
Reasoning about Evaluation



Derivations

We can record the “justification” for a particular pair of terms that
are in the evaluation relation in the form of a tree.

(on the board)

Terminology:

� These trees are called derivation trees (or just derivations).

� The final statement in a derivation is its conclusion.

� We say that the derivation is a witness for its conclusion (or a
proof of its conclusion) — it records all the reasoning steps
that justify the conclusion.



Observation

Lemma: Suppose we are given a derivation tree D witnessing the
pair (t, t�) in the evaluation relation. Then either

1. the final rule used in D is E-IfTrue and we have
t = if true then t2 else t3 and t� = t2, for some t2

and t3, or

2. the final rule used in D is E-IfFalse and we have
t = if false then t2 else t3 and t� = t3, for some t2

and t3, or

3. the final rule used in D is E-If and we have
t = if t1 then t2 else t3 and
t� = if t�

1 then t2 else t3, for some t1, t�
1, t2, and t3;

moreover, the immediate subderivation of D witnesses
(t1, t�

1) ∈−→.



Induction on Derivations

We can now write proofs about evaluation “by induction on
derivation trees.”

Given an arbitrary derivation D with conclusion t −→ t�, we
assume the desired result for its immediate sub-derivation (if any)
and proceed by a case analysis (using the previous lemma) of the
final evaluation rule used in constructing the derivation tree.

E.g....



Induction on Derivations — Example

Theorem: If t −→ t�, i.e., if (t, t�) ∈−→, then size(t) > size(t�).
Proof: By induction on a derivation D of t −→ t�.

1. Suppose the final rule used in D is E-IfTrue, with
t = if true then t2 else t3 and t� = t2. Then the
result is immediate from the definition of size.

2. Suppose the final rule used in D is E-IfFalse, with
t = if false then t2 else t3 and t� = t3. Then the
result is again immediate from the definition of size.

3. Suppose the final rule used in D is E-If, with
t = if t1 then t2 else t3 and
t� = if t�

1 then t2 else t3, where (t1, t�
1) ∈−→ is

witnessed by a derivation D1. By the induction hypothesis,
size(t1) > size(t�

1). But then, by the definition of size, we
have size(t) > size(t�).



Normal forms

A normal form is a term that cannot be evaluated any further —
i.e., a term t is a normal form (or “is in normal form”) if there is
no t� such that t −→ t�.

A normal form is a state where the abstract machine is halted —
i.e., it can be regarded as a “result” of evaluation.

Recall that we intended the set of values (the boolean constants
true and false) to be exactly the possible “results of evaluation.”
Did we get this definition right?
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Values = normal forms

Theorem: A term t is a value iff it is in normal form.
Proof:
The =⇒ direction is immediate from the definition of the
evaluation relation.

For the ⇐= direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form. The argument
goes by induction on t.
Note, first, that t must have the form if t1 then t2 else t3

(otherwise it would be a value). If t1 is true or false, then rule
E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t1 is not a value and so, by the induction hypothesis,
there is some t�

1 such that t1 −→ t�
1. But then rule E-If yields

if t1 then t2 else t3 −→ if t�
1 then t2 else t3

i.e., t is not in normal form.
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Numbers

New syntactic forms

t ::= ... terms

0 constant zero

succ t successor

pred t predecessor

iszero t zero test

v ::= ... values

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value



New evaluation rules t −→ t�

t1 −→ t�
1

succ t1 −→ succ t�
1

(E-Succ)

pred 0 −→ 0 (E-PredZero)

pred (succ nv1) −→ nv1 (E-PredSucc)

t1 −→ t�
1

pred t1 −→ pred t�
1

(E-Pred)

iszero 0 −→ true (E-IszeroZero)

iszero (succ nv1) −→ false (E-IszeroSucc)

t1 −→ t�
1

iszero t1 −→ iszero t�
1

(E-IsZero)



Values are normal forms

Our observation a few slides ago that all values are in normal form
still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value.
What are some examples?

Stuck terms model run-time errors.
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Multi-step evaluation.

The multi-step evaluation relation, −→∗, is the reflexive, transitive
closure of single-step evaluation.

I.e., it is the smallest relation closed under the following rules:

t −→ t�

t −→∗ t�

t −→∗ t

t −→∗ t� t� −→∗ t��

t −→∗ t��



Termination of evaluation

Theorem: For every t there is some normal form t� such that
t −→∗ t�.
Proof:

� First, recall that single-step evaluation strictly reduces the size
of the term:

if t −→ t�, then size(t) > size(t�)

� Now, assume (for a contradiction) that

t0, t1, t2, t3, t4, . . .

is an infinite-length sequence such that

t0 −→ t1 −→ t2 −→ t3 −→ t4 −→ · · · .

� Then
size(t0) > size(t1) > size(t2) > size(t3) > . . .

� But such a sequence cannot exist — contradiction!
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Termination Proofs

Most termination proofs have the same basic form:

Theorem: The relation R ⊆ X × X is terminating —

i.e., there are no infinite sequences x0, x1, x2, etc. such

that (xi , xi+1) ∈ R for each i .

Proof:
1. Choose

� a well-founded set (W , <) — i.e., a set W with a

partial order < such that there are no infinite

descending chains w0 > w1 > w2 > . . . in W

� a function f from X to W

2. Show f (x) > f (y) for all (x , y) ∈ R

3. Conclude that there are no infinite sequences x0, x1,

x2, etc. such that (xi , xi+1) ∈ R for each i , since, if

there were, we could construct an infinite descending

chain in W .


