Operational Semantics

Abstract Machines

An abstract machine consists of:

- a set of states
- a transition relation on states, written

For the simple languages we are considering at the moment, the term being evaluated is the whole state of the abstract machine.

Operational semantics for Booleans

Syntax of terms and values

```
七 ::=
    true
    false
    if t then t else t
V ::=
    true
    false
```


Evaluation Relation on Booleans

The evaluation relation $t \longrightarrow t^{\prime}$ is the smallest relation closed under the following rules:

$$
\begin{gathered}
\text { if true then } t_{2} \text { else } t_{3} \longrightarrow t_{2} \quad(\mathrm{E}-\mathrm{IFTRUE}) \\
\text { if false then } t_{2} \text { else } \mathrm{t}_{3} \longrightarrow \mathrm{t}_{3}(\mathrm{E}-\mathrm{IFFALSE}) \\
\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime} \\
\text { if } \mathrm{t}_{1} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3} \longrightarrow \text { if } \mathrm{t}_{1}^{\prime} \text { then } \mathrm{t}_{2} \text { else } \mathrm{t}_{3}
\end{gathered}(\mathrm{E}-\mathrm{IF}) .
$$

Digression

Suppose we wanted to change our evaluation strategy so that the then and else branches of an if get evaluated (in that order) before the guard. How would we need to change the rules?

Digression

Suppose we wanted to change our evaluation strategy so that the then and else branches of an if get evaluated (in that order) before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else branches leads to the same value, we want to immediately produce that value ("short-circuiting" the evaluation of the guard). How would we need to change the rules?

Digression

Suppose we wanted to change our evaluation strategy so that the then and else branches of an if get evaluated (in that order) before the guard. How would we need to change the rules?

Suppose, moreover, that if the evaluation of the then and else branches leads to the same value, we want to immediately produce that value ("short-circuiting" the evaluation of the guard). How would we need to change the rules?

Of the rules we just invented, which are computation rules and which are congruence rules?

Evaluation, more explicitly

\longrightarrow is the smallest two-place relation closed under the following rules:

$$
\begin{gathered}
\left(\left(\text { if true then } t_{2} \text { else } t_{3}\right), t_{2}\right) \in \longrightarrow \\
\left(\left(\text { if false then } t_{2} \text { else } t_{3}\right), t_{3}\right) \in \longrightarrow \\
\left(\left(\text { if }_{1}, t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}\right),\left(\text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}\right)\right) \in \longrightarrow
\end{gathered}
$$

