9:241-250, 1990. 
19. Wei Chen, Koichi Wada, and Kimio Kawaguchi. Parallel robust algorithms for 

constructing strongly convex hulls, tn Proc. 12th Annu. ACM Sympos. Comput. 
Geom., pages 133-140, 1996. 

20. N.R. Chrisman. The accuracy of map overlays: a reassessment. In D.J. Peu- 
quet and D.F. Marble, editors, Introductory Readings in Geographic Information 
Systems, pages 308-320. Taylor & Francis, London, 1990. 

21. K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 33rd Annu. 
IEEE Sympos. Found. Comput. Sci., pages 387-395, 1992. 

22. J.L.D. Comba and J. Stolfi. Affine arithmetic and its applications to computer 
graphics, 1993. Presented at SIBGRAPI'93, Recife (Brazil), October 20-22. 

23. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational 
Geometry. Springer Verlag, 1997. 

24. P. de Rezende and W. Jacometti. Geolab: An environment for development of al- 
gorithms in computationM geometry. In Proc. 5th Canad. Conf. Comput. Geom., 
pages 175-180, W'aterloo, Canada, 1993. 

25. T.J. Dekker. A floating-point technique for extending the available precision. 
Numerische Mathematik, 18:224 - 242, 1971. 

26. T.K. Dey, K. Sugihara, and C.L. Bajaj. Delaunay triangulations in three di- 
mensions with finite precision arithmetic. Computer Aided Geometric Design, 
9:457-470, 1992. 

27. D. Douglas. It makes me so CROSS. In D.J. Peuquet and D.F. Marble, editors, 
Introductory Readings in Geographic Information Systems, pages 303-307. Taylor 

Francis, London, 1990. 
28. T. Dub4, K. Ouchi, and C.K. Yap. Tutorial for tteal/Expr package. 1996. 
29. T. Dub6 and C.K. Yap. A basis for implementing exact computational geometry. 

extended abstract, 1993. 
30. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986. 
31. H. Edelsbrunner and E. Mficke. Simulation of simplicity: A technique to cope with 

degenerate cases in geometric a/gorithms. ACM Trans. on Graphics, 9:66-104, 
1990. 

32. I. Emiris and J. Canny. A general approach to removing degeneracies. In Pro- 
ceedings of the 32nd IEEE Symposium on Foundations of Computer Sience, pages 
405-413, 1991. 

33. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies. 
In Proe. of the 8th ACM Syrup. on Computational Geometry, pages 74-82, 1992. 

34. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Sch6nherr. The 
CGAL kernel : a basis for geometric computation. In Ming C. Lin and Di- 
nesh Manocha, editors, Applied Computational Geometry : Towards Geometric 
Engineering (WACG96), pages 191-202. Springer LNCS 1148, 1996. 

35. S. Fang and B. Brfiderlin. Robustness in geometric modeling - tolerance based 
methods. In Proc. Workshop on Computational Geometry CG'91, pages 85-102. 
Springer Verlag LNCS 553, 1991. 

36. A. R. Forrest. Computational geometry in practice. In 1%. A. Earnshaw, edi- 
tor, Fundamental Algorithms for Computer Graphics, volume Ft7 of NATO ASI, 
pages 707-724. Springer-Verlag, 1985. 

283 



37. S. Fortune. Stable maintenance of point-set triangulations in two dimensions. In 
Proceedings of the 30th IEEE Symposium on Foundations of Computer Sience, 
pages 494-499, 1989. 

38. S. Fortune. Progress in computational geometry. In R. Martin, editor, Directions 
in Geometric Computing, pages 81 - 128. Information Geometers Ltd., 1993. 

39. S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations and 
Voronoi diagrams. Int. J. Computational Geometry and Applications, 5:193-213, 
1995. 

40. S. Fortune and V. Milenkovic. Numerical stability of algorithms for line ar- 
rangements. In Proc. of the 7th ACM Symp. on Computational Geometry, pages 
334-341, 1991. 

41. S. Fortune and C. van Wyk. Efficient exact arithmetic for computational geome- 
try. In Proc. of the 9th ACM Syrup. on Computational Geometry, pages 163-172, 
1993. 

42. S. Fortune and C. van Wyk. LN user manual, 1993. 
43. S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arith- 

metic for computational geometry. ACM Transactions on Graphics, 15(3):223- 
248, 1996. 

44. W.R. Franklin. Cartographic errors symptomatic of underlying algebra problems. 
In Proc. International Symposium on Spatial Data Handling~ volume 1~ pages 190- 
208, Ziirich, 20-24 August 1984. 

45. G.-J. Giezeman. PIaGeo, a library.for planar geometry, and SpaGeo, a library for 
spatial geometry, 1994. 

46. D. Goldberg. What every computer scientist should know about floating-point 
arithmetic. A CM Computing Surveys, pages 5-48, 1991. 

47. M.F. Goodchild. Issues of quality and uncertainty. In J.C. Muller, editor, Ad- 
vances in Cartography, pages 113-139. Elsevier Applied Science, London, 1991. 

48. M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding 
line segments efficiently in two and three dimensions. In Proe. 13th Annu. ACM 
Sympos. Comput. Geom., pages 284-293, 1997. 

49. T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 
edition~ June 1996. 

50. D. Greene and F. Yao. Finite resolution computational geometry. In Proe. of 
the 27th IEEE Symposium on Foundations of Computer Science, pages 143-152, 
1986. 

51. L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc. l t th  
Annu. ACM Sympos. Comput. Geom., pages 190-199~ 1995. 

52. L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms 
from imprecise computations. In Proe. of the 5th A CM Syrup. on Computational 
Geometry, pages 208-217, 1989. 

53. L. Guibas, D, Salesin, and J. Stolfi. Constructing strongly convex approximate 
hulls with inaccurate primitives. In Proc° SIGAL Syrup. on Algorithms, pages 
261-270, Tokyo, 1990. 

54. K. Hinrichs, J. Nievergelt, and P. Schorm An all-round sweep algorithm for 2- 
dimensional nearest-neighbor problems. Aeta Informatica, 29:383-394, 1992. 

55. J.D. Hobby. Practical line segment interscetion with finite precision output. Tech- 
nical Report 93/2-27, Bell Laboratories (Lucent Technologies), 1993. 

56. C.M. Hoffmann. The problem of accuracy and robustness in geometric computa- 
tion. IEEE Computer, pages 31-411 March 1989. 

284 



57. C.M. Hoffmann, J.E. Hopcroff, and M.S. Karasick. Towards implementing ro- 
bust geometric computations. In Proe. of the 4th ACM Syrup. on Computational 
Geometry, pages 106-117, 1988. 

58. J.E. Hopcroft and P.J. Kahn. A paradigm for robust geometric algorithms. Al- 
gorithmica, 7:339-380, 1992. 

59. K. Jensen and N. Wirth. PASCAL- User Manual and Report. Revised for the 
ISO Pascal Standard. Springer Verlag, 3rd edition, 1985. 

60. S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths: Su- 
perquadratic algorithms for problems solvable in linear time. In Proe. 1Pth Annu. 
ACM Sympos. Comput. Geom., pages 151-158, 1996. 

61. M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation 
using rational arithmetic. ACM Transactions on Graphics, 10(1):71-91, 1991. 

62. R. Klein. Algorithmische Geometric. Addison-Wesley, 1997. (in German). 
63. A. Knight, J. May, M. McAffer, T. Nguyen, and J.-R. Sack. A computational 

geometry workbench. In Proc. 6th Annu. ACM Sympos. Comput. Geom., page 
370, 1990. 

64. D.E. Knuth. The Art of Computer Programming Vol. 2: Seminumerieal Algo- 
rithms. Addison-Wesley, 2nd edition, 1981. 

65. Donald E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer 
Science. Springer-Verlag, Heidelberg, Germany, 1992. 

66. M.J. Laszlo. Computational geometry and computer graphics in C++. Prentice 
Hall~ Upper Saddle River, N J, 1996. 

67. Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or 
rounded arithmetic. Algorithmica, 8:345-364, 1992. 

68. LiDIA -Group, Fachbereich Informatik Institut ffir Theoretische Informatik TH 
Darmstadt. LiDIA Manual A library for computational number theory, 1.3 edi- 
tion, April 1997. 

69. G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: An illus- 
tration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos. 
Comput. Geom., pages 156-165, 1997. 

70. K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching 
and Computational Geometry. Springer Verlag, 1984. 

71. K. Mehlhorn and S. N£her. Implementation of a sweep line algorithm for the 
straight line segment intersection problem. Technical Report MPI-I-94-160, Max- 
Planck-Institut ffir Informatik, 1994. 

72. K. Mehlhorn and S. N£her. The implementation of geometric algorithms. In 13th 
World Computer Congress IFIP94, volume 1, pages 223-231. Elsevier Science 
B.V. North-Holland, Amsterdam, 1994. 

73. K. Mehlhorn and S. N£her. LEDA, a platform for combinatorial and geometric 
computing. Communications of the ACM, 38:96-102, 1995. 

74. K. Mehlhorn, S. N£her, and C. Uhrig. The LEDA User manual, 3.5 edition, 1997. 
cf. http ://www. mpi-sb, mpg. de/LEDh/leda, html. 

75. M. Mignotte. Identification of algebraic numbers. Journal of Algorithms, 3:197- 
2O4, 1982. 

76. M. Mignotte. Mathematics for Computer Algebra. Springer Vertag, 1992. 
77. V. Milenkovic. Verifiable implementations of geometric algorithms using finite 

precision arithmetic. Artificial Intelligence, 37:377-401, 1988. 
78. V. Milenkovic and L. R. Nackman. Finding compact coordinate representations 

for polygons and polyhedra. ~n Proc. 6th Annu. ACM Sympos. Comput. Geom., 
pages 244-252, 1990. 

285 



79. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N J, 1966. 
80. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia, 

1979. 
81. S.P. Mudur and P.A. Koparkar. Interval methods for processing geometric objects. 

IEEE Computer Graphics and Applications, 4(2):7-17, 1984. 
82. K. Mulmuley. Computational Geometry : An Introduction through Randomized 

Algorithms. Prentice Hall, Englewood Cliffs, N J, 1994. 
83. J. Nievergelt and K. H. Hinrichs. Algorithms and Data Structures : with Appli- 

cations to Graphics and Geometry. Prentice Hall~ Englewood Cliffs, N J, 1993. 
84. J. Nievergelt and P. Schorn. Das R£tsel der verzopften Geraden. Informatik 

Spektrum, (11):163-165, 1988. (in German). 
85. J. Nievergett, P. Schorn, M. de Lorenzi, C. Ammann, and A. Br/ingger. XYZ: 

Software for geometric computation. Technical Report 163, Institut fiir Theorische 
Informatik, ETH, Z/irich, Switzerland, 1991. 

86. J. O'Rourke. Computational geometry in C. Cambridge University Press, Cam- 
bridge, 1994. 

87. T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric al- 
gorithms. In Proc. of the 3rd ACM Symp. on Computational Geometry, pages 
119-125, 1987. 

88. K. Ouchi. Real/Expr: Implementation of exact computation, 1997. 
89. M. Overmars. Designing the computational geometry algorithms library CGAL. 

In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry : 
Towards Geometric Engineering (WACG96), pages 53-58. Springer LNCS 1148, 
1996. 

90. J. Perkal. On epsilon length. Bulletin de l'Acad~mie Polonaise des Sciences, 
4:399-403, 1956. 

91. F. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag, 1985. 
92. D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In lOth 

Symposium on Computer Arithmetic, pages 132 - 143. IEEE Computer Society 
Press~ 1991. 

93. D.M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and 
the Cost of Accurate Computations. PhD Thesis, Department of Mathematics, 
University of California at Berkeley, 1992. 

94. D. Pullar. Spatial overlay with inexact numerical data. In Proc. of Auto-Carto 
10, pages 313-329, 1991. 

95. D. Pullar. Consequences of using a tolerance paradigm in spatial overlay. In Proc. 
of Auto-Carto 11~ pages 288-2969 1993. 

96. P. Schorn. An object-oriented workbench for experimental geometric computa- 
tion. In Proc. 2nd Canad. Conf. Comput. Geom., pages 172-175, 1990. 

97. P. Schorn. Robust Algorithms in a Program Library for Geometric Algorithms. 
PhD Thesis, Informatik-Dissertationen ETH Z~irich, 1991. 

98. P. Schorn. An axiomatic approach to robust geometric programs. J. Symbolic 
Computation~ 16:155-165, 1993. 

99. P. Schorn. Degeneracy in geometric computation and the perturbation approach. 
The Computer Journal, 37(1):35-42, 1994. 

100. R. Seidel. The nature and meaning of perturbations in geometric computations. 
In STACS9g, 1994. 

101. B. Serpette, J. Vuillemin, and J.C. Hero6. BigNum, a portable and efficient pack- 
age for arbitrary-precision arithmetic. Technical Report 2~ Digital Paris Research 
Laboratory, 1989. 

286 



102. 3. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust 
geometric predicates. Technical Report CMU-CS-96-140, School of Computer 
Science, Carnegie Mellon University, 1996. 

103. J. R. Shewchuk. Triangle: Engineering a 2D quMity mesh generator and delaunay 
triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational 
Geometry : Towards Geometric Engineering (WACG96), pages 203-222, 1996. 

104. IEEE Standard. 754-1985 for binary floating-point arithmetic. SIGPLAN, 22:9- 
25, 1987. 

105. K.G. Suffern and E.D. Fackerell. Interval methods in computer graphics. Com- 
puters ~J Graphics, 15(3):331-340, 1991. 

106. K. Sugihara. On finite-precision representations of geometric objects. J. Comput. 
Syst. Sci., 39:236-247, 1989. 

107. K. Sugihara. A simple method for avoiding numerical errors and degeneracies in 
Voronoi diagram construction. IEICE Trans. Fundamentals, E75-A(4):468-477, 
1992. 

108. K. Sugihara and M. Iri. Construction of the Voronoi diagram for over 105 genera- 
tors in single-precision arithmetic. In Abstracts 1st Canad. Conf. Comput. Geom., 
page 42, 1989. 

109. K. Sugihara and M. Iri. A solid modelling system free from topological inconsis- 
tency. Journal of Information Processing, 12(4):380-393, 1989. 

110. C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O~Rourke, 
editors, CRC Handbook in Computational Geometry. CRC Press. (to appear). 

111. C. K. Yap and T. Dub6. The exact computation paradigm. In D.Z. Du and 
F. Hwang, editors, Computing in Euclidean Geometry, pages 452-492. World Sci- 
entific Press, 1995. 2nd edition. 

112. C.K. Yap. A geometric consistency theorem for a symbolic perturbation scheme. 
In Proe. of the 4th A CM Syrup. on Computational Geometry, pages 134-141, 1988. 

113. C.K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput., 
10:349-370, 1990. 

114. C.K. Yap. Towards exact geometric computation. Computational Geometry: 
Theory and Applications, 7(1-2):3-23, 1997. Preliminary version appeared in Proc. 
of the 5th Canad. Conf. on Comp. Geom., pages 405-419, (1993). 

287 


