

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic expressions:

t	::=	terms		
		true	constant true	
		false	constant false	
		if t then t else t	conditional	
		0	constant zero	
		succ t	successor	
		pred t	predecessor	
		iszero t	zero test	

Terminology:

• t here is a *metavariable*

Abstract vs. concrete syntax

Q: Does this grammar define a set of *character strings*, a set of *token lists*, or a set of *abstract syntax trees*?

Q: Does this grammar define a set of *character strings*, a set of *token lists*, or a set of *abstract syntax trees*?

A: In a sense, all three. But we are primarily interested, here, in abstract syntax trees.

For this reason, grammars like the one on the previous slide are sometimes called *abstract grammars*. An abstract grammar *defines* a set of abstract syntax trees and *suggests* a mapping from character strings to trees.

We then *write* terms as linear character strings rather than trees simply for convenience. If there is any potential confusion about what tree is intended, we use parentheses to disambiguate. Q: So, are

```
succ 0
succ (0)
(((succ (((((0))))))))
```

"the same term"?

What about

?

```
succ 0
pred (succ (succ 0))
```

A more explicit form of the definition

The set \mathcal{T} of *terms* is the smallest set such that

- 1. {true, false, 0} $\subseteq T$;
- 2. if $t_1 \in \mathcal{T}$, then {succ t_1 , pred t_1 , iszero t_1 } $\subseteq \mathcal{T}$;
- 3. if $t_1 \in T$, $t_2 \in T$, and $t_3 \in T$, then if t_1 then t_2 else $t_3 \in T$.

An alternate notation for the same definition:

Note that "the smallest set closed under..." is implied (but often not stated explicitly).

Terminology:

- axiom vs. rule
- concrete rule vs. rule scheme

Define an infinite sequence of sets, S_0 , S_1 , S_2 , ..., as follows:

$$\begin{array}{rcl} \mathcal{S}_0 &=& \emptyset \\ \mathcal{S}_{i+1} &=& \{\texttt{true}, \texttt{false}, 0\} \\ && \cup & \{\texttt{succ } \texttt{t}_1, \texttt{pred } \texttt{t}_1, \texttt{iszero } \texttt{t}_1 \mid \texttt{t}_1 \in \mathcal{S}_i\} \\ && \cup & \{\texttt{if } \texttt{t}_1 \texttt{ then } \texttt{t}_2 \texttt{ else } \texttt{t}_3 \mid \texttt{t}_1, \texttt{t}_2, \texttt{t}_3 \in \mathcal{S}_i\} \end{array}$$

Now let

 $S = \bigcup_i S_i$

Comparing the definitions

We have seen two different presentations of terms:

- 1. as the *smallest* set that is *closed* under certain rules (\mathcal{T})
 - explicit inductive definition
 - BNF shorthand
 - inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

Comparing the definitions

We have seen two different presentations of terms:

- 1. as the *smallest* set that is *closed* under certain rules (\mathcal{T})
 - explicit inductive definition
 - BNF shorthand
 - inference rule shorthand

2. as the *limit* (S) of a series of sets (of larger and larger terms)

What does it mean to assert that "these presentations are equivalent"?

Induction on Syntax

Why two definitions?

The two ways of defining the set of terms are both useful:

- 1. the definition of terms as the smallest set with a certain closure property is compact and easy to read
- 2. the definition of the set of terms as the limit of a sequence gives us an *induction principle* for proving things about terms...

Definition: The depth of a term t is the smallest *i* such that $t \in S_i$.

From the definition of S, it is clear that, if a term t is in S_i , then all of its immediate subterms must be in S_{i-1} , i.e., they must have strictly smaller depths.

This observation justifies the principle of induction on terms. Let P be a predicate on terms.

```
If, for each term s,
given P(r) for all immediate subterms r of s
we can show P(s),
then P(t) holds for all t.
```

Inductive Function Definitions

The set of constants appearing in a term t, written Consts(t), is defined as follows:

Consts(true)	=	{true}
Consts(false)	=	{false}
Consts(0)	=	{0}
$Consts(succ t_1)$	=	$Consts(t_1)$
$Consts(pred t_1)$	=	$Consts(t_1)$
$Consts(iszero t_1)$	=	$Consts(t_1)$
$Consts(if t_1 then t_2 else t_3)$	=	$Consts(t_1) \cup Consts(t_2)$
		$\cup Consts(t_3)$

Simple, right?

First question:

Normally, a "definition" just assigns a convenient name to a previously-known thing. But here, the "thing" on the right-hand side involves the very name that we are "defining"!

So in what sense is this a definition??

Second question: Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t), is defined as follows:

BadConsts(true)	=	{true}		
BadConsts(false)	=	{false}		
BadConsts(0)	=	{0}		
BadConsts(0)	=	{}		
$BadConsts(succ t_1)$	=	$BadConsts(t_1)$		
$BadConsts(pred t_1)$	=	$BadConsts(t_1)$		
BadConsts(iszero t ₁)	=	BadConsts(iszero ((iszero	t ₁))

What is the essential difference between these two definitions? How do we tell the difference between well-formed inductive definitions and ill-formed ones?

What, exactly, does a well-formed inductive definition mean?

What is a function?

Recall that a *function* f from A (its domain) to B (its co-domain) can be viewed as a two-place *relation* (called the "graph" of the function) with certain properties:

It is total: Every element of its domain occurs at least once in its graph. More precisely:

For every $a \in A$, there exists some $b \in B$ such that $(a, b) \in f$.

It is deterministic: every element of its domain occurs at most once in its graph. More precisely:

 $If(a, b_1) \in f \text{ and } (a, b_2) \in f, \text{ then } b_1 = b_2.$

We have seen how to define relations inductively. E.g.... Let *Consts* be the smallest two-place relation closed under the following rules:

> $(true, {true}) \in Consts$ $(false, {false}) \in Consts$ $(0, \{0\}) \in Consts$ $(t_1, C) \in Consts$ (succ $t_1, C \in Consts$ $(t_1, C) \in Consts$ (pred t_1, C) \in Consts $(t_1, C) \in Consts$ (iszero $t_1, C \in Consts$ $(t_1, C_1) \in Consts$ $(t_2, C_2) \in Consts$ $(t_3, C_3) \in Consts$

(if t_1 then t_2 else t_3 , (Consts $(t_1) \cup Consts(t_2) \cup Consts(t_3)$)) $\in Consts$

This definition certainly defines a *relation* (i.e., the smallest one with a certain closure property).

Q: How can we be sure that this relation is a function?

This definition certainly defines a *relation* (i.e., the smallest one with a certain closure property).

Q: How can we be sure that this relation is a *function*?

A: Prove it!

Theorem: The relation *Consts* defined by the inference rules a couple of slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that $(t, C) \in Consts$.

Proof:

Theorem: The relation *Consts* defined by the inference rules a couple of slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that $(t, C) \in Consts$.

Proof: By induction on t.

Theorem: The relation *Consts* defined by the inference rules a couple of slides ago is total and deterministic.

I.e., for each term t there is exactly one set of terms C such that $(t, C) \in Consts$.

Proof: By induction on t.

To apply the induction principle for terms, we must show, for an arbitrary term ${\tt t},$ that if

for each immediate subterm s of t, there is exactly one set of terms C_s such that $(s, C_s) \in Consts$

then

there is exactly one set of terms C such that $(t, C) \in Consts$.

Proceed by cases on the form of t.

If t is 0, true, or false, then we can immediately see from the definition of *Consts* that there is exactly one set of terms C (namely {t}) such that (t, C) ∈ *Consts*. Proceed by cases on the form of t.

- If t is 0, true, or false, then we can immediately see from the definition of *Consts* that there is exactly one set of terms C (namely {t}) such that (t, C) ∈ *Consts*.
- If t is succ t₁, then the induction hypothesis tells us that there is exactly one set of terms C₁ such that (t₁, C₁) ∈ Consts. But then it is clear from the definition of Consts that there is exactly one set C (namely C₁) such that (t, C) ∈ Consts.

Proceed by cases on the form of t.

- If t is 0, true, or false, then we can immediately see from the definition of *Consts* that there is exactly one set of terms *C* (namely {t}) such that (t, *C*) ∈ *Consts*.
- If t is succ t₁, then the induction hypothesis tells us that there is exactly one set of terms C₁ such that (t₁, C₁) ∈ Consts. But then it is clear from the definition of Consts that there is exactly one set C (namely C₁) such that (t, C) ∈ Consts.

Similarly when t is pred t_1 or iszero t_1 .

- If t is if s₁ then s₂ else s₃, then the induction hypothesis tells us
 - there is exactly one set of terms C_1 such that $(t_1, C_1) \in Consts$
 - there is exactly one set of terms C_2 such that $(t_2, C_2) \in Consts$
 - there is exactly one set of terms C_3 such that $(t_3, C_3) \in Consts$

But then it is clear from the definition of *Consts* that there is exactly one set *C* (namely $C_1 \cup C_2 \cup C_3$) such that $(t, C) \in Consts$.

How about the bad definition?

 $(true, {true}) \in BadConsts$ $(false, {false}) \in BadConsts$ $(0, \{0\}) \in BadConsts$ $(0, \{\}) \in BadConsts$ $(t_1, C) \in BadConsts$ (succ t_1, C) \in BadConsts $(t_1, C) \in BadConsts$ (pred t_1, C) \in BadConsts (iszero (iszero t_1), C) \in BadConsts (iszero t_1, C) \in BadConsts

Just for fun, let's calculate some cases of this relation...

▶ For what values of *C* do we have (false, *C*) ∈ *BadConsts*?

Just for fun, let's calculate some cases of this relation...

- ▶ For what values of *C* do we have (false, *C*) ∈ *BadConsts*?
- For what values of C do we have (succ $0, C) \in BadConsts?$

Just for fun, let's calculate some cases of this relation...

- ▶ For what values of *C* do we have (false, *C*) ∈ *BadConsts*?
- For what values of C do we have (succ $0, C) \in BadConsts?$
- For what values of C do we have

(if false then 0 else $0, C) \in BadConsts$?

Just for fun, let's calculate some cases of this relation...

- ▶ For what values of *C* do we have (false, *C*) ∈ *BadConsts*?
- For what values of C do we have $(\text{succ } 0, C) \in BadConsts$?
- For what values of C do we have (if false then 0 else 0, C) ∈ BadConsts?
- For what values of C do we have (iszero 0, C) ∈ BadConsts?

Theorem: The number of distinct constants in a term is at most the size of the term. I.e., $|Consts(t)| \le size(t)$.

Proof:

Theorem: The number of distinct constants in a term is at most the size of the term. I.e., $|Consts(t)| \le size(t)$.

Proof: By induction on t.

Theorem: The number of distinct constants in a term is at most the size of the term. I.e., $|Consts(t)| \leq size(t)$.

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we must prove it for t itself.

Theorem: The number of distinct constants in a term is at most the size of the term. I.e., $|Consts(t)| \le size(t)$.

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we must prove it for t itself.

There are "three" cases to consider:

```
Case: t is a constant
```

```
Immediate: |Consts(t)| = |\{t\}| = 1 = size(t).
```

Theorem: The number of distinct constants in a term is at most the size of the term. I.e., $|Consts(t)| \le size(t)$.

```
Proof: By induction on t.
```

Assuming the desired property for immediate subterms of t, we must prove it for t itself.

There are "three" cases to consider:

```
Case: t is a constant
```

Immediate: $|Consts(t)| = |\{t\}| = 1 = size(t)$.

Case: $t = succ t_1$, pred t_1 , or iszero t_1

By the induction hypothesis, $|Consts(t_1)| \le size(t_1)$. We now calculate as follows:

 $|Consts(t)| = |Consts(t_1)| \le size(t_1) < size(t).$

Case: $t = if t_1 then t_2 else t_3$

By the induction hypothesis, $|Consts(t_1)| \le size(t_1)$, $|Consts(t_2)| \le size(t_2)$, and $|Consts(t_3)| \le size(t_3)$. We now calculate as follows:

$$\begin{split} |\textit{Consts}(\texttt{t})| &= |\textit{Consts}(\texttt{t}_1) \cup \textit{Consts}(\texttt{t}_2) \cup \textit{Consts}(\texttt{t}_3)| \\ &\leq |\textit{Consts}(\texttt{t}_1)| + |\textit{Consts}(\texttt{t}_2)| + |\textit{Consts}(\texttt{t}_3)| \\ &\leq \textit{size}(\texttt{t}_1) + \textit{size}(\texttt{t}_2) + \textit{size}(\texttt{t}_3) \\ &< \textit{size}(\texttt{t}). \end{split}$$