
Operational Semantics



Abstract Machines

An abstract machine consists of:

� a set of states

� a transition relation on states, written −→

For the simple languages we are considering at the moment, the
term being evaluated is the whole state of the abstract machine.



Operational semantics for Booleans

Syntax of terms and values

t ::= terms

true constant true

false constant false

if t then t else t conditional

v ::= values

true true value

false false value



Evaluation Relation on Booleans

The evaluation relation t −→ t� is the smallest relation closed
under the following rules:

if true then t2 else t3 −→ t2 (E-IfTrue)

if false then t2 else t3 −→ t3 (E-IfFalse)

t1 −→ t�
1

if t1 then t2 else t3 −→ if t�
1 then t2 else t3

(E-If)



Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?



Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?



Digression

Suppose we wanted to change our evaluation strategy so that the
then and else branches of an if get evaluated (in that order)
before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else
branches leads to the same value, we want to immediately produce
that value (“short-circuiting” the evaluation of the guard). How
would we need to change the rules?

Of the rules we just invented, which are computation rules and
which are congruence rules?



Evaluation, more explicitly

−→ is the smallest two-place relation closed under the following
rules:

((if true then t2 else t3), t2) ∈ −→

((if false then t2 else t3), t3) ∈ −→

(t1, t�
1) ∈ −→

((if t1 then t2 else t3), (if t�
1 then t2 else t3)) ∈ −→


