Syntax

Simple Arithmetic Expressions

Here is a BNF grammar for a very simple language of arithmetic
expressions:

t = terms

true constant true
false constant false
if t then t else t conditional

0 constant zero
succ t successor
pred t predecessor
iszero t zero test

Terminology:

» t here is a metavariable

Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

Abstract vs. concrete syntax

Q: Does this grammar define a set of character strings, a set of
token lists, or a set of abstract syntax trees?

A: In a sense, all three. But we are primarily interested, here, in
abstract syntax trees.

For this reason, grammars like the one on the previous slide are
sometimes called abstract grammars. An abstract grammar defines
a set of abstract syntax trees and suggests a mapping from
character strings to trees.

We then write terms as linear character strings rather than trees
simply for convenience. If there is any potential confusion about
what tree is intended, we use parentheses to disambiguate.

Q: So, are

succ O
succ (0)

(((succ (CCCC0)IIIIII)

“the same term”"?

What about

succ 0
pred (succ (succ 0))

A more explicit form of the definition

The set 7 of terms is the smallest set such that
1. {true, false, 0} C 7;
2. if t1 € 7, then {succ ti, pred ti, iszero t;} C 7;

3. ift1€7,tye7,and t3 € 7, then
if t1 then t, else t3€ 7.

Inference rules

An alternate notation for the same definition:

true € T falsec 7T 0eT
t1 €7 t1 €7 t1 €7
succ t1 €7 pred t1 €7 iszero t1 €7

t1 €7 to €T t3 €7
if t; then t, else t3€ 7

Note that “the smallest set closed under...
not stated explicitly).

is implied (but often

Terminology:
> axiom vs. rule

» concrete rule vs. rule scheme

Terms, concretely

Define an infinite sequence of sets, Sp, S1, So, ..., as follows:
So =0
Siy1 = {true, false, 0}

U {succ ti, pred ti, iszero t; |t1 € S}
U {if t; then ty else t3 | t1,t2,t3 €S}

Now let

S = UiSi

Comparing the definitions

We have seen two different presentations of terms:
1. as the smallest set that is closed under certain rules (7°)

» explicit inductive definition
» BNF shorthand
» inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

Comparing the definitions

We have seen two different presentations of terms:

1. as the smallest set that is closed under certain rules (7°)

» explicit inductive definition
» BNF shorthand
» inference rule shorthand

2. as the limit (S) of a series of sets (of larger and larger terms)

What does it mean to assert that “these presentations are
equivalent”?

Induction on Syntax

Why two definitions?

The two ways of defining the set of terms are both useful:
1. the definition of terms as the smallest set with a certain
closure property is compact and easy to read
2. the definition of the set of terms as the limit of a sequence

gives us an induction principle for proving things about
terms...

Induction on Terms

Definition: The depth of a term t is the smallest / such that
t e S,

From the definition of S, it is clear that, if a term t is in S;, then
all of its immediate subterms must be in S;_1, i.e., they must have
strictly smaller depths.

This observation justifies the principle of induction on terms.
Let P be a predicate on terms.

If, for each term s,
given P(r) for all immediate subterms r of s

we can show P(s),
then P(t) holds for all t.

Inductive Function Definitions

The set of constants appearing in a term t, written Consts(t), is
defined as follows:

Consts(true) = {true}

Consts(false) = {false}

Consts(0) = {0}

Consts(succ t1) = Consts(t1)

Consts(pred t1) = Consts(ty)

Consts(iszero ti) = Consts(t1)

Consts(if t; then tr else t3) = Consts(ti) U Consts(t2)
UConsts(t3)

Simple, right?

First question:

Normally, a “definition” just assigns a convenient name to a
previously-known thing. But here, the “thing” on the
right-hand side involves the very name that we are “defining”!

So in what sense is this a definition??

Second question: Suppose we had written this instead...

The set of constants appearing in a term t, written BadConsts(t),
is defined as follows:

BadConsts(true) = {true}

BadConsts(false) = {false}

BadConsts(0) = {0}

BadConsts(0) = {}

BadConsts(succ t1) = BadConsts(t1)

BadConsts(pred ti) = BadConsts(t1)
BadConsts(iszero t1) = BadConsts(iszero (iszero tp))

What is the essential difference between these two definitions?
How do we tell the difference between well-formed inductive
definitions and ill-formed ones?

What, exactly, does a well-formed inductive definition mean?

What is a function?

Recall that a function f from A (its domain) to B (its co-domain)
can be viewed as a two-place relation (called the “"graph” of the
function) with certain properties:

» It is total: Every element of its domain occurs at least once in
its graph. More precisely:

For every a € A, there exists some b € B such that
(a,b) € f.

» It is deterministic: every element of its domain occurs at most
once in its graph. More precisely:

If (a,b1) € f and (a. by) € f, then by = by.

We have seen how to define relations inductively. E.g....
Let Consts be the smallest two-place relation closed under the
following rules:
(true, {true}) € Consts
(false, {false}) € Consts
(0, {0}) € Consts

(t1, C) € Consts
(succ t1, C) € Consts

(t1, C) € Consts
(pred ti, C) € Consts

(t1, C) € Consts
(iszero ti, C) € Consts

(t1, C1) € Consts (t2, &) € Consts (t3, G3) € Consts
(if t; then t, else ts, (Consts(t1) U Consts(tz) U Consts(ts))) € Consts

This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

This definition certainly defines a relation (i.e., the smallest one
with a certain closure property).

Q: How can we be sure that this relation is a function?

A: Prove it!

Theorem: The relation Consts defined by the inference rules a
couple of slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof:

Theorem: The relation Consts defined by the inference rules a
couple of slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof: By induction on t.

Theorem: The relation Consts defined by the inference rules a
couple of slides ago is total and deterministic.

l.e., for each term t there is exactly one set of terms C such that
(t, C) € Consts.

Proof: By induction on t.
To apply the induction principle for terms, we must show, for an
arbitrary term t, that if

for each immediate subterm s of t, there is exactly one set of
terms C such that (s, C;) € Consts

then
there is exactly one set of terms C such that (t, C) € Consts.

Proceed by cases on the form of t.

» If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

Proceed by cases on the form of t.

» If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

» If t is succ t1, then the induction hypothesis tells us that
there is exactly one set of terms (; such that
(t1,C1) € Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C;) such that
(t, C) € Consts.

Proceed by cases on the form of t.

» If tis 0, true, or false, then we can immediately see from
the definition of Consts that there is exactly one set of terms
C (namely {t}) such that (t, C) € Consts.

» If t is succ t1, then the induction hypothesis tells us that
there is exactly one set of terms (; such that
(t1,C1) € Consts. But then it is clear from the definition of
Consts that there is exactly one set C (namely C;) such that
(t, C) € Consts.

Similarly when t is pred ti or iszero ti.

» If t is if s; then s, else s3, then the induction
hypothesis tells us

> there is exactly one set of terms C; such that (ty, C;) € Consts
> there is exactly one set of terms C, such that (t,, C;) € Consts
> there is exactly one set of terms C; such that (ts3, C3) € Consts

But then it is clear from the definition of Consts that there is
exactly one set C (namely C; U G, U (3) such that
(t, C) € Consts.

How about the bad definition?

(true, {true}) € BadConsts
(false, {false}) € BadConsts
(0, {0}) € BadConsts

(0, {}) € BadConsts

(t1, C) € BadConsts
(succ ti, C) € BadConsts

(t1, C) € BadConsts
(pred ti, C) € BadConsts

(iszero (iszero t1), C) € BadConsts
(iszero ti, C) € BadConsts

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

» For what values of C do we have
(if false then 0 else 0, C) € BadConsts?

This set of rules defines a perfectly good relation — it's just that
this relation does not happen to be a function!

Just for fun, let's calculate some cases of this relation...
» For what values of C do we have (false, C) € BadConsts?
» For what values of C do we have (succ 0, C) € BadConsts?

» For what values of C do we have
(if false then 0 else 0, C) € BadConsts?

» For what values of C do we have
(iszero 0, C) € BadConsts?

Another Inductive Definition

size(true) =
size(false) =
size(0)

(

(

(
size(succ t1)

(

(

(

size(pred t1)
size(iszero ti) =
size(if t; then tp else t3) =

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof:

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).

Another proof by induction

Theorem: The number of distinct constants in a term is at most
the size of the term. l.e., |Consts(t)| < size(t).

Proof: By induction on t.

Assuming the desired property for immediate subterms of t, we
must prove it for t itself.

There are “three” cases to consider:

Case: t is a constant

Immediate: |Consts(t)| = [{t}| = 1 = size(t).

Case: t = succ tjp, pred ti, or iszero t;

By the induction hypothesis, |Consts(t1)| < size(t1). We now

calculate as follows:
|Consts(t)| = |Consts(t1)| < size(t1) < size(t).

Case: t =if t; then t, else t3

By the induction hypothesis, |Consts(t1)| < size(t1),
|Consts(ta)| < size(t2), and |Consts(ts)| < size(t3). We now
calculate as follows:

| Consts(t)| | Consts(t1) U Consts(t2) U Consts(t3)]
|Consts(t1)| + |Consts(t2)| + | Consts(t3)
size(t1) + size(ty) + size(ts3)

size(t).

AVANVANEL

