Configuración: Perfectamente agitado y flujo pist{on

Problema 1

Si se tiene un microorganismo que sigue una cinética del tipo Monod, donde la velocidad de crecimiento se describe como:

$$\mu = \frac{\mu_{max} S}{Ks + S}$$

Con los siguientes parámetros

$$\mu_{\rm max} = 0.7 \; {\rm hr}^{-1}$$

$$K_s = 5 g/l$$
 $Y_{x/s} = 0.65$

El flujo de alimentación es de 500 l/hr con 85 g/l de sustrato, la concentración de sustrato y biomasa a la salida debe ser de 5 g/l y 52 g/l respectivamente.

a) Si se utiliza un fermentador perfectamente agitado (Utilice la configuración óptima), seguido de un flujo pistón ¿Qué tamaño debe tener cada uno de los fermentadores?

Pauta

Cálculo de la concentración de biomasa en el primer fermentador:

$$X_{1,opt} = Y_{x7s} * S_0 * \frac{g}{g+1}$$

$$9 = \sqrt{\frac{k_s + S_0}{k_s}} = \sqrt{\frac{5 + 85}{5}} = 4,2$$

Calculo de la concentración de substrato

$$S = S_0 - \frac{X}{Y_{x7s}}$$

$$S_{1,opt} = \frac{S_0}{9+1} = \frac{85}{42+1} = 16g/L$$

$$X_1 = Y_{x/s} * S_0 * \frac{9}{9+1} = 0.65 * 85 * \frac{4.2}{4.2+1} = 45g/L$$

Cálculo del volumen del primer fermentador

$$\tau_{1,opt} = \frac{9}{\mu_m * (9-1)} = \frac{4,2}{0,7 * (4,2-1)} = 1,9h$$

$$V_1 = \tau_{1,opt} * F = 1,9 * 500 = 950L$$

Para el Segundo fermentador:flujo pistón.

$$\tau_{2,p} = \frac{1}{\mu_m} * \left(\left(\frac{k_s Y_{x/s}}{X_1 + S_2 Y_{x/s}} + 1 \right) * \ln \frac{X_2}{X_1} + \frac{k_s Y_{x/s}}{X_1 + S_2 Y_{x/s}} \ln \frac{S_1}{S_2} \right)$$

$$\tau_{2,p} = \frac{1}{0.7} * \left[\left(\frac{5*0.65}{45+16*0.65} + 1 \right) * \ln \frac{52}{45} + \frac{5*0.65}{45+16*0.65} * \ln \frac{16}{5} \right] = 0.32$$

$$V_{2,p} = \tau_{2,p} * F = 0.32 * 500 = 160L$$

$$V_{t} = V_{1} + V_{2,p} = 1110L$$