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6.14 A flat heater is sandwiched between two solids of equal areas (0.1 m?) with diffe _'
thermal conductivities and thicknesses. The heater operates at a uniform temperature g
provides a constant power of 290 W. The external surfac'e temperature of each soliq
300 K, and there is perfect thermal contact at each internal interface. i
a) Calculate the heat flux through each solid.
b) What is the operating temperature of the heater?

Thermal Conductivity, Thickness,
Solid Wm'K! mm
A 35 60
B 9 30

.. Rate of energy in by conduction across surface at r
* Rate of energy out by conduction across surface at r + Ar

 Rate of energy in by conduction across surface at z
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7

HEAT TRANSFER AND THE
ENERGY EQUATION

: .We have designed this chapter to introduce the reader to three interwoven topics. First, we
" develop differential equations in terms of temperature in space (and with time if transient
“.conditions apply) for several simple problems, by writing energy balances for unit volumes.
' ".In order to obtain solutions, we integrate the differential equations to ascertain the
. temperature and arbitrary constants, and then apply boundary and initial conditions to obtain

' the particular solution. The general procedure is similar to that followed in Chapter 2 for

obtaining the velocity profiles.
Second, several of the examples are concerned with heat transfer to and from moving

" fluids. We deal only with laminar convection, but this enables the reader to become involved

in the fundamentals of heat transfer with convection.
Third, we bring to the reader’s attention more general forms of the equation of energy,

- leading to Tables 7.3-7.5 which may be used in a manner similar to the general momentum

equations given in Chapter 2.

'._.7.1 HEAT TRANSFER WITH FORCED CONVECTION IN A TUBE

- Consider laminar flow in a circular tube of radius R, as depicted in Fig. 7.1. If the tube and
. the fluid exchange heat, then clearly the fluid’s temperature is a function of both the r- and

z-directions. A suitable unit volume is a ring-shaped element, Ar thick and Az high. Energy

.. enters and leaves this ring by thermal conduction; also, a unit mass of fluid, which enters
‘with an enthalpy, must leave with a different enthalpy. Let us now develop the energy
- balance for the unit volume.

2wr Azq,|,
27(r + ANAZG,, 4 o

2wr Argy,
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D

Direction of flow
<

Conduction g-c=
Convection

Fig 7.1 Elemental circular ring used to develop the
differential energy balance for laminar tube flow.

Energy out by conduction across surface at z + Az 27r Arg,|

z+ Az

Energy in due to fluid flow (enthalpy) across surface at z pv,2mr ArH|,

Energy out due to fluid flow across surface at z + Az pv,2mr ArH|

z+ A4

Here H is the enthalpy per unit mass, and v, is the velocity in the z-direction. At sleadﬁ :
state, the energy balance requires equal inputs and ‘outputs. If we divide all terms bj i

27 Ar Az, we obtain

qzlzu\:_q:lz Hl;~A1—H|z

rqr[rOAr B rqul
+ rpy, _T = 0.

Ar tr Az

Now Ar and Az are allowed to approach zero.

a(rq,) g, oH 7
ar +rTZ-+rpul—5;=0. (2

If C, is the heat capacity, then
oH aTr a3

07 T v ez
Also
q, = -k(3T/ar) and

Substituting Eqs. (7.3) and (7.4) into Eq. (7.2) yields an energy equation written in terms of.v

temperature:
or _ k|1 8 [ oTy o7 (1.5);
V: 37 T p—Cp rar |" ar az2 |-

L we consi

q, = -k@TI32). - (742.0) 8
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further simplify the energy balance (Eq. (7.5)), since, except for the very slow

: can : -
wemquid metals, the term (k/pC,,)a2 T/32* is negligible even though v,(37/9z) is not. With

ghis assumption, Eq. (7.5) reduces to
aT k 1 a oT
v, FZ- = E [? E [r W]] (7.6)

4 tion (7.6) contains v,, the factor that ties together heat transfer and convection. Here
der fully developed laminar flow; the velocity distribution is therefore parabolic, and
by Egs. (2.31) and (2.33):

o (]

By including this velocity distribution, Eq. (7.6) becomes

I P i B R an
z R oz~ pC, |r or "ar| |
We consider the special case where a fully developed temperature profile exists. For any

set of boundary conditions, a fully developed temperature profile exists when
(Tp- DI(Tx - T,) is a unique function of r/R, independent of z. Then

T, -T

is given

'7‘:5—_7 = f(f/R), (78)
R m
or
F) T, -T
+ [T:— . =0, (7.9)

where T, = temperature of fluid at the wall, and T, = mean temperature of the fluid. A
fully developed temperature profile is analogous to fully developed flow. This is exemplified
by Fig. 7.2, where the liquid flowing in the z-direction encounters the heated section of the
tube. Over a finite interval downstream from this point, the temperature profile changes from
uniform to fully developed.

For a fully developed temperature profile, an important corollary arises; namely, the heat
transfer coefficient is uniform along the pipe. We realize this by employing the definition
of the heat transfer coefficient based on the mean temperature of the fluid:

he ko | T T (7.10)
=T,-T,~ ROGR |T,-T,| _,

where g is the flux evaluated at the wall (r = R). Because the derivative in Eq. (7.10) has
a unique value at the wall, independent of z, A is therefore uniform along the pipe under the
fully developed temperature conditions.

Now consider the case where g; is uniform. This represents a uniform heat flux at the
wall, and could be physically obtained by using an electric heater, depicted in Fig. 7.2.
Further, since h and g, are constant, Eq. (7.10) specifies that Ty - T, is constant, and

ﬁ = ET_T (7.11)
9z az ’
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| Having obtained the temperature profile, we can evaluate h. From Eq. (7.10), (T - T,)

Flow | g MUSt then be evaluated. First, we find (T, - T,) by performing the integration:
{ ;
] v(Ty - T)2mrdr
Entering
TT Hl“ uniform Tn - Tm = 2 A . 7.17)
. temperature

Power for | D) profile [ v2wrdr
resistance | &% )% s
hc?!ing L )
coils K 3 sécond. we determine g, by evaluating the gradient at the wall using Eq. (7.16):

MEL

" | Developing oT

profile G = -k ['3_,-] ) R. (7.18)

. When these operations have been carried out, we can determine the heat transfer coefficient.
The final result, with D as the diameter, is
hD

= e 7.19
= 4.36. (7.19)

. |Fully developed
" |profile

#

Fig. 7.2 Heating a fluid in a tube showing the
development of the temperature profile.

' The dimensionless number resulting from this analysis is the Nusselt number. This
important dimensionless number for heat flow with forced convection reappears as we
" examine other solutions and correlations. For emphasis, then, the Nusselt number is

hD

Nu_ = —. (7.20)

(Note that T, and T,, themselves are not constants.) Now ez(pand Eq. (7.9) in a general sense 3 T

where each quantity varies as follows:

oT, oT T, - T
Bz | | T,-T,

Then Eq. (7.11) shows that

' This Nusselt number is for fully developed flow and uniform heat flux with parabolic velocity
profile. It is subscripted with oo because it represents the limiting case of a fully developed
temperature profile. Many situations have been analyzed, some of which are given in

aT, T,
5 |~ °
Table 7.1 and others in Holman.'

Table 7.1 Nusselt numbers for fully developed laminar flow”

aT, T aT,,

—_ = — . .. hD be
—_—= = = . Velocity Condition _ e
0z 9z 9z : Geometry distribution' at wall Nu. = =%
Equation (7.13) is important because it allows Eq. (7.7) to be integrated dlre‘clly using | { Circular tube Parabolic Uniiform g; 4.36
aT/dz = 9T, /0z: Circular tube Parabolic ~ Uniform T 3.66
p— 5 1 Circular tube Slug flow  Uniform g, 8.00
_ |or, r r? k d aT (7.14) Circular tube Slug flow  Uniform T, 5.75
2v, = I r{1- [72- dr = o°C ] rarl- B Parallel plates Parabolic ~ Uniform g, 8.23
1o P otiar = 0 e 3 Parallel plates Parabolic ~ Uniform Ty 7.60
& Triangular duct Parabolic ~ Uniform g, 3.00
Integrating, we get : b § Triangular duct Parabolic Uniform T 2.35
_ler . 1 [ F ]2 k T (7.15) : “From W. M. Rohsenow and H. Y. Choi, Heat, Mass and Momentum
wl—=—=| L |1-5|% = i i, i 8 Transfer, Prentice-Hall, Englewood Cliffs,” New Jersey, 1961,
: |79z | 2 2 |R pC, or page 141.

'Slug flow refers to a flat velocity profile.

A second integration with T = T at 7 = R finally results in ‘D, is the equivalent diameter, as defined in Chapter 3.

Vpc] [BT ] , (7.1 &
T i} 4 _ 2p2 4 i &
-T= [ QPR B (3R 4r’R* + rf). R 3

T,

¥ oln. e -u R -~ e 4 grr mm Y. XY'1I AT, .. 1. AT Y INOL ... MmO
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7.2 HEAT TRANSFER WITH LAMINAR FORCED CONVECTION OVER A FLA
PLATE

In Chapter 2, the velocity distribution, within the boundary layer over a flat plate, wag.
determined. Here we consider the case of a plate at a different temperature than the flyjq
with the plate serving to heat or cool the fluid. Just as a velocity profile continually change;f
with distance from the leading edge, and results in a momentum boundary layer whic
increases in thickness, there is also a changing temperature profile and development of a'-.’
thermal boundary layer when heat transfer is involved. We depict this situation along with
a unit element in Fig. 7.3. With a depth of unity perpendicular to the page, the contributjopg’
to the energy balance are: 4

Energy in by conduction across surface at x q,].Ay1
Energy out by conduction across surface at x + Ax Gl z v axly-1
Energy in by conduction across surface at y q,|,6x°1
Energy out by conduction across surface at y + Ay q,l, + ayAx1
Energy in due to fluid flow (sensible heat) across surface at x pu Ay 1-H|,

Energy out due to fluid flow (sensible heat) across surface at x + Ax

Energy in due to fluid flow (sensible heat) across surface at y puyAx-l~H|y

Energy out due to fluid flow (sensible heat) across surface aty + Ay puyAx~l~H]

Fig. 7.3 Development of the thermal boundary layer and the temperature distribution
over a flat plate.

Adding all these quantities, dividing through by AxAy, and taking the limits as Ax =0
and Ay — 0, we obtain !
dq, 9q,

+

ox 7‘)?+ ox ay

For constant density and conductivity, Eq. (7.21) becomes

g2 2ul 1 BH . ER) _ REE . 2Y
p ox dy P 1Y ax Y dy axt oy’

Since continuity requires that (dv,/dx) + (dv,/dy) = O and dH = C,dT, we finally obtain

ar aT) _  [&T 9T
PCP Uxa*vyﬁy = W*w

pva)"l'Hlxhu :

y+ by

dpv.H) dfpwH) _ 721 38
2 2
T . o'T (1.22)

(7.23) '
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The temperature gradient in the y-direction is much steeper than that in the x-direction;
sherefore the x-directed second derivative term may be neglected. Then Eq. (7.23) simplifies

T aT T

b ax Yy =aw. (7.24)

Herea = k/pC,, which is called the thermal diffusivity. It has the same units of kinematic

viscosity, which is sometimes called momentum diffusivity. In addition, the momentum

* poundary layer equation, developed in Chapter 2, is

dv, ou, v, 287
UIX+U,E=Vw. ()

- Equations (7.24) and (2.87) are analogous. If v = ¢, and if the velocity and thermal

poundary conditions are similar, then the temperature and velocity profiles are exactly
‘identical, and the thermal boundary layer §; equals the momentum boundary layer &.

The method of solution for Eq. (7.24) parallels that for the velocity distribution, as given
in Section 2.7.1. For the case of a uniform-temperature plate, the following boundary

" conditions apply

'B.C.1 aty

0, T =T,
B.C2 aty=o, T=T,

B.C3 atx <0, T=T,.

. We do not present the method of solution here, but Fig. 7.4 gives the temperature T as a

function of y and x. The temperature is a part of the dimensionless temperatre © on the
ordinate, which includes the wall temperature T, and the bulk fluid temperature T,,. Space
dimensions x and y appear together on the abscissa in exactly the same way, as shown in
Fig. 2.7 for describing the velocity profiles. Several curves are shown in Fig. 7.4, each for
a different value of the Prandtl number, Pr. This number is the ratio of v/a, and for Pr equal
to unity, the ® curve in Fig. 7.4 is exactly the same as v,/V, in Fig. 2.7. Therefore, the
Prandtl number controls the similarity between the velocity profiles and the temperature
profiles.

Knowing the temperature profile, we can determine the heat-transfer coefficient. From
the results given in Fig. 7.4, the local heat transfer coefficient is

-k g n
Y ]y -0 V., (7.25)
h, = T -7 - 0.332k Pr%3 =g Pr = 0.6,
0 oo
or, in terms of dimensionless numbers,
Nu, = 0.332 Pr* Re}’, (7.26)

where Nu, = h x/k, which is called the local Nusselt number. If we wish to know the
average heat-transfer coefficient, then we can find it by averaging A, from x = 0 to x = L:

12
Va
YL '

L
[ h dx = 0.664k Pro*

[

-
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Fig. 7.4 Dimensionless temperature profiles in the laminar boundary layer over a flat plate for
various Pr. (FromE. Z. Pohlhausen, Z. Angew. Math. Mech. 1, 115 (1921).)

or
Nu, = 0.664 Pro>* Ref. (7.27)

Note the general form of either Eq. (7.26) or (7.27). We shall find in Chapter 8 that the
Nusselt number is generally a function of the Reynolds and Prandtl numbers in problems of

forced convection.
For the case of Pr = 1 (v = a), the thermal boundary layer is given by

oy 5.0

X Jvoxiv

which is the same as the momentum boundary layer.

At this point it is instructive to examine Prandtl numbers for various fluids; approximate
values are given in Table 7.2. These numbers represent values that include several
substances, and cover substantial temperature ranges. The Prandtl numbers of liquids vary
significantly with temperature; however, gases show almost no variation in Pr with
temperature. From Table 7.2, we see that for gases &y = 8, for common liquids 6 < 6,
and for liquid metals—due to their high thermal conductivity—é; >> 8. To a close
approximation, the ratio of the boundary layer thicknesses is

- (1.28)

6 .
Tr = 0.975 Pr '3, Pr > 0.5. (7.29)

Table 7.2. Typical Prandtl numbers

Substance Range of Prandtl number (v/«)
Common liquids (water, alcohol, etc.) 2-50

Liquid metals 0.001-0.03

Gases 0.7-1.0
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Equations (7.27)-(7.29) are valid only for Pr > 0.5, and thus do not apply to liquid
i

metals. For liquid metals with uniform wall temp n (o}
! eratures as a b iti
B eroximaied byz oundary condition, the results

. 0.564
Nu, = (Re, Pr | —— |, (1.30)
1 +0.90 /Pr

For a uniform heat flux at the wall, we present these results.?

Pr > 0.5, Nu, = 0.458 P [Re, ; (1.31)

\/Rc‘_Pr— 0.880
1+ 1317 /Pr

0.006 < Pr < 0.03, Nu

(1.32)

Example 7.1 Airat 1 atm (1.013 X 10° N m?) and 290 K flows parallel to a plate’s surface

at 15 ms'. The plate, 0.3 m | i . I
i entire length. P ong, is at 360 K. Assume that laminar flow is stable along

a) Calculate the thicknesses of the velocity and the
! m
Caiig s of e gl y al boundary layers 0.15 m from the

b) Calculate the rate of heat transfer from the entire plate per 0.1 m of plate width

Solution.
a) We calculate the thickness of the momentum boundary layer using Eq. (2.101)

5 5.0

o ‘/me/v‘

For air, evaluating v at an average boundary-laye
. 2 . . ’ Fe 2 =
the kinematic viscosity is 18.4 X 10° m? s".y Th);n FRERITE Sl e S i

VaX  15m | 0.15 m | s

v s | |18.4 x 10 m?

= 1.22 x 10%, *

and

(0.15)(5.0)
J1.22 % 10°

Next, we use Eq. (7.29)

6 = =215 X 10 m = 2.15 mm.

e

r

5 = 0975 Pr®,

¥ 2
; E‘;M' Sparrow and J. L. Gregg, J. Aero. Sc. 24, 852 (1957).

g s
i R._».}_J. Nickerson and H. P. Smith, as reported in Rohsenow and Choi, ibid., page 149
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The Prandtl number for air, evaluated at 325 K, is 0.703. Then

5, = (2.15)(0.975)(0.703)"” = 2.36 mm.

b) Equation (7.27) is used for the average heat-transfer coefficient, which applies to the whole
plate.

Nu, = (0.664)(0.703°%) y2.44 x 10° = 291.

The thermal conductivity for air at 325 K is 28.1 X 10? W m" K. Then

B = k Nu. = (28.1 x 10°)291) _ 272 W m2 K",
=TT ©3)

and finally
Q = hA(T‘,° = T) = (27.2)(0.3 x 0.1)(360 - 290) = 57.1 W.

7.3 HEAT TRANSFER WITH NATURAL CONVECTION

In Sections 7.1 and 7.2 we considered heat transfer with forced convection. !n forced
convection, the known velocity distribution can be entered into the energy .equanon. The
situation is more complex in problems of heat transfer with n.atural convection becagse the
velocities are not known a priori to solving the energy equation. Hence, the vglogxty .and
temperature distributions cannot be treated as separatft probler'ns; {he tcmperan{re .dlSlrlb;ll%n,
in effect, produces the velocity distribution by causing d.ensuy dlfferf:nccs within t.he uid.

Consider the vertical surface in Fig. 7.5; the surface is at Ty, aqd it heats the nengbbonpg
fluid whose bulk temperature is T. In this situation, the velocity corpponent v, is quite
small; the fluid moves almost entirely upward, and therefore we write the momentum
equation for the x-component only. For steady forced. convection over a ﬂgt plate,hwe
ignored the gravity force, and no pressure gradient was mvglved. We cannot ignore these
forces in free convection, and therefore the momentum equation for the present case contains
these terms

dv, dv, 1 9P ',

(7.33)
+ v v 3 + 8.

v — —_— = - - ¢
* ox v Qdy p 0x

We apply the so-called Boussinesq approximation in which var.iations in the density of' the
fluid are neglected except in the buoyancy force term that drives the natural convection.
Thus, in Eq. (7.33) the density is a reference density at the reference temperature, T

Therefore, the inertial terms become

dv, dv,
Pe | Y Tx‘ * U,V —87 ’

and the pressure gradient is approximated as

P _ dP _

I “Pe 8-
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Y 8 Sr

N

Fig. 7.5 Thermal and momentum boundary layers
for vertical plate natural convection.

With g, = -g, the buoyancy term is simply
08, = ~pagl + BT, - T)],
where the volume expansion coefficient 3 is defined as
1 dp
b1 (2],

The momentum balance in the x-direction then becomes

dv dv %
== - =V . 7.34
“ax Thay ~V 7 + gB(T - T,), (7.34)

which is identical with Eq. (2.87), except for the addition of the buoyancy term.
Equation (7.34) shows that the momentum equation must be coupled to an appropriate energy
equation, in order to treat the buoyancy term.

The energy equation applied to the control volume AxAy in this case is identical to that
for flow over a flat plate:

o T _ 0T
v, ax*vyay—aayz.
This equation is coupled to Eq. (7.34) by the presence of the velocity terms. The

mathematical task at hand is, therefore, to solve the coupled equations with the boundary
conditions:

(1.35)

B.C.1 aty = 0, v, =v, =0, = T,
B.C2 aty=o, v, =y =0,

T=T,.
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ions are beyond the scope of this text;

ice i ] coupled differential equat ¢ 4 .
ot e resls, t us examine a dimensional analysis

51 First, however, le
we simply present the results. » hov .
i i i dimensionless numbers.
roach in order to bring forth pertinent ‘ ) o ‘
aPpThe problem is to determine the conditions for which the velocity proflle‘ in a.‘nf‘:flral
convection situation is similar to the velocity profile in anotlhef na.tural 20::13:]20;:;;:: l::(i
ditions, i.e., velocity 1s zer
Both systems have the same boundary con , SamCace! 8
withinylhe bulk fluid removed from the surface. Now employ the dynamic similarity
argument introduced in Section 3.1.1.
First, Eq. (7.34) is written for system 1:
2 [
dv, dv,, v, (736
! L + BT - T, )

e ax T ey ey

System 2 is related to system 1 by geometrical and dynamic similarities expressed by the
ratios:

X, Y L, _ W
_ P K, = =
Ko=x 7% 71, vy
8
Uy Yn ‘[il_ K = 2 (7.37)
K” = U\Z - ;\_1 - U3 ¢ gz
8 (r-T.), (T~ Ta),
1 - — = —.
K, =g, Ky T-1,), ([N-T),

Now, we replace v, X, Vi, Uyps 815 €LC. in Eq. (7.36) by their equivalents in Eq. (7.37); then

we write Eq. (7.34) for system 2%

2 K v,
K; v, K i ﬂ_ - K v, — + KKK 8.8,(T - Tolyr (7.38)
E Vo, —a—g - —k—L el a‘y: K[ 2 ayz- E

Equation (7.38) if rewritten without all the Ks would of course be valid, because it would
transform back to Eq. (7.34). Hence,

_I_<: = ———K"K" = KKK, =1, (1.39)
Kok T
and therefore
LT UL
(7.40a,b.c)

Thus,
glﬁl(Tu - Tu)l = gzﬂz(T() - Tm):'

If we combine Eqs. (7.40a) and (7.40b) we get

v, L, UyL, (7.41)
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which are Reynolds numbers. The combination of Eqs. (7.40b) and (7.40c), yields

880 - TE el - T (1.42)

Yiv, Vo,

The group of variables represented in Eq. (7.42) could be considered a dimensionless
number, but by reflecting on the physical aspects, we realize that the velocity of the fluid is
not an independent quantity, but that it rather depends on the buoyant force. Hence, the v’s
are eliminated from Eq. (7.42), and substituting their equivalents from Eq. (7.41), we obtain

8B, - T )L} B,(T, - T,)L;

1 |(o ), 1 _ ) 2(0 )2 2. (7.43)
7 2
v v,

This dimensionless number is important in natural convection problems and is called the
Grashof number, Gr.  When buoyancy is the only driving force for convection, the velocity

- profile is determined entirely by the quantities in the Grashof number, and the Reynolds

number is superfluous.

Recall that for forced convection, as discussed in Section 7.2, the Nusselt number is
correlated in the general form

Nu = f(Pr,Re), forced convection.
Correspondingly then, for natural convection, the Nusselt number is correlated as
Nu = f(Pr,Gr), natural convection.

Returning to the complete solution of Egs. (7.34), (7.35) and the appropriate boundary
conditions, we present the velocity and temperature distributions (see Fig. 7.6). The curves
show that for Pr < 1, 6, = 6, but for Pr > 1, §; < 8. For liquid metals, therefore, 8, is
about equal to § in free convection as contrasted to forced convection in which &, > 6.
Corresponding to the temperature profile, shown in Fig. 7.6b, the local Nusselt number is

Nu 12
Wols JO 005216 P}’) = (7.44)
yar,/a (0861 + Pn)

Equation (7.44) applies for a wide range of Pr numbers (0.00835 < Pr < 1000) for laminar
flow conditions, with 10* < Gr,-Pr < 10"

Example 7.2 Calculate the initial heat transfer rate from a plate at 360 K, 0.3 m long

X'0.1 m wide hung vertically in air at 290 K. Contrast the results with those of

Example 7.1.

Solution. Equation (7.44) should be integrated to obtain the average heat transfer coefficient
which can be applied to the whole plate.

. InEq. (7.44), because h, varies as x*'*, then the average h equals 3h,. Hence Nu, defined

as hL/k is

Nu, 0.902 Pr'?

= . (7.45)
‘/Gr,_ /4 (0.861 + Pr)"
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0.6 /~‘\
0.5 / Pr=0.01 \

0 \\
4
x
x| g (5 \
RN 0.3 0.72

o~ /
0.2 )

100] N
1000——
0% ] 4 s 6 7
Grelw y
(a) [} X
1.0
™~_o.01
0.8 e~

o)y
(b) 4 x

i i i iles.
i i ical plate. (a) Dimensionless velocity profi
ig. 7.6 Laminar natural convection for a vertical p ) Y )
fb:)g D7inG\ensionless temperature profiles. (Calculated b);)\ S}.‘ Ostrach, gk;-t{ ,:(dvg:rg; C;ol::zr[n. ]C]Z’;i”(::,d
i M. Rohsenow an v Yo , S i
_ Note 2635, Feb. 1952, as presented in W. ! ‘
Ilegfnenmm Transfer, Prentice-Hall, Englewood Cliffs, New Jersey, 1961, pages 155-159.)

af Gr,_'Prz (7.45a)
Nu, = 0.902 35861 = PO

es at the average boundary temperature of 325 K. Forairat325 K

or

We evaluate the properti
Pr=0.703 and gB/V* =9.85 X 10" K m?>.

The Grashof number is

— 8
or, = 88 1, - T)L2 = (9.85 x 1070360 - 290)(0.3%) = 1.86 x 10",

L v
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Next, we calculate the product Gr,-Pr to test for laminar flow conditions
Gr,-Pr = (1.86 x 10%)(0.703) = 1.31 x10°,

Since it is between 10* and 10'°, Eq. (7.45a) is valid. When we substitute values of Gr, and
Pr into Eq. (7.45a),

Nu, = 55.8,
from which,
= N K o 55.8 gt AG ) = 523 Wm?2K™!
h = uL Z - ( . ) 0.3 = . m .

Finally, we evaluate the rate of heat transfer Q.
Q = KT, - T)A = (5.23)(360 - 290)(0.1 X 0.3) = 11.0 W.

For Example 7.1, Q was 57.1 W; that is, the rate of heat transfer for forced convection is
considerably higher. This is the usual case.

It is instructive to look at special forms of Eq. (7.45a). First, if Pr = 0.7, then it reduces
to

Nu, = 0.477 Gr'". (7.45b)

It so happens that for many gases, including air, O,, CO, He (and other inert gases), H, and
CO,, Pris very close to 0.7 and practically constant for temperatures even as high as 1900 K.
Thus, we can apply Eq. (7.45b) directly to gases.

Second, if Pr — O (liquid metals), then Eq. (7.59a) reduces to

*[ Gr, Pr? (7.45¢)

Nu, = 0.936 e

7.4 HEAT CONDUCTION

We consider heat conduction through the wall of a hollow solid cylinder. Figure 7.7 depicts
the situation, and also locates a suitable unit volume with a thickness Ar. From a practical
point of view, we may visualize a long cylindrical shaped furnace, and it is desirable to
calculate the heat loss to the surroundings. Suppose the cylinder is long enough so that end
effects are negligible; in addition, the system is at steady state, so that both the inside and
outside surfaces of the wall are at some fixed temperatures, T, and T, respectively. For such
a system, we develop the energy equation.

Rate of energy in by conduction across surface at r 2wrlg,|,
Rate of energy out by conduction across surface at r + Ar 2wrlq,|, , o

At steady state, these are the only terms that contribute to the energy balance. Thus

21l'flq,|, +Aar " 21rr1ql|l = 0.
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Fig. 7.7 Heat conduction through a solid cylindrical wall. The shaded area depicts the unit volume.

If we divide all terms by 2wlAr, and take the limit as Ar approaches zero, we obtain

d(rq,) — 0 (7.46)
dar

Equation (7.46) requires that
rq, = C,. (7.47)

Note that g,, the heat flux, is not constant in itself. Since g, = -k(dT/dr), Eq. (7.47) yields

, r’

dr

Integrating once again, we find for constant thermal conductivity that

C, (04 (7.49)

1
T=-—k—lnr-—k'~

By absorbing k in new constants, Eq. (7.49) simplifies even more to
T=Clnr+C, (7.50)
The boundary conditions under consideration are
BC1 atr=r, T=T;

BC2 atr=r, T=T
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Determination of the constants usin, iti i
4 L 14 the boundar y conditions d
i bt )’Iel S the temperature

T-T, In (r/rz)

T,-T, " In(n) {d=h)
and the heat flux
q__de_k T - T, 75
i ey 752

As the heat flows through lhe: wall, it encounters larger areas, so that the flux itself decreases
The heat flow Q, however, is constant (as it must be for steady state), and is given by .

2mwkL

= 2 e pt Rt
Q q.2wrL) In (r,/rz)

(1, - 1). (7.53)
This problem, elemcr?lary' as it is, demonstrates an interesting engineering characteristic
Suppose we use the cylindrical wall as the insulation of a furnace wall. As increasing
(hlc_knesses of insulation are added, the outside layer, because of its greater area, offers less
n?sxstar;::c to heat flow than an inner layer of the same thickness. Thus, from a cost point of
view, the expense of additional insulation can become i i i
the e greater than the savings a
reduction in heat losses. e assoctated with

Exa'a'mp.le 7.3 As part of a proposed continuous annealing proces

cylindrical furnace chamber 101 mm inside diameter andglg.Z m 76:g.mdrr€: Sisr:::i;:r ;)uur%":c:
tcmperafure of the furnace wall under operating conditions is predicted to be about 920 K and
the outside surface about 310 K. If it is decided that a heat loss of 73 kW is an acceptabl
figure, then which of the following insulations would you use? .

k, Wm' K" Cost, $ per m’
Insulation A4 0.70 350
Insulation B 0.35 880

Solution. Equation (7.53) can be written

In (%] - Z’erL (T, - Ty)

For A4, then

o [’z] _ (m(0.70)(15.2)(920 - 310) _ | o
(13 % 10Y) o

at ith { il 50.5 mm we have r, = 883 mm. S"Hllal y for B using the ratio o
SO th w I 0 N 1
2 ’ 4 f

n 0.35
In [-’—_l‘] = ['0—7—0] (0.559) = 0.280.
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so that r, = 66.8 mm. We calculate the volume of insulation and the corresponding cost.

(8837 - 50.5) mm? | 1m? [152m |350%
& = $87.69.
Cost 4 110007 min? i T $87.69

In the same manner, Cost B = $80.34. The obvious choice is B.

7.5 THE GENERAL ENERGY EQUATION "

In Sections 7.1-7.4, we determined temperature distributions and heat fluxes for some simple
systems, by developing pertinent energy balances in differential form. In this ection we
develop the general energy equation, which can be reduced to solve specific prg\g\ems.
Consider the stationary unit volume AxAyAz in Figs. 2.4 and 2.5; we applydthe law of
conservation of energy to the fluid contained within this volume at any given time

rate of accumulation net rate of internal net rate of net rate of
of internal and = | and kinetic energies | + | heat in by | - work done |. (7:54)
kinetic energy in by convection conduction by fluid

This statement of the law of energy conservation is not completely general, because other
forms of energy transport, €.8., radiation, and sources such as electrical Joule heating, are

not included. ‘
The rate of accumulation of internal-and kinetic energy within the unit volume is simply

[i}
AxdyAz 5 (pU + %pvz), (7.55)

where U is the internal energy per unit mass of fluid and v is the magnitude of the local fluid

velocity.
The ner rate of internal and kinetic energies in by convection is

-t o),

+ AxAz{uy(pU + ';‘puz)ly - vy(pU + %puz)‘y.M}

AyAz{vx(pU + %pm)

+ AxAy{vz(pU +'-;'pu2)‘z = vl(pU + %PUZ)L .M}‘ (7.56)

In a similar manner, the net rate of energy in by conduction is
AyAZ{q‘lx - ql'x . Ax} * AXAZ{q)’lY - qy‘y . Ay} = AXA‘y{qlll - q:lz . Az}' (757)

The work done by the fluid consists of work against gravity, work against pressure, and
work against viscous forces. The rate of doing work against the three components of gravity
is

-pAxAyAz(v,8, * v,8, * v,8,)- (7.58)
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The rate of doing work against the pressure at the six faces of the unit volume j
is

AYAZ[(P”,) 1} * AXAZ{(Puy) iy cay T (Pur)ly}

Pul)

X’Ax_(

+ A)cAy[(Puz)[Z e = (Pul)lz}' (7.59)

The rate of doing work against the x-directed viscous forces is

A -
yAZ{T"U‘ A 52 B T’“U‘IX} ' AXAZ{Tyxuxly cay T Tyx"'x|y}

5 & XAy{Tqu 2e8z ~ TUU,IZ}~ (7.60)

'Slmllar expressions may be written for the work against the y- and z-directed viscous forces

A)’Az{rnvyl, cax " 7xy“,|,} + AXAZ{",,”,[,.A, -7l }
wyly

+ AXAy{szuylz saz szl}y'l}, (761)
and

AyAZ{T"UZI‘ vax " szuz'.x} * AXAZ{TyzUzIyoAy = Tl | }
yrozly.

+AXBYTY,, L, - T ) (1.62)

. Substituting all these expressions into E ividi
i q. (7.54), dividing by AxAyAz, and taki
limit as Ax, Ay, and Az approach zero, we obtain one form of the cner)éy équatioz e the

B [2 , 3 9
FU 3] =[Gy )« g5 ufpy o) < 3 wpu - 4o

9, dq, 9,
ox " 7y- " a—Z * p(v‘g‘ * uygy M Uzgz)

ad 9 .
EV‘PU‘+-6;PUy+:9;PUz]

-

"3y (T, T T, — +
ox (“ x WUy * Ta¥) * dy (T”vx Ty * Tyzuz)

+

i (Tuvx + Tz,U + T u)
0z - e (7.63)
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i i t properties
f energy in terms of the transpor
Table 7.5 The equation O

b - C
constant p, m, and k; note that the constancy of p implies that C, )

Rectangular coordinates

D
Nl
(7]
-
ﬂ
=
Tl
s13
=

-)ZT (:)ZT N ("ZT]
[Ox * —(ET ez
. \2 ouv v 2
dv, 2 Jv.\? ot (_5 2 A_y)
. 2'1{(5;) SRl A A
2
avx 611: 2 Ql_)l a_v_{) } . (A)
+(a—:+§) M (a: T

Cylindrical coordinates

aT  OT v, dT 51\’

1o aT)+18’T+‘f’I
nc..(g ot T T k[r rr( ar| T a0 o

. 2
2 dv\? duy 10
av,\? 1{0vg __) }+ {(__ it
T N
2
av,  aw\? [1ov i(_”} ()
*(57*2) +{?a ey

+

Spherical coordinates
oT  oT vy dT | Vs a_T) ,{12 2 (rl ‘E)
”C(—+"ar+755+rsinoa¢ ar\" ar
2
oT 1 T (_3_v_,
4+ = ! g Slno( +T—2‘66—3 + 2n 3
rtsin0 20 00 rtsin ¢
. pecotf\?
e 5]
rog r rsinf ¢¢

o[v) 1o’ ! i‘i_,,,_a_(v_’)]z
el 15+ Lrmane T

sinb 0 vy | . 1 ?}_9]2} ©
+[—“, 20\sin0]  rsinf 2o

1 y
Note: The terms COlllalnCd in braces { } are assocmled with viscous dlSSlpat on and may usu

neolected. except for systems with large velocity gradients.

ally be
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gExample 7.4 Refer back to Fig. 7.3 and the system described in Section 7.2.  Using
Table 7.4 or 7.5 derive the energy equation.

Solution. Table 7.5 is selected because the fluid has constant properties. Flow is two-
dimensional in rectangular coordinates so Eq. (A) is the best choice. Before proceeding,
recall that there are two velocity components v, and v,. Also, itis a good idea to qualitatively
sketch the temperature field. Having done so, you should recognize that T = T(x,y). Now,
we can proceed to simplify Eq. (A) in Table 7.5. Notice that C, = C,.

aT . ’
v i 0 because there is steady state .

aT

Y: 97 T 0  because v, = 0and 7 = T(x,y).
T
= 0 because T = T(x,y).

All terms in { } are zero because we neglect viscous heating. We are left with
e[, 2T, , or) _ o1, or
pC, Y o t v, ay = %2 6y’ .

Except for fluids with very low Pr numbers, we can ignore conduction in the direction of
flow; hence

and we finally write:

ar o _ BT
Uxax'*vyay —(XW_

PROBLEMS

7.1 For laminar flow, calculate the results given in Table 7.1 for Nu, for slug flow
(v, = uniform) and uniform heat flux in a circular tube.

7.2 A liquid film at T, flows down a vertical wall at a higher temperature 7,. Consider heat
transfer from the wall to the liquid for such contact times that the liquid temperature changes
appreciably only in the immediate vicinity of the wall. (See figure on next page.)

a) Show that the energy equation can be written (state assumptions):

aT T
PCpUl a—z = F

b) The energy equation contains v,, What would you use for v,?
¢) Write appropriate boundary conditions.
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7.2 (cont.)

To

Solid surlace
Ty (constant)

5 = film thickness

To

ymL it
y=0 +—+—+—++—++

7.3 A gap of thickness L exists 'be.tween two
parallel plates of porous solids. Fluid is forced to
flow through the bottom plate, acerss the gz;‘p,t atrllld(

e upper plate. Assume that the ) ‘
:13::1 gg?vk;g:v‘it[r?a c::stanit) velocity V in laminar flow with straight slreamhne; acrossetchgvgez;p,
The system is at steady state with the upper and lower plat‘e‘s at {,_ m}],d ﬂl:;i (;'eis[? " ga{)_
a) Write an appropriate energy equation and bogndary cond.mons o; the R mé
b) Solve for the temperature in the gap. c) Derive an equation for the hea

gap.

7.4 A liquid of constant density and viscosity flows

upward in the annulus (R, £ r £ R;) between two

very long and concentric cylinders. Assume that both

the flow and the temperature are fully developgd.

The inner cylinder is electrically heated and supplies

a constant and uniform flux, g;, to the liquid. The

outer cylinder is maintained at a constant temperature,

To.
a) Solve for v,.
b) Write the energy equation and state your Fluid enters

assumptions. B at T,

¢) Write appropriate boundary conditions.

7.5 Air at 0.3 m s* and 365 K flows parallel to a flat plate at 310 K. .a) Calcp‘lzgen:;e
distance from the leading edge to where the momen'tum boundary layer thlclkness( }l\sickness';
b) At the same distance from the leading edge, what is the thermal bpundarfy ay(;:rlo ik pmé
¢) Up to the same distance from the leading e.dge, how much heat is transterre

(one side) in 600 s, if the plate is 100 mm wide?
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7.6 Consider natural convection between parallel vertical o
plates maintained at T, and T,,, respectively. Assume that :
the plates are very long and the convection is fully
developed. For constant properties: a) Write the energy
equation and boundary conditions for temperature.
b) Write the momentum equation with the Boussinesq
approximation and boundary conditions for velocity.

]

7.7 The surface temperature of a vertical plate is maintained at 390 K. At 0.24 m from the

bottom of the plate, calculate the heat transfer coefficient to: a) air at 290 K; b) helium at
290 K.

7.8 Liquid metal flows through a channel with a rectangular cross-section. Two walls are
-perfectly insulated and two are at a constant temperature of 7. The metal has temperature

T, as it enters the channel, and 7,, > 7,,. Assume steady state, fully developed flow and no
solidification.

Enters T,
aaTy ____ » T, -
,,,,, N y 1
I’*'Z"--'~ s Tw T__x. ,//; Zb
LI
[+~ 2a--»|

a) Write the energy equation in terms of temperature for constant thermal properties.
b) Write the boundary conditions.

7.9 Consider the creeping flow of a fluid about a rigid sphere as illustrated by Fig. 2.9. The
sphere is maintained at T;, and the fluid approaches from below with a temperature 7T, and
velocity V... a) Write the energy equation which applies to the fluid in the vicinity of the
sphere. Assume steady-state conditions. b) Write appropriate boundary conditions for

part a). ¢) What other equations or results would you use in order to solve the system
described by parts a) and b)?

7.10 A very long fiber of glass (radius = R) is extracted
from a hole in the bottom of a crucible. It is extracted
with a constant velocity V into a gas at T,; assume slug
flow.

a) For uniform properties write the energy equation for
temperature in the fiber. Do not ignore conduction in
the direction of flow.

b) Write boundary conditions. [Hint: At r = R, the |i,
flux to the surface must equal the flux to the Y
surrounding gas "via h."]

7.11 Starting with Eq. (7.44), derive Eq. (7.45) and define the dimensionless numbers in
Eq. (7.45).
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7.12 ‘
a) Determine an expression that gives the heat flow Q (W) through a solid spherical shell

with inside and outside radii of r, and r,, respectively.
b) Examine the results regarding what happens as the shell thickness becomes larger
compared with the inside radius.

7.13 A sphere of radius R is in a motionless fluid(no forced or natural convection). The
surface temperature of the sphere is maintained at Ty and the bulk fluid temperature is T,
a) Develop an expression for the temperature in the fluid surrounding the sphere.
b) Determine the Nusselt number for this situation. Such a value would be the limiting value
for the actual system with convection as the forces causing convection become very small.

7.14 For the system in Fig. 2.1 develop an expression for the temperature distribution in the
falling film. Assume fully developed flow, constant properties, and fully developed
temperature profile. The free liquid surface is maintained at T = T and the solid surface at
T = T, where T, and T, are constants. a) Ignore viscous heating effects. b) Include viscous

heating effects.

Answer b)
T _x b ag - )
T -7, 8| %7 5 '
7V .
where Br = , Brinkman number.

k(T, - T,)

7.15 Consider heat conduction through a plane wall of thickness Ax, and T, and T, are the
surface temperatures. Derive the steady-state heat flux in terms of T;, T, and Ax if the
thermal conductivity varies according to

k = k,(1 + aT)

where k, and a are constants.

7.16 A liquid at a temperature T, continuously
enters the bottom of a small tank, overflows into
a tube, and then flows downward as a film on the
inside. At some position down the tube (z = 0)
when the flow is fully developed, the pipe heats
the fluid with a uniform flux g;. The heat loss
from the liquid’s surface is sufficiently small so
that it may be neglected. HeE
a) For steady-state laminar flow with constant
properties, develop by shell balance or show
by reducing an equation in Table 7.5 the
pertinent differential energy equation that
applies to the falling film.
b) Write the boundary conditions for the heat
flow.
c) What other information must complement
parts a) and b) in order to solve the energy
equation?
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CORRELATIONS AND DATA FOR
HEAT TRANSFER COEFFICIENTS

Thc problems of heat flow with convection, discussed in the preceding chapter, pertain to
simple systems with laminar flow. Despite the simplicity of laminar flow problems, they
should not pe underestimated. Many simple solutions have been applied to real system; with
fnpproxxmi{tlng assumptions and, besides, the simpler systems provide models for
interpretation of complex systems. The more complex nature of turbulent flow and its limited
accessibility to mathematical treatment requires, however, an empirical approach to heat
trans.fer. On the other hand, the study of turbulent flow is not entirely empirical; it is
possnblg to establish certain theoretical bases for the analyses of turbulent transfer procyzesses
and an introduction to this complex area is given in Chapter 16.
. Figure 8.1 illustrates heat transfer in a bounded fluid. The fluid is artificially subdivided
into three regions: the turbulent core, the transition zone, and the laminar sublayer near the
surface. In the turbulent core, thermal energy is transferred rapidly due to the eddy (mixing)
action o.f turbulent flow. Conversely, within the laminar sublayer, energy is transferred by
conduction alone—a much slower process than the eddy process. In the transition zone
energy transport by both conduction and by eddies is appreciable. Hence, most of the totai
tempfefature drop between the fluid and the surface is across the laminar sublayer and the
transition zone. Within the turbulent core, the temperature gradients are quite shallow

In Chflpter 3, it was convenient to define a friction factor to deal with momcr.num
transport in fluids in contact with surfaces. Similarly, for energy transport between fluids
and surfaces, it is convenient to define a heat transfer coefficient by

o e _ kT,
T " T,oT @.1)

w % " ”n 2 H'tH :
soirl;re the subscript "0" refers to the respective quantities evaluated at the wall, and T is
. ¢ temperature of the fluid. If the fluid is infinite in extent, we take 7} as the fluid
cOlrnlfxzﬁrature far removed from the surface, and designate it T,. If the fluid flows in a
e iltnf:d space, such as inside a tube, T, is usually the mixed mean temperature, denoted by
m 1L 1S a temperature that would exist if the fluid at a parti i ,

! particular cross section were removed
and allowed to mix adiabatically.



