Reasoning about Evaluation

Derivations

We can record the "justification" for a particular pair of terms that are in the evaluation relation in the form of a tree.

> (on the board)

Terminology:

- These trees are called derivation trees (or just derivations).
- The final statement in a derivation is its conclusion.
- We say that the derivation is a witness for its conclusion (or a proof of its conclusion) - it records all the reasoning steps that justify the conclusion.

Observation

Lemma: Suppose we are given a derivation tree \mathcal{D} witnessing the pair $\left(t, t^{\prime}\right)$ in the evaluation relation. Then either

1. the final rule used in \mathcal{D} is E-IfTrue and we have $t=$ if true then t_{2} else t_{3} and $t^{\prime}=t_{2}$, for some t_{2} and t_{3}, or
2. the final rule used in \mathcal{D} is E-IFFALSE and we have $t=$ if false then t_{2} else t_{3} and $t^{\prime}=t_{3}$, for some t_{2} and t_{3}, or
3. the final rule used in \mathcal{D} is E-IF and we have $t=i f t_{1}$ then t_{2} else t_{3} and $t^{\prime}=$ if t_{1}^{\prime} then t_{2} else t_{3}, for some $t_{1}, t_{1}^{\prime}, t_{2}$, and t_{3}; moreover, the immediate subderivation of \mathcal{D} witnesses $\left(\mathrm{t}_{1}, \mathrm{t}_{1}^{\prime}\right) \in \longrightarrow$.

Induction on Derivations

We can now write proofs about evaluation "by induction on derivation trees."

Given an arbitrary derivation \mathcal{D} with conclusion $t \longrightarrow t^{\prime}$, we assume the desired result for its immediate sub-derivation (if any) and proceed by a case analysis (using the previous lemma) of the final evaluation rule used in constructing the derivation tree.

Induction on Derivations - Example

Theorem: If $t \longrightarrow t^{\prime}$, i.e., if $\left(t, t^{\prime}\right) \in \longrightarrow$, then $\operatorname{size}(t)>\operatorname{size}\left(t^{\prime}\right)$. Proof: By induction on a derivation \mathcal{D} of $t \longrightarrow t^{\prime}$.

1. Suppose the final rule used in \mathcal{D} is E-IfTrue, with $t=$ if true then t_{2} else t_{3} and $t^{\prime}=t_{2}$. Then the result is immediate from the definition of size.
2. Suppose the final rule used in \mathcal{D} is E-IfFalse, with $t=$ if false then t_{2} else t_{3} and $t^{\prime}=t_{3}$. Then the result is again immediate from the definition of size.
3. Suppose the final rule used in \mathcal{D} is E-IF, with $t=i f t_{1}$ then t_{2} else t_{3} and $t^{\prime}=$ if t_{1}^{\prime} then t_{2} else t_{3}, where $\left(t_{1}, t_{1}^{\prime}\right) \in \longrightarrow$ is witnessed by a derivation \mathcal{D}_{1}. By the induction hypothesis, $\operatorname{size}\left(\mathrm{t}_{1}\right)>\operatorname{size}\left(\mathrm{t}_{1}^{\prime}\right)$. But then, by the definition of size, we have $\operatorname{size}(\mathrm{t})>\operatorname{size}\left(\mathrm{t}^{\prime}\right)$.

Normal forms

A normal form is a term that cannot be evaluated any further i.e., a term t is a normal form (or "is in normal form") if there is no t^{\prime} such that $t \longrightarrow t^{\prime}$.

A normal form is a state where the abstract machine is halted i.e., it can be regarded as a "result" of evaluation.

Normal forms

A normal form is a term that cannot be evaluated any further i.e., a term t is a normal form (or "is in normal form") if there is no t^{\prime} such that $t \longrightarrow t^{\prime}$.

A normal form is a state where the abstract machine is halted i.e., it can be regarded as a "result" of evaluation.

Recall that we intended the set of values (the boolean constants true and false) to be exactly the possible "results of evaluation." Did we get this definition right?

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form. Proof:
The \Longrightarrow direction is immediate from the definition of the evaluation relation.

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form. Proof:
The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction,

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form. Proof:
The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction, it is convenient to prove the contrapositive:
If t is not a value, then it is not a normal form.

Values $=$ normal forms

Theorem: A term t is a value iff it is in normal form. Proof:
The \Longrightarrow direction is immediate from the definition of the evaluation relation.
For the \Longleftarrow direction, it is convenient to prove the contrapositive: If t is not a value, then it is not a normal form. The argument goes by induction on t.
Note, first, that t must have the form if t_{1} then t_{2} else t_{3} (otherwise it would be a value). If t_{1} is true or false, then rule E-IfTrue or E-IfFalse applies to t, and we are done.
Otherwise, t_{1} is not a value and so, by the induction hypothesis, there is some t_{1}^{\prime} such that $t_{1} \longrightarrow t_{1}^{\prime}$. But then rule E-IF yields

$$
\text { if } t_{1} \text { then } t_{2} \text { else } t_{3} \longrightarrow \text { if } t_{1}^{\prime} \text { then } t_{2} \text { else } t_{3}
$$

i.e., t is not in normal form.

Numbers

New syntactic forms

t : $:=$...	terms
	0	constant zero
	succ t	successor
	pred t	predecessor
	iszero t	zero test
v : $:=$...	values
	nv	numeric value
nv : $:=$		numeric values
	0	zero value
	succ nv	successor valu

New evaluation rules

$$
\mathrm{t} \longrightarrow \mathrm{t}^{\prime}
$$

$$
\begin{aligned}
& \frac{t_{1} \longrightarrow t_{1}^{\prime}}{\text { succ } t_{1} \longrightarrow \operatorname{succ} t_{1}^{\prime}} \\
& \text { (E-Succ) } \\
& \text { pred } 0 \longrightarrow 0 \quad \text { (E-PREDZERO) } \\
& \text { pred (succ } n v_{1} \text {) } \longrightarrow \text { nv }_{1} \quad(E-P R E D S U C C) \\
& \frac{\mathrm{t}_{1} \longrightarrow \mathrm{t}_{1}^{\prime}}{\text { pred } \mathrm{t}_{1} \longrightarrow \text { pred } \mathrm{t}_{1}^{\prime}} \\
& \text { (E-Pred) } \\
& \text { iszero } 0 \longrightarrow \text { true } \\
& \text { (E-IszeroZero) } \\
& \text { iszero (succ nv1) } \longrightarrow \text { false (E-IszERoSucc) } \\
& \text { (E-IsZero) }
\end{aligned}
$$

Values are normal forms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value?

Values are normal forms, but we have stuck terms

Our observation a few slides ago that all values are in normal form still holds for the extended language.

Is the converse true? I.e., is every normal form a value?
No: some terms are stuck.

Formally, a stuck term is one that is a normal form but not a value. What are some examples?

Stuck terms model run-time errors.

Multi-step evaluation.

The multi-step evaluation relation, \longrightarrow^{*}, is the reflexive, transitive closure of single-step evaluation.
I.e., it is the smallest relation closed under the following rules:

$$
\begin{gathered}
\begin{array}{c}
t \longrightarrow t^{\prime} \\
t \longrightarrow t^{\prime}
\end{array} \\
t \longrightarrow{ }^{*} t \\
t \longrightarrow t^{*} t^{\prime \prime}
\end{gathered}
$$

Termination of evaluation

Theorem: For every t there is some normal form t^{\prime} such that $t \longrightarrow t^{\prime}$.

Proof:

Termination of evaluation

Theorem: For every t there is some normal form t^{\prime} such that $t \longrightarrow t^{\prime}$.

Proof:

- First, recall that single-step evaluation strictly reduces the size of the term:

$$
\text { if } t \longrightarrow t^{\prime} \text {, then } \operatorname{size}(t)>\operatorname{size}\left(t^{\prime}\right)
$$

- Now, assume (for a contradiction) that

$$
t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, \ldots
$$

is an infinite-length sequence such that

$$
t_{0} \longrightarrow t_{1} \longrightarrow t_{2} \longrightarrow t_{3} \longrightarrow t_{4} \longrightarrow \cdots .
$$

- Then

$$
\operatorname{size}\left(t_{0}\right)>\operatorname{size}\left(t_{1}\right)>\operatorname{size}\left(t_{2}\right)>\operatorname{size}\left(t_{3}\right)>\ldots
$$

- But such a sequence cannot exist - contradiction!

Termination Proofs

Most termination proofs have the same basic form:
Theorem: The relation $R \subseteq X \times X$ is terminating i.e., there are no infinite sequences x_{0}, x_{1}, x_{2}, etc. such that $\left(x_{i}, x_{i+1}\right) \in R$ for each i.
Proof:

1. Choose

- a well-founded set ($W,<$) - i.e., a set W with a partial order < such that there are no infinite descending chains $w_{0}>w_{1}>w_{2}>\ldots$ in W
- a function f from X to W

2. Show $f(x)>f(y)$ for all $(x, y) \in R$
3. Conclude that there are no infinite sequences x_{0}, x_{1}, x_{2}, etc. such that $\left(x_{i}, x_{i+1}\right) \in R$ for each i, since, if there were, we could construct an infinite descending chain in W.
