Am I ready for this?

ONID number ONLY (no name): ____

1. For each of the following, indicate whether f = O(g), $f = \Omega(g)$ or $f = \Theta(g)$. If $f = \Theta(g)$, then only indicating this will give you full marks. (7 points)

	f(n)	g(n)	answer
(a)	3n + 6	10000n - 500	
(b)	$n^{1/2}$	$n^{2/3}$	
(c)	$\log(7n)$	$\log(n)$	
(d)	$n^{1.5}$	$n\log n$	
(e)	\sqrt{n}	$(\log n)^3$	
(f)	$n2^n$	3^n	
(g)	$7^{\log_4 n}$	n^2	

answer

- (a) $3n + 6 = \Theta(10000n 500)$
- (b) $n^{1/2} = O(n^{2/3})$
- $(c) \quad \log(7n) = \Theta(\log(n))$
- (d) $n^{1.5} = \Omega(n \log n)$
- $(e) \quad \sqrt{n} = \Omega((\log n)^3)$
- $(f) \quad n2^n = O(3^n)$

- 2. Solve the following recurrence relations (assume reasonable base cases). (3 points)
 - (a) $T_A(n) = 7 T_A(n/7) + O(n)$

(b)
$$T_B(n) = 8 T_B(n/2) + O(n^4)$$

(c) $T_C(n) = T(n-1) + O(1)$

(a) $T_A(n) = O(nlogn)$ (b) $T_B(n) = O(n^4)$ (c) $T_C(n) = O(n)$

3.	3. For each of the following, choose among the following answers.				
		$O(\log n), \ O(n), \ O(n \log n), \ O(n^2), \ O(2^n)$			
	(a)	number of leaves in a depth- n balanced binary tree			
	(b)	depth of an n -node balanced binary tree			
	(c)	number of edges in an n -node tree			
	(d)	worst-case run time to sort n items using merge sort			
	(e)	maximum number of matched pairs in a matching between two sets of n items			
	(f)	number of distinct subsets of a set of n items			
	(g)	number of bits needed to represent the number n			
	(h)	time to find the closest pair of points among n points in Euclidean space by enu	meration		
	(i)	time to insert n items into a binary heap data structure			

(j) time to find the third biggest number in a set of n numbers

number of leaves in a depth-n balanced binary tree	$O(2^n)$
depth of an n-node balanced binary tree	$O(\log n)$
number of edges in an n-node tree	O(n)
merge-sort worst-case running time	$O(n\log n)$
maximum number of matched pairs in a matching between	
two sets of n items	O(n)
number of distinct subsets of a set of n items	$O(2^n)$
number of bits needed to represent the number n	$O(\log n)$
time to find the closest pair of points among n points in	
Euclidean space by enumeration	$O(n^2)$
time to insert n items into a binary heap data structure	$O(n\log n)$
time to find the third biggest number in a set of n numbers	O(n)

4. I traversed a complete (not necessarily balanced), undirected binary tree with 13 nodes using depth first search and found an ordering of the nodes by their pre-order (the order in which nodes are first visited) and post-order (the order in which nodes are last visited):

pre-order E K J A H C M L D B G I F post-order J H C A K L B I F G D M E

But then I lost the tree. Can you help me reconstruct the tree? Draw the tree that results in these orderings. Recall that a complete binary tree is one in which every node has either 2 children or no children. That is, no node has only one child. (1 point)

5. Consider the following graph G.

- (a) List the strongly connected components of G.
- (b) What is the minimum number of edges that must be added to G to make G strongly connected.
- (c) Draw a graph H representing the connectivity between the strongly connected components.

- (d) Give one topological ordering of the strongly connected components of G (the vertices of H).
- (e) How many different topological orderings of the vertices of H (the strongly connected components of G) are there?

(5 points)

 $\begin{array}{ll} (a) \ \{A,G,H\}, \{B,C,D,F\}, \{E\} \\ (b) \ 1 \\ (c) \ \{A,G,H\} \rightarrow \{B,C,D,F\} \rightarrow \{E\} \\ (d) \ 1 \end{array}$

6. Let G be a connected undirected graph on n vertices. Suppose you find a breadth-first search tree T_B starting from node s and a depth-first search tree T_D also starting from s. Surprise! We happen to find out that $T_B = T_D$!

True or false: G has n-1 edges.

True.

(1 point)