Método de diferencias finitas para EDPs elípticas

Prof. M.C. Rivara 2011

EDP ecuación a derivadas parciales

- involucra función desconocida u de más de una variables independientes y algunas de sus derivadas parciales
- ➤ válida sobre un domino geométrico ⇒ se requiere discretización
- > condiciones de borde y condiciones iniciales
- Estudiar sección 10.3, capítulo 10, Mathews-Fink

EDP general sobre rectángulo

$$A(x,y)\frac{\partial^2 u}{\partial x^2} + B(x,y)\frac{\partial^2 u}{\partial x \partial y} + C(x,y)\frac{\partial^2 u}{\partial y^2} = f\left(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right)$$
(1.0.1)

para $x_0 \le x \le x_f$, $y_0 \le y \le y_f$ y con las condiciones de frontera

$$u(x, y_0) = b_{y_0}(x), \quad u(x, y_f) = b_{y_f}(x),$$

$$u(x_0, y) = b_{x_0}(y), \quad u(x_f, y) = b_{x_f}(y)$$
(1.0.2)

Estas EDP pueden ser clasificadas en tres grupos:

EDP Elíptica: Si $B^2 - 4AC < 0$ EDP Parabólica: Si $B^2 - 4AC = 0$

EDP Hiperbólica: Si $B^2 - 4AC > 0$

EDPs elípticas

ec. de Poisson

Ejemplo (Poisson)
$$u(x,y)$$
 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f$
 $u = f_1$ en Γ

Oné deseamos encontrar?

Par qué resolvemos numéricamente? Γ

Qué conceptos utilizamos?

Ejemplo ec. Laplace

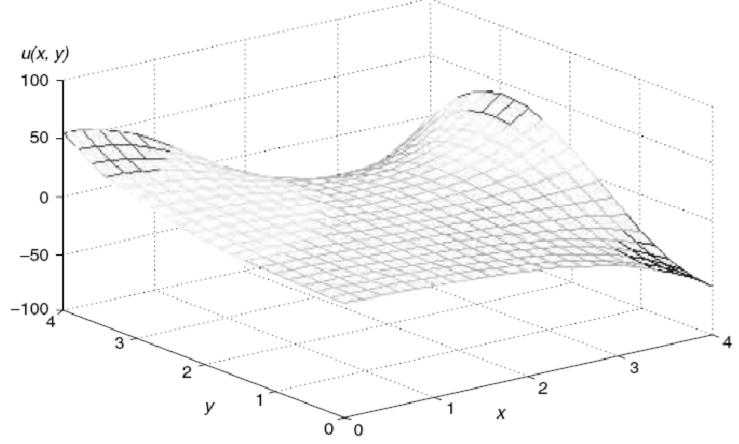
Ejemplo 1.1. Ecuación de Laplace — Distribución de la temperatura en un estado estacionario.

Considerando la ecuación de Laplace:

$$\nabla^2 u(x, y) = \frac{\partial^2 u(x, y)}{\partial x^2} + \frac{\partial^2 u(x, y)}{\partial y^2} = 0 \quad \text{para } 0 \le x \le 4, \ 0 \le y \le 4$$

con las condiciones de frontera

$$u(0, y) = e^{y} - \cos y,$$
 $u(4, y) = e^{y} \cos 4 - e^{4} \cos y$
 $u(x, 0) = \cos x - e^{x},$ $u(x, 4) = e^{4} \cos x - e^{x} \cos 4$



La distribución de la temperatura sobre la placa

Método diferencias finitas

Métado de diferencias finitas técnica numérica

Por operadores de diferenciales

$$\frac{\partial^2 u}{\partial x^2} \bigg| \approx \frac{u_{i\rightarrow j} - 2u_{ij} + u_{i+ij}}{u^2}$$

$$\frac{\partial^{2}u}{\partial x^{2}}\bigg|_{(ij)} \approx \frac{u_{i\rightarrow j} - 2u_{ij} + u_{i+1j}}{u^{2}}$$

· Laplaiano

$$V_{n}^{2} = \frac{3^{2}u}{3x^{2}} + \frac{3^{2}u}{3y^{2}} \approx \frac{u_{i-1} + u_{i+1} + u_{i+1} + u_{i+1} + u_{i+1} + u_{i+1}}{h^{2}}$$

Derivación numérica

Aproximationes de derivadas
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \qquad \frac{h}{x \times h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x,+h) - f(x)}{h} = \frac{f_{i+1} - f_{i}}{h}$$
aproximation de orden h, $O(h)$

Derivación ec. diferencias

Teorema
$$f \in C^3[a,b]$$
 $f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \frac{f''(c)h^2}{3!}$

Diferencia error de orden h^2
 $C(h^2)$

Dem $f(x+h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2} + \frac{f'''(c_1)h^3}{3!}$
 $f(x-h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2} - \frac{f'''(c_2)h^3}{3!}$

Restamos, despejamos $f'(x) = \frac{f''(x)h^2}{2} - \frac{f'''(c_2)h^3}{3!}$

Noteción $f'(x) \approx \frac{f(x-h)}{2h} - \frac{f''(x)h^2}{2h} - \frac{f'''(x)h^2}{3!}$

Ecs. diferencias

Tabla 6.3 Fórmulas de diferencias centradas de orden $O(h^2)$.

$$f'(x_0) pprox rac{f_1 - f_{-1}}{2h}$$
 Se usa para $f''(x_0) pprox rac{f_1 - 2f_0 + f_{-1}}{h^2}$ Se usa para discretizar $f^{(3)}(x_0) pprox rac{f_2 - f_1 + 2f_{-1} - f_{-2}}{2h^3}$ $f^{(4)}(x_0) pprox rac{f_2 - 4f_1 + 6f_0 - 4f_{-1} + f_{-2}}{h^4}$

Fórmula de diferencias finitas

Aproximation de $f''(x_j)$ (derivation) $f(x+h) = f(x) + hf'(x) + \frac{h^2f''(x)}{2} + \frac{h^3f^{(3)}(x)}{6} + \frac{h^4f^{(4)}(x)}{24} + \cdots$

(1)
$$f(x+h) = f(x) + hf'(x) + \frac{h^2f''(x)}{2} + \frac{h^3f^{(3)}(x)}{6} + \frac{h^4f^{(4)}(x)}{24} + \cdots$$

y.

(2)
$$f(x-h) = f(x) - hf'(x) + \frac{h^2 f''(x)}{2} - \frac{h^3 f^{(3)}(x)}{6} + \frac{h^4 f^{(4)}(x)}{24} - \cdots$$

Sumando los desarrollos (1) y (2) eliminamos los términos que contienen las derivadas impares f'(x), $f^{(3)}(x)$, $f^{(5)}(x)$, . . . :

(3)
$$f(x+h) + f(x-h) = 2f(x) + \frac{2h^2 f''(x)}{2} + \frac{2h^4 f^{(4)}(x)}{24} + \cdots$$

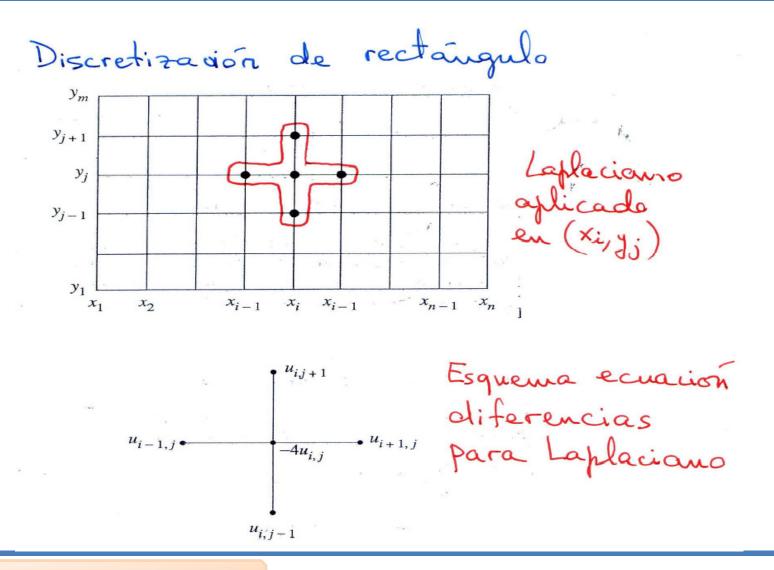
Ahora despejamos f''(x) de la expresión (3) y obtenemos

(4)
$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{2h^2 f^{(4)}(x)}{4!} - \frac{2h^4 f^{(6)}(x)}{6!} - \dots - \frac{2h^{2k-2} f^{(2k)}(x)}{(2k)!} - \dots$$

Si truncamos el desarrollo en serie (4) en la cuarta derivada, entonces existe un valor c en [x-h,x+h] tal que

(5)
$$f''(x_0) = \frac{f_1 - 2f_0 + f_{-1}}{h^2} - \frac{h^2 f^{(4)}(c)}{12},$$

Representaciones operador de diferencias



MCRivara 2011 13

Método de diferencias finitas MDF (2D)

- Se discretiza región con grilla regular de paso h en direcciones x, y
- Se escribe ec. de diferencias para cada punto de la grilla
- Se obtiene sistema lineal de ecs A ũ = b
- Se resuelve sistema numéricamente
 - método directo tipo Gauss
 - método iterativo

Observaciones MDF

- Se adapta bien a geometrías que son uniones de rectángulos
- Es intuitivo, fácil de explicar y entender
- No maneja bien dominios complejos ni condiciones de borde sobre bodes curvos
- Existen otros métodos numéricos más generales, pero más complejos: método de elementos finitos MEF

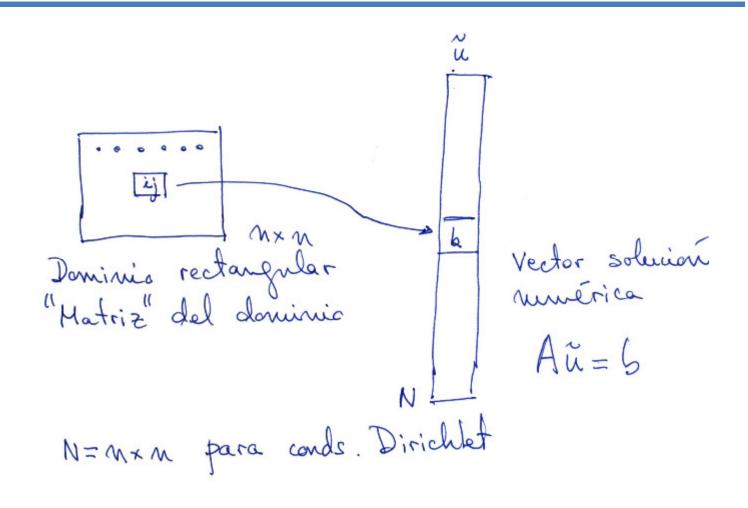
MCRivara 2011 15

Conds borde EDP elíptica

- ➤ Dirichlet ⇒ función conocida en el borde del dominio
- ➤ Newmann ⇒ es necesario escribir ecuación especial sobre puntos del borde.

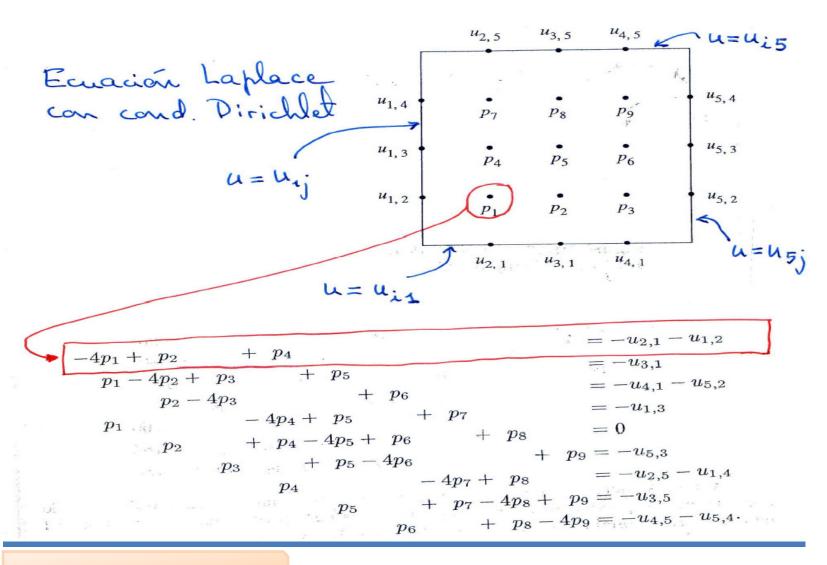
Dificultades implementación MDF con método tipo Gauss

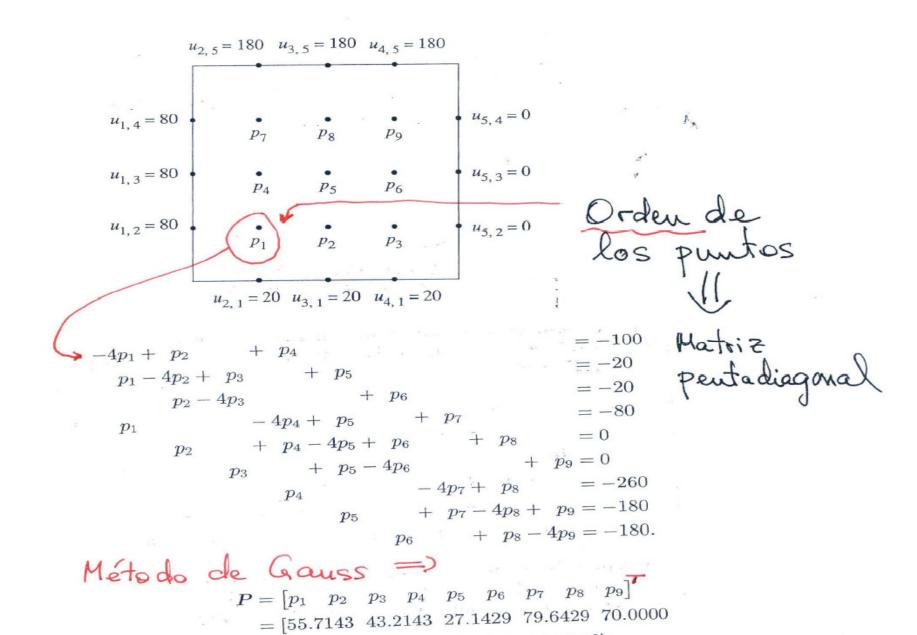
Necesidad de mapear dos numeraciones



MCRivara 2011 18

Ejemplo con grilla de 5 x 5





45.3571 112.857 111.786 84.2857]

$$\frac{\partial u}{\partial N} = 0$$

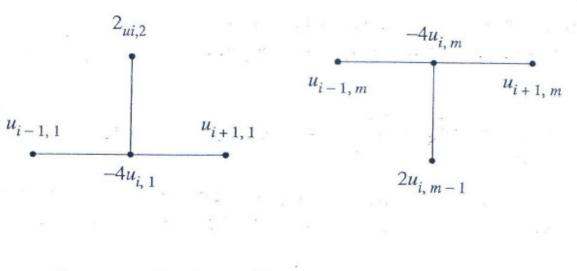
$$\int_{-\infty}^{\infty} \frac{\partial u}{\partial N} = \frac{\partial u}{\partial N}$$

$$\int_{-\infty}^{\infty} \frac{\partial u}{\partial N} = \frac{\partial u}{\partial N}$$

Desconocido

Cond. Newmann $\frac{\partial u}{\partial n} = 0$ sobre rectángulo

(14)
$$2u_{i,2} + u_{i-1,1} + u_{i+1,1} - 4u_{i,1} = 0$$
 (lado inferior), (15) $2u_{i,m-1} + u_{i-1,m} + u_{i+1,m} - 4u_{i,m} = 0$ (lado superior), (16) $2u_{2,j} + u_{1,j-1} + u_{1,j+1} - 4u_{1,j} = 0$ (lado izquierdo), (17) $2u_{n-1,j} + u_{n,j-1} + u_{n,j+1} - 4u_{n,j} = 0$ (lado derecho).



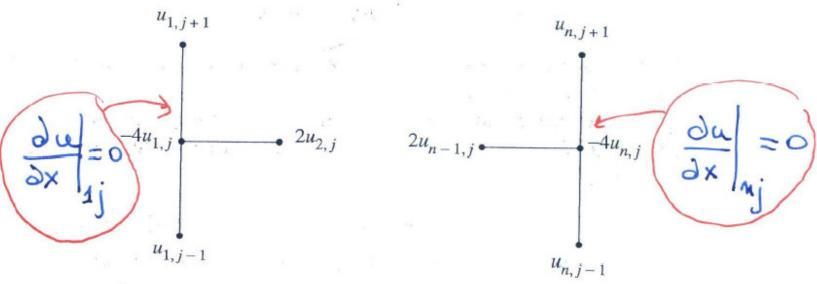


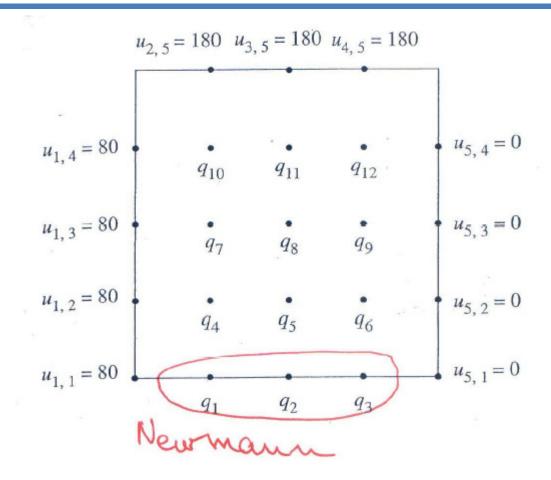
Figura 10.18 Los esquemas para la condición de contorno de Neumann.

Ejemplo con conds. borde mixtas

Ejemplo 10.6. Vamos a calcular una solución aproximada de la ecuación de Laplace $\nabla^2 u = 0$ en el rectángulo $R = \{(x,y) : 0 \le x \le 4, 0 \le y \le 4\}$, donde u(x,y) denota la temperatura en el punto (x,y) y las condiciones de contorno son las que se muestran en la Figura 10.19:

$$u(x,4) = 180$$
 para $0 < x < 4$, Dir
 $u_y(x,0) = 0$ para $0 < x < 4$, Newmann
 $u(0,y) = 80$ para $0 \le y < 4$, Dir
 $u(4,y) = 0$ para $0 \le y < 4$. Dir

Malla de 5 x 5, 12 incógnitas



Método de Gauss

 $Q = [q_1 \ q_2 \ q_3 \ q_4 \ q_5 \ q_6 \ q_7 \ q_8 \ q_9 \ q_{10} \ q_{11} \ q_{12}]'$ = $[71.8218 \ 56.8543 \ 32.2342 \ 75.2165 \ 61.6806 \ 36.0412$ $87.3636 \ 78.6103 \ 50.2502 \ 115.628 \ 115.147 \ 86.3492]'.$

Método iterativo de sobrerelajación (ec. Laplace

(22)
$$u_{i,j} = u_{i,j} + \omega \left(\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{4} \right) = u_{i,j} + \omega r_{i,j},$$

en la que el parámetro ω verifica $1 \leq \omega < 2$. En el método de sobrerrelajación sucesiva, cada paso de la iteración consiste en hacer un barrido de la malla con la fórmula recursiva (22) hasta que se tenga $|r_{i,j}| < \varepsilon$. Para elegir el valor óptimo del parámetro ω hay que estudiar los autovalores de la matriz que caracteriza el método iterativo que estamos usando para resolver un sistema lineal; en nuestro caso, dicho valor óptimo viene dado por la fórmula

(23)
$$\omega = \frac{4}{2 + \sqrt{4 - \left(\cos\left(\frac{\pi}{n-1}\right) + \cos\left(\frac{\pi}{m-1}\right)\right)^2}}.$$

Método iterativo ec. Laplace

(18)
$$u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} = 0$$

y supongamos que conocemos los valores de u(x, y) en el contorno:

(19)
$$u(x_1, y_j) = u_{1,j} \quad \text{para } 2 \le j \le m - 1 \quad \text{(a la izquierda)},$$

$$u(x_i, y_1) = u_{i,1} \quad \text{para } 2 \le i \le n - 1 \quad \text{(abajo)},$$

$$u(x_n, y_j) = u_{n,j} \quad \text{para } 2 \le j \le m - 1 \quad \text{(a la derecha)},$$

$$u(x_i, y_m) = u_{i,m} \quad \text{para } 2 \le i \le n - 1 \quad \text{(arriba)}.$$

Ahora escribimos la ecuación (18) de forma adecuada para iterar:

$$(20) u_{i,j} = u_{i,j} + r_{i,j},$$

siendo .

(21)
$$r_{i,j} = \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{4},$$

para $2 \le i \le n-1$ y $2 \le j \le m-1$.

Conds. borde para método iterativo

(24)
$$u_{i,1} = u_{i,1} + \omega \left(\frac{2u_{i,2} + u_{i-1,1} + u_{i+1,1} - 4u_{i,1}}{4} \right)$$
 (lado inferior), (25)
$$u_{i,m} = u_{i,m} + \omega \left(\frac{2u_{i,m-1} + u_{i-1,m} + u_{i+1,m} - 4u_{i,m}}{4} \right)$$
 (lado superior), (26)
$$u_{i,j} = u_{i,j} + \omega \left(\frac{2u_{2,j} + u_{1,j-1} + u_{1,j+1} - 4u_{1,j}}{4} \right)$$
 (lado izquierdo), (27)
$$u_{n,j} = u_{n,j} + \omega \left(\frac{2u_{n-1,j} + u_{n,j-1} + u_{n,j+1} - 4u_{n,j}}{4} \right)$$
 (lado derecho).

Visualización

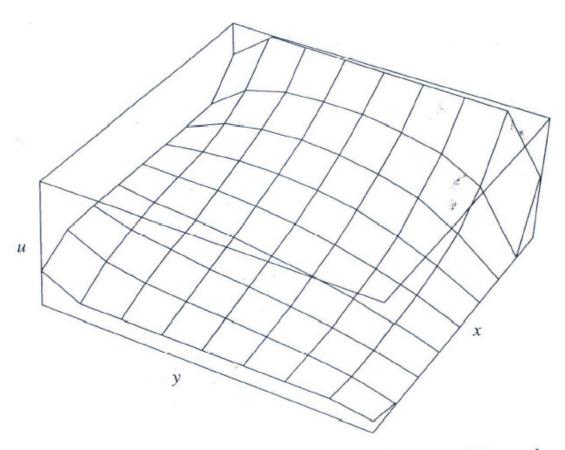


Figura 10.20 Solución u=u(x,y) de un problema de Dirichlet.

Ejemplo uso método iterativo

Tabla 10.7 Solución aproximada de la ecuación de Laplace con condiciones de contorno mixtas.

1	<i>m</i> •	To	x_3	x_4	x_5	x_6	x_7	x_8	x_9
/9 /8 /7 /6 /5	x_1 130.000 80.000 80.000 80.000 80.000 80.000	x_2 180.000 126.457 103.518 91.6621 84.7247 80.4424		180.000 146.837 119.568 99.2137	180.000 145.468 116.270 94.0461 78.2063 67.4860	180.000 138.762 105.999 82.4936 66.4578 55.9185	180.000 123.583 86.4683 63.4715 49.2124 40.3665	180.000 89.1008 52.8201 35.7113 26.5538 21.2915 18.2459	90.0000 0.0000 0.0000 0.0000 0.0000 0.0000
/3 /2 /1	80.000 80.000 80.000	77.8354 76.4244 75.9774	74.4742	65.5772	56.9600	49.3635 45.7972 44.6670	32.1981	16.6485 16.1500	0.0000

Ejemplo

CAP. 10 ECUACIONES EN DERIVADAS PARCIALES

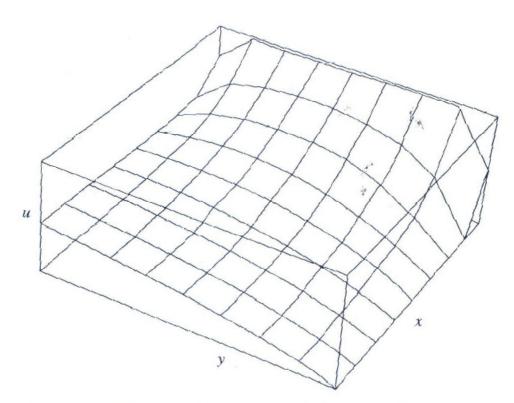


Figura 10.21 Solución u=u(x,y) de un problema mixto.

EDPs elípticas más generales

Las ecuaciones de Poisson y Helmholtz

Consideremos la ecuación de Poisson

(28)
$$\nabla^2 u = g(x, y).$$

Usando la notación $g_{i,j} = g(x_i, y_j)$, la extensión de la fórmula (20) para resolver la ecuación (28) sobre una malla rectangular es

(29)
$$u_{i,j} = u_{i,j} + \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} - h^2 g_{i,j}}{4}.$$

Ec. Helmotz

Consideremos la ecuación de Helmholtz

(30)
$$\nabla^2 u + f(x, y)u = g(x, y).$$

Usando la notación $f_{i,j} = f(x_i, y_j)$, la extensión de la fórmula (20) para resolver la ecuación (30) sobre una malla rectangular es

(31)
$$u_{i,j} = u_{i,j} + \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - (4 - h^2 f_{i,j}) u_{i,j} - h^2 g_{i,j}}{4 - h^2 f_{i,j}}$$

Estas fórmulas se analizarán con más detalle en los ejercicios.

```
function [u,x,y] = poisson(f,g,bx0,bxf,by0,byf,D,Mx,My,tol,MaxIter)
solve u_x + u_y + g(x,y)u = f(x,y)
% over the region 0 = \{x0, xf, y0, yf\} = \{(x,y) | x0 <= x <= xf, y0 <= y <= yf\}
% with the boundary Conditions:
\Psi \mathbf{u}(x0,y) = \mathbf{b}x0(y), \mathbf{u}(xf,y) = \mathbf{b}xf(y)
u(x,y0) = by0(x), u(x,yf) = byf(x)
% Mx = # of subintervals along x axis
% My = # of subintervals along y axis
% tol
          : error tolerance
% MaxIter: the maximum # of iterations
x0 = D(1); xf = D(2); y0 = D(3); yf = D(4);
dx = (xf - x0)/Mx; x = x0 + [0:Mx]^*dx;
dy = (yf - y0)/My; y = y0 + [0:My]'*dy;
Mx1 = Mx + 1; My1 = My + 1;
ABoundary conditions
for m = 1:My1, u(n,[1 \text{ Mx1}])=[bx0(y(n)) \text{ bxf}(y(n))]; end %left/right side
for n = 1:Mx1, u([1 My1],n) = [by0(x(n)); byf(x(n))]; end %botton/top
%initialize as the average of boundary values
sum_of_bv = sum(sum([u(2:My,[1 Mx1]) u([1 My1],2:Mx)']));
u(2:My,2:Mx) = sun_of_bv/(2*(Mx + My - 2));
for i = 1:My
 for j = 1:Mx
     F(i,j) = f(x(j),y(i)); G(i,j) = g(x(j),y(i));
 end
end
dx^2 = dx^*dx; dy^2 = dy^*dy; dxy^2 = 2^*(dx^2 + dy^2);
rx = dx2/dxy2; ry = dy2/dxy2; rxy = rx*dy2;
for itr = 1:MaxIter
for j = 2:Mx
 for i = 2:My
    u(i,j) = ry^*(u(i,j+1)+u(i,j-1)) + rx^*(u(i+1,j)+u(i-1,j))...
               * rxy*(G(i,j)*u(i,j) - F(i,j)); %Eq.(9.1.5a)
 end
 end
if itr > 1 & max(max(abs(u - u0))) < tol, break; end
u0 - u;
end
%solve poisson in Example 1.1
f = inline('0','x','y'); g = inline('0','x','y');
x0 = 0; xf = 4; Mx = 20; y0 = 0; yf = 4; My = 20;
bx0 = inline('exp(y) - cos(y)', 'y');
                                                     %(E1.1.2a)
bxf = inline('exp(y)*cos(4) - exp(4)*cos(y)', 'y'); %(E1.1.2b)
by0 = inline('cos(x) \cdot exp(x)', 'x');
byf = inline('exp(4)*cos(x) - exp(x)*cos(4)', 'x'); %(E1.1.3b)
D = [x0 xf y0 yf]; MaxIter = 500; tol = 1e-4;
[U,x,y] = poisson(f,g,bx0,bxf,by0,byf,D,Nx,My,to1,NaxIter);
clf, mesh(x,y,U), axis([0 4 0 4 -100 100])
```