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When we combine Eq. (15.3) with Eq. (15.1), we obtain a form of Fick’s first law for
binary solution: .

X,
o0x

-~

15 N, = X(N,,. + Np,) — CD, (15.4)

1 DIFFUSION THROUGH A STAGNANT GAS FILM

isider the system shown in Fig. 15.1 where liquid A is evaporating into gas B,
d 2 constant liquid level at x = 0 is maintained. At the liquid-gas phase inter-
x = 0), the gas phase concentration of A is that corresponding to the vapor
sure of 4 at that temperature.* For simplicity, also assume that the solubility
)l B in liquid A is negligible and that the entire system is maintained at a constant
nperature and pressure. At the top of the tube, a stream of A-B gas flows past
lowly, thereby maintaining a constant concentration of 4 at x = [ which is less
T bl . . . han the? liquid—gas interface concentratiop. Therefore? a cpncentration difference
e R anster pro SIS 1 ﬂu}d systems. We use practically the same prow [ 4 exists between x = 0 and x = [, which causes diffusion. When the system
in this situation as we did previously; we develop a differential equation ilnins a steady state, there is a net motion of 4 away from the evaporating surface
solutlgn containing arbltrgg constants evolves. These constants arc cvaliili nd the vapor B is stationary.
::{)ptllil énﬁozi‘;?s;fzuigtggﬂilsaggatwipe(;:;g Othi C(;)ncegltrati.on. or ‘l h‘c i 'Under th'ese conditions, c'iespite. the fact ‘that gas B is stationary, there is bulk
considerin 5 - Agam, nsinale te prlnmplfa.s n VQ' notion of fluid since A itself is moving, and its motion cgntrlbutes to the average
1dering specific examples, but first let us reconsider the general situai locity. Thus we refer to Eq. (15.4) for the flux of 4 with Ny, = 0. Solving for
outlined in Section 13.2.2. e abrsi Bx

MASS TRANSFER IN FLUID SYSTEMS

In Chapters 2 and 7, we demonstrated the development of differential e
pertinent to momentum and energy transport in simple fluid systcms, li
chapter, we shall consider how to formulate and describe elementary difl

Ixy

Specieg A in a gas stream moving in the x-direction is under the infly CDh, dXx
concentration gr‘?dlent,.also in the x-direction. The molar flux of A r¢ N = 1= ;( dxA' (155)
stationary coordinates is then made up of two parts: C,v* which is (| o
flux of A resulting from the bulk motion, and j,, = —CD 40X 4/0x) whi Gas stream of 4 and &
diffusive contribution. Thus x=1 "
!
0X, oIS e
Ny, = — CDAW + G} = Cyuy,. Af
Ay ¥ 1 5 o . . % B
Il‘u ¢ ‘u}‘ is the local molar average velocity in the x~direction, and v, is 1l i l !
of 4 in the x-direction with respect to stationary coordinates, and (' iy T [
total molar concentration in the solution. Thus, we define v* so thai (h N, K
molar flux of all components in the x-direction is made up of the sumi il =0 '~0\
component fluxes in the same direction: 2 B -
“#— Liquid 4
n
Co¥ = 3 Cu,. , - X -
i=1 Vip. 15,1 Diffusion of A through B at steady state. B is not in motion, but note that the graph

IFor a binary A-B system, we write hiows how its concentration profile is not linear because of the motion of A.

‘Lhis, of course, implies that equilibrium is maintained at the interface, i.e., from a very
imiplified mechanistic viewpoint, atoms (or molecules) can readily leave the liquid state and
nler-the gas phase. This assumption is valid except at very high diffusion rates where the
e of transfer of atoms across the liquid—gas interface is not able to keep pace with the
xhiustion of the atoms away {rom the interface.

v*=i(Cv +C )
s | balax BUBx

|
= E(NAx + NB\)
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T'he information that is most often sought after is the rate of mass transfer at
¢ liquid—gas interface. We obtain this by using Eq. (15.5):

A mass balance on a unit volume Ax of column height (see Fig. 15.1) for sie
state is

SNAxlx - SNAx|x+Ax == 09 (l N l - _ CDA dXA _ CDA ln 1 — X,fi (15 14)
in which S is the cross-sectional area. In the expected manner, we divide hy & AxE=0 1— XN dx[,_o 1 1—x9 :
and take the limit as Ax — 0:

dN, ;

—=X=0. {1 CD, (X§~ ,’1)
d Nyaly= , 15.15
* w0 =, |7 (1515

Substitution of Eq. (15.6) for N, yields ~ ) _
where (X )y, 18 the log mean of the terminal values of X .
X , :
dd (1 CD§( ddxA =0 ! Xp — X3
X\ A4 Ky = o .

(Xphn = (XL/X3) (15.16)

As pointed out in Chapter 13, diffusion coefficients for isothermal gas soluii
are very nearly independent of concentration ; also, C is constant for an ideal
mixture at constant temperature and pressure. Hence we simplify the deriy
further:

uation (15.15) is somewhat more appealing because a characteristic concentra-
n difference X3 — X} over a distance [ is evident. For a gas in which species 4
dilute, Eq. (15.15) reduces to

dl 1 dx, CX—CQ)
L . I R F A | § 15.17
dx(l—-XA dx) Axlz=0 A( , (15.17)

Two successive integrations can be made directly, resulting in hich could have resulted from originally ignoring bulk motion and expressing

—In(l — X,) = ¢;x + ¢y, (4 ¢ flux of 4 simply as

Ja = —By == (15.18)

and we determine the constants by use of the boundary conditions: T

B.C.l: atx = 0, X, =X7; (1

Typical applications of Eqgs. (15.14) and (15.15) are evaporation and sublima-
B.C2: atx=] X4 = X4 ( )n processes which involve diffusion of the vapor being created (gas A) through a
tionary gas (gas B). Also, a method for measuring diffusion coefficients is to
asure the rate of fall of liquid 4 in a small glass tube as gas B passes over the

p. Furthermore, these results find use in the “film theories” of mass transfer.

When we evaluate the constants and substitute them into Eq. (15.10), we ol
the concentration profile:

- X 1 - X, :
1“(11—“;?’3)“71 (1_ ) .
d xample 15.1 In order to determine the diffusivity of Mn in the gas phase, a melt

)l pure Mn is held in a chamber at 1600°C through which pure Ar flows. The
cl of the Mn is 2.0 cm below the edge of the crucible. The weight of the crucible
monitored continuously, and when the rate of weight loss is steady with time,
1 rate is found to be 2.65 x 10”7 mol cm ™~ %-sec™!. Calculate Dy, _4,-

or

In{ o) =710 x0
IYigure 15.1 shows these solutions, where the slope dX ,/dx is not uniform wiil
although the flux N, is. A gradient of A in the gas must be accompanicd |
pradient of B. Consequently, B has a tendency to diffuse down the column,
this diffusive tendency is exactly compensated by the opposing bulk motion of il
gas in the direction of diffusion of gas A.

XB) _ xln(XB)

lution. At 1600°C, P, = 0.03 atm, which may be taken as the pressure just
ove the liquid surface.

~ The pressure of manganese may be taken as zero at the crucible edge, as the
gon flowing across the opening removes it immediately.
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Since the concentration of manganese is clearly dilute, Dy, A, is obtiii
directly from Eq. (15.17). The concentration is expressed in mol cm .

o_ P4 _003atm] mol-°K | |
Ci=grrT= 10.08205 1-atm|10° cm?| 1873°K

= 1.61 x 10" molcm™3;

B 265 x 1077 x 2.0
Mo—Ar = 7161 x 1077

‘he boundary conditions can be represented as:

B.C.1: atz = 0, X4 = X{ (saturation value), (15.21a)

B.C2: atz = |, X, =0 (15.21b)

he second boundary condition implies that the temperature at [ is low enough
o that the vapor pressure of A4 is negligible. We can obtain the solution to Eq.
21) directly by integrating twice, or by treating it as a linear homogeneous

liflerential equation with constant coefficients, Applying the latter method, the
olution is

= 3.3 cm?/sec.

15.2 DIFFUSION IN A MOVING GAS STREAM Xy = 1€ + cpe'?, (15.22)

Figure 15.2 illustrates one technique which we use to determine the vapor i here r; and r, are the roots of

of a metal (liquid or solid). Argon, as a carrier gas, passes over the sample

. v*
is at the temperature corresponding to the vapor pressure being deteri 2 BZ_r; 0. (15.23)
This gas, containing the saturation concentration of the metal vapor, cnie A

exit tube at z = 0, and at the cool end of the exit tube the metal condenses viit hus, 7, = 0 and » 2 = v¥/D,, and the solution is

deposits where we can collect it for subsequent mass determination.

U*
Xy=c¢; +cyexp (—Z z)- (15.24)
Furnace X .= X§ |Exit tube D,
LJ——‘ N cvaluate the arbitrary constants by using Eqs. (15.24) and (15.21a and b):
X4
€y = — ] ’ (15.25)
L { / Deposit [exp (DLA) — 1] |
Liquid metal z=0 z=1
Fig. 15.2 Diffusion in a moving gas stream. 1
18 C; = Xg 1+ T B (1526)
A mass balance applied to a section Az long for steady state yiclds exp (L) _1 :
[ A
dN,,
dz : 1t concentration profile can then be written :

We may choose either Eq. (15.1) or Eq. (15.4) to represent N, : here we
Eg. (15.1) from which we write
- 4C, d( dX"‘):Q,

EZE

U ——
*dz dz
We can certainly consider that the argon—-metal gas solution is ideal, il
temperature variation between z = 0 and z = [ is small, then (' and D
stants, and Eq. (15.20) takes the form
d*X, v*dX,

dz> D, dz

— = . (15.27)

(

cvaluate the flux at which the metal vapor enters the exiting gas stream at
0.
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We evaluate Dy, ,, at 1400°K as 2.6 cm2-sec™ 1. Therefore, v*] must be
preater than 13.0 cm®-sec™ . Since v* > 44RT/ndP, and /i = f,, (mol Ar sec™!)
then

or
1
v¥l
1 — exp (L)
D4
If S is the cross-sectional area of the tube, then SN |, -, represents the i
of A passing through the tube; experimentally, we determine this quantily |-
weighing the condensate formed at z = [ over a measured period of time. 1l

product SCuv¥ is the total molar flow down the tube, and simply represcnts il
number of moles of argon passed per unit time plus the moles of condenuii

4]

NAz|z=0 = CU;szfl) 1 -
47, RTI

2
=P > 13.0d°.

’I"he figure below shows the results, with the preferred design being to the right-hand
side of each curve. '

. « £25
collected per unit time. The vapor pressure of A is related to these expertmiiii: = ( 10.0 cm?/sec Ar
quantities by i , D, 5t
*
zZ
=] -1
Pg o SNAzlz—O xp (DA) 1.5F 1.0 cm? /sec Ar
= Ay * - )
# SCoZ ol 1.0r %l 50
D, D,
where P§isthe vapor pressure of 4, and P is the total pressure. Preferably, tl 0.5
of diffusion should be negligible for best experimental results due to the uncert
of the diffusion coefficient and because we would have to assume an exper 0% 10 59 3 3

set up that corresponds to the mathematical formulation.

The real value of the analysis lies in the group v¥l/D, which indicaics hi

set up the experiment, so that the effects of diffusion may be ignored. If v}l/1>

the effect of diffusion may be ignored because the last term in Eq. (15.29) is

and <1.0. To insure sufficiently high values of v*I/D,, the experimentalisi

. proyide a small diameter tube between z = 0 and z = [, and use argon or nil

as the carrier gas, rather than hydrogen or helium, since D in the lighter
larger than in the heavier gases.

[, cm

At temperatures where Py, is greater than negligible values, and 7 > Aars
the curves should be shifted even further to the right for better results.

15.3 DIFFUSION INTO A FALLING LIQUID FILM

In this section, we shall consider a fluid system moving in such a way that the
locity distribution is unaffected by diffusion into the fluid. Figure 15.3 shows a
_lilm of liquid B falling in laminar flow down a wall. Gas A is absorbed at the
liquid-gas interface; we shall restrict the situation to that where the penetration
distance of 4 into B is small relatively to the film thickness. We wish to calculate
_ the amount of gas absorbed after the film travels a distance L.
First, we develop a mass balance on component 4. The gas-liquid interface
ncentration of A at all points along the film, is the saturation value CY; thus 4
lilfuses into the liquid which initially contains less than the saturation amount

Iixample 15.2 An experimental apparatus is being constructed (o study
thermodynamics of Mn—-Cu alloys by measuring the Mn vapor pressurc «
molten alloys at 1400°K. In order to use the transport technique, what cxit il
dimensions and argon gas flow rates should be used? ‘

Solution. The criterion that 'provide»s,;th.e most direct experimental mensuii
of P4, (the equilibrium pressure over the alloy) is

po_ =P Nya X fA. A§ the ﬁlm'drops, the liquid is exposed to C§ for a longer time and more
’ N penetration of 4 into the film results. We see, therefore, that C, changes both

with x and z, and we select the unit volume : Ax by Az by unity in the y-direction.

where Ny, is the number of moles of Mn condensed out and N = Ny, Then the mass balance for A is simply

- total moles of gas passing through the exit tube over some period of i

This is essentially true when v*I/Dy,_a, = 5.0. Niol: - Ax = Noploype - Bx + Nyl Az — Nyloyax-Az = 0. (15.30)
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%

When dealing with energy transport in a convective system, it is necessary
{0 obtain the velocity profile v,(x); similarly, we need to describe the velocity for
the analogous situation of mass transfer in a convective system. For a falling film,
we have already worked this out in Chapter 2 in the absence of mass transfer at the

—>

Cao [luid surface, and we know that the results for fully developed flow are
L
X 2
Uz = Umax l:l - (5) ’

o) 1 , , , : . .
where § is the film thickness, and x is the distance into the film from the gas-liquid
surface.

w : . : ; ;
Cao If,asindicated in Fig. 15.3, A has penetrated only a slight distance into the film,
_then for the most part species 4 sees only v,,,,. Further, since it does not penetrate
y far, we can consider that the liquid is semi-infinite. These conditions would

old, for example, for short contact times. With these approximations we write

ig. 15. tion into a falling film. : : I 1
Fig. 158 Susopln i . he differential equation and the boundary conditions:

Dividing by AxAz, and performing the usual limiting process, we get

0C, 0*C,
— = Dy—— 15.36
6NAZ + 6NAx - 0 (lsil : Umax 62 A axz ( )

0z Ox
We now have to insert into this equation the expressions for N, and N,.. o Atz=0, C;=0C;, x2=0, (15.37a)
the molar flux in the z-direction, we write - atx =0, C,=C4, L>z=0, (15.37b)
0Xy .
_ | .

NAz = CD/A/752_ + CAUza ( at x = o0, CA = Cj‘h L>z>0. (15'37(:)

#
and neglect the diffusive contribution, realizing that 4 moves in the z-dire

primarily due to bulk flow. In addition, for small increases in the concentr
of A, 0¥ = v,. Finally, we give N, by the simplified expression

ote that we may alternatively view z/v,,,, as the time ¢, over which a moving
lice of liquid has been subjected to the surface concentration C5. Thus, we
ognize the solution to Eq. (15.36), subject to Eqs. (15.37a), (15.37b), and (15.37¢),
a5 the solution for the temperature distribution in a semi-finite solid, initially at a
uniform temperature, which is suddenly subjected to a new constant surface
temperature. Then, referring to Eq. (9.110), we have

NAz — Csz' (Ij

I'or the molar flux in the x-direction, we write

’
e

aC, -
NAX= _DA——+/C'AUf' (|‘ s’“ CA_CE x

0x , = erf :
’ Ctl4 - Cl(l) 2’\/ DAZ/vmax

//
Now knowing the concentration profile, we proceed to determine the local
liffusion mass flux at the surface, x = 0:

(15.38)

That is, in the x-direction, A is transported primarily by diffusion, there I
almost no bulk flow in the x-direction due to the small solubility of 4 in B.

stitution of Egs. (15.32) and (15.34) into Eq. (15.31) yields the differential cquitic
for Cylx, 2):
aC, D,

Npuls=0 = —DA(—) = (C] — C}) [-57= (15.39)

aC, 02C, 2l o

v, — =D, —-
Z 0z 4 9x?
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the average rate of A transferred per unit across the entire surface between =
and z = L being ‘
L

. 1
NAx|x=O = _I: j NAx‘x=O dz
(0]

i D ax P
=2(C§ - CY) L;)L“l— (1510}

Pigford® solved the complete equation

2 2

and obtained the result:

Cﬁ _ Cg ~5.1213y -39.3189 A5
————o = 0.7857e " + 0.1001e + -, (15,4
Ci—C4

where # = D,L/5%0,,,, and C§ = bulk average composition of the liquid at /..
For small values of #, corresponding to short contact times or very (h

films, we obtain

ral 0
Ci-C_ ﬁ /DAL (1540
Ci—C N=\ov ‘

and for long times, we have
Ci -G

A A~ (.785Te 31213 (15
Cy—C3

154 THE MASS-TRANSFER COEFFICIENT

In Chapter 7, we analyzed simple problems of heat transfer with laminar conve
tion, and formulated the temperature distribution from which we caleuln
heat-transfer rates by evaluating the heat fluxes at the fluid-solid boundary. W)ii;
the fluxes, we wrote expressions for the heat-transfer coefficients, and we saw tha
Nu = f(Re, Pr), and gained insight into what was to follow in Chapter 8 where
presented the correlations for heat transfer in turbulent convective systems,

Having considered diffusion in the presence of forced convection in S
15.3, it is convenient to introduce the mass-transfer coefficient. As we have me
tioned, we may treat the movement of a species as the sum ofa diffusional con
tion and a bulk flow contribution (see Eq. 15.1). To be analogous with |

' R. L. Pigford, Ph.D. Thesis, University of Illinois, 1941.

1ne mass-transicr coemcient DD

transfer, a mass-transfer coefficient for transfer of A into or out of a phase is
defined in terms of the diffusive contribution normal to the interface:

I = i - _ D4(0C,4/0x). =0 .
M) - Cho C3 — Cio

(15.45)

_ Here, the superscript O refers to quantities evaluated at the interface, and C,, to

some concentration of A within the fluid, usually the bulk concentration. Note that,
while k,, in Eq. (15.45) is defined in terms of the diffusion flux at the surface, in

_ general, at interfaces involving a fluid phase, there is the additional contribution to

mass transfer caused by bulk flow. We define the mass-transfer coefficient here only
in terms of the diffusive contribution, rather than of the total flux N2. This is
because the coefficient so defined is somewhat more fundamental, since we might
expect the diffusion flux to be approximately proportional to a characteristic
concentration difference as indicated by Eq. (15.45), whereas the bulk flow contri-
bution can be relatively independent of any concentration difference. Similarly,
when both heat and mass transfer occur, it is advantageous to retain the definition
[ the heat-transfer coefficient given by Eq. (8.1), which considers only the conduc-
tion flux.

In the limit of low mass-transfer rates, as is often the case, we may neglect the
listortion of the velocity and concentration profiles by mass transfer, and the
bulk flow term is negligible. Then

Ng

Jorpm e
M CY - Cuo

(15.46)

his equation is definitional only, and we must evaluate it by means of various
nalytical expressions for the flux. As the first example of applying Eq. (15.46),

consider the results of diffusion into a falling film in Section 15.3. We evaluate
the local mass-transfer coefficient relating the rate of mass transfer of 4 into the
liquid when the time of contact is short, by substituting Eq. (15.39) into Eq. (15.46).

k _ NAx|x=0 . DAvmax 5
M,z — -
2CY ~ Cup nz

(15.47)

or in terms of dimensionless groups, and recalling that v,,,, = 3V,

kag .2 3 Vz |v
2 = 2 = 15.48
D, 27:J: D, (15.48)

I'he group ky ,z/D, is called the Sherwood number, Sh, or alternatively the mass

transfer Nusselt number, Nu,,. The Reynolds number should be easily recognized.

‘he Schmidt number, Sc, which is defined by

v

Se =2,
°=D

(15.49)
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is the analog of the Prandtl number encountered in heat transfer. Most availlile
forced-convection mass-transfer correlations are in the form

Substituting Eq. (15.44), we obtain
Vé

Sh = f(Re, Sc, geometry),* (1550 ku = [In (%1213 — 1n 0.7857)]
as, for example, in the situation above. Specifically, we could write Eq. (15.4¥) 7s
3 = — [5.1213n + 0.241]
Sh, = /2—Re§/28c”2. (15510 L
T
D
~342-2. (15.55)

0

By rearranging this expression, we get

In this case, by subscripting with z, we emphasize that local values are beiig
considered. If we used Eq. (15.40) instead of Eq. (15.39), we would dchine i
average mass-transfer coefficient over the film length L.

4D Umax M == o '
o — CA)( A ) 2 = Sh= 342, (15.56)
o = (C§ - C) which is similar to the results given in Table 7.1 where the Nusselt number was
ST found to be a constant for fully developed laminar flow. We consider that this
- Dy equation is applicable at Re (= I'/y) < 25, where I is the mass flow rate per unit
nL width of film.

Having been tested for absorption of gases into liquids flowing down wetted-
wall columns, Eq. (15.56) has been found to somewhat underestimate the actual
mass-transfer coefficient. At low Reynolds numbers, this is now understood to be
partly due to the so-called Marangoni effect, in which upward-directed surface
tension forces counteract the downward-directed gravitational forces, causing
rippling and turbulence on the surface and an increase in transfer which is not
anticipated in the simplified development described above.

We can then write this as

kML_\/g ’I_/L v

D, N=vv DA’
6 1/2 1/2 i

Sh; = _[—Rep/*Sc'/?, (1
i

where the subscript L indicates that the quantities are averaged over the entiri i

length. ’
In the case of long contact times, where Eq. (15.44) applies, the rate at whii

is absorbed in the distance dz is
VodC, = ky(CS — C,) dz.
Over the entire length of the film, the absorption rate of A is

dC
Vo f e Ac,, kadz

or in dimensionless form

Fxample 15.3 A method for degassing molten metals involves exposing a thin film
of metal to vacuum by allowing it to flow continuously over an inclined plate.
(Calculate the average hydrogen concentration of a ferrous alloy with an initial
concentration of 1 cm?® H, (STP) per cm?® of alloy flowing down a plate 100 cm
long and 15 cm wide, which is inclined at an angle of 1 deg from the horizontal.
‘I'he concentration of hydrogen at the surface exposed to the vacuum may be taken
15 zero. The desired film thickness is 1 mm. Data are as follows: p = 8.32 g/cm?,
1) = 6¢cP, Dy = 1.3 x 10”*cm?/sec.

olution. Using Eq. (2.14), we find the average velocity:

(8.32 g/cm?)(980 cm/sec?) (0.1 cm)?(cos 89°)

=179 ,
3(6 x 1072 g/cm-sec) 0 cm/sec

The integration yields 7

T'he contact time is

*The pmduu ReSc which we often encounter in the liter atu;e on mass transfer, is soiel
called the Peclet number, Pe. .

1
L 100em 155 ee

vV~ 790 cm/sec
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Since this is very short, we make use of Eq. (15.52) to calculate an average k,, : ¢
_ -12  -08 04 0
e — /6DHV 6)(1.3 x 15%)(7.9) T T T TR
M7\ =L — (3.14)(100) 18
116
= 1.71 x 1073 cm/sec. f’:gp%
, 1.4
Then Mass transfer
41.2 into given phase
Ju, = (171 x 1072 em/sec)(1 em® H,/cm? alloy) = 1.71 x 10~3 cm? H, /em s, o e
"Total content removed per cm? of exposed surface is = Ju, (contact time) -
Mass transfer out 0.8F i
=216 x 10" 2¢cm? I,/ of given phase
cm? film. . G5r
Initial total content = (1 cm® H,/cm? alloy) - (0.1 cm? alloy/cm? film) A
0.2}
= 0.1 cm® H,/cm? film.

0 1 . . . i
0 02 04 06 0.8 1.0 1.2

Final total content = 0.1000 — 0.0216 = 0.0784 cm® H,/cm? film, or the averi; )

content of the metal is reduced to 0.784 cm® H,/cm? alloy. :
Iig. 15.4 The variation of coefficients with mass transfer rate. (FromR.B. Bird, W.E. Stewart,

Under many circumstances encountered in interphase mass transfer, the | ind E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960, page 664.)

{low term is not important, and the diffusive contribution in the mass flux cquiris

is all that we need to consider. On the other hand, there may be occasions, il
cularly where transfer to and from gas phases is involved, in which this contribufis
is not negligible. In this case, we write

N, = Oky(C3 — C), (1

; Thus, forced convection mass transfer at high mass-transfer rates (large N,
_and/or Np) is generally correlated by

Sh = f(Re, Sc,N,, and geometry). (15.60)
Ifor the most part, we shall not make use of this latter form.

where N, is the total interphase flux, and 6 is a correction factor that depends i ;
N, Ny, and ky, according to 15,5 FORCED CONVECTION OVER A FLAT PLATE—APPROXIMATE

INTEGRAL TECHNIQUE '

_In Chapters 2 and 7, we developed expressions for the thickness of a momentum
boundary layer and a thermal boundary layer of a fluid flowing past a plate. In
 this section, we shall again apply the approximate integral technique to obtain a
solution for the thickness of a concentration boundary layer developing as a
- tomponent diffuses from the solid plate into the fluid.

As in Section 7.2.2, consider the process of transfer of 4 from the solid (pure A)
into the fluid (B). We disregard diffusion in the x-direction, it being negligible with
respect to the velocity component of mass-transfer in the x-direction. F igure 15.5

Ny + Ny 3
N, + N
oo (14 1]
M

Figure 15.4 gives a graph of 6 as a function of (N, + Np)/kys = . A limiting i
is cquimolar counter-diffusion, in which N, = — Ny and ¢ = 0, so that (/- |
and no correction is involved.

In case we do not know N, and Ny = 0, the expression

0= (15

€l = &2 N, + Ny depicts the unit volume to which we apply the integral mass balance.
1+ 7 €xXp Tk, The amount of A flowing into the element is
.. #O
N,+N, A !
. Wie= f C,. dy, (15.61)
may be used to evaluate N, at high mass-transfer rates. 0
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W,
G, = = Ca., and then by simplifying, we arrive at
be
6CA) d [ J‘
Dy—== = — (Choo — Cpu.dy |- (15.67)
! A( ay - dx ‘A A
wA,x+Ax ¢
il B e R Equation (15.67) is an exact analog of Eq. (7.36). If we assume a concentration
t l profile analogous to Eq. (7.37), that is,
J/’
] (P C= G 3(1) _ 1(1)3 (15.68)
i 2 b Cioo — C3 216, 216,
Fig. 15.5 Integrated convective contributions to the concentration boundary layer over i which satisfies the conditions
flat plate. i
v P BC1: aty=0, C,=CS, . (15.692)
B.C.2: aty = d,, Cy=Cyo, (15.69b)

and th t.l ing i I e
© amount leaving 18 then by substituting the assumed velocity distribution, Eq. (2.105), and the con-

1 centration distribution, Eq. (15.68), into Eq. (15.67), and following the procedure
W eone=Woo+ i j C,o, dy|Ax. (15.6) hutlined previously for developing Eq. (7.42), we obtain the expression for the ratio
' o dx of boundary layers:
(0]
To satisfy continuity, there is also fluid entering at y = [; this amount is %_ 1 = (15.70)
. o 1.026./Sc
W= Zid_ ( Cio j v, dy) Ax. (15.64) Using Eq. (15.68), the local mass-transfer coefficient is
x
0 D (aCA)
~B,]—2
The mass transfer into the unit element across the phase boundary at y = 0 i kg x = 9y y=0 _ E B_{ . (15.71)

CS—Chy 26,
I'hus, we combine Egs. (15.70), (2.107), and (15.71) to obtain

Sh, = 0.3233/Sc,/Re,. (15.72)

These solutions are valid for most fluids, including liquid metals, because
(6,/8) « 1 for metals. Table 15.1 gives typical magnitudes of Schmidt numbers for
fluids.

oc
. _ A = -_-D —A A : 15
Jamo B A( dy )y=0 X (12
We now formulate the mass balance for component A:
jAy|y=0 Ax + WA,x =+ WA,I = WA,x+Ax' “(1

Substituting Eqgs. (15.61)—(15.64) into Eq. (15.65) yields

1

5 ; | able 15.1 Typical magnitudes of Prandtl numbers
A ‘
A( ay ) - dx( j CAvx dy CAoo j\ U, dy) . ( I 4

y=0 ! ) I

and Schmidt numbers

The integrals in Eq. (15.66) are split, that is, " >
! e 1 Gases 0.6-1.0 0.1-2.0
f _ f 4 J Liquids 1-10 102103
¢ 5 3 Liquid metals 1072 103
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The average mass-transfer coefficient for transfer from a flat plate to a fluid

1
= _(WAx + WBx)'
is given by p

- Now we can proceed to develop a mass balance for the volume element. The
o i ibutions to the mass balance of component A4 are
ky = % ko'x dx = 0-646fSc”3Rei/2, (15.73) various contribution _ N
A
’ Accumulation of mass of 4 in the volume element Ax Ay Az a
or
Wl
t of 4 across face at x Ay Az W, |,
Sh, = 0.646 Sc'/*Re}/?, (15.74) Input o N
Output of A across face at x + Ax Ay Az W, i ax-

According to Eq. (15.70), the concentration boundary layer and velocily
layers for gases are about the same as in heat transfer, where 8, and § were similay
because Pr was about unity. For liquid metals, however, while we found that in il
case of heat transfer §; > d, now we see that 0. < 6. This means that we can v
temperature profiles to predict mass-transfer profiles and rates, or vice versa, for
gas phase transfer, but we cannot do likewise for liquid metals, because (heir
concentration and temperature boundary layer profiles differ widely.

The exact solution of the problem of describing mass transfer in the 2 bove
system requires simultaneous solution of the equations of momentum and conj
nuity for both the total material flux and each individual component. We shal
discuss the results of such a study in Section 15.7.

There are also input and output terms in the y- and z-directions. When we write
the entire mass balance for species A, divide through by Ax Ay Az‘, apd take the
_limits in the usual manner, we obtain the general equation of continuity for com-
_ponent A:

Opa | Wax | OWay | W _ (15.77)
ot 0x dy 0z

The quantities W,,, W,,, W,, are the rectangular compom?nts of the mass flux
vector, W, = p,v,, which includes motion of A due to diffusion and bulk flow:

W, = —pD,Vp} + psv = pavs. (15.78)

15.6 GENERAL EQUATION OF DIFFUSION WITH CONVECTION Iinally, by combining Eqs. {15.77) and (15.78), we develop the diffusion equation for

; . . . component A4:
In this section, we summarize the general approach to the law of mass conserva i P

in the volume element Ax Ay Az, depicted in Fig. 2.4, through which a fluid con
taining A in solution is flowing. In the following expressions, p, is the mi
concentration (for example, g of A4/cm? of total solution) as defined by Eq. (1}
W, is the total mass flux of A in the x-direction and is composed of a diffusive teini
and a convective term. Specifically

aaﬂ Vo0 =V-pDVpk. (15.79)
t

As is usually the case, simplifications are utilized more frequently than general
¢quations. Often, one can assume constant mass density and D,, and make some
simplification. For constant p and D,, Eq. (15.79) becomes

Ox

where p is the density of the entire solution, p} is the mass fraction of A, yl
vy is the local mass average velocity in the x-direction; thus, we define v, such thid
the total mass flux of all components in the x-direction is made up of the sum of (i
nrcomponent fluxes in the same direction :

op%
WAx = —pDA(—A) + pq0, = Palsx, (1 % + vaA = DAVZPA (1580)
ot ’

or if divided by M, (molecular weight of 4), we get

66% +vVC, = D,V2C,. (15.81)
The left-hand side of this equation is DC,/Dt, showing direct similarity with Eq.
(7.90) which is the basis for the numerous analogies between heat and mass trans-

port in fluids with constant p. . -
 The above analysis could have been made equally well in terms of molar

fluxes such as we have used previously.

M =

P, =

1

PiV;y- (14
1

I'or o binary, in order to illustrate, we write

1 3
v, = ;(pAvAx + Pplg,)
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Liquation of continuity for component A :

ac,
2 = 0.
3 + (VN))

Dillusion equation for 4 in solution:

’_‘+V‘CA"*:V'CDAVXA.

ot

Table 15.2 The equation of continuity of 4 in various coordinate systems

Rectangular coordinates:

6&_{_ 8NAx+6NAy+6NAZ) —0
ot Ox dy 0z

Cylindrical coordinates:

oc, [1a 1 0N 44 aNA,)
AL L D Z =0
ot * (r or Na)+ 00 0z
Spherical coordinates:
oC, 1o , 1 @ ,
— 4+ |5 = (r ——— — (N sinf) + ——
o (r2 or " Nad) ¥ S g Waosin®)

Table 15.3 The equation of diffusion of 4 for constant p and D by

Rectangular coordinates:

—éx—‘i‘ U),E-i- Uz—éz—

Cylindrical coordinates:

s, ( aoc, 16Cc, acC,

ot

g — ____+ vz_
a " T B

1o0[ oC, 1 8°Cc, &°C,
=DA(:57(’737) 2o T e
Spherical coordinates:
0C, oC, 1dC, 1 6&)
B (”’F %0 T 0 ap

1o ,aC, 8.
—p =L 2% L 9,
DA(/'Z ar(' ar ) Y

ac, ( ac,  oc, ac,,) _D (aZcA
T4 =D,(—
* 0x

ac,

00 ] Esin20 g
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For constant C and D,, Eq. (15.83) takes the form

(152 %% + v*VC, = D,V2C,. (15.84)
This equation is usually applied to low-density gases at constant temperature and
pressure. The left-hand side of this equation cannot be written as DC,/Dt because
of the appearance of v* rather than of s, A more simplified form of the above
equations, which is used for diffusion in solids or stationary liquids (» = 0 in
Eq. 15.81), or for equimolar counterdiffusion in gases (v* = 0 in Eq. 15.84), is
Fick’s second law of diffusion:

(1504

aoC
5 =Davc,. (15.85)

In Tables 15.2 and 15.3, we summarize the most important equations of this
discussion in rectangular, cylindrical, and spherical coordinates. Fick’s second

law of diffusion can be obtained by setting the velocity components in Table 15.3
__equal to zero.

15.7 FORCED CONVECTION OVER A FLAT PLATE—EXACT SOLUTION

_As an application of the above equations, consider the flow system discussed
_in Section 15.5. A thin, semi-infinite plate of solid 4 dissolves very slowly under
_ steady-state conditions, into an unbounded fluid stream of 4 and B. The flow
_ is initially at uniform velocity, concentration, and temperature. For constant

_ properties of the fluid, we may write the boundary layer equations of momentum,
energy, mass, and continuity:

Continuity, % + g—l;y =0, (15.86)
Momentum, v, % + v, % =y % (15.87)
Energy, ng + vyg—;l: = “(ZZTZ’ (15.88)
Mass, vx% - vyaa% =D, a;y—cz"- (15.89)

Equations (15.86)—(15.88) were obtained in Chapter 7 for zero mass transfer.
The assumption that the same equations are valid in the presence of mass transfer
means that any additional momentum and energy fluxes associated with mass
transfer are negligible. Equation (15.89) is derived from Eq. (A) in Table 15.3
with 0C,/0t = 0, 8*C,/8z> = 0, v, = 0, and by neglecting the negligible amount of
diffusion in the x-direction.
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A typical set of boundary conditions that may be specified is: El = \ IS
B.C. 1: x <0, U = Vw’ by, = 0, T= Too’ Qf; _ ‘\ Suction Injection 40.8 =l<
(15.90) PN 1
Cy =C for all y, Pr=1,
A Ao y L \;Sc =1 H0.6
B.C.2: y = o0, v,="V,, v, =0, T=T,, sk
(15.900) 54
CA = CAOO fOl’x > O, I ]
0 {02
B.C. 3: y=0, v, =0, v, = Dy, T =T,, . |
(15.90¢)

Cy=CY forx>0. —
Pl/i \/ Re,
Fig. 15.7 Heat- and mass-transfer coefficients for laminar flow over a flat plate. Subscript

zero indicates the respective coefficients for zero bulk flow normal to wall. (From J. P. Hartnejtt
nd E. R. G. Eckert, ibid.)

The fact that v, = v, at the wall accounts for the bulk motion accompanyinji
diffusion from the wall. The method of solving Eqs. (15.86)~(15.89) subject (o 1l
conditions (Egs. 15.90 a, b, and c) is not given here, but Fig. 15.6 prescents ilic
results for certain values of Pr and Sc. Note that the differential equations niiil
boundary conditions for temperature and concentration are analogous ; thereloy
when Pr = Sc = 1, the velocity, temperature, and concentration profiles williin
the boundary layer must coincide. F igure 15.6 shows these results, along with (i
results for Pr = Sc = 0.7; velocity profiles remain unchanged.

plate. Figure 15.7 shows the local heat- and mass-transfer coefficients plotted
against the parameter vy /Re,/V,. For v, =0 (no mass transfer, or, more
realistically, at low mass-transfer rates), the local mass-transfer coefficient is given
by Eq. (7.26) with a simple change of notation, namely:

QCf OG: 1.0 hx - kM,x7
I
S L?H 0.8 k — DA:
- Pr — Sc.
E:’!LO 0.6 vo -
e | v VRe, Then, the local Sherwood number is
- % Sh, = 0.332 Sc®343 Rel%2, (15.91)
—— Pr=07,5c=07
02 ~=EB=L 8=l and the average Sherwood number
. Sh; = 0.664 Sc%343 Rel/2, (15.92)
090 2 7] 6 8 10 P2

15.8 CORRELATIONS OF MASS-TRANSFER COEFFICIENTS

FOR TURBULENT FLOW

We have seen in the previous sections that many forced-convection mass-transfer
situations are completely analogous to heat-transfer situations, and the appropriate
heat-transfer solutions apply with simple changes of notation, namely:

x lic“
Iig. 15.6 Temperature and concentration profiles in a laminar boundary layer on i fli il

for Pr = Sc = 0.7, and Pr = Sc = 1. Curves for Pr = Sc = 1 also represent velocity piili
(From ). P. Hartnett and E. R. G. Eckert, Trans. ASME 79, 247 (1957).)

These profiles show a dependence on the mass flux (vo\/ Re,/V ). a— Dy,
transler away from the plate (positive vo) gives flatter profiles as would | T>C
il"the solid surface were porous and a gas diffused upward through the plite, i A
liquid passed through the porous plate and evaporated. On the other hand, i Pr — Sc,
(ransfer towards the plate (negative vo) gives steeper profiles; this situntion s Nu — Sh.

be obtained if condensation occurs at the surface, or suction is applicd (o i
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In addition, we may assume that the results for natural convection resulting froi
density differences caused by mass transfer may be correlated by a mass-translii
Grashof number,

This relationship has been found to adequately describe the rate of deposition of
metallic solutes from liquid to solid,® and the rate of dissolution of carbon into
iron melts.*

In flow around curved surfaces, such as spheres and cylinders, f/2 greatly -
exceeds j,; and j,,. However, the analogy still holds between heat and mass
transfer, so that j; and j,, should be equivalent. To illustrate this, consider the

heat-transfer correlation given in Chapter 8 for forced convection around a sphere
of radius R:

Gry = gé(X 4 — XAoo)LS/V3,

where £ is the concentration coefficient of volumetric expansion defined as:

_Yory
é_p(aXA)T

) i 2hR/k, = 2.0 + 0.60 Re}/2 Pr}”. (8.10)
In this case, we may use correlations for heat transfer to yield mass-transfer it ' ‘
if the substitution Translated into the j, form it becomes
Gr — Gry, i 20 0.60

" RePrF T Re?
is made. The flow parameters such as Re and position parameters such as /

remain the same. :

We noted in Chapter 8 that in turbulent flow there is a parallel between il
friction factor f for turbulent flow in tubes and heat transfer, in terms of a quantits
known as the Chilton—Colburn “j-factor”, j:

By analogy we get

2.0 0.6

T = Rese t Rt (b2

o
S 0l
= s =L (3.6) S S
RePr 2 F O N
=
Continuing the analogy, we define a mass-transfer j-factor, j,, for fully develope E ool \\&
01F ~ =
flow in round tubes: : \\\ 3 o
A @
r (4)
Sh f si (5)
o= — (Sc)?3 = L. (154:4) 0.001}
T = Rese B =3 ~ :
If flow is not fully developed, we use Fig. 8.2 where we take L/D into account, ajm’i i
substitute jy, for j;. Epstein?® used Eq. (15.93) to compute the corrosion rate of i 8.0007 - ‘,““1‘02 el
iron tube by molten mercury ; apparently, the mass transfer of iron into the merc 1 0 10 DV1 op
stream determines the rate of this process. Re= Too

5 o pt d 'il*l',r‘. .

A T s .Of ﬂOVY past a ﬂat platel from $he resitles of Chapier 8, w6 will i E Fig. 15.8 Comparison of mass-, heat-, and momentum-transfer to spheres. (1) f/2;(2) Chilton—
average values in laminar flow: Colburn factor jy; (3) jy, for cinnamic acid—water system; (4) jy, for 2-naphthol-water system
(5) ju for uranium dissolving in cadmium. (Data from E. D. Taylor, L. Burris, and C. J.

[ 0664

Ja=ju==—= > (1591 . Geankoplis, I. & E. C. Fundamentals 4, 119 (1965); and T. R. Johnson, R. D. Pierce, and W. J.
2 /Re _ Walsh, ANL Report on Contract W-31-109-eng-38, 1966.)
and in turbulent flow
Figure 15.8 illustrates the results of experiments where j,, is plotted as a
= = S 0037 (14 function of Re for dissolution of uranium spheres in flowing cadmium?®, cinnamic
H= /M= 55 5 02 ‘
2 (Rep)

JW. N. Gill, R. P. Vanek, R. V. Jelinek, and C. S. Grove, AIChEJ 6, 139 (1960).
+ M. Kosaka and S. Minowa, Trans. Japan Iron and Steel Inst. 8, 393 (1968).

i P I’ipslci;); Chem. Engr. Progress Symposium Series 53, No. 20, 67. * F. D. Taylor, L. Burris, and C. J. Geankoplis, I. & E.C. Fundamentals 4, 119 (1965).
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acid spheres in flowing water, 2-naphthol spheres in flowing water®, and for
comparison purposes, j,’, and f/28. Note that the data from the liquid metal
experiments show lower values of Ju at low Re values than those observed in the
organic system experiments. This may be partially corrected for by the presence
ol the Schmidt number in the expression given in Eq. (15.96), which is not plotied
in Iig. 15.8. No equation accounts for the peak in j,, near Reynolds numbers ol
10%, 50 usually the graph is preferred rather than an equation in this range.
Ior natural convection, the mass transfer analog of

data are not quite as accurate in predicting mass transfer, although usually satis-
factory to within an order of magnitude. '

Also, many of the tests of applicability of heat transfer co'rrelathlons to mass
transfer involving the gas phase have not been made at conditions llkFIy to be of
interest to metallurgists, particularly at elevated temperatures and high rates of
transfer, so they should be used with caution.

Example 15.4 Graphite particles are often added to molten cast irqn in ordef to
increase the carbon content when scrap steel is used as starting mat'erlal. The time
required to dissolve the particles is of interest. Determine the time to dissolve
_particles of graphite as a function of the bath’s carbon content. o
The particles have a shape factor A of 1.5, and a characteristic dimension D,
of 0.14cm. The particles float, and are swept to the side of thf: surface of the.melt
- by the magnetically induced stirring action resulting in a relative metal velgmty of
approximately 25 cm/sec. Due to the displacement of meta}l by graphite, 3the:
surface area of an individual particle in contact with the metal is calculated as § of
the total particle surface area. In addition, a portion Qf the particle exposed to -
the atmosphere is burned to CO due to the air circulating over the bath surface.
. Thus the recovery of carbon in the melt is less than 100 %, and experience shqws
_ that, in fact, the recovery is only 50 %,. Therefore, the mass of an individual particle
(of density p,) that dissolves in the melt is

1w
m ( Dfps)’

Nu, = 0.13 (GrPr)'/3 (8.18)

has been applied to both the rate of dissolution of carbon in molten iron® and the
rate of dissolution of steel in molten iron—carbon alloys'®, and found to be quilc
reasonable as an approximation, with the best fit of the data yielding the equation

Sh;, = 0.11 (Gry,, ,Sc)*/3. (15.97)

Many metallurgical processes depend on gas-liquid contact and mass transici
between the phases. Although this is a very complex area,'? several relationshij
have been found that describe the process of mass transfer on the liquid side ol i
gas bubble-liquid interface. One of the most useful is that of Hughmark.!” Hix

expression is
k d V. 0.48 0.339/,1/3 ;1 0.07271b
—g— =20+ a[(*'d) (%) (gDTsd) } , (15.95)
v

where d is the bubble diameter, V, is the terminal velocity of the rising bubliliz
and a and b are constants that depend on whether the bubbles act singly or in
swarms. For single bubbles, a = 0.061 and b = 1.61. This relationship has b
tested in molten copper—carbon monoxide systems, and was found satisfacio
for describing the rate of transfer of oxygen in the copper to the interface.'”

~ 26
and its surface area exposed to the melt is
A =3nD,2A

Note that the Chilton-Colburn analogy is applicable only at relatively lin é 01
mass-transfer rates, and that the best analogous results are obtained when 8 5 -
malerials are utilized in both the heat- and analogous mass-transfer silua ~‘§ e
Turbulent flow mass-transfer correlations based on studies using common i 5 L
Appear to be directly translatable into liquid metal systems, but heat tini & i

8

" L. R. Stecle and C. J. Geankoplis, AICKEJ 5, 178 (1959), % 0.01¢
"1, K. Sherwood, Ind. Engr. Chem. 42, 2077 (1950). ‘; i
" I°. H. Garner and R. D. Suckling, AIChEJ 4, 114 (1958). B 00— et

” M. Kosaka and S. Minowa, ibid.

"M, Kosaka and S. Minowa, Tetsu-to-Hagane 53, 983 (1967).
M For reviews, see P. H. Calderbank, Trans. Inst. Chem. Engrs. 212, 209 (1967): I'. 11, i
Valentin, Absorption in Gas-Liquid Dispersions, Spon Ltd, London, 1967.
" (A Hughmark, I. & E. C. Process Design and Development 6, 218 (1967).
"M, R. Nanda and G. H. Geiger, Metallurgical Transactions 2, 1101 (1971).

Peripheral velocity ¥, cm/sec

Fig.15.9 Mass-transfer coefficients for carbon dissolution in Fe—C melts. (From R. G Olsson,
V. Koump, and T. F. Perzak, Trans. AIME 236, 426 (1965); O. Angeles, G. H. Geiger, and
C. R. Loper, Trans. AFS 76, 629 (1968); and M. Kosaka and S. Minowa, Trans. Japan Iron

. Steel Inst. 8, 393 (1968).)
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Solution. The mass flow, in terms of g C/sec, is

dm

dt
where p; is liquid density, g/cm3, C, is weight fraction of carbon at the particle
melt interface, and C,, = weight fraction of carbon in the bulk melt.

We evaluate the mass-transfer coefficient from Fig. 159 which has been
developed by several investigators for the dissolution of rotating carbon rods i
Fe~C melts. For a velocity of 25 cm/sec, k,, for graphite is 0.02 cm/sec. Now,
since

the experimental data can be extended to the new situation. Several theories of
the process of mass-transfer have been developed, and they attempt to present
models of what actually happens at the interface between two fluids or between a
fluid and solid from a fundamental viewpoint, in order to aid in intelligent extra-

polation of data.

= - kMApL(CO — Gl

~<—— Effective film thickness

i C

Fig. 15.10 The “effective film thickness> model.

dm _ _ 52, D

e~ e Py

and the area is as given above, we can determine the time to dissolve a particle

2 t
f D, = 3k, Ap—L(Co — 1] f dr, The oldest theory is the film theory of Lewis and Whitman'* who suggested
s Ps " that there is an unmixed layer or film in the fluid next to the actual interface,
i continuously exposed to the completely mixed bulk fluid on one side and to the
or other phase on the other. This layer, devoid of any fluid motion, is supposed to
_ offer all the resistance to the transfer of component A4 from the interface into the
2pD,  sec bulk solution, as depicted in Fig. 15.10. The transfer takes place purely by atomic
' or molecular diffusion through the film. Figure 15.10 indicates the concentration

I =
3ppAky(Co ~ C,)
profile assumed in the model. Since the entire concentration change from Cyn to

CJ is assumed to take place within the film in a steady-state manner, and since

The results are plotted below.
the mass-transfer coefficient is defined by

g 1000
800
. 0
288 Ja = ky(C4 — C4),

we can compare this to

Time to dissolve, se
(3]
(=)
S

Time to dissolve, min

e

40
. — 4D
20f Ja dx et
10 L L L ! L 1
0 05 10 15 20 25 30 35 with the result that ky = D/d., where 8 is the effective film thickness. This

result often appears in the metallurgical literature in cases where the flux is mea-
sured and the overall concentration change (C$ — C,.,) is known, and then either
the diffusivity is known (or more often assumed) and &, is calculated, or vice
versa. As noted below, the significance of J is dubious, at best.

From a fluid mechanics standpoint, it was recognized at an early stage that
interfaces between fluids are bound to be unstable with time, and that any given
clement of fluid at the interface does not remain there for long. Thus, the film

(Co—Co), wt %

159 MODELS OF THE MASS-TRANSFER COEFFICIENT

Since most conditions in which mass transfer is important involve fluids i
going turbulent motion, we must usually rely on the preceding correlations,
experimental studies giving the necessary empirical coefficients. However, 1l
arc many situations to which these test data do not directly apply, such as heyi
the experimental scope of variables, and it is desirable to know whether and I

"* W. K. Lewis and W. Whitman, Ind. Engr. Chem. 16, 1215 (1924).
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theory is much too crude to be really meaningful. Higbie!3 proposed a model to
describe the contact between two fluids, in which he assumed that one fluid
exposes a “particle” of fluid to the other phase for an average time 6, which i
taken to be extremely short, such that the particle is subject only to unsteady-stii¢
diffusion or “penetration” by the transferred species during its contact time willi
the other phase. The particle is assumed to be stagnant internally during this time,
and well mixed before and after. Figure 15.11 gives a schematic picture ol the
situation. This theory results in a prediction that

/D
kM = 2 E‘
/@CAG\+AC

Phase 2

(15.99)

Fluid element in
contact with phase |

A,

Fig. 15.11 Schematic diagram of fluid motion in penetration theory.

The logical extension of this theory was performed by Danckwerts!® who
gested that the idea of a constant time of exposure 6 ought to be replaced by
average time of exposure calculated from an assumed distribution of residen
times of the “particles” at the surface. The result is again a relationship of

form

kMoc\/B.

The constants in his equation, like the constant § in Higbie’s equation, are jis
readily obtainable, with the exception of bubbles rising through a liquid in wli:|
case we may estimate 6 to be the time required for a bubble to rise a disiiii
equal to its diameter.

When considering the two theories, it is apparent that the dependence of / W

on D is different. Experimentally, it has been found that k,, is proportionil i
D" where n varies from 0.5 to 1.0, depending on the fluids and the circumsian
In order to resolve this discrepancy, Dobbins'” and Toor and Marchello'" ji
posed a combined film penetration theory in which the residence time of the suifi

'5 R, Higbie, Trans. AIChEJ 31, 365 (1935)

' p. U. Danckwerts, Ind. Engr. Chem. 43, 1460 (1951).
'"W. E. Dobbins, Int. Conference on Water Pollution Research, London, 1962, Peiyii
Press, New York, 1964, page 61.

" H, L. Toor and J. M. Marchello, AIChEJ 4,97 (1958).
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elements (Higbie model) is long enough to allow the concentration gradient to
approach steady-state across the finite thickness of the element (film model).
This theory approaches each of the other theories as limiting cases. When D is
large or the rate of surface renewal is small (6 is large), then n approaches 1.0 and
so the film theory is applicable. When D is small or 6 is small (rapid surface
renewal rate), n approaches 0.5, and the penetration theory results. In any case,
there are still parameters that must be specified in order to use the theory for
predictive purposes, and they are not readily obtainable.

PROBLEMS

15.1 At 1000°F metal 4 is soluble in liquid B but B is not soluble in solid A as shown below
in the pertinent part of the phase diagram.

59
©
&~

1000°
L+S

0 0.20 Atom fraction B

A.2-in. diameter cylinder of A is rotated at 1000 rpm in a large melt of 0.5 atom fraction B
at 1000°F, and it is noted that after 15 min the bar diameteris 1.90 in. For the same temperature,
estimate the bar diameter after 15 min if another 2-in. diameter cylinder of 4 is rotated in a
large melt of 0.25 atom fraction B. We can assume that the molar volume of liquid 4-B
alloys is constant.

. 15.2 Use dimensional analysis to show

a) Sh = f(Re, Sc) for forced convection;
b) Sh = f(Gr, Sc) for natural convection.

15.3 Levitation melting is a means of supporting a metallic melt by an electromagnetic field.
No impurities are added in melting and operation under an inert atmosphere removes dis-
- solved gases. At 3000°F and 1 atm hydrogen pressure, the solubility of hydrogen in iron is
31 cm?® per 100 g of iron. Estimate the rate at which hydrogen can be removed from a levitated
drop of iron that initially contains 10 ppm in the set-up shown below. Assume that no con-
vection occurs within the iron drop.

i
o) O  Induction coils
O (©)
" Levitated iron drop,
o o %—in. diam.
o o}
. Vycor tube, 3-in. diam.

Pure argon, 10 fi/scc
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15.4 Derive expressions for diffusion through a spherical shell that are analogous (o liy

[5.12 {concentration profile) and Eq. 15.14 (molar flux).

!5.5 Hydrogen gas is being absorbed from a gas in an experimental set-up shown in (l:
ligure below. The absorbing liquid is aluminum at 1400°F which is falling in laminar flow

with an average velocity of 6 in. per min.

What is the hydrogen content of the aluminum leaving the tube if it enters with no h ydri
g,cn'? Assume that at T = 1400°F, and 1 atm hydrogen pressure, the solubility of hydropci
is I em? per 100 g of aluminum, the density of Al = 2.5 g/cm® and Dy, = 1 x 1075 cm? sec. !

— | Fin fa—
Aluminum running

/—\
_ CD down the wall
S

Sin.

L
¥

Surface concentration
assumed to be equal to the

v ’/’—:—j saturation concentration

50% H,
50% Ar

16
INTERPHASE MASS TRANSFER

In Chapter 15 we undertook much of the analytical presentation to familiarize
ourselves with mass-transfer coefficients as they arise from considerations of
diffusion with convection in a single phase only. There are many situations,
however, in which two fluids or a solid and fluid are in contact, and interphase
transfer by diffusion with convection takes place in one or both phases. In some
cases, convective mass transfer may be important in controlling the overall rate;
in others it is not important. If there is a reaction at the interface, it may very well
be the controlling step. '

Experimentally, it is difficult to study interphase transfer, and at the same
time separate the individual phase resistances; so an overall transfer coefficient is
usually measured. Having determined this coefficient, we then attempt, via a
mathematical model, to deduce the individual phase coefficients, such as those
presented in Chapter 15. In some cases the results are clear cut, and we are then
able to adjust process conditions to optimize the process. However, in other
cases, we cannot differentiate between models even though they may be based on
important differences in basic assumptions, because their predictions can be-
numerically similar within experimental error. Then, we deal with the overall
coeflicients and utilize them, but only if the fluid conditions are similar in both
the prototype and model cases.

. The objective of this chapter is to indicate the relationships between the
individual phase transfer coefficients and the overall coefficients, and to examine
several cases in detail, showing how different fluid conditions can influence the
overall coefficient through their effect on the individual coefficients.

©161 TWO-RESISTANCE MASS-TRANSFER THEORY

Let us investigate the situation as it might exist in a gas-liquid physical reaction.
Figure 16.1 depicts the phases in contact and the concentration profiles in each
phase. The mole fraction of A in the bulk gas phase is Y, and it decreases to
Y# at the interface. In the liquid, the mole fraction drops from X% at the interface
{o X ,,, in the bulk liquid. The bulk concentrations X ,, and Y, are obviously
not in equilibrium, otherwise diffusion of the solute would not occur. To determine
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