
1 Introduction

1.1 Types in Computer Science

Modern software engineering recognizes a broad range of formal methods for
helping ensure that a system behaves correctly with respect to some speci-
fication, implicit or explicit, of its desired behavior. On one end of the spec-
trum are powerful frameworks such as Hoare logic, algebraic specification
languages, modal logics, and denotational semantics. These can be used to
express very general correctness properties but are often cumbersome to use
and demand a good deal of sophistication on the part of programmers. At the
other end are techniques of much more modest power—modest enough that
automatic checkers can be built into compilers, linkers, or program analyz-
ers and thus be applied even by programmers unfamiliar with the underlying
theories. One well-known instance of this sort of lightweight formal methods
is model checkers, tools that search for errors in finite-state systems such as
chip designs or communication protocols. Another that is growing in popu-
larity is run-time monitoring, a collection of techniques that allow a system to
detect, dynamically, when one of its components is not behaving according
to specification. But by far the most popular and best established lightweight
formal methods are type systems, the central focus of this book.

As with many terms shared by large communities, it is difficult to define
“type system” in a way that covers its informal usage by programming lan-
guage designers and implementors but is still specific enough to have any
bite. One plausible definition is this:

A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds
of values they compute.

A number of points deserve comment. First, this definition identifies type
systems as tools for reasoning about programs. This wording reflects the

2 1 Introduction

orientation of this book toward the type systems found in programming lan-
guages. More generally, the term type systems (or type theory) refers to a
much broader field of study in logic, mathematics, and philosophy. Type
systems in this sense were first formalized in the early 1900s as ways of
avoiding the logical paradoxes, such as Russell’s (Russell, 1902), that threat-
ened the foundations of mathematics. During the twentieth century, types
have become standard tools in logic, especially in proof theory (see Gandy,
1976 and Hindley, 1997), and have permeated the language of philosophy and
science. Major landmarks in this area include Russell’s original ramified the-
ory of types (Whitehead and Russell, 1910), Ramsey’s simple theory of types
(1925)—the basis of Church’s simply typed lambda-calculus (1940)—Martin-
Löf’s constructive type theory (1973, 1984), and Berardi, Terlouw, and Baren-
dregt’s pure type systems (Berardi, 1988; Terlouw, 1989; Barendregt, 1992).

Even within computer science, there are two major branches to the study of
type systems. The more practical, which concerns applications to program-
ming languages, is the main focus of this book. The more abstract focuses
on connections between various “pure typed lambda-calculi” and varieties
of logic, via the Curry-Howard correspondence (§9.4). Similar concepts, nota-
tions, and techniques are used by both communities, but with some impor-
tant differences in orientation. For example, research on typed lambda-calculi
is usually concerned with systems in which every well-typed computation is
guaranteed to terminate, whereas most programming languages sacrifice this
property for the sake of features like recursive function definitions.

Another important element in the above definition is its emphasis on clas-
sification of terms—syntactic phrases—according to the properties of the val-
ues that they will compute when executed. A type system can be regarded
as calculating a kind of static approximation to the run-time behaviors of the
terms in a program. (Moreover, the types assigned to terms are generally cal-
culated compositionally, with the type of an expression depending only on
the types of its subexpressions.)

The word “static” is sometimes added explicitly—we speak of a “stati-
cally typed programming language,” for example—to distinguish the sorts
of compile-time analyses we are considering here from the dynamic or la-
tent typing found in languages such as Scheme (Sussman and Steele, 1975;
Kelsey, Clinger, and Rees, 1998; Dybvig, 1996), where run-time type tags are
used to distinguish different kinds of structures in the heap. Terms like “dy-
namically typed” are arguably misnomers and should probably be replaced
by “dynamically checked,” but the usage is standard.

Being static, type systems are necessarily also conservative: they can cate-
gorically prove the absence of some bad program behaviors, but they cannot
prove their presence, and hence they must also sometimes reject programs

1.1 Types in Computer Science 3

that actually behave well at run time. For example, a program like

if <complex test> then 5 else <type error>

will be rejected as ill-typed, even if it happens that the <complex test> will
always evaluate to true, because a static analysis cannot determine that this
is the case. The tension between conservativity and expressiveness is a fun-
damental fact of life in the design of type systems. The desire to allow more
programs to be typed—by assigning more accurate types to their parts—is
the main force driving research in the field.

A related point is that the relatively straightforward analyses embodied in
most type systems are not capable of proscribing arbitrary undesired pro-
gram behaviors; they can only guarantee that well-typed programs are free
from certain kinds of misbehavior. For example, most type systems can check
statically that the arguments to primitive arithmetic operations are always
numbers, that the receiver object in a method invocation always provides
the requested method, etc., but not that the second argument to the division
operation is non-zero, or that array accesses are always within bounds.

The bad behaviors that can be eliminated by the type system in a given lan-
guage are often called run-time type errors. It is important to keep in mind
that this set of behaviors is a per-language choice: although there is substan-
tial overlap between the behaviors considered to be run-time type errors in
different languages, in principle each type system comes with a definition
of the behaviors it aims to prevent. The safety (or soundness) of each type
system must be judged with respect to its own set of run-time errors.

The sorts of bad behaviors detected by type analysis are not restricted to
low-level faults like invoking non-existent methods: type systems are also
used to enforce higher-level modularity properties and to protect the in-
tegrity of user-defined abstractions. Violations of information hiding, such
as directly accessing the fields of a data value whose representation is sup-
posed to be abstract, are run-time type errors in exactly the same way as, for
example, treating an integer as a pointer and using it to crash the machine.

Typecheckers are typically built into compilers or linkers. This implies that
they must be able to do their job automatically, with no manual intervention
or interaction with the programmer—i.e., they must embody computation-
ally tractable analyses. However, there is still plenty of room for requiring
guidance from the programmer, in the form of explicit type annotations in
programs. Usually, these annotations are kept fairly light, to make programs
easier to write and read. But, in principle, a full proof that the program meets
some arbitrary specification could be encoded in type annotations; in this
case, the typechecker would effectively become a proof checker. Technolo-
gies like Extended Static Checking (Detlefs, Leino, Nelson, and Saxe, 1998)

4 1 Introduction

are working to settle this territory between type systems and full-scale pro-
gram verification methods, implementing fully automatic checks for some
broad classes of correctness properties that rely only on “reasonably light”
program annotations to guide their work.

By the same token, we are most interested in methods that are not just
automatable in principle, but that actually come with efficient algorithms
for checking types. However, exactly what counts as efficient is a matter of
debate. Even widely used type systems like that of ML (Damas and Milner,
1982) may exhibit huge typechecking times in pathological cases (Henglein
and Mairson, 1991). There are even languages with typechecking or type re-
construction problems that are undecidable, but for which algorithms are
available that halt quickly “in most cases of practical interest” (e.g. Pierce and
Turner, 2000; Nadathur and Miller, 1988; Pfenning, 1994).

1.2 What Type Systems Are Good For

Detecting Errors

The most obvious benefit of static typechecking is that it allows early detec-
tion of some programming errors. Errors that are detected early can be fixed
immediately, rather than lurking in the code to be discovered much later,
when the programmer is in the middle of something else—or even after the
program has been deployed. Moreover, errors can often be pinpointed more
accurately during typechecking than at run time, when their effects may not
become visible until some time after things begin to go wrong.

In practice, static typechecking exposes a surprisingly broad range of er-
rors. Programmers working in richly typed languages often remark that their
programs tend to “just work” once they pass the typechecker, much more
often than they feel they have a right to expect. One possible explanation for
this is that not only trivial mental slips (e.g., forgetting to convert a string to
a number before taking its square root), but also deeper conceptual errors
(e.g., neglecting a boundary condition in a complex case analysis, or confus-
ing units in a scientific calculation), will often manifest as inconsistencies at
the level of types. The strength of this effect depends on the expressiveness
of the type system and on the programming task in question: programs that
manipulate a variety of data structures (e.g., symbol processing applications
such as compilers) offer more purchase for the typechecker than programs
involving just a few simple types, such as numerical calculations in scientific
applications (though, even here, refined type systems supporting dimension
analysis [Kennedy, 1994] can be quite useful).

Obtaining maximum benefit from the type system generally involves some

1.2 What Type Systems Are Good For 5

attention on the part of the programmer, as well as a willingness to make
good use of the facilities provided by the language; for example, a complex
program that encodes all its data structures as lists will not get as much
help from the compiler as one that defines a different datatype or abstract
type for each. Expressive type systems offer numerous “tricks” for encoding
information about structure in terms of types.

For some sorts of programs, a typechecker can also be an invaluable main-
tenance tool. For example, a programmer who needs to change the definition
of a complex data structure need not search by hand to find all the places in a
large program where code involving this structure needs to be fixed. Once the
declaration of the datatype has been changed, all of these sites become type-
inconsistent, and they can be enumerated simply by running the compiler
and examining the points where typechecking fails.

Abstraction

Another important way in which type systems support the programming pro-
cess is by enforcing disciplined programming. In particular, in the context
of large-scale software composition, type systems form the backbone of the
module languages used to package and tie together the components of large
systems. Types show up in the interfaces of modules (and related structures
such as classes); indeed, an interface itself can be viewed as “the type of a
module,” providing a summary of the facilities provided by the module—a
kind of partial contract between implementors and users.

Structuring large systems in terms of modules with clear interfaces leads to
a more abstract style of design, where interfaces are designed and discussed
independently from their eventual implementations. More abstract thinking
about interfaces generally leads to better design.

Documentation

Types are also useful when reading programs. The type declarations in pro-
cedure headers and module interfaces constitute a form of documentation,
giving useful hints about behavior. Moreover, unlike descriptions embedded
in comments, this form of documentation cannot become outdated, since it
is checked during every run of the compiler. This role of types is particularly
important in module signatures.

6 1 Introduction

Language Safety

The term “safe language” is, unfortunately, even more contentious than “type
system.” Although people generally feel they know one when they see it, their
notions of exactly what constitutes language safety are strongly influenced
by the language community to which they belong. Informally, though, safe
languages can be defined as ones that make it impossible to shoot yourself
in the foot while programming.

Refining this intuition a little, we could say that a safe language is one that
protects its own abstractions. Every high-level language provides abstractions
of machine services. Safety refers to the language’s ability to guarantee the
integrity of these abstractions and of higher-level abstractions introduced by
the programmer using the definitional facilities of the language. For example,
a language may provide arrays, with access and update operations, as an
abstraction of the underlying memory. A programmer using this language
then expects that an array can be changed only by using the update operation
on it explicitly—and not, for example, by writing past the end of some other
data structure. Similarly, one expects that lexically scoped variables can be
accessed only from within their scopes, that the call stack truly behaves like
a stack, etc. In a safe language, such abstractions can be used abstractly; in
an unsafe language, they cannot: in order to completely understand how a
program may (mis)behave, it is necessary to keep in mind all sorts of low-
level details such as the layout of data structures in memory and the order in
which they will be allocated by the compiler. In the limit, programs in unsafe
languages may disrupt not only their own data structures but even those of
the run-time system; the results in this case can be completely arbitrary.

Language safety is not the same thing as static type safety. Language safety
can be achieved by static checking, but also by run-time checks that trap
nonsensical operations just at the moment when they are attempted and stop
the program or raise an exception. For example, Scheme is a safe language,
even though it has no static type system.

Conversely, unsafe languages often provide “best effort” static type check-
ers that help programmers eliminate at least the most obvious sorts of slips,
but such languages do not qualify as type-safe either, according to our defi-
nition, since they are generally not capable of offering any sort of guarantees
that well-typed programs are well behaved—typecheckers for these languages
can suggest the presence of run-time type errors (which is certainly better
than nothing) but not prove their absence.

Statically checked Dynamically checked

Safe ML, Haskell, Java, etc. Lisp, Scheme, Perl, Postscript, etc.
Unsafe C, C++, etc.

1.2 What Type Systems Are Good For 7

The emptiness of the bottom-right entry in the preceding table is explained
by the fact that, once facilities are in place for enforcing the safety of most
operations at run time, there is little additional cost to checking all oper-
ations. (Actually, there are a few dynamically checked languages, e.g., some
dialects of Basic for microcomputers with minimal operating systems, that do
offer low-level primitives for reading and writing arbitrary memory locations,
which can be misused to destroy the integrity of the run-time system.)

Run-time safety is not normally achievable by static typing alone. For ex-
ample, all of the languages listed as safe in the table above actually per-
form array-bounds checking dynamically.1 Similarly, statically checked lan-
guages sometimes choose to provide operations (e.g., the down-cast operator
in Java—see §15.5) whose typechecking rules are actually unsound—language
safety is obtained by checking each use of such a construct dynamically.

Language safety is seldom absolute. Safe languages often offer program-
mers “escape hatches,” such as foreign function calls to code written in other,
possibly unsafe, languages. Indeed, such escape hatches are sometimes pro-
vided in a controlled form within the language itself—Obj.magic in OCaml
(Leroy, 2000), Unsafe.cast in the New Jersey implementation of Standard
ML, etc. Modula-3 (Cardelli et al., 1989; Nelson, 1991) and C! (Wille, 2000)
go yet further, offering an “unsafe sublanguage” intended for implementing
low-level run-time facilities such as garbage collectors. The special features
of this sublanguage may be used only in modules explicitly marked unsafe.

Cardelli (1996) articulates a somewhat different perspective on language
safety, distinguishing between so-called trapped and untrapped run-time er-
rors. A trapped error causes a computation to stop immediately (or to raise an
exception that can be handled cleanly within the program), while untrapped
errors may allow the computation to continue (at least for a while). An ex-
ample of an untrapped error might be accessing data beyond the end of an
array in a language like C. A safe language, in this view, is one that prevents
untrapped errors at run time.

Yet another point of view focuses on portability; it can be expressed by the
slogan, “A safe language is completely defined by its programmer’s manual.”
Let the definition of a language be the set of things the programmer needs
to understand in order to predict the behavior of every program in the lan-
guage. Then the manual for a language like C does not constitute a definition,
since the behavior of some programs (e.g., ones involving unchecked array

1. Static elimination of array-bounds checking is a long-standing goal for type system de-
signers. In principle, the necessary mechanisms (based on dependent types—see §30.5) are
well understood, but packaging them in a form that balances expressive power, predictability
and tractability of typechecking, and complexity of program annotations remains a significant
challenge. Some recent advances in the area are described by Xi and Pfenning (1998, 1999).

8 1 Introduction

accesses or pointer arithmetic) cannot be predicted without knowing the de-
tails of how a particular C compiler lays out structures in memory, etc., and
the same program may have quite different behaviors when executed by dif-
ferent compilers. By contrast, the manuals for Java, Scheme, and ML specify
(with varying degrees of rigor) the exact behavior of all programs in the lan-
guage. A well-typed program will yield the same results under any correct
implementation of these languages.

Efficiency

The first type systems in computer science, beginning in the 1950s in lan-
guages such as Fortran (Backus, 1981), were introduced to improve the ef-
ficiency of numerical calculations by distinguishing between integer-valued
arithmetic expressions and real-valued ones; this allowed the compiler to use
different representations and generate appropriate machine instructions for
primitive operations. In safe languages, further efficiency improvements are
gained by eliminating many of the dynamic checks that would be needed to
guarantee safety (by proving statically that they will always be satisfied). To-
day, most high-performance compilers rely heavily on information gathered
by the typechecker during optimization and code-generation phases. Even
compilers for languages without type systems per se work hard to recover
approximations to this typing information.

Efficiency improvements relying on type information can come from some
surprising places. For example, it has recently been shown that not only code
generation decisions but also pointer representation in parallel scientific pro-
grams can be improved using the information generated by type analysis. The
Titanium language (Yelick et al., 1998) uses type inference techniques to an-
alyze the scopes of pointers and is able to make measurably better decisions
on this basis than programmers explicitly hand-tuning their programs. The
ML Kit Compiler uses a powerful region inference algorithm (Gifford, Jou-
velot, Lucassen, and Sheldon, 1987; Jouvelot and Gifford, 1991; Talpin and
Jouvelot, 1992; Tofte and Talpin, 1994, 1997; Tofte and Birkedal, 1998) to
replace most (in some programs, all) of the need for garbage collection by
stack-based memory management.

Further Applications

Beyond their traditional uses in programming and language design, type sys-
tems are now being applied in many more specific ways in computer science
and related disciplines. We sketch just a few here.

1.3 Type Systems and Language Design 9

An increasingly important application area for type systems is computer
and network security. Static typing lies at the core of the security model
of Java and of the JINI “plug and play” architecture for network devices
(Arnold et al., 1999), for example, and is a critical enabling technology for
Proof-Carrying Code (Necula and Lee, 1996, 1998; Necula, 1997). At the same
time, many fundamental ideas developed in the security community are being
re-explored in the context of programming languages, where they often ap-
pear as type analyses (e.g., Abadi, Banerjee, Heintze, and Riecke, 1999; Abadi,
1999; Leroy and Rouaix, 1998; etc.). Conversely, there is growing interest in
applying programming language theory directly to problems in the security
domain (e.g., Abadi, 1999; Sumii and Pierce, 2001).

Typechecking and inference algorithms can be found in many program
analysis tools other than compilers. For example, AnnoDomini, a Year 2000
conversion utility for Cobol programs, is based on an ML-style type inference
engine (Eidorff et al., 1999). Type inference techniques have also been used in
tools for alias analysis (O’Callahan and Jackson, 1997) and exception analysis
(Leroy and Pessaux, 2000).

In automated theorem proving, type systems—usually very powerful ones
based on dependent types—are used to represent logical propositions and
proofs. Several popular proof assistants, including Nuprl (Constable et al.,
1986), Lego (Luo and Pollack, 1992; Pollack, 1994), Coq (Barras et al., 1997),
and Alf (Magnusson and Nordström, 1994), are based directly on type theory.
Constable (1998) and Pfenning (1999) discuss the history of these systems.

Interest in type systems is also on the increase in the database community,
with the explosion of “web metadata” in the form of Document Type Defini-
tions (XML 1998) and other kinds of schemas (such as the new XML-Schema
standard [XS 2000]) for describing structured data in XML. New languages for
querying and manipulating XML provide powerful static type systems based
directly on these schema languages (Hosoya and Pierce, 2000; Hosoya, Vouil-
lon, and Pierce, 2001; Hosoya and Pierce, 2001; Relax, 2000; Shields, 2001).

A quite different application of type systems appears in the field of compu-
tational linguistics, where typed lambda-calculi form the basis for formalisms
such as categorial grammar (van Benthem, 1995; van Benthem and Meulen,
1997; Ranta, 1995; etc.).

1.3 Type Systems and Language Design

Retrofitting a type system onto a language not designed with typechecking
in mind can be tricky; ideally, language design should go hand-in-hand with
type system design.

10 1 Introduction

One reason for this is that languages without type systems—even safe, dy-
namically checked languages—tend to offer features or encourage program-
ming idioms that make typechecking difficult or infeasible. Indeed, in typed
languages the type system itself is often taken as the foundation of the de-
sign and the organizing principle in light of which every other aspect of the
design is considered.

Another factor is that the concrete syntax of typed languages tends to be
more complicated than that of untyped languages, since type annotations
must be taken into account. It is easier to do a good job of designing a clean
and comprehensible syntax when all the issues can be addressed together.

The assertion that types should be an integral part of a programming lan-
guage is separate from the question of where the programmer must phys-
ically write down type annotations and where they can instead be inferred
by the compiler. A well-designed statically typed language will never require
huge amounts of type information to be explicitly and tediously maintained
by the programmer. There is some disagreement, though, about how much
explicit type information is too much. The designers of languages in the ML
family have worked hard to keep annotations to a bare minimum, using type
inference methods to recover the necessary information. Languages in the C
family, including Java, have chosen a somewhat more verbose style.

1.4 Capsule History

In computer science, the earliest type systems were used to make very simple
distinctions between integer and floating point representations of numbers
(e.g., in Fortran). In the late 1950s and early 1960s, this classification was ex-
tended to structured data (arrays of records, etc.) and higher-order functions.
In the 1970s, a number of even richer concepts (parametric polymorphism,
abstract data types, module systems, and subtyping) were introduced, and
type systems emerged as a field in its own right. At the same time, computer
scientists began to be aware of the connections between the type systems
found in programming languages and those studied in mathematical logic,
leading to a rich interplay that continues to the present.

Figure 1-1 presents a brief (and scandalously incomplete!) chronology of
some high points in the history of type systems in computer science. Related
developments in logic are included, in italics, to show the importance of this
field’s contributions. Citations in the right-hand column can be found in the
bibliography.

1.4 Capsule History 11

1870s origins of formal logic Frege (1879)
1900s formalization of mathematics Whitehead and Russell (1910)
1930s untyped lambda-calculus Church (1941)
1940s simply typed lambda-calculus Church (1940), Curry and Feys (1958)
1950s Fortran Backus (1981)

Algol-60 Naur et al. (1963)
1960s Automath project de Bruijn (1980)

Simula Birtwistle et al. (1979)
Curry-Howard correspondence Howard (1980)
Algol-68 (van Wijngaarden et al., 1975)

1970s Pascal Wirth (1971)
Martin-Löf type theory Martin-Löf (1973, 1982)
System F, Fω Girard (1972)
polymorphic lambda-calculus Reynolds (1974)
CLU Liskov et al. (1981)
polymorphic type inference Milner (1978), Damas and Milner (1982)
ML Gordon, Milner, and Wadsworth (1979)
intersection types Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)
1980s NuPRL project Constable et al. (1986)

subtyping Reynolds (1980), Cardelli (1984), Mitchell (1984a)
ADTs as existential types Mitchell and Plotkin (1988)
calculus of constructions Coquand (1985), Coquand and Huet (1988)
linear logic Girard (1987) , Girard et al. (1989)
bounded quantification Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)
Edinburgh Logical Framework Harper, Honsell, and Plotkin (1992)
Forsythe Reynolds (1988)
pure type systems Terlouw (1989), Berardi (1988), Barendregt (1991)
dependent types and modularity Burstall and Lampson (1984), MacQueen (1986)
Quest Cardelli (1991)
effect systems Gifford et al. (1987), Talpin and Jouvelot (1992)
row variables; extensible records Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)
1990s higher-order subtyping Cardelli (1990), Cardelli and Longo (1991)

typed intermediate languages Tarditi, Morrisett, et al. (1996)
object calculus Abadi and Cardelli (1996)
translucent types and modularity Harper and Lillibridge (1994), Leroy (1994)
typed assembly language Morrisett et al. (1998)

Figure 1-1: Capsule history of types in computer science and logic

12 1 Introduction

1.5 Related Reading

While this book attempts to be self contained, it is far from comprehensive;
the area is too large, and can be approached from too many angles, to do it
justice in one book. This section lists a few other good entry points.

Handbook articles by Cardelli (1996) and Mitchell (1990b) offer quick in-
troductions to the area. Barendregt’s article (1992) is for the more mathemat-
ically inclined. Mitchell’s massive textbook on Foundations for Programming
Languages (1996) covers basic lambda-calculus, a range of type systems, and
many aspects of semantics. The focus is on semantic rather than imple-
mentation issues. Reynolds’s Theories of Programming Languages (1998b),
a graduate-level survey of the theory of programming languages, includes
beautiful expositions of polymorphism, subtyping, and intersection types.
The Structure of Typed Programming Languages, by Schmidt (1994), develops
core concepts of type systems in the context of language design, including
several chapters on conventional imperative languages. Hindley’s monograph
Basic Simple Type Theory (1997) is a wonderful compendium of results about
the simply typed lambda-calculus and closely related systems. Its coverage is
deep rather than broad.

Abadi and Cardelli’s A Theory of Objects (1996) develops much of the same
material as the present book, de-emphasizing implementation aspects and
concentrating instead on the application of these ideas in a foundation treat-
ment of object-oriented programming. Kim Bruce’s Foundations of Object-
Oriented Languages: Types and Semantics (2002) covers similar ground. In-
troductory material on object-oriented type systems can also be found in
Palsberg and Schwartzbach (1994) and Castagna (1997).

Semantic foundations for both untyped and typed languages are covered in
depth in the textbooks of Gunter (1992), Winskel (1993), and Mitchell (1996).
Operational semantics is also covered in detail by Hennessy (1990). Founda-
tions for the semantics of types in the mathematical framework of category
theory can also be found in many sources, including the books by Jacobs
(1999), Asperti and Longo (1991), and Crole (1994); a brief primer can be
found in Basic Category Theory for Computer Scientists (Pierce, 1991a).

Girard, Lafont, and Taylor’s Proofs and Types (1989) treats logical aspects
of type systems (the Curry-Howard correspondence, etc.). It also includes a
description of System F from its creator, and an appendix introducing linear
logic. Connections between types and logic are further explored in Pfenning’s
Computation and Deduction (2001). Thompson’s Type Theory and Functional
Programming (1991) and Turner’s Constructive Foundations for Functional
Languages (1991) focus on connections between functional programming (in
the “pure functional programming” sense of Haskell or Miranda) and con-

1.5 Related Reading 13

structive type theory, viewed from a logical perspective. A number of relevant
topics from proof theory are developed in Goubault-Larrecq and Mackie’s
Proof Theory and Automated Deduction (1997). The history of types in logic
and philosophy is described in more detail in articles by Constable (1998),
Wadler (2000), Huet (1990), and Pfenning (1999), in Laan’s doctoral thesis
(1997), and in books by Grattan-Guinness (2001) and Sommaruga (2000).

It turns out that a fair amount of careful analysis is required to avoid false
and embarrassing claims of type soundness for programming languages. As
a consequence, the classification, description, and study of type systems has
emerged as a formal discipline. —Luca Cardelli (1996)

2 Mathematical Preliminaries

Before getting started, we need to establish some common notation and state
a few basic mathematical facts. Most readers should just skim this chapter
and refer back to it as necessary.

2.1 Sets, Relations, and Functions

2.1.1 Definition: We use standard notation for sets: curly braces for listing the
elements of a set explicitly ({. . .}) or showing how to construct one set from
another by “comprehension” ({x ∈ S | . . .}), ∅ for the empty set, and S \ T
for the set difference of S and T (the set of elements of S that are not also
elements of T). The size of a set S is written |S|. The powerset of S, i.e., the
set of all the subsets of S, is written P(S). !

2.1.2 Definition: The set {0,1,2,3,4,5, . . .} of natural numbers is denoted by the
symbol N. A set is said to be countable if its elements can be placed in one-
to-one correspondence with the natural numbers. !

2.1.3 Definition: An n-place relation on a collection of sets S1, S2, . . . , Sn is a set
R ⊆ S1×S2×. . .×Sn of tuples of elements from S1 through Sn. We say that the
elements s1 ∈ S1 through sn ∈ Sn are related by R if (s1, . . . , sn) is an element
of R. !

2.1.4 Definition: A one-place relation on a set S is called a predicate on S. We say
that P is true of an element s ∈ S if s ∈ P . To emphasize this intuition, we
often write P(s) instead of s ∈ P , regarding P as a function mapping elements
of S to truth values. !

2.1.5 Definition: A two-place relation R on sets S and T is called a binary relation.
We often write s R t instead of (s, t) ∈ R. When S and T are the same set U ,
we say that R is a binary relation on U . !

16 2 Mathematical Preliminaries

2.1.6 Definition: For readability, three- or more place relations are often writ-
ten using a “mixfix” concrete syntax, where the elements in the relation are
separated by a sequence of symbols that jointly constitute the name of the
relation. For example, for the typing relation for the simply typed lambda-
calculus in Chapter 9, we write Γ ! s : T to mean “the triple (Γ ,s,T) is in the
typing relation.” !

2.1.7 Definition: The domain of a relation R on sets S and T , written dom(R), is
the set of elements s ∈ S such that (s, t) ∈ R for some t . The codomain or
range of R, written range(R), is the set of elements t ∈ T such that (s, t) ∈ R
for some s. !

2.1.8 Definition: A relation R on sets S and T is called a partial function from S
to T if, whenever (s, t1) ∈ R and (s, t2) ∈ R, we have t1 = t2. If, in addition,
dom(R) = S, then R is called a total function (or just function) from S to T . !

2.1.9 Definition: A partial function R from S to T is said to be defined on an
argument s ∈ S if s ∈ dom(R), and undefined otherwise. We write f (x) ↑,
or f (x) =↑, to mean “f is undefined on x,” and f (x)↓” to mean “f is defined
on x.”

In some of the implementation chapters, we will also need to define func-
tions that may fail on some inputs (see, e.g., Figure 22-2). It is important to
distinguish failure (which is a legitimate, observable result) from divergence;
a function that may fail can be either partial (i.e., it may also diverge) or to-
tal (it must always return a result or explicitly fail)—indeed, we will often be
interested in proving totality. We write f (x) = fail when f returns a failure
result on the input x.

Formally, a function from S to T that may also fail is actually a function
from S to T ∪ {fail}, where we assume that fail does not belong to T . !

2.1.10 Definition: Suppose R is a binary relation on a set S and P is a predicate on
S. We say that P is preserved by R if whenever we have s R s′ and P(s), we
also have P(s′). !

2.2 Ordered Sets

2.2.1 Definition: A binary relation R on a set S is reflexive if R relates every ele-
ment of S to itself—that is, s R s (or (s, s) ∈ R) for all s ∈ S. R is symmetric
if s R t implies t R s, for all s and t in S. R is transitive if s R t and t R u
together imply s R u. R is antisymmetric if s R t and t R s together imply that
s = t . !

2.2 Ordered Sets 17

2.2.2 Definition: A reflexive and transitive relation R on a set S is called a pre-
order on S. (When we speak of “a preordered set S,” we always have in mind
some particular preorder R on S.) Preorders are usually written using symbols
like ≤ or ". We write s < t (“s is strictly less than t”) to mean s ≤ t ∧ s ≠ t .

A preorder (on a set S) that is also antisymmetric is called a partial order
on S. A partial order ≤ is called a total order if it also has the property that,
for each s and t in S, either s ≤ t or t ≤ s. "

2.2.3 Definition: Suppose that ≤ is a partial order on a set S and s and t are
elements of S. An element j ∈ S is said to be a join (or least upper bound) of
s and t if

1. s ≤ j and t ≤ j, and

2. for any element k ∈ S with s ≤ k and t ≤ k, we have j ≤ k.

Similarly, an element m ∈ S is said to be a meet (or greatest lower bound) of
s and t if

1. m ≤ s and m ≤ t , and

2. for any element n ∈ S with n ≤ s and n ≤ t , we have n ≤m. "

2.2.4 Definition: A reflexive, transitive, and symmetric relation on a set S is called
an equivalence on S. "

2.2.5 Definition: Suppose R is a binary relation on a set S. The reflexive closure
of R is the smallest reflexive relation R′ that contains R. (“Smallest” in the
sense that if R′′ is some other reflexive relation that contains all the pairs in
R, then we have R′ ⊆ R′′.) Similarly, the transitive closure of R is the smallest
transitive relation R′ that contains R. The transitive closure of R is often
written R+. The reflexive and transitive closure of R is the smallest reflexive
and transitive relation that contains R. It is often written R∗. "

2.2.6 Exercise [## $]: Suppose we are given a relation R on a set S. Define the
relation R′ as follows:

R′ = R ∪ {(s, s) | s ∈ S}.

That is, R′ contains all the pairs in R plus all pairs of the form (s, s). Show
that R′ is the reflexive closure of R. "

2.2.7 Exercise [##, $]: Here is a more constructive definition of the transitive clo-
sure of a relation R. First, we define the following sequence of sets of pairs:

R0 = R
Ri+1 = Ri ∪ {(s, u) | for some t , (s, t) ∈ Ri and (t, u) ∈ Ri}

18 2 Mathematical Preliminaries

That is, we construct each Ri+1 by adding to Ri all the pairs that can be ob-
tained by “one step of transitivity” from pairs already in Ri . Finally, define the
relation R+ as the union of all the Ri :

R+ =
⋃

i
Ri

Show that this R+ is really the transitive closure of R—i.e., that it satisfies the
conditions given in Definition 2.2.5. !

2.2.8 Exercise ["", #]: Suppose R is a binary relation on a set S and P is a predi-
cate on S that is preserved by R. Show that P is also preserved by R∗. !

2.2.9 Definition: Suppose we have a preorder ≤ on a set S. A decreasing chain in
≤ is a sequence s1, s2, s3, . . . of elements of S such that each member of the
sequence is strictly less than its predecessor: si+1 < si for every i. (Chains can
be either finite or infinite, but we are more interested in infinite ones, as in
the next definition.) !

2.2.10 Definition: Suppose we have a set S with a preorder ≤. We say that ≤ is well
founded if it contains no infinite decreasing chains. For example, the usual
order on the natural numbers, with 0 < 1 < 2 < 3 < . . . is well founded, but
the same order on the integers, . . . < −3 < −2 < −1 < 0 < 1 < 2 < 3 < . . . is
not. We sometimes omit mentioning ≤ explicitly and simply speak of S as a
well-founded set . !

2.3 Sequences

2.3.1 Definition: A sequence is written by listing its elements, separated by com-
mas. We use comma as both the “cons” operation for adding an element to
either end of a sequence and as the “append” operation on sequences. For ex-
ample, if a is the sequence 3,2,1 and b is the sequence 5,6, then 0, a denotes
the sequence 0,3,2,1, while a,0 denotes 3,2,1,0 and b, a denotes 5,6,3,2,1.
(The use of comma for both “cons” and “append” operations leads to no con-
fusion, as long as we do not need to talk about sequences of sequences.) The
sequence of numbers from 1 to n is abbreviated 1..n (with just two dots).
We write |a| for the length of the sequence a. The empty sequence is written
either as • or as a blank. One sequence is said to be a permutation of another
if it contains exactly the same elements, possibly in a different order. !

2.4 Induction 19

2.4 Induction

Proofs by induction are ubiquitous in the theory of programming languages,
as in most of computer science. Many of these proofs are based on one of the
following principles.

2.4.1 Axiom [Principle of ordinary induction on natural numbers]:
Suppose that P is a predicate on the natural numbers. Then:

If P(0)
and, for all i, P(i) implies P(i + 1),
then P(n) holds for all n. !

2.4.2 Axiom [Principle of complete induction on natural numbers]:
Suppose that P is a predicate on the natural numbers. Then:

If, for each natural number n,
given P(i) for all i < n
we can show P(n),

then P(n) holds for all n. !

2.4.3 Definition: The lexicographic order (or “dictionary order”) on pairs of natu-
ral numbers is defined as follows: (m,n) ≤ (m′, n′) iff either m < m′ or else
m =m′ and n ≤ n′. !

2.4.4 Axiom [Principle of lexicographic induction]: Suppose that P is a pred-
icate on pairs of natural numbers.

If, for each pair (m,n) of natural numbers,
given P(m′, n′) for all (m′, n′) < (m,n)
we can show P(m,n),

then P(m,n) holds for all m,n. !

The lexicograpic induction principle is the basis for proofs by nested induc-
tion, where some case of an inductive proof proceeds “by an inner induction.”
It can be generalized to lexicographic induction on triples of numbers, 4-
tuples, etc. (Induction on pairs is fairly common; on triples it is occasionally
useful; beyond triples it is rare.)

Theorem 3.3.4 in Chapter 3 will introduce yet another format for proofs
by induction, called structural induction, that is particularly useful for proofs
about tree structures such as terms or typing derivations. The mathemati-
cal foundations of inductive reasoning will be considered in more detail in
Chapter 21, where we will see that all these specific induction principles are
instances of a single deeper idea.

20 2 Mathematical Preliminaries

2.5 Background Reading

If the material summarized in this chapter is unfamiliar, you may want to
start with some background reading. There are many sources for this, but
Winskel’s book (1993) is a particularly good choice for intuitions about in-
duction. The beginning of Davey and Priestley (1990) has an excellent review
of ordered sets. Halmos (1987) is a good introduction to basic set theory.

A proof is a repeatable experiment in persuasion. —Jim Horning

