Am I ready for this?

ONID number ONLY (no name):

1. For each of the following, indicate whether $f=O(g), f=\Omega(g)$ or $f=\Theta(g)$. If $f=\Theta(g)$, then only indicating this will give you full marks.
(7 points)

$$
f(n) \quad g(n)
$$

answer
(a) $3 n+6 \quad 10000 n-500$
(b) $n^{1 / 2} \quad n^{2 / 3}$
(c) $\quad \log (7 n) \quad \log (n)$
(d) $\quad n^{1.5} \quad n \log n$
(e) $\sqrt{n} \quad(\log n)^{3}$
(f) $n 2^{n} \quad 3^{n}$
(g) $7^{\log _{4} n} \quad n^{2}$
answer
(a) $3 n+6=\Theta(10000 n-500)$
(b) $\quad n^{1 / 2}=O\left(n^{2 / 3}\right)$
(c) $\quad \log (7 n)=\Theta(\log (n))$
(d) $\quad n^{1.5}=\Omega(n \log n)$
(e) $\quad \sqrt{n}=\Omega\left((\log n)^{3}\right)$
(f) $n 2^{n}=O\left(3^{n}\right)$
2. Solve the following recurrence relations (assume reasonable base cases).
(a) $T_{A}(n)=7 T_{A}(n / 7)+O(n)$
(b) $T_{B}(n)=8 T_{B}(n / 2)+O\left(n^{4}\right)$
(c) $T_{C}(n)=T(n-1)+O(1)$
(a) $T_{A}(n)=O(n \log n)$
(b) $T_{B}(n)=O\left(n^{4}\right)$
(c) $T_{C}(n)=O(n)$
3. For each of the following, choose among the following answers.

$$
O(\log n), O(n), O(n \log n), O\left(n^{2}\right), O\left(2^{n}\right)
$$

(a) number of leaves in a depth- n balanced binary tree
(b) depth of an n-node balanced binary tree
(c) number of edges in an n-node tree
(d) worst-case run time to sort n items using merge sort
(e) maximum number of matched pairs in a matching between two sets of n items
(f) number of distinct subsets of a set of n items
(g) number of bits needed to represent the number n
(h) time to find the closest pair of points among n points in Euclidean space by enumeration
(i) time to insert n items into a binary heap data structure
(j) time to find the third biggest number in a set of n numbers

number of leaves in a depth-n balanced binary tree	$O\left(2^{n}\right)$
depth of an n-node balanced binary tree	$O(\log n)$
number of edges in an n-node tree	$O(n)$
merge-sort worst-case running time	$O(n \log n)$
maximum number of matched pairs in a matching between	
two sets of n items	$O(n)$
number of distinct subsets of a set of n items	$O\left(2^{n}\right)$
number of bits needed to represent the number n	$O(\log n)$
time to find the closest pair of points among n points in	
Euclidean space by enumeration	$O\left(n^{2}\right)$
time to insert n items into a binary heap data structure	$O(n \log n)$
time to find the third biggest number in a set of n numbers	$O(n)$

4. I traversed a complete (not necessarily balanced), undirected binary tree with 13 nodes using depth first search and found an ordering of the nodes by their pre-order (the order in which nodes are first visited) and post-order (the order in which nodes are last visited):
pre-order E K J A H C M L D B G I F
post-order J H C A K L B I F G D M E
But then I lost the tree. Can you help me reconstruct the tree? Draw the tree that results in these orderings. Recall that a complete binary tree is one in which every node has either 2 children or no children. That is, no node has only one child.
(1 point)

5. Consider the following graph G.

(a) List the strongly connected components of G.
(b) What is the minimum number of edges that must be added to G to make G strongly connected.
(c) Draw a graph H representing the connectivity between the strongly connected components.
(d) Give one topological ordering of the strongly connected components of G (the vertices of H).
(e) How many different topological orderings of the vertices of H (the strongly connected components of G) are there?
(a) $\{A, G, H\},\{B, C, D, F\},\{E\}$
(b) 1
(c) $\{A, G, H\} \rightarrow\{B, C, D, F\} \rightarrow\{E\}$
(d) 1
6. Let G be a connected undirected graph on n vertices. Suppose you find a breadth-first search tree T_{B} starting from node s and a depth-first search tree T_{D} also starting from s. Surprise! We happen to find out that $T_{B}=T_{D}$!
True or false: G has $n-1$ edges.
(1 point)
True.
