CLASES 3 Y 4 - (ME3201)

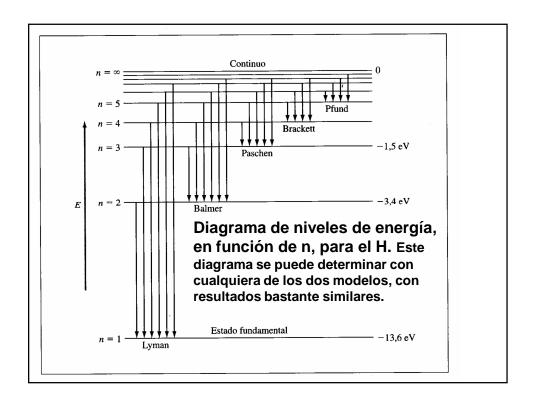
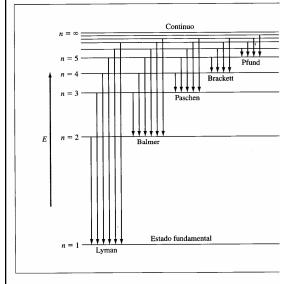

ESTRUCTURA ELECTRÓNICA DE LOS ELEMENTOS AL ESTADO FUNDAMENTAL.

TABLA PERIÓDICA.

ELECTRONEGATIVIDAD.

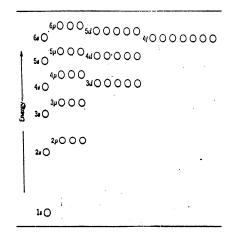
El Modelo Moderno y resultados de nuestro interés


- Así es como el Modelo Moderno (MM) reemplazó al de Bohr.
- En el MM:
 - reaparecen los números cuánticos n, l y m, de valores e interpretación similares a los de Bohr.
 - y surge el concepto de orbitales (nubes de probabilidad espaciales), reemplazando al concepto de órbitas (líneas 2D).

Multiplicidad de los números.

- Aquí nos interesa más la multiplicidad de cada nuevo número cuántico que el valor de la energía asociada.
- n 12, 3, ... Principal
- I: 0, 1... +(n-1) Secundario.
- m: -I, ..., 0, ..., + I Magnético.
- s. +1/2, -1/2 Spin (fermiones)

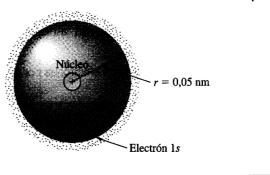
Generalizando a partir de la estructura de cajas del *H*. (Aproximación)



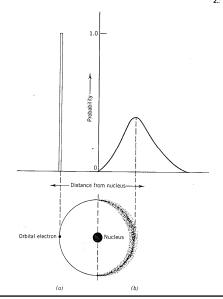
Los valores de energía de los niveles son propios de cada elemento.

Sin embargo, en primera aproximación, la distribución relativa de estos niveles es similar para distintos elementos (Aplicando el Mod. Moderno).

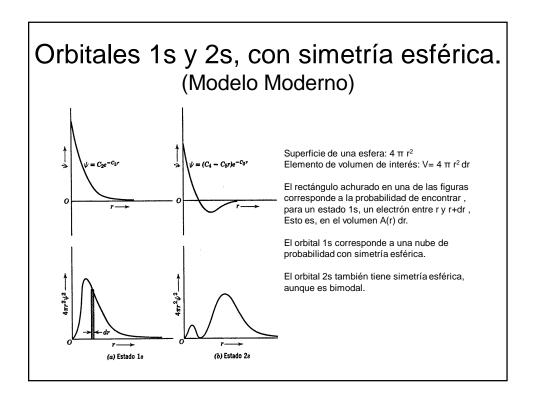
De modo que, <u>sin valores</u> <u>de energía</u>, usaremos este gráfico como una tabla maestra <u>aproximada</u> para cualquier elemento.

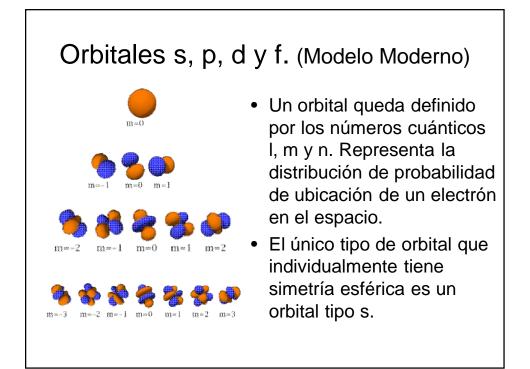

Estructura de Cajas (con n, l y m) (Tabla maestra referencial)

- Estructura genérica de cajas, para representar los niveles energéticos de un elemento cualquiera, aproximadamente.
- Nótese la cercanía de los niveles de energía 3d y 4s.
 La posición relativa de estos niveles es fuerte función del elemento, hay que analizar caso a caso.

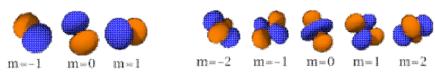

Orbital tipo s en el Modelo Moderno

(nube de probabilidad de simetría esférica para s)



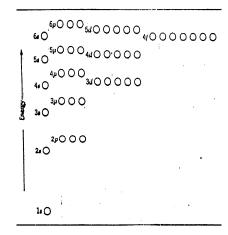

FIGURA 2.5. Nube de carga electrónica (esquemática) alrededor del núcleo de un átomo de hidrógeno en su estado fundamental. El círculo exterior de radio r = 0,05 nm corresponde al radio de la primera órbita de Bohr (es decir, para n = 1) e indica la región más probable de encontrar al electrón.

Orbital tipo 1s (= 0)



- Representación de un orbital tipo s, según: a) el Modelo de Bohr (2D), y b) el Modelo Moderno (3D).
- En el Modelo Moderno los orbitales corresponden a nubes de probabilidad. Para el caso del orbital s, la probabilidad de encontrar un electrón en un punto del espacio (ψ² dV) depende sólo de r (posición radial); es decir, tiene simetría esférica.

Orbitales completos y simetría electrónica esférica



- Considere los orbitales tipo p (*I*= 1) de un nivel *n*>1.
- ¿Cuántos electrones (e) completan ese conjunto? Respuesta: 6 e. ¿Por qué? (Referirse al Principio de Exclusión de Pauli)
- Para los orbitales p, con desde 1 a 5 e, no se tiene simetría electrónica esférica.
- Un conjunto de orbitales completo, de cualquier tipo (p, d, f, ...) sí tiene simetría electrónica esférica. Es decir, son esféricos los p con 6 e, los d con 10 e, etc.

Principios Incertidumbre de Pauli y principio de Hund

- Un orbital queda plenamente definidos por el trío (n,l,m). En ese orbital puede haber un electrón o hasta dos; esto último ,a condición de que esos electrones tengan spines opuestos. (Consecuencia del Principo de Exclusión de Pauli)
- En un conjunto de orbitales (n, l y m= .l, ..., +l), los electrones presentar spines paralelos. (Hund). (De esta manera se tiene una ligera disminución de energía).
- Ejemplo: fórmula electrónica desarrollada del Nitrógeno:

Estructura de Cajas (Tabla maestra referencial)

- Estructura genérica de cajas, para representar los niveles energéticos de un elemento cualquiera, aproximadamente.
- Nótese la cercanía de los niveles de energía 3d y 4s. La posición relativa de estos niveles es fuerte función del elemento, hay que analizar caso a caso.

Estructura electrónica de algunos elementos al estado fundamental

Ejemplos:

Comportamiento de los gases inertes o nobles

 Los gases nobles o inertes son: gases monoatómicos a temperatura y presión normales, y muy poco reactivos.

Es decir, son muy estables al estado fundamental; no tienden a ceder ni a captar electrones.

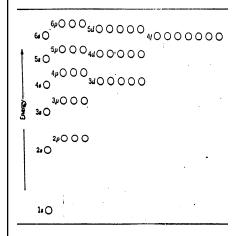
Estructura electrónica de los gases inertes

El primer gas noble es el He $^{\circ}$ (Z=2)= 1s 2 2s 2

Fórmula externa de los otros (Ne°, Ar°,Kr°,Xe° y Rn°): **ns²2p**⁶, donde n es el número cuántico principal mayor (más externo) del respectivo átomo. Ejemplo:

 $Kr^{\circ}(Z=36)=1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}4s^2 4p^6$

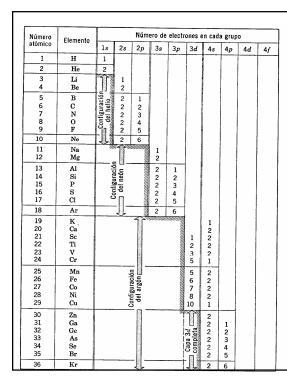
Estos átomos presentan una estructura electrónica muy estable, con simetría esférica. Es la explicación de su comportamiento químico.


Los gases inertes como referencia de estabilidad

- Los gases inertes presentan estructuras estables
- Los otros átomos inicialmente al estado fundamental, al ser excitados, tenderán a adoptar, muchas veces, la estructura electrónica externa del gas inerte más próximo.
- Así, los otros átomos tenderán a captar o a ceder electrones, según corresponda. (Electronegatividad)
- Los anteriores fundamentos justifican la siguiente fórmula electrónica abreviada:

$$Na^{\circ}(Z=11)=1s^{2}2s^{2}2p^{6}3s^{1}=Ne^{\circ}3s^{1}$$

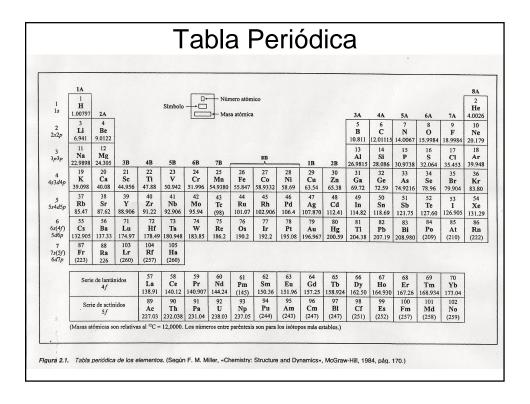
Estructuras Electrónicas de algunos elementos al Estado Fundamental							
Configura 	ciones electrónica	Configuración electrónica	18 19 20 21 22 23	Ar K Ca Sc Ti V	[Ne]35°3p° [Ar]45 [Ar]45° [Ar]30°48° [Ar]30°45° [Ar]30°45°		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Heliber Constant of the Liber Constant of the Manager	1s 1s² [He]2s² [He]2s² [He]2s²2p² [He]2s²2p² [He]2s²2p² [He]2s²2p² [He]2s²2p² [Me]3s² [Ne]3s² [Ne]3s² [Ne]3s³3p² [Ne]3s³3p² [Ne]3s³3p³ [Ne]3s³3p³ [Ne]3s³3p³ [Ne]3s³3p³	24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 45 47 48 49 50 51 51 52	Cr M e o i u n a e s e r r b r y r b o o u n d gd n n b e Cr M G G A S B r r B r y Z N M r R R P A C In S S F S T R R P A C In S S F	[Ar]36*4s [Ar]36*5s [Ar]46*5s [Ar]46		


Sobre el gráfico referencial de Cajas

Se observa que al crecer n:

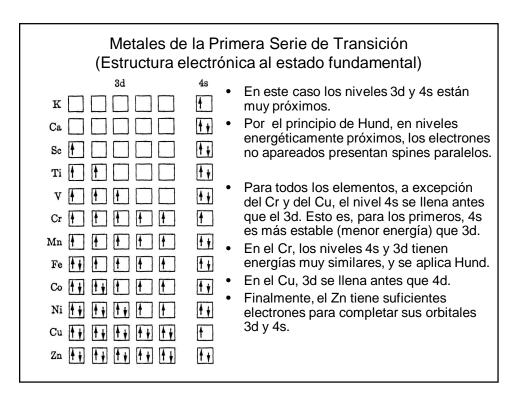
- la diferencia de energía entre dos niveles sucesivos disminuye
- y el número de subniveles también crece.

Así, por ejemplo, el nivel 4s tiene una energía comparable al del 3d. Aquí se requiere experimentos y cálculos muy finos, para saber cual está por arriba y cual por debajo.

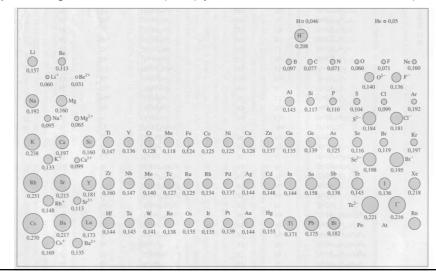

La citada cercanía energética de los niveles 3d y 4s, se manifiesta en la Primera Serie de Metales de Transición (desde el K al Zn).

A tal cercanía se asocia un fuerte efecto sobre las propiedades de estos metales (Fe, Cu, etc.)

Para Z mayores, existen otras series de metales de transición.


Criterios para la Tabla Periódica de los Elementos

- Desde el SXIX se procuró clasificar a los elementos conocidos en conjuntos de elementos con propiedades similares.
- En seguida se trató de relacionar esto con la estructura; por ejemplo, con el peso atómico y luego con el número atómico.
- Conocida la estructura electrónica externa (eee) de los elementos, estos se clasificaron por Z creciente y por eee similar. Tal es el criterio de clasificación de una Tabla Periódica moderna, en grupos (columnas). en períodos (filas, n).


Casos especiales

- El H y el He, átomos muy pequeños, se deben tratar como casos especiales en la Tabla Periódica.
- Algunos argumentos de justificación:
 - -el H es el único átomo que, al ionizarse positivamente (H⁺), queda como un protón desnudo, sin apantallamiento electrónico. También puede pasar a H⁻.
 - -el He es un gas noble muy pequeño, con Z=2 y fórmula $1s^2$. Todos los otros gases inertes tienen, como vimos, una estructura electrónica ns^22p^6 .

Tamaños de algunos átomos e iones, en nm.

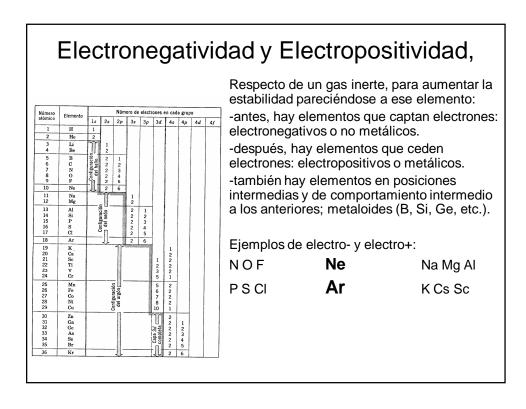
La única regla sencilla es que al bajar por un grupo (n crece) el tamaño crece. Muchos de los elementos más pequeños tienen bajo Z: Segundo Período(n=2) y no-metales del 3er Período(n=3).

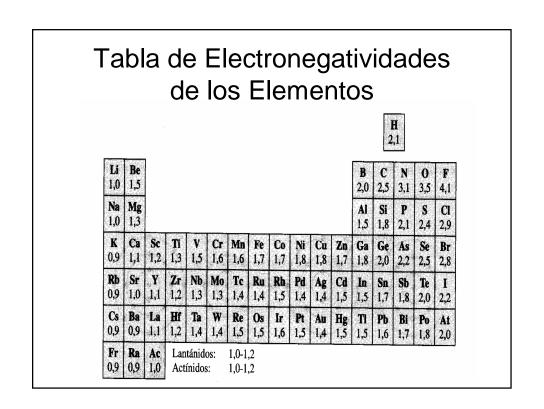
Metales y No Metales, con estructuras externas próximas a s²p⁶ externo.

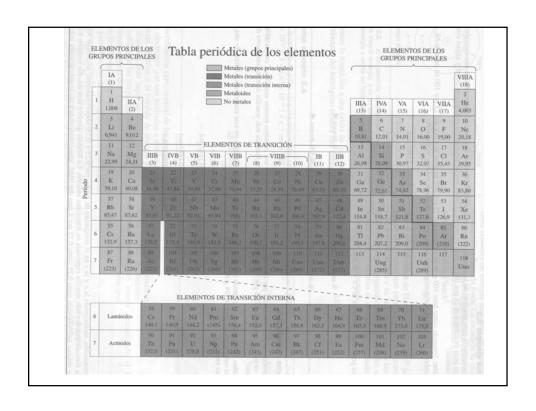
Ejemplos de electro- y electro+:

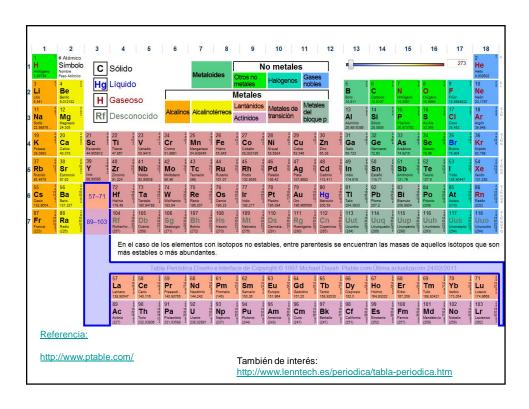
NOF **Ne** Na Mg Al

PSCI Ar K Cs Sc


 $Cl^{\circ} + 1e = Cl^{-}$


 $Na^{\circ} = Na^{+} + 1e$




 $Na^{\circ} + Cl^{\circ} = Na^{+}Cl^{-}$

cristal iónico de sal común (gema)

METALES MÁS COMPLEJOS (No de los grupos principales)

- -METALES DE TRANSICIÓN (De nuestro interés)
- -LANTÁNIDOS Y ACTÍNIDOS

SON ELEMENTOS ELECTROPOSITIVOS (Metales)

SU ESTRUCTURA EXTERNA ES LEJANA RESPECTO DE LA DE LOS GASES NOBLES

TIENEN VARIOS ORBITALES EXTERNOS ENERGÉTICAMENTE PRÓXIMOS, QUE PARTICIPAN EN EL ENLACE. Transición: *(n-1)d y (n)s*. Actínidos, caso U(Z=92): 5f y 6d.

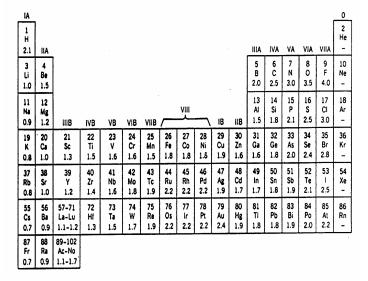
MÁS DE UN (1) ORBITAL EXTERNO PARTICIPA EN EL ENLACE.

VIMOS CON DETALLE EL CASO DE LOS METALES DE LA PRIMERA SERIE DE METALES DE TRANSICIÓN

METALES MÁS COMPLEJOS. Ubicación en la Tabla.

(Elementos grupos principales:

- a) los que completan el orbital externo s corresponden a los grupos (columnas) 1 y 2,
- b) y b) aquellos que completan los orbitales sp corresponden a los grupos (columnas) 13 a 18).


LOS METALES COMPLEJOS TIENEN OTROS TIPOS DE ORBITALES EXTERNOS, OCUPAN OTROS GRUPOS, ENSANCHANDO LA TABLA.

- METALES DE TRANSICIÓN (DE NUESTRO INTERÉS). VAN DEL GRUPO 3 AL 12.
- LANTÁNIDOS Y ACTÍNIDOS.
 IRÍAN INSERTOS A PARTIR DEL GRUPO 3. EN LAS TABLAS ADJUNTAS SE REPRESENTAN FUERA.

Resumen: estructura y propiedades químicas de metales y no metales

Metales			No metales		
1.	Tienen algunos electrones en niveles externos, normalmente tres o menos	1.	Tienen cuatro o más electrones en niveles externos		
2.	Forman cationes por pérdida de electrones	2.	Forman aniones por ganancia de electrones		
3.	Tienen bajas electronegati- vidades	3.	Tienen elevadas electronegati- vidades		

Otra Tabla de electronegatividad, más antigua (Linus Pauling, 1939.

Peridiocidad

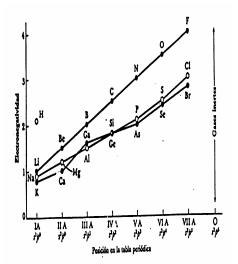


FIG. 2-3 Electronegatividad de algunos elementor en función de su posición en la tabla

En la Tabla Periódica, en primera aproximación:

- Al recorrer una fila hacia la derecha, la electronegatividad crece.
- Al recorrer una columna hacia arriba, la electronegatividad crece.

(Para los más complicados metales de transición, también se cumple).

Enlaces. (Lo que viene para CL2)

2.4.1. Enlaces atómicos primarios

Los enlaces atómicos primarios, en los cuales intervienen grandes fuerzas interatómicas, pueden subdividirse en las tres clases siguientes:

- Enlaces iónicos. En este tipo de enlace se ponen en juego fuerzas interatómicas relativamente grandes debidas a la transferencia de un electrón de un átomo a otro, produciéndose iones que se mantienen unidos por fuerzas culombianas (atracción de iones cargados positiva y negativamente). El enlace iónico es un enlace no direccional y relativamente fuerte.
- Enlaces covalentes. Corresponden a fuerzas interatómicas relativamente grandes creadas por la compartición de electrones para formar un enlace con una dirección localizada.
- Enlaces metálicos. Involucran fuerzas interatómicas relativamente grandes creadas mediante la compartición de electrones deslocalizados para formar un enlace fuerte no direccional entre los átomos.

2.4.2. Enlaces atómicos secundarios y moleculares

- Enlaces de dipolo permanente. Corresponden a enlaces intermoleculares relativamente débiles que se forman entre moléculas que poseen dipolos permanentes. Un dipolo en una molécula existe debido a la asimetría en la distribución de su densidad electrónica.
- 2. Enlaces de dipolo instantáneo. Átomos con distribución asimétrica de densidades electrónicas en torno a sus núcleos, son susceptibles de formar entre ellos enlace de dipolo eléctrico muy débil. Este tipo de enlace se llama instantáneo debido a que la densidad electrónica está continuamente cambiando con el tiempo.