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Chapter 1

OVERVIEW

This book studies a rich set of applied problems in economics, emphasizing the

dynamic aspects of economic decisions. While we are ultimately interested in appli-

cations, it is necessary to acquire some basic techniques before tackling the details

of specific dynamic optimization problems. Thus the book presents and integrates

tools, such as dynamic programming, numerical techniques and simulation based

econometric methods. We then use these tools to study a variety of applications of

in both macroeconomics and microeconomics.

The approach we pursue to studying economic dynamics is structural. As re-

searchers, we are frequently interested in inferring underlying parameters that rep-

resent tastes, technology and other primitives from observations of individual house-

holds and firms as well as from economic aggregates. If this inference is successful,

then we can test competing hypotheses about economic behavior and evaluate the

effects of policy experiments. In the end, our approach allows us to characterize the

mapping from primitives to observed behavior.

To appreciate what is at stake, consider the following policy experiment. In re-

cent years, a number of European governments have instituted policies of subsidizing

the scrapping of old cars and the subsequent purchase of a new car. What are the

1
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expected effects of these policies on the car industry and on government revenues?

At some level this question seems easy if a researcher ”knows” the demand function

for cars. But of course that demand function is, at best, elusive. Further, the de-

mand function estimated in one policy regime is unlikely to be very informative for

a novel policy experiment, such as the car scrapping subsidies.

An alternative approach is to build and estimate a dynamic model of household

choice over car ownership. Once the parameters of this model are estimated, then

various policy experiments can be evaluated.1 This seems considerably more difficult

than just estimating a demand function and indeed that is the case. The approach

requires the specification and solution of a dynamic optimization problem and then

the estimation of the parameters. But, as we argue here, this methodology is both

feasible and exciting.

It is the integration of the solution of dynamic optimization problems with the

estimation of parameters that is at the heart of the approach to the study of dynamic

economies. There are three key steps in our development of this topic. These are

reflected in the organization of the chapters.

The first step is to review the formal theory of dynamic optimization. This tool is

used in many areas of economics including macroeconomics, industrial organization,

labor economics, international economics and so forth. As in previous contributions

to the study of dynamic optimization, such as Sargent (1987) and Stokey and Lucas

(1989), our presentation starts with the formal theory of dynamic programming.

Given the large number of other contributions in this area, our presentation will rely

on existing theorems concerning the existence of solutions to a variety of dynamic

programming problems.

A second step is to present the numerical tools and the econometric techniques

necessary to conduct a structural estimation of the theoretical dynamic models.

These numerical tools serve two purposes: (i) to complement the theory in learn-
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ing about dynamic programming and (ii) to enable a researcher to evaluate the

quantitative implications of the theory. From our experience, the process of writing

computer code to solve dynamic programming problems is an excellent device for

teaching basic concepts of this approach.2

The econometric techniques provide the final link between the dynamic program-

ming problem and data. Our emphasis will be on the mapping from parameters of

the dynamic programming problem to observations. For example, a vector of pa-

rameters is used to numerically solve a dynamic programming problem which is

then simulated to create moments. An optimization routine then selects a vector of

parameters to bring these simulated moments close to the actual moments observed

in the data.

The complete presentation of these two steps will comprise the first three chap-

ters. To distinguish this material, which is more theoretical, we call this Part I of

the book.

The final step of the presentation comprises Part II of the book which is devoted

to the application of dynamic programming to specific areas of applied economics

such as the study of business cycles, consumption, investment behavior, etc. Each

of the applied sections of the text will contain four elements: presentation of the

specific optimization problem as a dynamic programming problem, characterization

of the optimal policy functions, estimation of the parameters and using models for

policy evaluation.

While the specific applications might be labelled ”macroeconomics”, the material

is of value in other areas of economics for a couple of reasons. First, the presentation

of these applications utilizes material from all parts of economics. So, for example,

the discussion of the stochastic growth model includes material on taxation and the

work on factor adjustment at the plant-level is of interest to economists in labor

and industrial organization. Second, these techniques are useful in any application
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where the researcher is interested in taking a dynamic optimization problem to data.

The presentation contains references to various applications of these techniques.

The novel element of this book is our presentation of an integrated approach to

the empirical implementation dynamic optimization models. Previous texts have

provided the mathematical basis for dynamic programming but those presentations

generally do not contain any quantitative applications. Other texts present the un-

derlying econometric theory but generally without specific economic applications.

This approach does both and thus provides a useable link between theory and ap-

plication as illustrated in the chapters of Part II.

Our motivation for writing this book is thus clear. From the perspective of un-

derstanding dynamic programming, explicit empirical applications complement the

underlying theory of optimization. From the perspective of applied macroeconomics,

explicit dynamic optimization problems, posed as dynamic programming problems,

provides needed structure for estimation and policy evaluation.

Since the book is intended to teach empirical applications of dynamic program-

ming problems, we plan to create a web-site for the presentation of code (MATLAB

and GAUSS) as well as data sets that will be useful for applications. The site will be

vital to readers wishing to supplement the presentation in Part II and also provide

a forum for further development of code.

The development of the material in this book has certainly benefited from the

joint work with Joao Ejarque, John Haltiwanger, Alok Johri and Jonathan Willis

that underlies some of the material. We thank these co-authors for their generous

sharing of ideas and computer code as well as their comments on the draft. Thanks

also to Victor Aguirregabiria, Yan Bai, Dean Corbae, Simon Gilchrist, Hang Kang,

Valérie Lechene, Nicola Pavoni, Marcos Vera for comments on various parts of the

book. Finally, we are grateful to numerous MA and PhD students at Tel Aviv

University, University of Texas at Austin, the IDEI at the Universit de Toulouse,
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the NAKE PhD program in Holland, the University of Haifa, University College

London for their numerous comments and suggestions during the preparation of

this material.



Part I

Theory
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Chapter 2

Theory of Dynamic Programming

2.1 Overview

The mathematical theory of dynamic programming as a means of solving dynamic

optimization problems dates to the early contributions of Bellman (1957) and Bert-

sekas (1976). For economists, the contributions of Sargent (1987) and Stokey and

Lucas (1989) provide a valuable bridge to this literature.

2.2 Indirect Utility

Intuitively, the approach of dynamic programming can be understood by recalling

the theme of indirect utility from basic static consumer theory or a reduced form

profit function generated by the optimization of a firm. These reduced form repre-

sentations of payoffs summarizes information about the optimized value of the choice

problems faced by households and firms. As we shall see, the theory of dynamic

programming uses this insight in a dynamic context.

2.2.1 Consumers

Consumer choice theory focuses on households who solve:

7
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V (I, p) = max
c

u(c) subject to: pc = I

where c is a vector of consumption goods, p is a vector of prices and I is income.3

The first order condition is given by

uj(c)/pj = λ for j = 1, 2...J .

where λ is the multiplier on the budget constraint and uj(c) is the marginal utility

from good j.

Here V (I, p) is an indirect utility function. It is the maximized level of utility

from the current state (I, p). So if someone is in this state, you can predict that they

will attain this level of utility. You do not need to know what they will do with their

income; it is enough to know that they will act optimally. This is very powerful logic

and underlies the idea behind the dynamic programming models studied below.

To illustrate, what happens if we give the consumer a bit more income? Welfare

goes up by VI(I, p) > 0. Can the researcher predict what will happen with a little

more income? Not really since the optimizing consumer is indifferent with respect

to how this is spent:

uj(c)/pj = VI(I, p) for all j.

It is in this sense that the indirect utility function summarizes the value of the

households optimization problem and allows us to determine the marginal value of

income without knowing further details about consumption functions.

Is this all we need to know about household behavior? No, this theory is static

and thus ignores savings, spending on durable goods as well as uncertainty over the

future. These are all important elements in the household optimization problem.

We will return to these in later chapters on the dynamic behavior of households.
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The point here was simply to recall a key object from optimization theory: the

indirect utility function.

2.2.2 Firms

Suppose that a firm chooses how many workers to hire at a wage of w given its stock

of capital, k, and product price, p. Thus the firm solves:

Π(w, p, k) = max
l

pf(l, k) − wl.

This will yield a labor demand function which depends on (w, p, k). As with V (I, p),

Π(w, p, k) summarizes the value of the firm given factor prices, the product price,

p, and the stock of capital, k. Both the flexible and fixed factors could be vectors.

Think of Π(w, p, k) as an indirect profit function. It completely summarizes the

value of the optimization problem of the firm given (w, p, k).

As with the households problem, given Π(w, p, k),we can directly compute the

marginal value of giving the firm some additional capital as Πk(w, p, k)=pfk(l, k)

without knowing how the firm will adjust its labor input in response to the additional

capital.

But, is this all there is to know about the firm’s behavior? Surely not as we

have not specified where k comes from. So the firm’s problem is essentially dynamic

though the demand for some of its inputs can be taken as a static optimization

problem. These are important themes in the theory of factor demand and we will

return to them in our firm applications.
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2.3 Dynamic Optimization: A Cake Eating Ex-

ample

Here we will look at a very simple dynamic optimization problem. We begin with a

finite horizon and then discuss extensions to the infinite horizon.4

Suppose that you have a cake of size W1. At each point of time, t = 1, 2, 3, ....T

you can consume some of the cake and thus save the remainder. Let ct be your

consumption in period t and let u(ct) represent the flow of utility from this con-

sumption. The utility function is not indexed by time: preferences are stationary.

Assume u(·) is real-valued, differentiable, strictly increasing and strictly concave.

Assume that limc→0 u′(c) → ∞. Represent lifetime utility by

T∑
t=1

β(t−1)u(ct)

where 0≤ β ≤ 1 and β is called the discount factor.

For now, assume that the cake does not depreciate (melt) or grow. Hence, the

evolution of the cake over time is governed by:

Wt+1 = Wt − ct (2.1)

for t = 1, 2, ..T . How would you find the optimal path of consumption, {ct}T
1 ?5

2.3.1 Direct Attack

One approach is to solve the constrained optimization problem directly. This is

called the sequence problem by Stokey and Lucas (1989). Consider the problem

of:

max
{ct}T

1 ,{Wt}T+1
2

T∑
t=1

β(t−1)u(ct) (2.2)
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subject to the transition equation (2.1), which holds for t = 1, 2, 3, ....T . Also, there

are non-negativity constraints on consumption and the cake given by: ct ≥ 0 and

Wt ≥ 0. For this problem, W1 is given.

Alternatively, the flow constraints imposed by (2.1) for each t could be combined

yielding:

T∑
t=1

ct + WT+1 = W1. (2.3)

The non-negativity constraints are simpler: ct ≥ 0 for t = 1, 2, ..T and WT+1 ≥ 0.

For now, we will work with the single resource constraint. This is a well-behaved

problem as the objective is concave and continuous and the constraint set is compact.

So there is a solution to this problem.6

Letting λ be the multiplier on (2.3), the first order conditions are given by:

βt−1u′(ct) = λ

for t = 1, 2, ..., T and

λ = φ

where φ is the multiplier on the non-negativity constraint on WT+1. The non-

negativity constraints on ct ≥ 0 are ignored as we assumed that the marginal utility

of consumption becomes infinite as consumption approaches zero within any period.

Combining equations, we obtain an expression that links consumption across

any two periods:

u′(ct) = βu′(ct+1). (2.4)

This is a necessary condition for optimality for any t: if it was violated, the agent

could do better by adjusting ct and ct+1. Frequently, (2.4) is referred to as an Euler
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equation.

To understand this condition, suppose that you have a proposed (candidate)

solution for this problem given by {c∗t}T
1 , {W ∗

t }T+1
2 . Essentially, the Euler equation

says that the marginal utility cost of reducing consumption by ε in period t equals

the marginal utility gain from consuming the extra ε of cake in the next period,

which is discounted by β. If the Euler equation holds, then it is impossible to

increase utility by moving consumption across adjacent periods given a candidate

solution.

It should be clear though that this condition may not be sufficient: it does

not cover deviations that last more than one period. For example, could utility be

increased by reducing consumption by ε in period t saving the ”cake” for two periods

and then increasing consumption in period t+2? Clearly this is not covered by a

single Euler equation. However, by combining the Euler equation that hold across

period t and t + 1 with that which holds for periods t + 1 and t + 2, we can see that

such a deviation will not increase utility. This is simply because the combination of

Euler equations implies:

u′(ct) = β2u′(ct+2)

so that the two-period deviation from the candidate solution will not increase utility.

As long as the problem is finite, the fact that the Euler equation holds across all

adjacent periods implies that any finite deviations from a candidate solution that

satisfies the Euler equations will not increase utility.

Is this enough? Not quite. Imagine a candidate solution that satisfies all of the

Euler equations but has the property that WT > cT so that there is cake left over.

This is clearly an inefficient plan: having the Euler equations holding is necessary

but not sufficient. Hence the optimal solution will satisfy the Euler equation for
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each period and the agent will consume the entire cake!

Formally, this involves showing the non-negativity constraint on WT+1 must

bind. In fact, this constraint is binding in the above solution: λ = φ > 0. This

non-negativity constraint serves two important purposes. First, in the absence of

a constraint that WT+1 ≥ 0, the agent would clearly want to set WT+1 = −∞ and

thus die with outstanding obligations. This is clearly not feasible. Second, the fact

that the constraint is binding in the optimal solution guarantees that cake is not

being thrown away after period T .

So, in effect, the problem is pinned down by an initial condition (W1 is given)

and by a terminal condition (WT+1 = 0). The set of (T − 1) Euler equations and

(2.3) then determine the time path of consumption.

Let the solution to this problem be denoted by VT (W1) where T is the horizon of

the problem and W1 is the initial size of the cake. VT (W1) represents the maximal

utility flow from a T period problem given a size W1 cake. From now on, we call this

a value function. This is completely analogous to the indirect utility functions

expressed for the household and the firm.

As in those problems, a slight increase in the size of the cake leads to an increase

in lifetime utility equal to the marginal utility in any period. That is,

V ′
T (W1) = λ = βt−1u′(ct), t = 1, 2, ...T.

It doesn’t matter when the extra cake is eaten given that the consumer is acting

optimally. This is analogous to the point raised above about the effect on utility of

an increase in income in the consumer choice problem with multiple goods.

2.3.2 Dynamic Programming Approach

Suppose that we change the above problem slightly: we add a period 0 and give an

initial cake of size W0. One approach to determining the optimal solution of this
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augmented problem is to go back to the sequence problem and resolve it using this

longer horizon and new constraint. But, having done all of the hard work with the

T period problem, it would be nice not to have to do it again!

Finite Horizon Problem

The dynamic programming approach provides a means of doing so. It essentially

converts a (arbitrary) T period problem into a 2 period problem with the appropriate

rewriting of the objective function. In doing so, it uses the value function obtained

from solving a shorter horizon problem.

So, when we consider adding a period 0 to our original problem, we can take

advantage of the information provided in VT (W1), the solution of the T period

problem given W1 from (2.2). Given W0, consider the problem of

max
c0

u(c0) + βVT (W1) (2.5)

where

W1 = W0 − c0; W0 given.

In this formulation, the choice of consumption in period 0 determines the size of

the cake that will be available starting in period 1, W1. So instead of choosing

a sequence of consumption levels, we are just choosing c0. Once c0 and thus W1

are determined, the value of the problem from then on is given by VT (W1). This

function completely summarizes optimal behavior from period 1 onwards. For the

purposes of the dynamic programming problem, it doesn’t matter how the cake will

be consumed after the initial period. All that is important is that the agent will be

acting optimally and thus generating utility given by VT (W1). This is the principle

of optimality, due to Richard Bellman, at work. With this knowledge, an optimal
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decision can be made regarding consumption in period 0.

Note that the first order condition (assuming that VT (W1) is differentiable) is

given by:

u′(c0) = βV ′
T (W1)

so that the marginal gain from reducing consumption a little in period 0 is summa-

rized by the derivative of the value function. As noted in the earlier discussion of

the T period sequence problem,

V ′
T (W1) = u′(c1) = βtu′(ct+1)

for t = 1, 2, ...T − 1. Using these two conditions together yields

u′(ct) = βu′(ct+1),

for t = 0, 1, 2, ...T − 1, a familiar necessary condition for an optimal solution.

Since the Euler conditions for the other periods underlie the creation of the

value function, one might suspect that the solution to the T + 1 problem using

this dynamic programming approach is identical to that from using the sequence

approach.7 This is clearly true for this problem: the set of first order conditions

for the two problems are identical and thus, given the strict concavity of the u(c)

functions, the solutions will be identical as well.

The apparent ease of this approach though is a bit misleading. We were able

to make the problem look simple by pretending that we actually knew VT (W1). Of

course, we had to solve for this either by tackling a sequence problem directly or by

building it recursively starting from an initial single period problem.

On this latter approach, we could start with the single period problem implying

V1(W1). We could then solve (2.5) to build V2(W1). Given this function, we could
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move to a solution of the T = 3 problem and proceed iteratively, using (2.5) to build

VT (W1) for any T .

Example

We illustrate the construction of the value function in a specific example. Assume

u(c) = ln(c). Suppose that T = 1. Then V1(W1) = ln(W1).

For T = 2, the first order condition from (2.2) is

1/c1 = β/c2

and the resource constraint is

W1 = c1 + c2.

Working with these two conditions:

c1 = W1/(1 + β) and c2 = βW1/(1 + β).

¿From this, we can solve for the value of the 2-period problem:

V2(W1) = ln(c1) + β ln(c2) = A2 + B2 ln(W1) (2.6)

where A2 and B2 are constants associated with the two period problem. These

constants are given by:

A2 = ln(1/(1 + β)) + β ln(β/(1 + β)) B2 = (1 + β)

Importantly, (2.6) does not include the max operator as we are substituting the

optimal decisions in the construction of the value function, V2(W1).

Using this function, the T = 3 problem can then be written as:

V3(W1) = max
W2

ln(W1 − W2) + βV2(W2)
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where the choice variable is the state in the subsequent period. The first order

condition is:

1

c1

= βV ′
2(W2).

Using (2.6) evaluated at a cake of size W2, we can solve for V ′
2(W2) implying:

1

c1

= β
B2

W2

=
β

c2

.

Here c2 the consumption level in the second period of the three-period problem and

thus is the same as the level of consumption in the first period of the two-period

problem. Further, we know from the 2-period problem that

1/c2 = β/c3.

This plus the resource constraint allows us to construct the solution of the 3-period

problem:

c1 = W1/(1 + β + β2), c2 = βW1/(1 + β + β2), c3 = β2W1/(1 + β + β2).

Substituting into V3(W1) yields

V3(W1) = A3 + B3 ln(W1)

where

A3 = ln(1/(1+β+β2))+β ln(β/(1+β+β2))+β2 ln(β2/(1+β+β2)), B3 = (1+β+β2)

This solution can be verified from a direct attack on the 3 period problem using

(2.2) and (2.3).



18

2.4 Some Extensions of the Cake Eating Problem

Here we go beyond the T period problem to illustrate some ways to use the dynamic

programming framework. This is intended as an overview and the details of the

assertions and so forth will be provided below.

2.4.1 Infinite Horizon

Basic Structure

Suppose that we consider the above problem and allow the horizon to go to infinity.

As before, one can consider solving the infinite horizon sequence problem given by:

max
{ct}∞1 ,{Wt}∞2

∞∑
t=1

βtu(ct)

along with the transition equation of

Wt+1 = Wt − ct

for t=1,2,......

Specifying this as a dynamic programming problem,

V (W ) = max
c∈[0,W ]

u(c) + βV (W − c)

for all W . Here u(c) is again the utility from consuming c units in the current

period. V (W ) is the value of the infinite horizon problem starting with a cake of

size W . So in the given period, the agent chooses current consumption and thus

reduces the size of the cake to W ′ = W − c, as in the transition equation. We use

variables with primes to denote future values. The value of starting the next period

with a cake of that size is then given by V (W −c) which is discounted at rate β < 1.
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For this problem, the state variable is the size of the cake (W ) that is given

at the start of any period. The state completely summarizes all information from

the past that is needed for the forward looking optimization problem. The control

variable is the variable that is being chosen. In this case, it is the level of consump-

tion in the current period, c. Note that c lies in a compact set. The dependence of

the state tomorrow on the state today and the control today, given by

W ′ = W − c

is called the transition equation.

Alternatively, we can specify the problem so that instead of choosing today’s

consumption we choose tomorrow’s state.

V (W ) = max
W ′∈[0,W ]

u(W − W ′) + βV (W ′) (2.7)

for all W . Either specification yields the same result. But choosing tomorrow’s

state often makes the algebra a bit easier so we will work with (2.7).

This expression is known as a functional equation and is often called a Bellman

equation after Richard Bellman, one of the originators of dynamic programming.

Note that the unknown in the Bellman equation is the value function itself: the

idea is to find a function V (W ) that satisfies this condition for all W . Unlike

the finite horizon problem, there is no terminal period to use to derive the value

function. In effect, the fixed point restriction of having V (W ) on both sides of (2.7)

will provide us with a means of solving the functional equation.

Note too that time itself does not enter into Bellman’s equation: we can express

all relations without an indication of time. This is the essence of stationarity.8

In fact, we will ultimately use the stationarity of the problem to make arguments

about the existence of a value function satisfying the functional equation.

A final very important property of this problem is that all information about the
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past that bears on current and future decisions is summarized by W , the size of the

cake at the start of the period. Whether the cake is of this size because we initially

had a large cake and ate a lot or a small cake and were frugal is not relevant. All

that matters is that we have a cake of a given size. This property partly reflects the

fact that the preferences of the agent do not depend on past consumption. But, in

fact, if this was the case, we could amend the problem to allow this possibility.

The next part of this chapter addresses the question of whether there exists a

value function that satisfies (2.7). For now, we assume that a solution exists and

explore its properties.

The first order condition for the optimization problem in (2.7) can be written as

u′(c) = βV ′(W ′).

This looks simple but what is the derivative of the value function? This seems

particularly hard to answer since we do not know V (W ). However, we take use the

fact that V (W ) satisfies (2.7) for all W to calculate V ′. Assuming that this value

function is differentiable,

V ′(W ) = u′(c),

a result we have seen before. Since this holds for all W , it will hold in the following

period yielding:

V ′(W ′) = u′(c′).

Substitution leads to the familar Euler equation:

u′(c) = βu′(c′).
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The solution to the cake eating problem will satisfy this necessary condition for all

W .

The link from the level of consumption and next period’s cake (the controls from

the different formulations) to the size of the cake (the state) is given by the policy

function:

c = φ(W ), W ′ = ϕ(W ) ≡ W − φ(W ).

Using these in the Euler equation reduces the problem to these policy functions

alone:

u′(φ(W )) = βu′(φ(W − φ(W )))

for all W .

These policy functions are very important for applied research since they provide

the mapping from the state to actions. When elements of the state as well as the

action are observable, then these policy functions will provide the foundation for

estimation of the underlying parameters.

An Example

In general, actually finding closed form solutions for the value function and the

resulting policy functions is not possible. In those cases, we try to characterize

certain properties of the solution and, for some exercises, we solve these problems

numerically.

However, as suggested by the analysis of the finite horizon examples, there are

some versions of the problem we can solve completely. Suppose then, as above, that

u(c) = ln(c). Given the results for the T-period problem, we might conjecture that

the solution to the functional equation takes the form of:
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V (W ) = A + B ln(W )

for all W . With this guess we have reduced the dimensionality of the unknown

function V (W ) to two parameters, A and B. But can we find values for A and B

such that V (W ) will satisfy the functional equation?

Taking this guess as given and using the special preferences, the functional equa-

tion becomes:

A + B ln(W ) = max
W ′

ln(W − W ′) + β(A + B ln(W ′)) (2.8)

for all W . After some algebra, the first-order condition implies:

W ′ = ϕ(W ) =
βB

(1 + βB)
W.

Using this in (2.8) implies:

A + B ln(W ) = ln
W

(1 + βB)
+ β(A + B ln(

βBW

(1 + βB)
))

for all W . Collecting terms into a constant and terms that multiply ln(W ) and then

imposing the requirement that the functional equation must hold for all W , we find

that

B = 1/(1 − β)

is required for a solution. Given this, there is a complicated expression that can be

used to find A. To be clear then we have indeed guessed a solution to the functional

equation. We know that because we can solve for (A,B) such that the functional

equation holds for all W using the optimal consumption and savings decision rules.

With this solution, we know that
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c = W (1 − β),W ′ = βW.

Evidently, the optimal policy is to save a constant fraction of the cake and eat the

remaining fraction.

Interestingly, the solution to B could be guessed from the solution to the T-

horizon problems where

BT =
T∑

t=1

βt−1.

Evidently, B = limT→∞BT . In fact, we will be exploiting the theme that the value

function which solves the infinite horizon problem is related to the limit of the finite

solutions in much of our numerical analysis.

Here are some exercises that add some interesting elements to this basic struc-

ture. Both begin with finite horizon formulations and then progress to the infinite

horizon problem.

Exercise 2.1

Suppose that utility in period t was given by u(ct, ct−1). How would you solve the

T period problem with these preferences? Interpret the first order conditions. How

would you formulate the Bellman equation for the infinite horizon version of this

problem?

Exercise 2.2

Suppose that the transition equation was modified so that

Wt+1 = ρWt − ct

where ρ > 0 represents a return from the holding of cake inventories. How would

you solve the T period problem with this storage technology? Interpret the first order
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conditions. How would you formulate the Bellman equation for the infinite horizon

version of this problem? Does the size of ρ matter in this discussion? Explain.

2.4.2 Taste Shocks

One of the convenient features of the dynamic programming problem is the simplicity

with which one can introduce uncertainty.9 For the cake eating problem, the natural

source of uncertainty has to do with the agent’s tastes. In other settings we will

focus on other sources of uncertainty having to do with the productivity of labor or

the endowment of households.

To allow for variations in tastes, suppose that utility over consumption is given

by:

εu(c)

where ε is a random variable whose properties we will describe below. The function

u(c) is again assumed to be strictly increasing and strictly concave. Otherwise, the

problem is the original cake eating problem with an initial cake of size W .

In problems with stochastic elements, it is critical to be precise about the timing

of events. Does the optimizing agent know the current shocks when making a

decision? For this analysis, assume that the agent knows the value of the taste

shock when making current decisions but does not know future values. Thus the

agent must use expectations of future values of ε when deciding how much cake to

eat today: it may be optimal to consume less today (save more) in anticipation of

a high realization of ε in the future.

For simplicity, assume that the taste shock takes on only two values: ε ∈ {εh, εl}

with εh > εl > 0. Further, we assume that the taste shock follows a first -order

Markov process 10 which means that the probability a particular realization of ε
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occurs in the current period depends only the value of ε attained in the previous

period.11 For notation, let πij denote the probability that the value of ε goes from

state i in the current period to state j in the next period. For example, πlh is define

from:

πlh ≡ Prob(ε′ = εh|ε = εl)

where ε′ refers to the future value of ε. Clearly πih + πil = 1 for i = h, l. Let Π be a

2x2 matrix with a typical element πij which summarizes the information about the

probability of moving across states. This matrix is naturally called a transition

matrix.

Given this notation and structure, we can turn to the cake eating problem. It

is critical to carefully define the state of the system for the optimizing agent. In

the nonstochastic problem, the state was simply the size of the cake. This provided

all the information the agent needed to make a choice. When taste shocks are

introduced, the agent needs to take this into account as well. In fact, the taste

shocks provide information about current payoffs and, through the Π matrix, are

informative about the future value of the taste shock as well.12

Formally, the Bellman equation is:

V (W, ε) = max
W ′

εu(W − W ′) + βEε′|εV (W ′, ε′)

for all (W, ε) where W ′ = W − c as usual. Note that the conditional expectation is

denoted here by Eε′|εV (W ′, ε′) which, given Π, is something we can compute.13

The first order condition for this problem is given by:

εu′(W − W ′) = βEε′|εV1(W
′, ε′)

for all (W, ε). Using the functional equation to solve for the marginal value of cake,

we find:
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εu′(W − W ′) = βEε′|ε[ε′u′(W ′ − W ′′)] (2.9)

which, of course, is the stochastic Euler equation for this problem.

The optimal policy function is given by

W ′ = ϕ(W, ε)

The Euler equation can be rewritten in these terms as:

εu′(W − ϕ(W, ε)) = βEε′|ε[ε′u′(ϕ(W, ε) − ϕ(ϕ(W, ε), ε′)))]

The properties of this policy function can then be deduced from this condition.

Clearly both ε′ and c′ depend on the realized value of ε′ so that the expectation on

the right side of (2.9) cannot be split into two separate pieces.

2.4.3 Discrete Choice

To illustrate some of the flexibility of the dynamic programming approach, we build

on this stochastic problem. Suppose the cake must be eaten in one period. Perhaps

we should think of this as the wine drinking problem recognizing that once a good

bottle of wine is opened, it should be consumed! Further, we modify the transition

equation to allow the cake to grow (depreciate) at rate ρ.

The problem is then an example of a dynamic, stochastic discrete choice problem.

This is an example of a family of problems called optimal stopping problems .14

The common element in all of these problems is the emphasis on timing of a single

event: when to eat the cake; when to take a job; when to stop school, when to stop

revising a chapter, etc. In fact, for many of these problems, these choices are not

once in a lifetime events and so we will be looking at problems even richer than the

optimal stopping variety.
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Let V E(W, ε) and V N(W, ε) be the value of eating the size W cake now (E) and

waiting (N) respectively given the current taste shock, ε ∈ {εh, εl}. Then,

V E(W, ε) = εu(W )

and

V N(W ) = βEε′|εV (ρW, ε′).

where

V (W, ε) = max(V E(W, ε), V N(W, ε))

for all (W, ε). To understand these terms, εu(W ) is the direct utility flow from

eating the cake. Once the cake is eaten the problem has ended. So V E(W, ε) is just

a one-period return. If the agent waits, then there is no cake consumption in the

current period and next period the cake is of size (ρW ). As tastes are stochastic,

the agent choosing to wait must take expectations of the future taste shock, ε′. The

agent has an option next period of eating the cake or waiting further. Hence the

value of having the cake in any state is given by V (W, ε), which is the value attained

by maximizing over the two options of eating or waiting. The cost of delaying the

choice is determined by the discount factor β while the gains to delay are associated

with the growth of the cake, parameterized by ρ. Further, the realized value of ε

will surely influence the relative value of consuming the cake immediately.

If ρ ≤ 1, then the cake doesn’t grow. In this case, there is no gain from delay

when ε = εh. If the agent delays, then utility in the next period will have to be

lower due to discounting and, with probability πhl, the taste shock will switch from

low to high. So, waiting to eat the cake in the future will not be desirable. Hence,

V (W, εh) = V E(W, εh) = εhu(W )



28

for all W .

In the low ε state, matters are more complex. If β and ρ are sufficiently close

to 1 then there is not a large cost to delay. Further, if πlh is sufficiently close to 1,

then it is likely that tastes will switch from low to high. Thus it will be optimal not

to eat the cake in state (W, εl).
15

Here are some additional exercises.

Exercise 2.3

Suppose that ρ = 1. For a given β, show that there exists a critical level of

πlh,denoted by π̄lh such that if πlh > π̄lh, then the optimal solution is for the agent

to wait when ε = εl and to eat the cake when εh is realized.

Exercise 2.4

When ρ > 1, the problem is more difficult. Suppose that there are no variations

in tastes: εh = εl = 1. In this case, there is a trade-off between the value of waiting

(as the cake grows) and the cost of delay from discounting.

Suppose that ρ > 1 and u(c) = c1−γ

1−γ
. What is the solution to the optimal stop-

ping problem when βρ1−γ < 1? What happens if βρ1−γ > 1? What happens when

uncertainty is added?

2.5 General Formulation

Building on the intuition gained from this discussion of the cake eating problem,

we now consider a more formal abstract treatment of the dynamic programming

approach.16 We begin with a presentation of the non-stochastic problem and then

add uncertainty to the formulation.
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2.5.1 Non-Stochastic Case

Consider the infinite horizon optimization problem of an agent with a payoff function

for period t given by σ̃(st, ct). The first argument of the payoff function is termed the

state vector, (st). As noted above, this represents a set of variables that influences

the agent’s return within the period but, by assumption, these variables are outside

of the agent’s control within period t. The state variables evolve over time in a

manner that may be influenced by the control vector (ct), the second argument of

the payoff function. The connection between the state variables over time is given

by the transition equation:

st+1 = τ(st, ct).

So, given the current state and the current control, the state vector for the subse-

quent period is determined.

Note that the state vector has a very important property: it completely summa-

rizes all of the information from the past that is needed to make a forward-looking

decision. While preferences and the transition equation are certainly dependent on

the past, this dependence is represented by st: other variables from the past do

not affect current payoffs or constraints and thus cannot influence current decisions.

This may seem restrictive but it is not: the vector st may include many variables

so that the dependence of current choices on the past can be quite rich.

While the state vector is effectively determined by preferences and the transition

equation, the researcher has some latitude in choosing the control vector. That

is, there may be multiple ways of representing the same problem with alternative

specifications of the control variables.

We assume that c ∈ C and s ∈ S. In some cases, the control is restricted to be

in subset of C which depends on the state vector: c ∈ C(s). Finally assume that
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σ̃(s, c) is bounded for (s, c) ∈ S × C. 17

For the cake eating problem described above, the state of the system was the

size of the current cake (Wt) and the control variable was the level of consumption

in period t, (ct). The transition equation describing the evolution of the cake was

given by

Wt+1 = Wt − ct.

Clearly the evolution of the cake is governed by the amount of current consumption.

An equivalent representation, as expressed in (2.7), is to consider the future size of

the cake as the control variable and then to simply write current consumption as

Wt+1 − Wt.

There are two final properties of the agent’s dynamic optimization problem worth

specifying: stationarity and discounting. Note that neither the payoff nor the

transition equations depend explicitly on time. True the problem is dynamic but

time per se is not of the essence. In a given state, the optimal choice of the agent

will be the same regardless of “when” he optimizes. Stationarity is important both

for the analysis of the optimization problem and for empirical implementation of

infinite horizon problems. In fact, because of stationarity we can dispense with time

subscripts as the problem is completely summarized by the current values of the

state variables.

The agent’s preferences are also dependent on the rate at which the future is

discounted. Let β denote the discount factor and assume that 0 < β < 1. Then we

can represent the agent’s payoffs over the infinite horizon as

∞∑
t=0

βtσ̃(st, ct) (2.10)

One approach to optimization is then to maximize (2.10) through the choice of

{ct} for t = 0, 1, 2, ... given s0 and subject to the transition equation. Let V (s0) be
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the optimized value of this problem given the initial state.

Alternatively, one can adopt the dynamic program approach and consider the

following equation, called Bellman’s equation:

V (s) = max
c∈C(s)

σ̃(s, c) + βV (s′) (2.11)

for all s ∈ S, where s′ = τ(s, c). Here time subscripts are eliminated, reflecting the

stationarity of the problem. Instead, current variables are unprimed while future

ones are denoted by a prime (′).

As in Stokey and Lucas (1989), the problem can be formulated as

V (s) = max
s′∈Γ(s)

σ(s, s′) + βV (s′) (2.12)

for all s ∈ S. This is a more compact formulation and we will use it for our

presentation.18 Nonetheless, the presentations in Bertsekas (1976) and Sargent

(1987) follow (2.11). Assume that S is a convex subset of �k.

Let the policy function that determines the optimal value of the control (the

future state) given the state be given by s′ = φ(s). Our interest is ultimately in the

policy function since we generally observe the actions of agents rather than their

levels of utility. Still, to determine φ(s) we need to ”solve” (2.12). That is, we

need to find the value function that satisfies (2.12). It is important to realize that

while the payoff and transition equations are primitive objects that models specify

a priori, the value function is derived as the solution of the functional equation,

(2.12).

There are many results in the lengthy literature on dynamic programming prob-

lems on the existence of a solution to the functional equation. Here, we present

one set of sufficient conditions. The reader is referred to Bertsekas (1976), Sar-

gent (1987) and Stokey and Lucas (1989) for additional theorems under alternative
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assumptions about the payoff and transition functions.19

Theorem 1 Assume σ(s, c) is real-valued, continuous and bounded, 0 < β < 1 and

the constraint set, Γ(s), is non-empty, compact-valued and continuous, then there

exists a unique value function V (s) that solves (2.12)

Proof: See Stokey and Lucas (1989),[Theorem 4.6].

Instead of a formal proof, we give an intuitive sketch. The key component in the

analysis is the definition of an operator, commonly denoted as T, defined by:

T (W )(s) = max
s′∈Γ(s)

σ(s, s′) + βW (s′) for all s ∈ S.20

So, this mapping takes a guess on the value function and, working through the

maximization for all s, produces another value function, T (W )(s). Clear, any V (s)

such that V (s) = T (V )(s) for all s ∈ S is a solution to (2.12). So, we can reduce

the analysis to determining the fixed points of T (W ).

The fixed point argument proceeds by showing the T (W ) is a contraction using

a pair of sufficient conditions from Blackwell (1965). These conditions are: (i)

monotonicity and (ii) discounting of the mapping T (V ). Monotonicity means that

if W (s) ≥ Q(s) for all s ∈ S, then T (W )(s) ≥ T (Q)(s) for all s ∈ S. This property

can be directly verified from the fact that T (V ) is generated by a maximization

problem. So that if one adopts the choice of φQ(s) obtained from

max
s′∈Γ(s)

σ(s, s′) + βQ(s′) for all s ∈ S.

When the proposed value function is W (s) then:

T (W )(s) = max
s′∈Γ(s)

σ(s, s′) + βW (s′) ≥ σ(s, φQ(s)) + βW (φQ(s))

≥ σ(s, φQ(s)) + βQ(φQ(s)) ≡ T (Q)(s)
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for all s ∈ S.

Discounting means that adding a constant to W leads T (W ) to increase by

less than this constant. That is, for any constant k, T (W + k)(s) ≤ T (W )(s) + βk

for all s ∈ S where β ∈ [0, 1). The term discounting reflects the fact that β must be

less than 1. This property is easy to verify in the dynamic programming problem:

T (W + k) = max
s′∈Γ(s)

σ(s, s′) + β[W (s′) + k] = T (W ) + βk, for all s ∈ S

since we assume that the discount factor is less than 1.

The fact that T (W ) is a contraction allows us to take advantage of the contrac-

tion mapping theorem.21 This theorem implies that: (i) there is a unique fixed point

and (ii) this fixed point can be reached by an iteration process using an arbitrary

initial condition. The first property is reflected in the theorem given above.

The second property is used extensively as a means of finding the solution to

(2.12). To better understand this, let V0(s) for all s ∈ S be an initial guess of the

solution to (2.12). Consider V1 = T (V0). If V1 = V0 for all s ∈ S, then we have the

solution. Else, consider V2 = T (V1) and continue iterating until T (V ) = V so that

the functional equation is satisfied. Of course, in general, there is no reason to think

that this iterative process will converge. However, if T (V ) is a contraction, as it is

for our dynamic programming framework, then the V (s) that satisfies (2.12) can be

found from the iteration of T (V0(s)) for any initial guess, V0(s). This procedure is

called value function iteration and will be a valuable tool for applied analysis of

dynamic programming problems.

The value function which satisfies (2.12) may inherit some properties from the

more primitive functions that are the inputs into the dynamic programming problem:

the payoff and transition equations. As we shall see, the property of strict concavity

is useful for various applications.22 The result is given formally by:

Theorem 2 Assume σ(s, s′) is real-valued, continuous, concave and bounded, 0 <
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β < 1, S is a convex subset of �kand the constraint set is non-empty, compact-

valued, convex and continuous, then the unique solution to (2.12) is strictly concave.

Further, φ(s) is a continuous, single-valued function.

Proof: See Theorem 4.8 in Stokey and Lucas (1989).

The proof of the theorem relies on showing that strict concavity is preserved

by T (V ): i.e. if V (s) is strictly concave, then so is T (V (s)). Given that σ(s, c) is

concave, let our initial guess of the value function be the solution to the one-period

problem

V0(s) ≡ max
s′∈Γ(s)

σ(s, s′).

V0(s) will be strictly concave. Since T (V ) preserves this property, the solution to

(2.12) will be strictly concave.

As noted earlier, our interest is in the policy function. Note that from this

theorem, there is a stationary policy function which depends only on the state

vector. This result is important for econometric application since stationarity is

often assumed in characterizing the properties of various estimators.

The cake eating example relied on the Euler equation to determine some proper-

ties of the optimal solution. However, the first-order condition from (2.12) combined

with the strict concavity of the value function is useful in determining properties

of the policy function. Beneveniste and Scheinkman (1979) provide conditions such

that V (s) is differentiable (Stokey and Lucas (1989), Theorem 4.11). In our dis-

cussion of applications, we will see arguments that use the concavity of the value

function to characterize the policy function.
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2.5.2 Stochastic Dynamic Programming

While the non-stochastic problem is perhaps a natural starting point, in terms of

applications it is necessary to consider stochastic elements. Clearly the stochas-

tic growth model, consumption/savings decisions by households, factor demand by

firms, pricing decisions by sellers, search decisions all involve the specification of

dynamic stochastic environments.

Further, empirical applications rest upon shocks that are not observed by the

econometrician. In many applications, the researcher appends a shock to an equation

prior to estimation without being explicit about the source of the error term. This

is not consistent with the approach of stochastic dynamic programming: shocks are

part of the state vector of the agent. Of course, the researcher may not observe all

of the variables that influence the agent and/or there may be measurement error.

Nonetheless, being explicit about the source of error in empirical applications is part

of the strength of this approach.

While stochastic elements can be added in many ways to dynamic programming

problems, we consider the following formulation which is used in our applications.

Letting ε represent the current value of a vector of ”shocks”; i.e. random variables

that are partially determined by nature. Let ε ∈ Ψ which is assumed to be a finite

set.23 Then using the notation developed above, the functional equation becomes:

V (s, ε) = max
s′∈Γ(s,ε)

σ(s, s′, ε) + βEε′|εV (s′, ε′) (2.13)

for all (s, ε).

Further, we have assumed that the stochastic process itself is purely exogenous

as the distribution of ε′ depends on ε but is independent of the current state and

control. Note too that the distribution of ε′ depends on only the realized value of

ε : i.e. ε follows a first-order Markov process. This is not restrictive in the sense
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that if values of shocks from previous periods were relevant for the distribution of

ε′, then they could simply be added to the state vector.

Finally, note that the distribution of ε′ conditional on ε, written as ε′|ε, is time

invariant. This is analogous to the stationarity properties of the payoff and transition

equations.. In this case, the conditional probability of ε′|ε are characterized by a

transition matrix, Π. The element πij of this matrix is defined as:

πij ≡ Prob(ε′ = εj|ε = εi)

which is just the likelihood that εj occurs in the next period, given that εi occurs

today. Thus this transition matrix is used to compute the transition probabilities

in (2.13). Throughout we assume that πij ∈ (0, 1) and
∑

j πij = 1 for each i. With

this structure:

Theorem 3 If σ(s, s′, ε) is real-valued, continuous, concave and bounded, 0 < β < 1

and the constraint set is compact and convex, then:

1. there exists a unique value function V (s, ε) that solves (2.13)

2. there exists a stationary policy function, φ(s, ε).

Proof: As in the proof of Theorem 2, this is a direct application of Blackwell’s

Theorem. That is, with β < 1, discounting holds. Likewise, monotonicity is imme-

diate as in the discussion above. See also the proof of Proposition 2 in Bertsekas

(1976), Chp. 6.

The first-order condition for (2.13) is given by:

σs′(s, s
′, ε) + βEε′|εVs′(s

′, ε′) = 0. (2.14)

Using (2.13) to determine Vs′(s
′, ε′) yields an Euler equation:

σs′(s, s
′, ε) + βEε′|εσs′(s

′, s′′, ε′) = 0. (2.15)
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This Euler equation has the usual interpretation. The expected sum of the effects

of a marginal variation in the control in the current period (s) must be zero. So,

if there is a marginal gain in the current period, this, in expectation, is offset by a

marginal loss in the next period.

Put differently, if a policy is optimal, there should be no variation in the value of

the current control that will, in expectation, make the agent better off. Of course,

ex post (after the realization of ε′), there may have been better decisions for the

agent and, from the vantage point of hindsight, mistakes were made. That is

σs′(s, s
′, ε) + βσs′(s

′, s′′, ε′) = 0. (2.16)

will surely not hold for all realizations of ε′. Yet, from the ex ante optimization we

know that these ex post errors were not predicable given the information available

to the agent.

As we shall see, this is a powerful insight that underlies the estimation of models

based upon a stochastic Euler equation such as 2.15. Yet, as illustrated in many

applications, the researcher may be unable to summarize conditions for optimality

through an Euler equation. In these cases, characterizing the policy function directly

is required.

2.6 Conclusion

The theory of dynamic programming is a cornerstone of this book. The point of

this chapter is to introduce researchers to some of the insights of this vast literature

and some of the results we will find useful in our applications. As mentioned earlier,

this chapter has been specifically directed to provide theoretical structure for the

dynamic optimization problems we will confront in this book. Of course, versions

of these results hold in much more general circumstances. Again the reader is urged
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to study Bertsekas (1976), Sargent (1987) and Stokey and Lucas (1989) for a more

complete treatment of this topic.



Chapter 3

Numerical Analysis

3.1 Overview

This chapter reviews numerical methods used to solve dynamic programming prob-

lems. This discussion provides a key link between the basic theory of dynamic

programming and the empirical analysis of dynamic optimization problems. The

need for numerical tools arises from the fact that generally dynamic programming

problems do not possess tractable closed form solutions. Hence, techniques must

be used to approximate the solutions of these problems. We present a variety of

techniques in this chapter which are subsequently used in the macroeconomic ap-

plications studied in Part II of this book.

The presentation starts by solving a stochastic cake eating problem using a

procedure called value function iteration. This same example is then used to

illustrate alternative methods that operate on the policy function rather than the

value function. Finally, a version of this problem is studied to illustrate the solution

to dynamic, discrete choice problems.

The appendix and the web page for this book contain the programs used in this

chapter. The applied researcher may find these useful templates for solving other

39
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problems. In section 3.A in the appendix, we present several numerical tools such

as numerical integration or interpolation techniques, which are useful when using

numerical methods.

A number of articles and books have been devoted to numerical programming.

For a more complete description, we refer the reader to Judd (1998), Amman et al.

(1996), Press et al. (1986) or Taylor and Uhlig (1990).

3.2 Stochastic Cake Eating Problem

We start with the stochastic cake eating problem defined by:

V (W, y) = max
0≤c≤W+y

u(c) + βEy′|yV (W ′, y′) for all (W, y)

with W ′ = R(W − c + y)

(3.1)

Here there are two state variables: W , the size of the cake brought into the current

period, and y, the stochastic endowment of additional cake. This is an example of

a stochastic dynamic programming problem from the framework in (2.5.2).

We begin by analyzing the simple case where the endowment is iid: the shock

today does not give any information on the shock tomorrow. In this case, the

consumer only cares about the total amount which can be potentially eaten, X =

W + y, and not the particular origin of any piece of cake. In this problem, there is

only one state variable X. We can rewrite the problem as:

V (X) = max
0≤c≤X

u(c) + βEy′V (X ′) for all X

with X ′ = R(X − c) + y′
(3.2)

If the endowment is serially correlated, then the agent has to keep track of

any variables which allow him to forecast future endowment. The state space, will

include X but also current and maybe past realizations of endowments. We present

such a case in section 3.3 where we study a discrete cake eating problem. Chapter 6.1

also presents the continuous cake eating problem with serially correlated shocks.
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The control variable is c, the level of current consumption. The size of the cake

evolves from one period to the next according to the transition equation. The goal

is to evaluate the value V (X) as well as the policy function for consumption, c(X).

3.2.1 Value Function Iterations

This method works from the Bellman equation to compute the value function by

backward iterations on an initial guess. While sometimes slower than competing

methods, it is trustworthy in that it reflects the result, stated in Chapter 2, that

(under certain conditions)the solution of the Bellman equation can be reached by

iterating the value function starting from an arbitrary initial value. We illustrate

this approach here in solving (3.2).24

In order to program value function iteration, there are several important steps:

1. choosing a functional form for the utility function.

2. discretizing the state and control variable.

3. building a computer code to perform value function iteration

4. evaluating the value and the policy function.

We discuss each steps in turn. These steps are indicated in the code for the stochastic

cake eating problem.

Functional Form and Parameterization

We need to specify the utility function. This is the only known primitive function

in (3.2): recall that the value function is what we are solving for! The choice of

this function depends on the problem and the data. The consumption literature has

often worked with a constant relative risk aversion (CRRA) function:

u(c) =
c(1−γ)

1 − γ
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The vector θ will represent the parameters. For the cake eating problem (γ, β)

are both included in θ. To solve for the value function, we need to assign particular

values to these parameters as well as the exogenous return R. For now, we assume

that βR = 1 so that the growth in the cake is exactly offset by the consumers

discounting of the future. The specification of the functional form and its parame-

terization are given in Part I of the accompanying Matlab code for the cake eating

problem.

State and Control Space

We have to define the space spanned by the state and the control variables as well

as the space for the endowment shocks. For each problem, specification of the state

space is important. The computer cannot literally handle a continuous state space,

so we have to approximate this continuous space by a discrete one. While the

approximation is clearly better if the state space is very fine (i.e. has many points),

this can be costly in terms of computation time. Thus there is a trade-off involved.

For the cake eating problem, suppose that the cake endowment can take two

values, low (yL) and high (yH). As the endowment is assumed to follow an iid

process, denote the probability a shock yi by πi, for i = L,H. The probability of

transitions can be stacked in a transition matrix:

π =

[
πL πH

πL πH

]
with πL + πH = 1

In this discrete setting, the expectation in (3.2) is just a weighted sum, so that

the Bellman equation can be simply rewritten:

V (X) = max
0≤c≤X

u(c) + β
∑

i=L,H

πiV (R(X − c) + yi) for all X

For this problem, it turns out that the natural state space is given by:[X̄L, X̄H ].

This choice of the state space is based upon the economics of the problem, which
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will be understood more completely after studying household consumption choices.

Imagine though that endowment was constant at a level yi for i = L,H. Then, given

the assumption βR = 1, the cake level of the household will (trust us) eventually

settle down to X̄i, for i = L,H. Since the endowment is stochastic and not constant,

consumption and the size of the future cake will vary with realizations of the state

variable, X, but it turns out that X will never leave this interval.

The fineness of the grid is simply a matter of choice too. In the program, let ns

be the number of elements in the state space. The program simply partitions the

interval [X̄L, X̄H ] into ns elements. In practice, the grid is usually uniform, with the

distance between two consecutive elements being constant. 25

Call the state space ΨS and let is be an index:

ΨS = {X is}ns
is=1 with X1 = X̄L, Xns = X̄H

The control variable, c, takes values in [X̄L, X̄H ]. These are the extreme levels of

consumption given the state space for X. We discretize this space into a nc size

grid, and call the control space ΨC = {cic}nc
ic=1.

Value Function Iteration and Policy Function

Here we must have a loop for the mapping T (v(X)) defined as

T (v(X)) = max
c

u(c) + β
∑

i=L,H

πivj (R(X − c) + yi) . (3.3)

Here v(X) represents a candidate value function, that is a proposed solution to

(3.2). If T (v(X)) = v(X), then indeed v(X) is the unique solution to (3.2). Thus

the solution to the dynamic programming problem is reduced to finding a fixed point

of the mapping T (v(X)).

Starting with an initial guess v0(X), we compute a sequence of value functions



44

vj(X):

vj+1(X) = T (vj(X)) = max
c

u(c) + β
∑

i=L,H

πivj (R(X − c) + yi) .

The iterations are stopped when |vj+1(X) − vj(X)| < ε, ∀is, where ε is a small

number. As T (.) is a contraction mapping (see chapter 2), the initial guess v0(X)

does not have any influence on the convergence to the fixed point, so that one can

choose for instance v0(X) = 0. However, finding a good guess for v0(X) helps to

decrease the computing time. Using the contraction mapping property, it can be

shown that the convergence rate is geometric, parameterized by the discount rate β.

We now review in more detail how the iteration is done in practice. At each

iteration, the values vj(X) are stored in a nsx1 matrix:

V =


vj(X

1)
...

vj(X
is)

...

vj(X
ns)


To compute vj+1, we start by choosing a particular size for the total amount of

cake at the start of the period, X is . We then search among all the points in the

control space ΨC for the one that maximizes u(c) + βEvj(X
′). Let’s denote it ci∗c .

This involves finding next period’s value, vj(R(X is − ci∗c )+ yi), i = L,H. With the

assumption of a finite state space, we look for the value vj(.) at the point nearest

to R(X is − ci∗c ) + yi. Once we have calculated the new value for vj+1(X
is), we can

proceed to compute similarly the value vj+1(.) for other sizes of the cake and other

endowment at the start of the period. These new values are then stacked in V.

Figure 3.1 gives a detailed example of how this can be programmed on a computer.

(Note that the code is not written in a particular computer language, so one has to

adapt the code to the appropriate syntax. The code for the value function iteration

piece is Part III of the Matlab code. )
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[Figure 3.1 approximately here]

Once the value function iteration piece of the program is completed, the value

function can be used to find the policy function, c = c(X). This is done by collecting

all the optimal consumption value, cic∗ for each value of X is . Here again, we only

know the function c(X) at the points of the grid. We can use interpolating methods

to evaluate the policy function at other points.

The value function and the policy function are displayed in Figures 3.2 and 3.3

for particular values of the parameters.

[Figure 3.2 approximately here]

[Figure 3.3 approximately here]

As discussed above, approximating the value function and the policy rules by

a finite state space requires a large number of points on this space (ns has to be

big). This is often very time consuming in terms of numerical calculations. One can

reduce the number of points on the grid, while keeping a satisfactory accuracy by

using interpolations on this grid. When we evaluated the function vj(R(X is − ci∗c )+

yi), i = L,H, we used the nearest value on the grid to approximate R(X is−ci∗c )+yi.

With a small number of points on the grid, this can be a very crude approximation.

The accuracy of the computation can be increased by interpolating the function

vj(.) (see section 3.A.1 for more details). The interpolation is based on the values

in V.

3.2.2 Policy Function Iterations

The value function iteration method can be rather slow, as it converges at a rate β.

Researchers have devised other methods which can be faster to compute the solution

to the Bellman equation in an infinite horizon. The policy function iteration, also
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known as Howard’s improvement algorithm, is one of these. We refer the reader to

Judd (1998) or Ljungqvist and Sargent (2000) for further details.

This method starts with a guess for the policy function, in our case c0(X). This

policy function is then used to evaluate the value of using this rule forever:

V0(X) = u(c0(X)) + β
∑

i=L,H

πiV0 (R(X − c0(X)) + yi) for all X.

This ”policy evaluation step” requires solving a system of linear equations, given

that we have approximated R(X − c0(X)) + yi by an X on our grid. Next, we do a

”policy improvement step” to compute c1(X) as:

c1(X) = argmax
c

[
u(c) + β

∑
i=L,H

πiV0 (R(X − c) + yi)

]
for all X.

Given this new rule, the iterations are continued to find V1(), c2(), . . ., cj+1() until

|cj+1(X) − cj(X)| is small enough. The convergence rate is much faster than the

value function iteration method. However, solving the ”policy evaluation step” can

be in some cases very time consuming, especially when the state space is large. Once

again, the computation time is much reduced if the initial guess c0(X) is close to

the true policy rule c(X).

3.2.3 Projection Methods

These methods compute directly the policy function without calculating the value

functions. They use the first order conditions (Euler equation) to back out the

policy rules. The continuous cake problem satisfies the first order Euler equation:

u′(ct) = Etu
′(ct+1)

if the desired consumption level is less than the total resources X = W + y. If there

is a corner solution, then the optimal consumption level is c(X) = X. Taking into

account the corner solution, we can rewrite the Euler equation as:

u′(ct) = max[u′(Xt), Etu
′(ct+1)]
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We know that, under the iid assumption, the problem has only one state variable,

X, so that the consumption function can be written c = c(X). As we consider the

stationary solution, we drop the subscript t in the next . The Euler equation can

be reformulated as:

u′
(
c(X)

)
− max

[
u′(X), Ey′u′

(
c
(
R(X − c(X)) + y′))] = 0 (3.4)

or

F (c(X)) = 0 (3.5)

The goal is to find an approximation ĉ(X) of c(X), for which (3.5) is approximately

satisfied. The problem is thus reduced to find the zero of F , where F is an operator

over function spaces. This can be done with a minimizing algorithm. There are two

issues to resolve. First, we need to find a good approximation of c(X). Second, we

have to define a metric to evaluate the fit of the approximation.

Solving for the Policy Rule

[Figure 3.4 approximately here]

Let {pi(X)} be a base of the space of continuous functions and let Ψ = {ψi} be

a set of parameters. We can approximate c(X) by

ĉ(X, Ψ) =
n∑

i=1

ψipi(X)

There is an infinite number of bases to chose from. A simple one is to consider

polynomials in X, so that ĉ(X, Ψ) = ψ0 + ψ1X + ψ2X
2 + .... Although this is an

intuitive choice, this is not usually the best one. In the function space, this base is

not an orthogonal base, which means that some elements tend to be collinear.

Orthogonal bases will yield more efficient and precise results. 26 The chosen base

should be computationally simple. Its elements should ”look like” the function to

approximate, so that the function c(X) can be approximated with a small number
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of base functions. Any knowledge of the shape of the policy function will be to a

great help. If, for instance this policy function has a kink, a method based only

on a series of polynomials will have a hard time fitting it. It would require a large

number of powers of the state variable to come somewhere close to the solution.

Having chosen a method to approximate the policy rule, we now have to be more

precise about what ”bringing F (ĉ(X, Ψ)) close to zero” means.

To be more specific, we need to define some operators on the space of continuous

functions. For any weighting function g(x), the inner product of two integrable

functions f1 and f2 on a space A is defined as:

〈f1, f2〉 =

∫
A

f1(x)f2(x)g(x)dx (3.6)

Two functions f1 and f2 are said to be orthogonal, conditional on a weighting

function g(x), if 〈f1, f2〉 = 0. The weighting function indicates where the researcher

wants the approximation to be good. We are using the operator 〈., .〉 and the

weighting function to construct a metric to evaluate how close F (ĉ(X, Ψ)) is to

zero. This will be done by solving for Ψ such that

〈F (ĉ(X, Ψ)), f(X)〉 = 0

where f(X) is some known function. We next review three methods which differs

in their choice for this function f(X).

First, a simple choice for f(X) is simply F (ĉ(X, Ψ)) itself. This defines the least

square metric as:

min
Ψ

〈F (ĉ(X, Ψ)), F (ĉ(X, Ψ))〉

The collocation method detailed in section 3.2.3 chose to find Ψ as

min
Ψ

〈F (ĉ(X, Ψ)), δ(X − Xi)〉 i = 1, . . . , n

where δ(X − Xi) is the mass point function at point Xi, i.e. δ(X) = 1 if X = Xi
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and δ(X) = 0 elsewhere. Another possibility is to define

min
Ψ

〈F (ĉ(X, Ψ)), pi(X)〉 i = 1, . . . , n

where pi(X) is a base of the function space. This is called the Galerkin method.

An application of this method can be seen in section 3.2.3, where the base is taken

to be ”tent” functions.

Figure 3.4 displays some element of a computer code which calculates the residual

function F (ĉ(X, Ψ)) when the consumption rule is approximated by a second order

polynomial. This can then be used in one of the proposed methods.

Collocation Methods

Judd (1992) presents in more details this method applied to the growth model. The

function c(X) is approximated using Chebyshev polynomials. These polynomials

are defined on the interval [0, 1] and take the form:

pi(X) = cos(i arccos(X)) X ∈ [0, 1], i = 0, 1, 2, . . .

For i = 0, this polynomial is a constant. For i = 1, the polynomial is equal to X.

As these polynomials are only defined on the [0, 1] interval, one can usually scale

the state variables appropriately. 27 The policy function can then be expressed as:

ĉ(X, Ψ) =
n∑

i=1

ψipi(X)

Next, the method find Ψ which minimizes

〈F (ĉ(X, Ψ)), δ(X − Xi)〉 i = 1, . . . n

where δ() is the mass point function. Hence, the method requires that F (ĉ(X, Ψ))

is zero at some particular points Xi and not over the whole range [X̄L, X̄H ]. The

method is more efficient if these points are chosen to be the zeros of the basis
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elements pi(X), here Xi = cos(π/2i). In this case the method is referred to as an

orthogonal collocation method. Ψ is the solution to a system of nonlinear equations:

F (ĉ(Xi, Ψ)) = 0 i = 1, . . . n

This method is good at approximating policy functions which are relatively smooth.

A draw back with this method is that the Chebyshev polynomials tends to display

oscillations at higher orders. The resulting policy function c(X) will also tend to

display wriggles. There is no particular rule for choosing n, the highest order of the

Chebyshev polynomial. Obviously, the higher n is the better the approximation,

but this comes at an increased cost of computation.

Finite Element Methods

McGrattan (1996) illustrates the finite element method with the stochastic growth

model (see also Reddy (1993) for a more in-depth discussion on finite elements).

To start, the state variable X is discretized over a grid {X is}ns
is=1. The finite

element method is based on the following functions:

pis(X) =



X − X is−1

X is − X is−1 if X ∈ [X is−1, X is ]

X is+1 − X
X is+1 − X is

if X ∈ [X is , X is+1]

0 elsewhere

The function pis(X) is a very simple function which is in [0,1], as illustrated in

Figure 3.5. This is in fact a simple linear interpolation (and an order two spline,

see section 3.A.1 for more details on these techniques). On the interval [X is , X is+1],

the function ĉ(X) is equal to the weighted sum of pis(X) and pis+1(X). Here the

residual function satisfies

〈F (ĉ(X, Ψ)), pi(X)〉 = 0 i = 1, . . . n
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or equivalently, choosing a constant weighting function:∫ X̄

0

pis(X)F (ĉ(X))dX = 0 is = 1, . . . , ns

This gives a system with ns equations and ns unknowns, {ψis}ns
is=1. This non-linear

system can be solved to find the weights {ψis}. To solve the system, the integral can

be computed numerically using numerical techniques, see Appendix 3.A.2 for more

details. As in the collocation method, the choice of ns is the result of a trade-off

between increased precision and higher computational burden.

[Figure 3.5 approximately here]

3.3 Stochastic Discrete Cake Eating Problem

We present here another example of a dynamic programming model. It differs from

the one presented in section 3.2 in two ways. First, the decision of the agent is not

continuous (how much to eat) but discrete (eat or wait). Second, the problem has

two state variables as the exogenous shock is serially correlated.

The agent is endowed with a cake of size W . At each period, the agent has to

decide whether to eat the cake entirely or not. If not eaten, the cake shrinks by

a factor ρ each period. The agent also experiences taste shocks, possibly serially

correlated and which follows an autoregressive process of order one. The agent

observes the current taste shock at the beginning of the period, before the decision

to eat the cake is taken. However, the future shocks are unobserved by the agent,

introducing a stochastic element into the problem. Although the cake is shrinking,

the agent might decide to postpone the consumption decision until a period with a

better realization of the taste shock. The program of the agent can be written in

the form:

V (W, ε) = max[εu(W ), βEε′|εV (ρW, ε′)] (3.7)
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where V (W, ε) is the intertemporal value of a cake of size W conditional of the

realization ε of the taste shock. Here Eε′ denotes the expectation with respect to

the future shock ε, conditional on the value of ε. The policy function is a function

d(W, ε) which takes a value of zero if the agent decides to wait or one if the cake is

eaten. We can also define a threshold ε∗(W ) such that:
d(W, ε) = 1 if ε > ε∗(W )

d(W, ε) = 0 otherwise

As in section 3.2, the problem can be solved by value function iterations. How-

ever, as the problem is discrete we cannot use the projection technique as the decision

rule is not a smooth function, but a step function.

3.3.1 Value Function Iterations

As before, we have to define first the functional form for the utility function and we

need to discretize the state space. If we consider ρ < 1, the cake shrinks with time

and W is naturally bounded between W̄ , the initial size and 0. In this case, the size

of the cake takes only values equal to ρtW̄ , t ≥ 0. Hence, ΨS = {ρiW̄} is a judicious

choice for the state space. Contrary to an equally spaced grid, this choice ensures

that we do not need to interpolate the value function outside of the grid points.

Next, we need to discretize the second state variable, ε. The shock is supposed

to come from a continuous distribution and follows an autoregressive process of

order one. We discretize ε in I points {εi}I
i=1 following a technique presented by

Tauchen (1986) and summarized in appendix 3.A.2. In fact, we approximate an

autoregressive process by a markov chain. The method determines the optimal

discrete points {εi} and the transition matrix πij = Prob(εt = εi|εt−1 = εj) such

that the markov chain mimics the AR(1) process. Of course, the approximation is

only good if I is big enough.
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In the case where I = 2, we have to determine two grid points εL and εH . The

probability that a shock εL is followed by a shock εH is denoted by πLH . The

probability of transitions can be stacked in a transition matrix:

π =

[
πLL πLH

πHL πHH

]
with the constraints that the probability of reaching either a low or a high state next

period is equal to one: πLL + πLH = 1 and πHL + πHH = 1. For a given size of the

cake W is = ρisW̄ and a given shock εj, j = L or H, it is easy to compute the first

term εju(ρisW̄ ). To compute the second term we need to calculate the expected

value of tomorrow’s cake. Given a guess for the value function of next period, v(., .)

the expected value is:

Eε′|εj
v(ρis+1W̄ ) = πjLv(ρis+1W̄ , εL) + πjHv(ρis+1W̄ , εH)

The recursion is started backward with an initial guess for V (., .). For a given

state of the cake Wis and a given shock εj, the new value function is calculated from

equation (3.7). The iterations are stopped when two successive value functions are

close enough. In terms of numerical computing, the value function is stored as a

matrix V of size nW xnε where nW and nε are the number of points on the grid for

W and ε. At each iteration, the matrix is updated with the new guess for the value

function. Figure 3.6 displays an example of a computer code which computes the

value function vj+1(W, ε) given the value vj(W, ε).

[Figure 3.6 approximately here]

Given the way we have computed the grid, the next period value is simple to

compute as it is given by V[is − 1, .]. This rule is valid if is > 1. Computing V[1, .]

will be more of a problem. One can use an extrapolation method to approximate

the values, given the knowledge of V[is, .], is > 1.
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Figure 3.7 displays the value function for particular parameters. The utility

function was taken to be u(c, ε) = ln(εc) and ln(ε) is supposed to follow an AR(1)

process with mean zero, autocorrelation ρε = 0.5 and with an unconditional variance

of 0.2. We have discretized ε into 4 grid points.

[Figure 3.7 approximately here]

Figure 3.8 displays the decision rule, and the function ε∗(W ). This threshold

was computed as the solution of:

u(W, ε∗(W )) = βEε′|εV (ρW, ε′)

which is the the value of the taste shock which makes the agent indifferent between

waiting and eating, given the size of the cake W .

[Figure 3.8 approximately here]

We return later in this book to examples of discrete choice models. In particular,

we refer the readers to the models presented in section 8.5 and 7.3.3.

3.4 Extensions and Conclusion

This chapter has reviewed common techniques to solve dynamic programming prob-

lems as seen in chapter 2. We have applied these techniques to both deterministic

and stochastic problems, to continuous and discrete choice models. In principle,

these methods can be applied to solve more complicated problems.

3.4.1 Larger State Spaces

Both examples we have studied in sections 3.2 and 3.3 have small state spaces. In

empirical applications, the state space often need to be much larger if the model
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has to be confronted with real data. For instance, the endowment shocks might be

serially correlated or the interest rate, R, might also be a stochastic and persistent

process.

For the value function iteration method, this means that the successive value

functions have to be stacked in a multidimensional matrix. Also, the value function

has to be interpolated in several dimensions. The techniques in section 3.A.1 can be

extended to deal with this problem. However, the value function iteration method

runs quickly into the ”curse of dimensionality”. If each state variable is discretized

into ns grid points, the value function has to be evaluated into Nns points, where

N is the number of state variables. This demands an increasing computer memory

and slows down the computation. A solution to this problem is to evaluate the

value function for a subset of the points in the state space and then interpolate the

value function elsewhere. This solution has been implemented by Keane and Wolpin

(1994).

Projection methods are better at handling larger state spaces. Suppose the

problem is characterized by N state variables {X1, . . . , XN}. The approximated

policy function can be written as:

ĉ(X1, . . . , XN) =
N∑

j=1

nj∑
ij=1

ψj
ij
pij(Xj)

The problem is then characterized by auxiliary parameters {ψj
i}.

Exercise 3.1

Suppose u(c) = c1−γ/(1− γ). Construct the code to solve for the stochastic cake

eating problem, using the value function iteration method. Plot the policy function as

a function of the size of the cake and the stochastic endowment, for γ = {0.5, 1, 2}.

Compare the level and slope of the policy functions for different values of γ. How

do you interpret the results?
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Exercise 3.2

Consider the example of the discrete cake eating problem in section 3.3. Con-

struct the code to solve for this problem, with i.i.d. taste shocks, using u(c) = ln(c),

εL = 0.8, εH = 1.2, πL = 0.3 and πH = 0.7. Map the decision rule as a function of

the size of the cake.

Exercise 3.3

Consider an extension of the discrete cake eating problem seen in section 3.3.

The agent has now the choice between three actions: eat the cake, store it in fridge

1 or in fridge 2. In fridge 1, the cake shrinks by a factor ρ: W ′ = ρW . In fridge

2, the cake diminish by a fixed amount: W ′ = W − κ. The program of the agent is

characterized as:

V (W, ε) = max[V Eat(W, ε), V Fridge 1(W, ε), V Fridge 2(W, ε)]

with



V Eat(W, ε) = εu(W )

V Fridge 1(W, ε) = βEε′V (ρW, ε′)

V Fridge 2(W, ε) = βEε′V (W − κ, ε′)

Construct the code to solve for this problem, using u(c) = ln(c), εL = 0.8, εH = 1.2,

πL = 0.5 and πH = 0.5. When will the agent switch from one fridge to the other?

Exercise 3.4

Consider the stochastic cake eating problem. Suppose that the discount rate β

is a function of the amount of cake consumed: β = Φ(β1 + β2c), where β1 and

β2 are known parameters and Φ() is the normal cumulative distribution function.

Construct the code to solve for this new problem using value function iterations.

Suppose γ = 2, β1 = 1.65, πL = πH = 0.5, yL = 0.8, yH = 1.2 and β2 = −1.
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Plot the policy rule c = c(X). Compare with the case where the discount rate is

independent of the quantity consumed. How would you interpret the fact that the

discount rate depends on the amount of cake consumed?
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3.A Additional Numerical Tools

This appendix provides some useful numerical tools which are often used when

solving dynamic problems. We present interpolation methods, numerical integration

methods as well as a method to approximate serially correlated processes by a

markov process. The last section is devoted to simulations.

3.A.1 Interpolation Methods

We briefly review three simple interpolation methods. For further readings, see for

instance Press et al. (1986) or Judd (1996).

When solving the value function or the policy function, we often have to calculate

the value of these functions outside of the points of the grid. This requires to

be able to interpolate the function. Using a good interpolation method is also

helpful as one can save computer time and space by using fewer grid points to

approximate the functions. Denote f(x) the function to approximate. We assume

that we know this function at a number of grid points xi, i = 1, . . . , I. Denote by

fi = f(xi) the values of the function at these grid points. We are interested in finding

an approximate function f̂(x) such that f̂(x) � f(x), based on the observations

{xi, fi}. We present three different methods and use as an example the function

f(x) = xsin(x). Figure 3.9 displays the results for all the methods.

[Figure 3.9 approximately here]

Least Squares Interpolation

A natural way to approximate f() is to use an econometric technique, such as OLS,

to ”estimate” the function f̂(.). The first step is to assume a functional form for f̂ .

For instance, we can approximate f with a polynomial in x such as:

f̂(x) = α0 + α1x + . . . + αNxN N < I
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By regressing fi on xi we can easily recover the parameters αn. In practice, this

method is often not very good, unless the function f is well behaved. Higher order

polynomials tend to fluctuate and can occasionally give an extremely poor fit. This

is particularly true when the function is extrapolated outside of the grid points, i.e

when x > xI or x < x1. The least square method is a global approximation method.

As such, the fit can be on average satisfactory but mediocre almost everywhere.

This can be seen in the example in Figure 3.9.

Linear Interpolation

This method fits the function f with piecewise linear functions on the intervals

[xi−1, xi]. For any value of x in [xi−1, xi], an approximation f̂(x) of f(x) can be

found as:

f̂(x) = fi−1 +
fi − fi−1

xi − xi−1

(x − xi−1)

A finer grid will give a better approximation of f(x). When x is greater than

xI , using this rule can lead to numerical problems as the above expression may

not be accurate. Note that the approximation function f̂ is continuous, but not

differentiable at the grid points. This can be an undesirable feature as this non

differentiability can be translated to the value function or the policy function.

This method can be extended for multivariate functions. For instance, we can

approximate the function f(x, y) given data on {xi, yj, fij}. Denote dx = (x −

xi)/(xi−1 − xi) and dy = (y − yi)/(yi−1 − yi). The approximation can be written as:

f̂(x, y) = dxdyfi−1,j−1 + (1 − dx)dyfi,j−1 + dx(1 − dy)fi−1,j + (1 − dx)(1 − dy)fi,j

The formula can be extended to higher dimension as well.
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Spline Methods

This method extends the linear interpolation by fitting piecewise polynomials while

ensuring that the resulting approximate function f̂ is both continuous and differ-

entiable at the grid points xi. We restrict ourself to cubic splines for simplicity,

but the literature on splines is very large (see for instance De Boor (1978)). The

approximate function is expressed as:

f̂i(x) = fi + ai(x − xi−1) + bi(x − xi−1)
2 + ci(x − xi−1)

3 x ∈ [xi−1, xi]

Here for each point on the grid, we have to determine three parameters {ai, bi, ci},

so in total there is 3I parameters to compute. However, imposing the continuity

of the function and of its derivative up to the second order reduces the number of

coefficients:
f̂i(x) = f̂i+1(x)

f̂ ′
i(x) = f̂ ′

i+1(x)

f̂ ′′
i (x) = f̂ ′′

i+1(x)

It is also common practice to apply f̂ ′′
1 (x1) = f̂ ′′

I (xI) = 0. With these constraints,

the number of coefficients to compute is down to I. Some algebra gives:

ai =
fi − fi−1
xi − xi−1

− bi(xi − xi−1) − ci(xi − xi−1)
2 i = 1, . . . , I

ci =
bi+1 − bi

3(xi − xi−1)
i = 1, . . . , I − 1

cI = − bI

3(xI − xI−1)
ai + 2bi(xi − xi−1) + 3ci(xi − xi−1)

2 = ai+1

Solving this system of equation leads to expressions for the coefficients {ai, bi, ci}.

Figure 3.9 shows that the cubic spline is a very good approximation to the function f .

3.A.2 Numerical Integration

Numerical integration is often required in dynamic programming problems to solve

for the expected value function or to ”integrate out” an unobserved state variable.

For instance, solving the Bellman equation (3.3) requires to calculate Ev(X ′) =
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∫
v(X ′)dF (X ′), where F (.) is the cumulative density of the next period cash-on-

hand X. In econometric applications, some important state variables might not be

observed. If this is the case, then one need to compute the decision rule, uncondi-

tional of this state variable. In the case of the stochastic cake eating problem seen in

section 3.2, if X is not observed, one could compute c̄ =
∫

c(X)dF (X) which is the

unconditional mean of consumption, and match it with observed consumption. We

present three methods which can be useful when numerical integration is needed.

Quadrature Methods

There is a number of quadrature method. We briefly detail the Gauss-Legendre

method (much more detailed information can be found in Press et al. (1986)). The

integral of a function f is approximated as:∫ 1

−1

f(x)dx � w1f(x1) + . . . + wnf(xn) (3.8)

where wi and xi are n weights and nodes to be determined. Integration over a

different domain can be easily handled by operating a change of the integration

variable. The weights and the nodes are computed such that (3.8) is exactly satisfied

for polynomials of degree 2n − 1 or less. For instance, if n = 2, denote fi(x) = xi.

The weights and nodes satisfy:

w1f1(x1) + w2f1(x2) =
∫ 1

−1
f1(x)dx

w1f2(x1) + w2f2(x2) =
∫ 1

−1
f2(x)dx

w1f3(x1) + w2f3(x2) =
∫ 1

−1
f3(x)dx

w1f4(x1) + w2f4(x2) =
∫ 1

−1
f4(x)dx

This is a system of four equation with four unknowns. The solution is w1 = w2 = 1

and x2 = −x1 = 0.578. For larger values of n, the computation is similar. By

increasing the number of nodes n, the precision increases. Note that the nodes are

not necessarily equally spaced. The weights and the value of the nodes are published

in the literature for commonly used values of n.
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Approximating an Autoregressive Process with a Markov Chain

In this section we follow Tauchen (1986) and Tauchen and Hussey (1991) and show

how to approximate an autoregressive process of order one by a first order markov

process. This is useful to simplify the computation of expected values in the value

function iteration framework.

For instance, to solve the value function in the cake eating problem, we need to

calculate the expected value given ε:

V (W, ε) = max[εu(W ), Eε′|εV (ρW, ε′)]

This involves the calculation of an integral at each iteration, which is cumbersome.

If we discretize the process εt, into N points εi, i = 1, . . . , N , we can replace the

expected value by:

V (W, εi) = max

[
εu(W ),

N∑
j=1

πi,jV (ρW, εj)

]
i = 1, . . . , N

As in the quadrature method, the methods involves finding nodes εj and weights πi,j.

As we shall see below, the εi and the πi,j can be computed prior to the iterations.

Suppose that εt follows an AR(1) process, with an unconditional mean µ and an

autocorrelation ρ:

εt = µ(1 − ρ) + ρεt−1 + ut (3.9)

where ut is a normally distributed shock with variance σ2. To discretize this process,

we need to determine three different objects. First, we need to discretize the process

εt into N intervals. Second, we need to compute the conditional mean of εt within

each intervals, which we denote by zi, i, . . . , N . Third, we need to compute the

probability of transition between any of these intervals, πi,j. Figure 3.10 graphs the

distribution of ε and shows the cut-off points εi as well as the conditional means zi.

[Figure 3.10 approximately here]
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The first step is to discretize the real line into N intervals, defined by the limits

ε1, . . . , εN+1. As the process εt is unbounded, ε1 = −∞ and εN+1 = +∞. The

intervals are constructed such that εt has an equal probability of 1/N of falling into

them. Given the normality assumption, the cut-off points {εi}N+1
i=1 are defined as

Φ(
εi+1 − µ

σε

) − Φ(
εi − µ

σε

) =
1

N
, i = 1, . . . , N (3.10)

where Φ() is the cumulative of the normal density and σε is the standard deviation

of ε and is equal to σ/
√

(1 − ρ). Working recursively we get:

εi = σεΦ
−1(

i − 1

N
) + µ

Now that we have defined the intervals, what is the average value of ε within a

given interval? We denote this value by zi, which is computed as the mean of εt

conditional on εt ∈ [εi, εi+1].

zi = E(εt / εt ∈ [εi, εi+1]) = σε

φ(
εi − µ

σε

) − φ(
εi+1 − µ

σε

)

Φ(
εi+1 − µ

σε

) − Φ(
εi − µ

σε

)

+ µ

Using (3.10), the expression simplifies to:

zi = Nσε

(
φ(

εi − µ

σε

) − φ(
εi+1 − µ

σε

)

)
+ µ

Next, we define the transition probability as

πi,j = P (εt ∈ [εj, εj+1]|εt−1 ∈ [εi, εi+1])

πi,j =
1√

2πσε

∫ εj+1

εj

e
−(u − µ)2

2σ2
ε

[
Φ(

εi+1 − µ(1 − ρ) − ρu

σ
) − Φ(

εi − µ(1 − ρ) − ρu

σ
)

]
du

The computation of πi,j requires the computation of a non trivial integral. This

can be done numerically. Note that if ρ = 0, i.e. ε is an i.i.d. process, the above

expression is simply:

πi,j = 1/N
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We can now define a Markov process zt which will mimic an autoregressive

process of order one, as defined in (3.9). zt takes its values in {zi}N
i=1 and the

transition between period t and t + 1 is defined as:

P (zt = zj/ zt−1 = zi) = πi,j

By increasing N , the discretization becomes finer and the markov process gets

closer to the real autoregressive process.

Example: For N=3, ρ = 0.5, µ = 0 and σ = 1, we have:

z1 = −1.26 z2 = 0 z3 = 1.26

and

π =

 0.55 0.31 0.14

0.31 0.38 0.31

0.14 0.31 0.55



3.A.3 How to Simulate the Model

Once the value function is computed, the estimation or the evaluation of the model

often requires the simulation of the behavior of the agent through time.

If the model is stochastic, the first step is to generate a series for the shocks,

for t = 1, . . . , T . Then, we go from period to period and use the policy function to

find out the optimal choice for this period. We also update the state variable and

proceed to next period.

How to Program a Markov Process

The markov process is characterized by grid points, {zi} and by a transition matrix

π, with elements πij = Prob(yt = zj/yt−1 = zi).

We start in period 1. The process zt is initialized at , say zi. Next, we have to

assign a value for z2. To this end, using the random generator of the computer, we
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draw a uniform variable, u, in [0, 1]. The state in period 2, j, is defined as:

j∑
l=1

πi,l < u ≤
j+1∑
l=1

πi,l

or j = 1 if u < πi,1. The values for the periods ahead are constructed in a similar

way. Figure 3.11 presents a computer code which will construct iteratively the values

for T periods.

[Figure 3.11 approximately here]

How to Simulate the Model

For this, we need to initialize all stochastic processes, which are the exogenous shock

and the state variables. The state variables can be initialized to their long run values

or to some other value. Often, the model is simulated over a long number of periods

and the first periods are discarded to get rid of initial condition problems.

The value of the state variables and the shock in period 1 are used to determine

the choice variable in period 1. In the case of the continuous stochastic cake eating

problem in section 3.2, we would construct c1 = c(X1). Next, we can generate

the values of the state variable in period 2, X2 = R(X1 − c1) + y2 where y2 is

calculated using the method described in section 3.A.3 above. This procedure would

be repeated over T periods to successively construct all the values for the choice

variables and the state variables.



Chapter 4

Econometrics

4.1 Overview

This chapter reviews techniques to estimate parameters of models based on dynamic

programming. This chapters is organized in two parts. In section 4.2, we present two

simple examples to illustrate the different estimation methodologies. We analyze a

simple coin flipping experiment and the classic problem of supply and demand. We

review standard techniques such as maximum likelihood and the method of moments

as well as simulated estimation techniques. The reader who is already familiar

with econometric techniques could go to section 4.3 which gives more details on

these techniques and studies the asymptotic properties of the estimators. A more

elaborate dynamic programming model of cake eating is used to illustrate these

different techniques.

66
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4.2 Some Illustrative Examples

4.2.1 Coin Flipping

We consider here a simple coin flipping example. The coin is not necessarily fair

and the outcome of the draw is either heads with a probability P1 or tails with a

probability P2 = 1−P1, with {P1, P2} ∈ [0, 1]x[0, 1]. We are interested in estimating

the probability of each outcome. We observe a series of T draws from the coin.

Denote the realization of the tth draw by xt, which is equal either to 1 (if heads) or

2 (if tails). The data set at hand is thus a series of observations {x1, x2, . . . , xT}.

This section will describe a number of methods to uncover the probabilities {P1, P2}

from observed data.

This simple example can be extended in two directions. First, we can try to

imagine a coin with more than two sides (a dice). We are then able to consider

more than two outcomes per draw. In this case, we denote P = {P1, . . . , PI} a

vector with I elements where Pi = P (xt = i) is the probability of outcome i. We are

interested in estimating the probabilities {Pi}i=1,...,I . For simplicity, we sometimes

state results for the case where I = 2, but the generalization to a larger number of

outcomes is straightforward.

Second, it may be possible that the draws are serially correlated. The probability

of obtaining a head might depend on the outcome of the previous draw. In this case

we want to estimate P (xt = j|xt−1 = i). We also consider this generalized example

below.

Of course, the researcher may not be interested in these probabilities alone but

rather, as in many economic examples, the parameters that underlie P . To be

more specific, suppose that one had a model parameterized by θ ∈ Θ ⊂ Rκ that

determines P . That is, associated with each θ is a vector of probabilities P . Denote

by M(θ) the mapping from parameters to probabilities: M : Θ −→ [0, 1]I .
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In the case where I = 2, we could consider a fair coin, in which case θ = (1/2, 1/2)

and P = (P1, P2) = (1/2, 1/2). Alternatively we could consider a coin which is

biased towards heads, with θ = (2/3, 1/3) and P = (P1, P2) = (2/3, 1/3). In these

examples, the model M is the identity, M(θ) = θ. In practice, we would have to

impose that θ ∈ [0, 1] in the estimation algorithm. Another way of specifying the

model is to chose a function M(.) which is naturally bounded between 0 and 1. In

this case, we can let θ to belong to R. For instance, the cumulative distribution of

the normal density, noted Φ(.) satisfies this condition. In the fair coin example, we

could have θ = (0, 0) and P = (Φ(0), Φ(0)) = (1/2, 1/2). With the biased coin, we

would have θ = (0.43,−0.43), as Φ(0.43) = 2/3 and Φ(−0.43) = 1/3.

Maximum Likelihood

IID case: We start with the case where the draws from the coin are identically and

independently distributed. The likelihood of observing the sample {x1, x2, . . . , xT}

is given by:

£(x, P ) = ΠI
i=1P

#i
i

where #i is the number of observations for which event i occurs. Thus £ represents

the probability of observing {xt}T
t=1 given P . The maximum likelihood estimator of

P is given by:

P = arg max£. (4.1)

By deriving the first order condition for a maximum of £(x, P ), the maximum

likelihood estimate of Pi, i = 1, 2, ...I is given by:

P ∗
i =

#i∑
i #i

. (4.2)

In words, the maximum likelihood estimator of Pi is the fraction of occurrences of

event i.
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Suppose that one had a model M(.) for the probabilities, parameterized by θ.

So, indirectly, the likelihood of the sample depends on this vector of parameters,

denote it £̃(x, θ) = £(x,M(θ)). In that case, the maximum likelihood estimator of

the parameter vector (θ∗) is given by:

θ∗ = arg max
θ

£̃(x, θ).

In effect, by a judicious choice of θ, we choose the elements of P to maximize the

likelihood of observing the sample. In fact, by maximizing this function we would

end up at the same set of first-order conditions, (4.2), that we obtained from solving

(4.1).

Example 4.1

Suppose I=2 and that M(θ) = Φ(θ), where Φ(.) is the cumulative distribution func-

tion of the standardized normal density. 28 In this case, p1 = P (xt = 1) = Φ(θ) and

p2 = 1−Φ(θ). The parameter is estimated by maximizing the likelihood of observing

the data:

θ∗ = arg max
θ

Φ(θ)#1(1 − Φ(θ))#2

where #1 and #2 are the number of observations that fall into category 1 and 2.

Straightforward derivation gives:

θ∗ = Φ−1(
#1

#1 + #2
)

Markov Structure: The same issues arise in a model which exhibits more dy-

namics, as is the case when the outcomes are serially correlated. Let Pij denote the

probability of observing event j in period t + 1 conditional on observing event i in

period t:

Pij = Prob (xt+1 = j|xt = i).
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These conditional probabilities satisfy: Pij ∈ (0, 1) and
∑

j Pij = 1 for i = 1, 2, .., I.

Intuitively, the former condition says that given the current state is i, in period t+1

all j ∈ I will occur with positive probability and the latter condition requires that

these probabilities sum to one. The probability of observing the sample of data is:

£(x, P ) = P (x1, . . . , xT ) =
T∏

l=2

P (xl|xl−1) P (x1)

Let #ij denote the number of observations in which state j occurred in the period

following state i. Then the likelihood function in this case is:

£(x, P ) = (ΠiP
#ij
ij ) ∗ P (x1)

We can express the probability of the first observation as a function of the Pij

probabilities.

P (x1) =
I∑

j=1

P (x1|x0 = j) =
I∑

j=1

Pj1

As before, the conditional probabilities and this initial probability can, in principle,

depend on θ. Thus the maximum likelihood estimator of θ would be the one that

maximizes £(x, P ). Note that there are now a large number of probabilities that are

estimated through maximum likelihood: I(I − 1). Thus a richer set of parameters

can be estimated with this structure.

Method of Moments

Continuing with our examples, we consider an alternative way to estimate the pa-

rameters. Consider again the iid case and suppose there are only two possible

outcomes, I = 2, so that we have a repeated Bernoulli trial. Given a sample of ob-

servations, let µ denote a moment computed from the data. For example, µ might

simply be the fraction of times event i = 1 occurred in the sample. In this case,

µ = P1.

Let µ(θ) denote the same moment calculated from the model when the data

generating process (the model M) is parameterized by θ. For now, assume that the
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number of parameters, κ, is equal to one so that the number of parameters is equal

to the number of moments (the problem is then said to be just identified). Consider

the following optimization problem:

min
θ

(µ(θ) − µ)2.

Here we are choosing the parameters to bring the moment from the model as close

as possible to that from the actual data. The θ that emerges from this optimization

is a method of moments estimator, denote this estimate by θ̂.

Example 4.2

Suppose we chose as a moment the fraction of times event i = 1 occurs in the sample.

From our model of coin flipping, this fraction is equal to Φ(θ). The parameter is

estimated by minimizing the distance between the fraction predicted by the model and

the observed one:

θ∗ = arg min
θ

(
Φ(θ) − #1

#1 + #2

)2

Solving the minimization problem gives:

θ∗ = Φ−1

(
#1

#1 + #2

)
Hence, with this choice of moment, the method of moment estimator is the same as

the maximum likelihood one, seen in example 4.1.

In example 4.2 we chose a particular moment which was the fraction of heads in

the sample. Often, in a data set, there is a large set of moments to chose from.

The method of moment does not guide us in the choice of a particular moment.

So which moment should we consider? The econometric theory has not come out

with a clear indication of ”optimal” moments. However, the moments should be

informative of the parameters to estimate. This means that the moments under
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consideration should depend on the parameters in such a way that slight variations

in their values results in different values for the moments.

With a choice of moment different from the one in example 4.2, the method of

moment estimator would have been different from the maximum likelihood estima-

tor. However, asymptotically, when the size of the data set increases both estimator

converge to the true value.

More generally, let µ be a mx1 column vector of moments from the data. If

κ < m the model is said to be over identified, as there are more moments than

parameters to estimate. If κ = m, the model is said to be just identified and if

κ > m, the model is under identified. In the latter case, estimation cannot be

achieved as there are too many unknown parameters.

So if κ ≤ m, the estimator of θ comes from:

min
θ

((µ(θ) − µ)′W−1(µ(θ) − µ).

In this quadratic form, W is a weighting matrix. As explained below, the choice of W

is important for obtaining an efficient estimator of θ when the model is overidenfied.

Using Simulations

In many applications, the procedures outlined above are difficult to implement,

either because the likelihood of observing the data or the moments are difficult

to compute analytically or because it involves solving too many integrals. Put

differently, the researcher does not have an analytic representation of M(θ). If this

is the case, then estimation can still be carried out numerically using simulations.

Consider again the iid case, where I = 2. The simulation approach proceeds

in the following way. First, we fix θ, the parameter of M(θ). Second, using the

random number generator of a computer, we generate S draws {us} from a uniform
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distribution over [0, 1]. We classify each draw as heads (denoted i = 1) if us <

M(θ) or tails (denoted i = 2) otherwise. The fractions of the two events in the

simulated data are used to approximate P S
i (θ) by counting the number of simulated

observations that take value i, denoted by �i. So, P S
i (θ) = �i/S. The simulated

maximum likelihood estimator is defined as:

θ∗S = arg max
θ

∏
i

P S
i (θ)#i

where, as before, #i refers to the fraction of observations in which i occurs. The

estimator is indexed by S, the number of simulations. Obviously, a larger number

of simulation draws will yield more precise estimates. Figure 4.1 displays the log-

likelihood for the coin flipping example, based on two series of simulation with

respectively 50 and 5000 draws. The observed data set was a series of 100 draws.

The log-likelihood has a maximum at the true value of the parameter, although the

likelihood is very flat around the true value when the number of simulations is small.

Exercise 4.1

Build a computer program which computes the likelihood function, using simula-

tions, of a sample of T draws for the case where I = 3.

[Figure 4.1 approximately here]

For the method of moment estimator, the procedure is the same. Once an arti-

ficial data set has been generated, we can compute moments both on the artificial

data and on the observed data. Denote by µS(θ) a moment derived from the simu-

lated data. For instance, µ and µS(θ) could be the fraction of heads in the observed

sample and in the simulated one. The simulated method of moment estimator

is defined as:

θ∗S = arg min
θ

(µS(θ) − µ)′W−1(µS(θ) − µ)
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Figure 4.2 displays the objective function for the simulated method of moments.

The function has a minimum at the true value of the parameter. Once again, using

more simulation draws gives a smoother function, which will be easier to minimize.

Exercise 4.2

Build a computer program which computes the objective function, using simula-

tions, of a sample of T draws for the case where I = 3.

[Figure 4.2 approximately here]

In both methods, the estimation requires two steps. First, given a value of θ, one

needs to simulate artificial data and compute either a likelihood or a moment from

this data set. Second, using these objects, the likelihood or the objective function

has to be evaluated and a new value for the parameters, closer to the true one,

found. These two steps are repeated until convergence to the true value.

To compute the simulated data, we need to draw random shocks using the ran-

dom number generator of a computer. It is to be noted that the random draws have

to be computed once and for all at the start of the estimation process. If the draws

change between iterations, it would be unclear whether the change in the criterion

function comes from a change in the parameter or from a change in the random

draws.

The ability to simulate data opens the way to yet another estimation method:

indirect inference. This method uses an auxiliary model chosen by the researcher.

This model should be easy to estimate by standard techniques and should capture

enough of the interesting variation in the data. We denote it by M̃(ψ), where ψ

is a vector of auxiliary parameters describing this new model. Given a guess for

the vector of structural parameters θ, the true model can be simulated to create a

new data set. The auxiliary model is estimated both on the real data and on the
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simulated one, providing two sets of auxiliary parameters. The vector θ is chosen

such that the two sets of auxiliary parameters are close to each other.

Note that the vector of auxiliary parameters ψ is of no particular interest per se,

as it describes a misspecified model (M̃). Within the context of the original model,

it has no clear interpretation. However, it serves as a mean to identify and estimate

the structural parameters θ.

Example 4.3

For instance, if M(θ) = Φ(θ), the model has no closed-form solution as the cu-

mulative of the normal density has no analytical form. Instead of approximating it

numerically, we can use the indirect inference method to estimate parameters of in-

terest without computing this function. We might turn to an auxiliary model which

is easier. For instance, the logit model has closed forms for the probabilities. Denote

by ψ the auxiliary parameter parameterizing the logit model. With such a model, the

probability of observing xt = 1 is equal to:

P (xt = 1) =
exp(ψ)

1 + exp(ψ)

Denote by #1 and #2 the number of cases that fall into category 1 and 2. The

log-likelihood of observing some data is:

£ = #1 ln
exp(ψ)

1 + exp(ψ)
+ #2 ln

1

1 + exp(ψ)
= #1ψ − (#1 + #2) ln(1 + exp(ψ))

Maximization of this log likelihood and some rearranging gives a simple formula

for the ML estimator of the auxiliary parameter: ψ = ln #1

#2
. We can compute this

estimator of the auxiliary parameter both for our observed data and for the simulated

data by observing in each case the empirical frequencies. Denote the former by ψ̂

and the latter by ψ̂
S
(θ). The indirect inference estimator is then:

θ∗S = arg min
θ

(ψ̂
S
(θ) − ψ̂)2 = argmin

θ
(ln

�1(θ)

�2(θ)
− ln

#1

#2

)2
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In this example, as the probit model is difficult to estimate by maximum likelihood

directly, we have instead replaced it with a logit model which is easier to estimate.

Although we are not interested in ψ per se, this parameter is a means to estimate

the parameter of importance, θ.

So far, we have not discussed the size of the simulated data set. Obviously,

one expects that the estimation will be more efficient if S is large, as either the

moments, the likelihood or the auxiliary model will be pinned down with greater

accuracy. Using simulations instead of analytical forms introduce randomness into

the estimation method. For short samples, this randomness can lead to biased esti-

mates. For instance, with the simulated maximum likelihood, we need the number

of simulation draws to go to infinity to get rid of the bias. This is not the case for

the simulated method of moment or the indirect inference, although the results are

more precise for a large S. We discuss this issue later on in this chapter.

Identification Issues

We conclude this section on coin flipping with an informal discussion of identification

issues. Up to here, we implicitly assumed that the problem was identified, i.e. the

estimation method and the data set allowed us to get a unique estimate of the true

vector of parameters θ.

A key issue is the dimensionality of the parameter space, κ, relative to I, the

dimensionality of P . First, suppose that κ = I − 1, so that the dimensionality of

θ is the same as the number of free elements of P .29 Second, assume that M(θ) is

one to one. This means that M is a function and for every P there exists only one

value of θ such that P = M(θ). In this case, we effectively estimate θ from P ∗ by

using the inverse of the model: θ∗ = M−1(P ∗).
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This is the most favorable case of identification and we would say the parameters

of the model are just identified. It is illustrated in Figure 4.3 for the case of I = 2

and κ = 1. There is a unique value of the parameter, θ∗, for which the probability

predicted by the model, M(θ∗), is equal to the true probability.

[Figure 4.3 approximately here]

[Figure 4.4 approximately here]

[Figure 4.5 approximately here]

A number of problems can arise, even for the special case of κ = I − 1. First,

it might be that the model, M(θ), is not invertible. Thus, for a given maximum

likelihood estimate of P ∗ , there could be multiple values of θ that generate this

vector of probabilities. In this case, the model is not identified. This is shown

in Figure 4.4. Example 4.4 shows an example based on the method of moment

estimation where a particular choice of moment leads to non identification.

Example 4.4

Suppose we label heads as 1 and tails as 2. Suppose that instead of focusing on the

mean of the sample (i.e. the fraction of heads) we chose the variance of the sample.

The variance can be expressed as:

V (x) = Ex2 − (Ex)2

=
#1

#1 + #2

+ 4
#2

#1 + #2

− (
#1

#1 + #2

+ 2
#2

#1 + #2

)2

=
#1

#1 + #2

(1 − #1

#1 + #2

)

So the theoretical and the empirical moments are:

µ(θ) = Φ(θ)(1 − Φ(θ))

µ =
#1

#1 + #2
(1 − #1

#1 + #2
)
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This might appear as a perfectly valid choice of moment, but in fact it is not. The

reason is that the function Φ(θ)(1 − Φ(θ)) is not a monotone function but a hump-

shaped one and thus not invertible. For both low and high values of θ, the function

is close to 0. The variance is maximal when the probability of obtaining a head is

equal to that of obtaining a tail. If either tails or heads are very likely, the variance

is going to be low. So a low variance indicates that either heads or tails are more

frequent, but does not tell us which occurrence is more likely. Hence, in this case,

the variance is not a valid moment to consider, for identification reasons.

Second, it might be that for a given value of P ∗, there does not exist a value

of θ such that M(θ) = P ∗. In this case, the model is simply not rich enough to

fit the data. This is a situation of misspecification. Put differently, there is a

zero-likelihood problem here as the model, however parameterized, is unable to

match the observations. This is illustrated in Figure 4.5.

So, returning to the simple coin flipping example, if there is a single parameter

characterizing the probability of a head occurring and the mapping from this pa-

rameter to the likelihood of heads is one-to-one, then this parameter can be directly

estimated from the fraction of heads. But, it might be that there are multiple values

of this parameter which would generate the same fraction of heads in a sample. In

this case, the researcher needs to bring additional information to the problem. Or,

there may be no value of this parameter that can generate the observed frequency

of heads. In this case, the model needs to be re-specified.

If, instead of κ = I − 1, we may have more dimensions to θ than informa-

tion in P : κ > I − 1. In this case, we have a situation where the model is again

underidentified. Given the maximum likelihood estimate of P ∗, there are multi-

ple combinations of the parameters that, through the model, can generate P ∗. In
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this case, the researcher needs to bring additional information to the problem to

overcome the indeterminacy of the parameters. So in the coin-flipping example, a

physical theory that involved more than a single parameter would be impossible to

estimate from data that yields a single probability of heads.

Alternatively, if κ < I−1, then the parameters are overidentified. In this case,

there may not be any θ that is consistent with all the components of P. In many

applications, such as those studied in this book, this situation allows the researcher

a more powerful test of a model. If a model is just identified, then essentially

there exists a θ such that P ∗ can be generated by the model. But when a model

is overidentified, then matching the model to the data is a much more demanding

task. Thus a model that succeeds in matching the data, characterized by P ∗, when

the parameters are overidentified is viewed as more compelling.

4.2.2 Supply and Demand Revisited

Let us consider the classic problem of supply and demand. This model will serve

as an illustration for the previous estimation methods and to discuss the problem

of identification. The supply depends on prices, p and the weather, z. The demand

side depends on prices and income, y:

qS = αpp + αzz + εS (Supply)

qD = βpp + βyy + εD (Demand)
(4.3)

Both the demand and supply shocks are iid, normally distributed, with mean

zero and variance σ2
S and σ2

D and covariance ρSD. In total, this model has seven

parameters. We solve for the reduced form by expressing the equilibrium variables

as function of the exogenous variables y and z:

p∗ =
βy

αp − βp
y − αz

αp − βp
z + εD − εS

αP − βP
= A1y + A2z + U1

q∗ =
αpβy

αp − βp
y − αzβp

αp − βp
z +

αpεD − βpεS

αP − βP
= B1y + B2z + U2

(4.4)
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where A1, A2, B1 and B2 are the reduced form parameters. These parameters can

be consistently estimated from regressions using the reduced form. If the system

is identified, we are able to recover all the structural parameters from the reduced

form coefficients using:

αp = B1/A1 βp = B2/A2

βy = A1(B1/A1 − B2/A2) αz = −A2(B1/A1 − B2/A2)
(4.5)

From these four parameters, it is straightforward to back out the variance of the

demand and supply shocks. We can compute εS = q − αpp + αzz and calculate the

empirical variance. The same procedure can be applied to recover εD.

The estimation in two steps is essentially an instrumental variable estimation

where y and z are used as instrument for the endogenous variables p and q. Instead

of using a two step OLS method, we can use a number of alternative methods

including method of moments, maximum likelihood and indirect inference. We

review these methods in turn.

Method of Moments

Denote by θ the vector of parameters describing the model:

θ = (αp, αz, βp, βy)

For simplicity, we assume that σD, σS and ρSD are known to the researcher. From

the data, we are able to compute a list of empirical moments which consists, for

example, of the variance of prices and quantities and the covariance between prices,

quantities, income and the weather. Denote µ = {µ1, µ2, µ3, µ4}′ a 4x1 vector of

empirical moments with 30

µ1 = cov(p, y)/V (y) µ3 = cov(p, z)/V (z)

µ2 = cov(q, y)/V (y) µ4 = cov(q, z)/V (z)
(4.6)

These moments can be computed directly from the data. For instance, µ1 can
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be expressed as:

µ1 =

∑T
t=1(pt − p̄)(yt − ȳ)∑T

t=1(yt − ȳ)2

From the model, we can derive the theoretical counterpart of these moments, ex-

pressed as functions of the structural parameters. We denote these theoretical mo-

ments µ(θ) = {µ1(θ), µ2(θ), µ3(θ), µ4(θ)}. Starting with the expressions in (4.4),

some straightforward algebra gives:

µ1(θ) =
βy

αp − βp
µ3(θ) = − αz

αp − βp

µ2(θ) =
αpβy

αp − βp
µ4(θ) = − αzβp

αp − βp

(4.7)

The basis of the method of moment estimation is that at the true value of the vector

of parameters,

E(µi(θ) − µi) = 0 , i = {1, . . . , 4}

This is called an orthogonality condition. In practical terms, we can bring the

moments from the model as close as possible to the empirical ones by solving:

θ∗ = Argmin
θ

L(θ) = Argmin
θ

(µ − µ(θ))′Ω(µ − µ(θ)) (4.8)

The ergodicity condition on the sample is the assumption used to make the empirical

and the theoretical moments the same as the sample size goes to infinity. Note that

this assumption is easily violated in many macro economic samples, as the data

is non stationary. In practice, most of the macro data is first made stationary by

removing trends.

How do the results of (4.8) compare to the results in (4.5)? Note that with

our choice of moments, µ1(θ) = A1, µ2(θ) = B1, µ3(θ) = A2 and µ4(θ) = B2. At

the optimal value of the parameters, we are left with solving the same problem as

in (4.4). This would lead to exactly the same values for the parameters as in (4.5).

The method of moment approach collapses the two steps of the previous section into
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a single one. The estimation of the reduced form and solving the non linear system

of equations is done within a single procedure.

Could we chose other moments to estimate the structural parameters? As in

example 4.4, the answer is both yes and no. The moments must be informative of

the parameters of the model.

For instance, if we chose µ1 = E(z), the average value of weather, this moment

is independent of the parameterization of the model, as z is an exogenous variable.

Hence, we are in fact left to estimate four parameters with only three identifying

equations. Any moment involving an endogenous variable (p or q in our example)

can be used in the estimation and would asymptotically produce the same results.

With a finite number of observations, higher order moments are not very precisely

computed, so an estimation based on cov(p4, y), say, would not be very efficient.

Finally, note that when computing the moments in (4.7), we have not used the

assumption that the error terms εD and εS are normally distributed. Whatever their

joint distribution, (4.8) would give a consistent estimate of the four parameters

of interest. The next section presents the maximum likelihood estimation which

assumes the normality of the residuals.

Maximum Likelihood

The likelihood of observing jointly a given price p and a quantity q, conditional on

income and weather can be derived from the reduced form (4.4) as f(p − A1y −

A2z, q − B1y − B2z) where f(., .) is the joint density of the disturbances U1 and U2

and where A1, A2, B1, B2 are defined as in (4.4).

The likelihood of the entire sample is thus:

£(θ) =
T∏

t=1

f(pt − A1yt − A2zt, qt − B1yt − B2zt) (4.9)

We assume here that εD and εS are normally distributed, so U1 and U2 are also
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normally distributed with zero mean. 31 The maximization of the likelihood function

with respect to the reduced form coefficients is a straightforward exercise. It will

give asymptotically consistent estimates of A1, A2, B1 and B2. Given that there is

a one to one mapping between the reduced form and the structural parameters, the

estimation will also provide consistent estimates of the parameters αp, βp, αz and

βy as in the method of moment case.

Indirect Inference

For a given value of the parameters, we are able to draw supply and demand

shocks from their distribution and to simulate artificial data for prices and de-

mand, conditional on observed weather and income. This is done using expres-

sion (4.4). Denote the observed data as {qt, pt, yt, zt}T
t=1. Denote the simulated data

as {qs
t , p

s
t}t=1...,T,s=1,...,S. Denote the set of parameters of the structural system (4.3)

as θ = {αp, αz, βp, βz}. For simplicity, we assume that the parameters σD, σS and

ρDS are known.

Next, we need an auxiliary model which is simple to estimate. We could use the

system (4.3) as this auxiliary model. For both the observed and the simulated data,

we can regress the quantities on the prices and the income or the weather. Denote

the first set of auxiliary estimate ψ̂T and the second one ψ̃
s

T , s = 1, . . . , S. These

vectors contains an estimate for the effect of prices on quantities and the effect of

weather and income on quantity from both the supply and the demand equations.

These estimates will undoubtedly be biased given the simultaneous nature of the

system. However, we are interested in these auxiliary parameters only as a mean

to get to the structural ones (θ). The next step is to find θ which brings the vector

ψ̃
S

T = 1/S
∑S

s=1 ψ̃(θ)s
T as close as possible to ψ̂T . Econometric theory tells us that

this will produce a consistent estimate of the parameters of interest, αp, αz, βq, βy.

Again, we rely here on the assumption of ergodicity. As will become apparent in
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section 4.3.3, the estimator will be less efficient than maximum likelihood or the

method of moments, unless one relies on a very large number of simulations.

Non Identification

If the weather has no influence on supply, i.e. αz = 0, then the reduced form

equations only expresses p∗ and q∗ as a function of income and shocks only. In

this case, the system is under-identified. We can only recover part of the original

parameters:

αp = B1/A1 σ2
p = V (q − B1/A1p)

Further manipulations give:

βy = B1 − A1βp (4.10)

There is an infinity of pairs {βy, βp} that satisfy the above equality. Hence, we

cannot recover the true values for these two parameters. From (4.10), it is easy to

visualize that there is an identification problem.

When the estimation involves moment matching or minimization of a likelihood

function, non identification is not always straightforward to spot. Some estimation

routines will provide an estimate for the parameters whether the system is identified

or not. There is no reason that these estimates coincide with the true values, as

many sets of parameter values will satisfy the first order conditions of (4.8). If

the estimation routine is based on a gradient calculation, finding the minimum of

a function requires to calculate and to inverse the hessian of the criterion function

L(θ). If αz = 0 the hessian will not be of full rank, as the cross derivatives of L with

respect to αz and the other parameters will be zero. Hence one should be suspicious

about the results when numerical problems occur such as invertibility problems. As

the hessian matrix enters the calculation of the standard errors, a common sign is

also abnormally imprecise coefficients. If the estimation routine is not based on
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gradients (the simplex algorithm for instance), the problem will be more difficult

to spot, as the estimation routine will come up with an estimate. However, these

results will usually look strange with some coefficients taking absurd large values.

Moreover, the estimation results will be sensible to the choice of initial values.

Exercise 4.3

Build a computer program which creates a data set of prices and quantities us-

ing (4.4), given values for z and y. Use this program to create a data set of size

T , the ”true data set” and then to construct a simulated data set of size S. Next,

construct the objective function for the indirect inference case as suggested in sec-

tion 4.3.3 What happens when you set αz to zero?

4.3 Estimation Methods and Asymptotic Proper-

ties

This section presents in detail the methods discussed in the previous section. The

asymptotic properties of each estimator are presented. We review the generalized

method of moments, which encompasses most of the classic estimation methods such

as maximum likelihood or non linear least squares. We then present methods using

simulations. All the methods are illustrated using simple Dynamic Programming

models, such as the cake eating problem which has been seen in chapters 2 and 3.

In the following subsections, we assume that there is a ”true” model, x(ut, θ),

parameterized by a vector θ of dimension κ. ut is a shock which makes the model

probabilistic. For instance, the shock ut can be a taste shock, a productivity shock

or a measurement error. We observe a sequence of data generated by this model at

the ”true” value of the parameters, which we denote by θ0 and at the ”true” value
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of the shocks u0
t . Let {x(u0

t , θ0)}T
t=1 be the observed data, which we also denote as

{xt}T
t=1 for simplicity. 32 We are interested in recovering an estimate of θ0 from the

observed data and making statistical inferences.

4.3.1 Generalized Method of Moments

The method of moment presented briefly in Section 4.2 minimized the distance

between an empirical moment and the predicted one. This exploits the fact that on

average, the difference between the predicted and the observed series (or a function

of these series) should be close to zero at the true value of the parameter θ0. Denote

this difference as h(θ, xt), so:

E(h(θ0, xt)) = 0 (4.11)

This identifying equality is called an orthogonality restriction. Denote the sample

average of h(θ, xt):

g(θ) =
1

T

T∑
t=1

h(θ, xt)

An estimate of θ can be found as:

θ̂ = arg min
θ

Q(θ) = arg min
θ

g(θ)′W−1
T g(θ)

W−1
T is a weighting matrix, which might depend on the data, hence the T subscript.

If g(θ) is of size qx1, then W−1
T is of size qxq.

For instance, if we want to match the first two moments of the process {xt}, the

function h() can be written:

h(θ, xt) =

(
xt(θ) − xt

xt(θ)
2 − x2

t

)
Averaging this vector over the sample will yield g(θ) = (x̄(θ) − x̄, x̄(θ)2 − x̄2).

Economic theory often provides more restrictions which can be used in the es-

timation method. They often take the form of first order conditions, such as Euler

equations, which can be used as an orthogonality restriction as in (4.11). This is
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the intuition that guided the Hansen and Singleton (1982) study of consumption

that we discuss in detail in Chapter 6, section 6.3.3. Here we summarize that with

an example.

Example 4.5

In a standard intertemporal model of consumption with stochastic income and no

borrowing constraints, the first order condition gives:

u′(ct) = βREtu
′(ct+1)

One can use this restriction to form h(θ, ct, ct+1) = [u′(ct)− βRu′(ct+1)], where θ is

parameterizing the utility function. On average, h(θ, ct, ct+1) should be close to zero

at the true value of the parameter. The Euler equation above brings actually more

information than we have used so far. Not only should the differences between the

marginal utility in period t and t+1 be close to zero, but it should also be orthogonal

to information dated t. Suppose zt is a variable which belongs to the information set

at date t. Then the first order condition also implies that, on average, h(θ, ct, ) =

zt.[u
′(ct) − βRu′(ct+1)] should be close to zero at the true value of the parameter.

If we have more than one zt variable, then we can exploit as many orthogonality

restrictions.

For further examples, we refer the reader to section 8.4.3.

Asymptotic Distribution:

Let θ̂T be the GMM estimate, i.e. the solution to (4.3.1). Under regularity conditions

(see Hansen (1982)):

• θ̂T is a consistent estimator of the true value θ0.
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• The GMM estimator is asymptotically normal:

√
T (θ̂T − θ0)

d−→ N(0, Σ)

where Σ = (DW−1
∞ D′)−1 and where

D′ = plim
T

{∂g(θ, YT )

∂θ′ θ=θ0

}

The empirical counterpart of D is:

D̂′
T =

∂g(θ, YT )

∂θ′ θ=θ̂T

This means that asymptotically, one can treat the GMM estimate θ̂T as a normal

variable with mean θ0 and variance Σ̂/T :

θ̂T ∼ N(θ0, Σ̂/T )

Note that the asymptotic properties of the GMM estimator are independent of

the distribution of the error term in the model. In particular, one does not have to

assume normality.

Optimal Weighting Matrix

We have not discussed the choice of the weighting matrix W−1
T , so far. The choice

of the weighting matrix does not have any bearing on the convergence of the GMM

estimator to the true value. However, a judiciously chosen weighting matrix can

minimize the asymptotic variance of the estimator. It can be shown that the optimal

weighting matrix W ∗
T produces the estimator with the smallest variance. It is defined

as:

W ∗
∞ = lim

T→∞
1

T

T∑
t=1

∞∑
l=−∞

h(θ0, yt)h(θ0, yt−l)
′

Empirically, one can replace W ∗
∞ by a consistent estimator of this matrix Ŵ ∗

T :

Ŵ ∗
T = Γ0,T +

q∑
ν=1

(1 − [ν/(q + 1)])(Γν,T + Γ′
ν,T )
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with

Γν,T =
1

T

T∑
t=ν+1

h(θ̂, yt)h(θ̂, yt−ν)
′

which is the Newey-West estimator (see Newey and West (1987) for a more detailed

exposition).

Overidentifying Restrictions

If the number of moments q is larger than the number of parameters to estimate κ,

then the system is overidentified. One would only need κ restrictions to estimate θ.

The remaining restrictions can be used to evaluate the model. Under the null that

the model is the true one, these additional moments should be empirically close to

zero at the true value of the parameters. This forms the basis of a specification test:

Tg(θ̂T )′Ŵ−1
T g(θ̂T )

L−→ χ2(q − κ)

In practice, this test is easy to compute, as one has to compare T times the criterion

function evaluated at the estimated parameter vector to a chi-square critical value.

Link with Other Estimation Methods

The generalized method of moment is quite a general estimation method. It actually

encompasses most estimation method as OLS, non linear least squares, instrumental

variables or maximum likelihood by choosing an adequate moment restriction. For

instance, the OLS estimator is defined such that the right hand side variables are not

correlated with the error term, which provides a set of orthogonal restrictions that

can be used in a GMM framework. In a linear model, the GMM estimator defined

this way is also the OLS estimator. The instrumental variable method exploits the

fact that an instrument is orthogonal to the residual.
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4.3.2 Maximum Likelihood

In contrast to the GMM approach, the maximum likelihood strategy requires an

assumption on the distribution of the random variables. Denote by f(xt, θ) the

probability of observing xt given a parameter θ. The estimation method tries to

maximize the likelihood of observing a sequence of data X = {x1, . . . , xT}. Assum-

ing iid shocks, the likelihood for the entire sample is:

L(X, θ) =
T∏

t=1

f(xt, θ)

It is easier to maximize the log of the likelihood

l(X, θ) =
T∑

t=1

log f(xt, θ)

Example 4.6

Consider the cake eating problem, defined by the Bellman equation below, where W

is the size of the cake, ρ is a shrink factor and ε is an iid shock to preferences:

V (W, ε) = max [εu(W ), EV (ρW, ε′)]

V (.) represents the value of having a cake of size W , given the realization of the

taste shock ε. The equation above states that the individual is indifferent between

consuming the cake and waiting if the shock is ε∗(W, θ) = EV (ρW, ε′)/u(W ), where

θ is a vector of parameters describing preferences, the distribution of ε and the shrink

factor ρ. If ε > ε∗(W, θ), then the individual will consume the cake. ε∗(W, θ) has

no analytical expression, but can be solved numerically with the tools developed in

Chapter 3. The probability of not consuming a cake of size W in a given period is

then:

P (ε < ε∗(W, θ)) = F (ε∗(W, θ))

where F is the cumulative density of the shock ε. The likelihood of observing an
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individual i consuming a cake after t periods is then:

li(θ) = (1 − F (ε∗(ρtW1, θ)))
t−1∏
l=1

F (ε∗(ρlW1, θ))

Suppose we observe the stopping time for N individuals. Then the likelihood of the

sample is:

L(θ) =
N∏

i=1

li(θ)

The maximization of the likelihood with respect to θ gives the estimate, θ̂.

For additional examples, we refer the reader to the second part of the book, and in

particular, section 5.5.4.

Exercise 4.4

Use the stochastic cake eating problem to simulate some data. Construct the

likelihood of the sample and plot it against different possible values for ρ.

Asymptotic Properties

To derive the asymptotic properties of the maximum likelihood estimator, it is

convenient to notice that the maximum likelihood can be seen as a GMM procedure.

The first order condition for the maximum of the log likelihood function is:

T∑
t=1

∂logf(xt, θ)

∂θ
= 0

This orthogonality condition can be used as a basis for a GMM estimation, where

h(θ, xt) = ∂logf(xt, θ)/∂θ. The first derivative of the log likelihood function is also

called the score function.

Using the GMM formula, the covariance matrix is D̂T Ŝ−1
T D̂′

T , with

D̂′
T =

∂g(θ)

∂θ′ θ=θ̂T

=
1

T

T∑
t=1

∂2 log f(xt, θ)

∂θ∂θ′
= −I



92

where I is also known as the information matrix, i.e. minus the second derivative

of the log likelihood function.

ŜT =
1

T

T∑
t=1

h(xt, θ̂T )h(xt, θ̂T )′ = I

So, we get:

√
T (θ̂T − θ0)

L−→ N(0, I−1)

The maximum likelihood estimator is asymptotically normal, with mean zero and

a variance equal to I−1/T .

4.3.3 Simulation Based Methods

We review here estimation methods based on simulation. This field is a growing one

and we will concentrate on only a few methods. For a more in depth presentation

of these methods, we refer the reader to Gourieroux and Monfort (1996) and Pakes

and Pollard (1989), McFadden (1989), Laroque and Salanié (1989) or McFadden

and Ruud (1994) (see also Lerman and Manski (1981) for an early reference).

These methods are often used because the calculation of the moments are too

difficult to construct (e.g. multiple integrals in multinomial probits as in McFadden

(1989) or Hajivassiliou and Ruud (1994), or because the model includes a latent

(unobserved) variable as in Laroque and Salanié (1993)). Or, it might be that the

model M(θ) has no simple analytic representation so that the mapping from the

parameters to moments must be simulated.

Example 4.7

Consider the cake eating problem studied in section 4.3.2, but where the taste shocks

ε are serially correlated. The Bellman equation is expressed as:

V (W, ε) = max
[
εu(W ), Eε′|εV (ρW, ε′)

]
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Here the expectations operator indicates that the expectation of next period’s shock

depends on the realization of the current shock. We can still define the threshold

shock ε∗(W ) = Eε′|ε∗V (ρW, ε′)/u(W ), for which the individual is indifferent between

eating and waiting. The probability of waiting t periods to consume the cake can be

written as:

Pt = P (ε1 < ε∗(W1), ε2 < ε∗(ρW1), . . . , εt > ε∗(ρtW1))

In section 4.3.2, the shocks were iid, and this probability could easily be decomposed

into a product of t terms. If ε is serially correlated, then this probability is extremely

difficult to write as εt is correlated with all the previous shocks. 33 For t periods, we

have to solve a multiple integral of order t, which conventional numerical methods

of integration cannot handle. In this section, we will show how simulated methods

can overcome this problem to provide an estimate of θ.

The different methods can be classified into two groups. The first group of

methods compares a function of the observed data to a function of the simulated

data. Here the average is taken both on the simulated draws and on all observation

in the original data set at once. This approach is called moment calibration. It

includes the simulated method of moments and indirect inference.

The second set of methods compare the observed data, observation by observa-

tion, to an average of the simulated predicted data, where the average is taken over

the simulated shocks. This is called path calibration. Simulated non linear least

squares or maximum likelihood fall into this category.

The general result is that path calibration methods require the number of sim-

ulations to go to infinity to achieve consistency. In contrast, moment calibration

methods are consistent for a fixed number of simulations.
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Simulated Method of Moments

Definition: This method was first developed by McFadden (1989), Lee and In-

gram (1991) and Duffie and Singleton (1993). Let {x(ut, θ0)}T
t=1 be a sequence of

observed data. Let {x(us
t , θ)}, t = 1, . . . , T, s = 1, . . . , S or xs

t(θ) for short, be a set

of S series of simulated data, each of length T , conditional on a vector of parameters

θ. The simulations are done by fixing θ and by using the TS draws of the shocks

us
t (drawn once and for all). Denote by µ(xt) a vector of functions of the observed

data 34. The estimator for the SMM is defined as:

θ̂S,T (W ) = arg min
θ

[
T∑

t=1

(
µ(xt) − 1

S

S∑
s=1

µ(x(us
t , θ))

)]′
W−1

T[
T∑

t=1

(
µ(xt) − 1

S

S∑
s=1

µ(x(us
t , θ))

)]

This criterion is similar to the one presented for the method of moments in

section 4.2.1. The difference is that we can avoid the calculation of the theoretical

moments µ(xt(θ)) directly. Instead, we are approximating them numerically with

simulations.

Example 4.8

We use here the cake example with serially correlated shocks. Suppose we have

a data set of T cake eaters for which we observe the duration of their cake Dt,

t = 1, . . . , T .

Given a vector of parameter θ which describes preferences and the process of ε,

we can solve numerically the model and compute the thresholds ε∗(W ). Next, we

can simulate a series of shocks and determine the duration for this particular draws

of the shock. We can repeat this step in order to construct S data sets containing

each T simulated durations.

To identify the parameters of the model, we can for instance use the mean du-

ration and the variance of the duration. Both of these moments would be calculated
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from the observed data set and the artificial ones. If we want to identify more than

two parameters, we can try to characterize the distribution of the duration better and

include the fraction of cakes eaten at the end of the first, second and third period for

instance.

For further examples, we refer the reader to the second part of the book, and in

particular to section 6.3.6 and section 7.3.3.

Exercise 4.5

Construct a computer program to implement the approach outlined in Exam-

ple 4.8. First, use as moments the mean and the variance of the duration. Increase

then the number of moments using also the fraction of cakes eaten after the first and

second period. As the model is overidentified, test the overidentification restrictions.

Properties: When the number of simulation S is fixed and T −→ ∞,

• θ̂ST (W ) is consistent.

•
√

T (θ̂ST − θ0) −→ N(0, QS(W ))

where

QS(W ) = (1 +
1

S
)

[
E0

∂µ′

∂θ
W−1

T

∂µ

∂θ′

]−1

E0
∂µ′

∂θ
W−1

T Σ(θ0)W
−1
T

∂µ

∂θ′

[
E0

∂µ′

∂θ
W−1

T

∂µ

∂θ′

]−1

where Σ(θ0) is the covariance matrix of 1/
√

T ( 1
T

∑T
t=1(µ(xt) − E0µ(xs

t(θ))).

The optimal SMM is obtained when ŴT = Σ̂T . In this case,

QS(W ∗) = (1 +
1

S
)

[
E0

∂µ′

∂θ
W ∗−1 ∂µ

∂θ′

]−1

When S increases to infinity, the variance of the SMM estimator is the same as the

variance of the GMM estimator. Note that when S tends to infinity, the covariance
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matrix of the estimator converges to the covariance matrix of the standard GMM

estimator.

In practice, the optimal weighting matrix can be estimated by:

Ŵ ∗
T =

1

T

T∑
t=1

[
µ(xt) − 1

S

S∑
s=1

µ(xs
t(θ̂ST ))

]
.

[
µ(xt) − 1

S

S∑
s=1

µ(xs
t(θ̂ST ))

]′

+
1

S

1

T

T∑
t=1

[
µ(xs

t(θ̂ST )) − 1

L

L∑
l=1

µ(xl
t(θ̂ST ))

]
.

[
µ(xs

t(θ̂ST )) − 1

L

L∑
l=1

µ(xl
t(θ̂ST ))

]′

where xs
t(θ) and xl

t(θ) are simulations generated by independent draws from the

density of the underlying shock. Ŵ ∗
T is a consistent estimate of W ∗

∞ for T −→ ∞

and L −→ ∞. Note that the SMM requires a large number of simulations to

compute the standard errors of the estimator, even if the estimator is consistent for

a fixed number of simulation.

Simulated Non Linear Least Squares

Definition: We could estimate the parameters θ by matching, at each period, the

observation xt with the prediction of the model x(us
t , θ), where us

t is a particular

draw for the shock. There are two reasons why the predicted data would not match

the observed one. First, we might evaluate the model at an incorrect parameter

point (i.e. θ �= θ0). Second, the ”true” shock u0
t is unobserved, so replacing it

with a random draw us
t would lead to a discrepancy. In trying to minimize the

distance between these two objects, we would not know whether to change θ or us
t .

To alleviate the problem, we could use S simulated shocks and compare xt with

x̄S
t (θ) = 1/S

∑S
s=1 x(us

t , θ). A natural method of estimation would be to minimize

the distance between the observed data and the average predicted variable:

min
1

T

T∑
t=1

(xt − x̄S
t (θ))2
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Unfortunately, this criterion does not provide a consistent estimator of θ, for a fixed

number of simulation S, as the sample size T increases to infinity. 35

Laffont et al. (1995) proposes to correct the non linear least square objective

function by minimizing the following criterion:

min
θ

1

T

T∑
t=1

[
(xt − x̄S

t (θ))2 − 1

S(S − 1)

S∑
s=1

(x(us
t , θ) − x̄S

t (θ))2

]
(4.12)

The first term is the same as the one discussed above, the distance between the

observed variable and the average predicted one. The second term is a second order

correction term which takes into account the bias introduced by the simulation for

a fixed S.

Example 4.9

Consider the continuous cake eating problem defined as:

V (W, ε) = max
c

εu(c) + βEε′|εV (W − c, ε′)

where W is the size of the cake, c is the amount consumed and ε is a taste shock.

The optimal policy rule for this program is of the form c = c(W, ε). Suppose we

observe an individual through time and we observe both the consumption level and

the size of the cake, {ĉt, Ŵt}t=1,...T . The taste shock is unobserved to the researcher.

To estimate the vector of parameter θ which describes preferences, we can use the

simulated non linear least square method. We simulate S paths for the taste shock,

{εs
t}t=1,...T, s=1,...S which are used to construct simulated predictions for the model

{x(Wt, ε
s
t)}t=1,...T, s=1,...S. At each period, we construct the average consumption con-

ditional on the observed size of the cake, c̄(Ŵt), by averaging out over the S simulated

taste shocks. This average is then used to compare with the observed consumption

level ĉt, using formula (4.12).
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For further examples on the simulated non linear least square method, we refer the

reader to section 7.3.3.

Asymptotic Properties: For any fixed number of simulation S,

• θ̂ST is consistent.

•
√

T (θ̂ST − θ0)
d−→ N(0, ΣS,T )

A consistent estimate of the covariance matrix ΣS,T can be obtained by computing:

Σ̂S,T = Â−1
S,T B̂S,T Â−1

S,T

where ÂS,T and B̂S,T are defined below. To this end, denote ∇xs
t = ∂x(us

t , θ)/∂θ,

the gradient of the variable with respect to the vector of parameters, and ∇xt =

1
S

∑S
s=1 ∇xs

t , its average across all simulations.

ÂS,T =
1

T

T∑
t=1

[
∇xt∇x

′
t −

1

S(S − 1)

S∑
s=1

(∇xs
t −∇xt

) (∇xs
t −∇xt

)′]

B̂S,T =
1

T

T∑
t=1

dS,t(θ)dS,t(θ)
′

with dS,t a k dimensional vector:

dS,t(θ) = (xt − x̄t(θ))∇xt(θ) +
1

S(S − 1)

S∑
s=1

[x(us
t , θ) − x̄(θ)]∇xs

t(θ)

Simulated Maximum Likelihood

Definition: The model provides us with a prediction x(ut, θ), where θ is a vector

of parameters and ut is an unobserved error. The distribution of ut implies a dis-

tribution for x(ut, θ), call it φ(xt, θ). This can be used to evaluate the likelihood

of observing a particular realization xt. In many cases, the exact distribution of

x(θ, ut) is not easily determined, as the model can be non linear or might not even
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have an explicit analytical form. In this case, we can evaluate the likelihood using

simulations.

The Simulated Maximum Likelihood (SML) method approximates this likelihood

by using simulations. Let φ̃(xt, u, θ) be an unbiased simulator of φ(xt, θ):

Euφ̃(xt, u, θ) = lim
S

1

S

S∑
s=1

φ̃(xt, u
s, θ) = φ(xt, θ)

The SML estimator is defined as:

θ̂ST = arg max
θ

T∑
t=1

log

[
1

S

S∑
s=1

φ̃(xt, u
s
t ; θ)

]

Asymptotic Properties:

• The SML estimator is consistent, if T and S tend to infinity. When both T

and S goes to infinity and when
√

T
S

−→ 0, then

√
T (θ̂ST − θ0)

d−→ N(0, I−1(θ0))

The matrix I(θ0) can be approximated by:

− 1

T

T∑
t=1

∂2 log
(

1
S

∑S
s=1 φ̃(xt, u

s
t , θ)

)
∂θ∂θ′

• It is inconsistent if S is fixed.

The bias is then:

Eθ̂ST − θ0 ∼ 1

S
I−1(θ0)Ea(xt, θ)

where

a(xt, θ) =
Eu

∂φ̃
∂θ

Vuφ̃

(Euφ̃)3
− covu(

∂φ̃
∂θ

, φ̃)

(Euφ̃)2

The bias decreases in the number of simulations and with the precision of the esti-

mated parameters, as captured by the information matrix. The bias also depends on

the choice of the simulator, through the function a. Gourieroux and Monfort (1996)



100

proposes a first order correction for the bias. Fermanian and Salanié (2001) extend

these results and propose a non parametric estimator of the unknown likelihood

function, based on simulations.

Indirect Inference

When the model is complex, the likelihood is sometimes intractable. The indirect

inference method works around it by using a simpler auxiliary model, which is esti-

mated instead. This auxiliary model is estimated both on the observed data, and on

simulated data. The indirect inference method tries to find the vector of structural

parameters which brings the auxiliary parameters from the simulated data as close

as possible to the one obtained on observed data. A complete description can be

found in Gourieroux et al. (1993) (see also Smith (1993)).

Consider the likelihood of the auxiliary model φ̃(xt, β), where β is a vector of

auxiliary parameters. The estimator β̂T , computed from the observed data is defined

by:

β̂T = arg max
β

T∏
t=1

φ̃(xt, β)

Under the null, the observed data are generated by the model at the true value

of the parameter θ0. There is thus a link between the auxiliary parameter β0 (the

true value of the auxiliary parameter) and the structural parameters θ. Follow-

ing Gourieroux et al. (1993) we denote this relationship by the binding function

b(θ). Were this function known, we could invert it to directly compute θ from the

value of the auxiliary parameter. Unfortunately, this function usually has no known

analytical form, so the method relies on simulations to characterize it.

The model is then simulated, by taking independent draws for the shock us
t ,

which gives S artificial data sets of length T : {xs
1(θ), . . . , x

s
T (θ)}, s = 1, . . . , S. The
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auxiliary model is then estimated out of the simulated data, to get β̂sT :

β̂sT (θ) = arg max
β

T∏
t=1

φ̃(xs
t(θ), β)

Define β̂ST the average value of the auxiliary parameters, over all simulations:

β̂ST =
1

S

S∑
s=1

β̂sT (θ)

The indirect inference estimator θ̂ST is the solution to:

θ̂ST = arg min
θ

[β̂T − β̂ST (θ)]′ΩT [β̂T − β̂ST (θ)]

where ΩT is a positive definite weight matrix which converges to a deterministic

positive definite matrix Ω.

Example 4.10

Consider the cake problem with serially correlated shocks. The likelihood of the

structural model is intractable, but we can find an auxiliary model which is easier

to estimate. As the data set consists of durations, a natural auxiliary model is

a standard duration model. Suppose we chose an exponential model, which is a

simple and standard model of duration characterized by a constant hazard equal to

β. The probability of observing a particular duration is βe−βDt. The log likelihood

of observing a set of durations Dt, t = 1, . . . , T is :

ln L =
T∑

t=1

ln
(
βe−(βDt)

)
This likelihood can be maximized with respect to β. Straightforward maximization

gives β̂T = 1
T
∑T

t=1 Dt. In this case, the auxiliary parameter is estimated as the

average duration in the data set. Given a value for the structural parameters of

our model of interest θ, we can construct by simulation S data sets containing T

observations. For each artificial data set s, we can estimate the auxiliary duration

model to obtain β̂sT . Using the procedure above, we are then able to obtain an
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estimate of θ, such as the auxiliary parameters both on the observed and the simulated

data are as close as possible. Note that with the simple auxiliary model we use, it

turns out that the indirect inference procedure is the same as a simulated method of

moments, as we are matching the average duration.

We have used the exponential duration model for the simplicity of the exposition.

This model is only parameterized by one parameter, so we can identify at best only

one structural parameter. To identify more parameters, we could estimate a duration

model with a more flexible hazard.

For more examples on the indirect inference method, we refer the reader to the

second part of the book, in particular section 5.5.3 and 8.6.1.

Gallant and Tauchen (1996) develop an Efficient Method of Moments based on

the use of an auxiliary method. Instead of matching on a set of auxiliary parameters,

they propose to minimize the score of the auxiliary model, i.e. the first derivative

of the likelihood of the auxiliary model:

m(θ, βT ) =
1

S

S∑
s=1

1

T

T∑
t=1

∂

∂β
ln φ̃(xs

t(θ), β̂T )

The structural parameter are obtained from:

θ∗ = argmin
θ

m(θ, β̂T )′ Ω m(θ, β̂T )

where Ω is a weighting matrix. Gourieroux et al. (1993) show that the EMM and

the indirect inference estimators are asymptotically equivalent.

Properties: For a fixed number of simulations S, when T goes to infinity the

indirect inference estimator is consistent and normally distributed.

√
T (θ̂ST − θ0) −→ N(0, QS(Ω))
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where

QS(Ω) = (1+
1

S
)

[
∂b′(θ0)

∂θ
Ω

∂b(θ0)

∂θ′

]−1
∂b′(θ0)

∂θ
ΩJ−1

0 (I0−K0)J
−1
0 Ω

∂b(θ0)

∂θ′

[
∂b′(θ0)

∂θ
Ω

∂b(θ0)

∂θ′

]−1

Denote ψT (θ, β) =
∑T

t=1 log φ̃(xs
t(θ), β). The matrices I0, J0 and K0 are defined

as:

J0 = plimT −∂2ψT (θ, β)
∂β∂β′

I0 = limT V

[√
T

∂ψT (θ, β)
∂β

]

K0 = limT V

[
E

(√
T ∂

∂β′
∑T

t=1 φ̃(xt, β)

)]
∂b′(θ0)

∂θ
= J−1

0 limT
∂2ψT (θ0, b(θ0))

∂β∂θ′

The latter formula is useful to compute the asymptotic covariance matrix without

calculating directly the binding function. As in the GMM case, there exists an

optimal weighting matrix such that the variance of the estimator is minimized. The

optimal choice denoted Ω∗ is:

Ω∗ = J0(I0 − K0)
−1J0

in this case, the variance of the estimator simplifies to:

QS(Ω∗) = (1 +
1

S
)

(
∂b′(θ0)

∂θ
J0(I0 − K0)

−1J0
∂b(θ0)

∂θ′

)−1

or equivalently

QS(Ω∗) = (1 +
1

S
)

(
∂2ψ∞(θ0, b(θ0))

∂θ∂β′ (I0 − K0)
−1∂2ψ∞(θ0, b(θ0))

∂β∂θ′

)−1

The latter formula does not require to compute explicitly the binding function. Note

that the choice of the auxiliary model matters for the efficiency of the estimator.

Clearly, one would want an auxiliary model such that ∂b′(θ)/∂θ is large in absolute

values. If not, the model would poorly identify the structural parameters.
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In practice, b(θ0) can be approximated by β̂ST (θ̂ST ). A consistent estimator of

I0 − K0 can be obtained by computing:

( ̂I0 − K0) =
T

S

S∑
s=1

(Ws − W̄ )(Ws − W̄ )′

with

Ws =
∂ψT (θ̂, β̂)

∂β

W̄ = 1
S
∑S

s=1 Ws

see Gourieroux et al. (1993), appendix 2.

Note that if the number of parameters to estimate in the structural model is equal

to the number of parameters in the auxiliary parameters, the weighting matrix Ω

plays no role, and the variance QS(Ω) simplifies to:

QS(Ω) = (1 +
1

S
)

[
∂b′(θ0)

∂θ
Ω∗∂b(θ0)

∂θ′

]−1

Specification Tests: A global specification test can be carried out using the

minimized

ζT =
TS

1 + S
min

θ
[β̂T − β̂ST (θ)]′ΩT [β̂T − β̂ST (θ)]

follows asymptotically a chi-square distribution with q − p degrees of freedom.

4.4 Conclusion

This chapter presents methods to estimate the parameters of a model. We have re-

viewed both classic methods such as maximum likelihood or the generalized method

of moments and simulation based methods. In general, when dealing with dynamic

programming models, the likelihood function or the analytical form of the moments

are difficult to write out. If this is the case, simulated methods are of great use.

However, they come at a cost, as simulated methods are very time consuming. The
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computation of the value function and the optimal policy rules often requires the

use of numerical techniques. If on top of that simulation estimation methods are

used, the estimation of a full fledged structural model can take hours (or even days).

The choice of a particular method depends on the problem and the data set.

Path calibration methods such as non linear least squares or maximum likelihood

use all the information available in the data, as each particular observation is used

in the estimation procedure. The draw back is that one has to specify the entire

model, up to the distribution of the unobserved shock. To have tractable likelihood

functions, one often impose a normal distribution for the shocks and this might

impose too much structure on the problem. On the other hand, moment calibration

methods such as the method of moments use only part of the information provided

by the data. These methods concentrate on particular functions of the data, as the

mean or the variance for instance. In contrast to maximum likelihood, the method

does not necessarily requires the specification of the whole model.

Both approaches can be justified. The researcher might be interested in only

a subset of the parameters, as the intertemporal elasticity of consumption. As in

example 4.5, the GMM method allows to estimate this parameter, without specifying

the distribution of the income shock. However, calibration methods require the

choice of moments that identify the parameters of the model. When the model is

simple, this is not very difficult. When the models are more complex, for instance

when unobserved heterogeneity is present, it is not that straightforward to find

informative moments. In such cases, maximum likelihood can be more desirable.

Finally, if the data is subject to measurement errors, taking moments of the data

can reduce the problem. When using simulation methods, calibration methods

also presents the advantage of requiring only a fixed number of simulations to get

consistent estimates, so the computation time is lower.



Overview of Methodology

The first three chapters have presented theoretical tools to model, solve and estimate

economic models. Ideally, to investigate a particular economic topic, a research

agenda would include all three parts, building on economic theory and confronting

it with the data to assess its validity.

Figure 4.6 summarizes this approach and points to the relevant chapters. The

figure starts with an economic model, described by a set of parameters and some

choice structure. It is important at this stage to characterize the properties of that

model and to characterize the first order conditions or to write it as a recursive

problem. The model under consideration might be difficult to solve analytically.

In this case, it is sometime necessary to use numerical methods as developed in

Chapter 3. One can then derive the optimal policy rules, i.e. the optimal behavior

given a number of predetermined variables.

Given the policy rules 36 the parameters can be estimated. This is usually done

by comparing some statistics built both from the observed data and from the model.

The estimated parameters are produced by minimizing the distance between the

observed and the predicted outcome of the model. Once the optimal parameters are

found, the econometric task is not over. One has to evaluate the fit of the model.

There are various ways of doing this. First, even though the models are often non

linear, one can construct a measure such as the R2, to evaluate the percentage of the

variance explained by the model. A higher value is seen as a better fit. However,

106
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the model can be very good at reproducing some aspects of the data but can fail

miserably in other important dimensions. For instance, in the discrete cake eating

problem, the fit of the model could be considerably increased in the first T periods

if one were to construct time dependent utility functions, with T dummy variables

for each time period. Such a model would generate a perfect fit when it comes to

predict the fraction of cakes eaten in the first periods. However, the model could

do very poorly for the remaining periods. A second way to evaluate the estimated

model is to use over identification restrictions if the model is overidentified. Finally,

one can also perform out of sample forecasts.

Once one is confident that the estimated model is a convincing representation of

reality, the model can be used to evaluate different scenarios.

The next chapters present examples of this strategy using a number of relevant

topics.

[Figure 4.6 approximately here]
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Applications
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Chapter 5

Stochastic Growth

5.1 Overview

To begin our exploration of applications of dynamic programming problems in

macroeconomics, a natural starting point is the stochastic growth model. Starting

with Kydland and Prescott (1982), this framework has been used for understanding

fluctuations in the aggregate economy. To do so, the researcher must understand the

mapping from the parameters of preferences and technology to observations, per-

haps summarized by pertinent moments of the data. Further, the model provides

an analytic structure for policy evaluation.37

The stochastic growth model provides our first opportunity to review the tech-

niques of dynamic programming, numerical methods and estimation methodology.

We begin with the non-stochastic model to get some basic concepts straight and

then enrich the model to include shocks and other relevant features.

5.2 Non-Stochastic Growth Model

Consider the dynamic optimization problem of a very special household. This house-

hold is endowed with one unit of leisure each period and supplies this inelastically
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to a production process. The household consumes an amount ct each period which

it evaluates using a utility function, u(ct). Assume that u(·) is strictly increasing

and strictly concave. The household’s lifetime utility is given by

∞∑
1

βt−1u(ct) (5.1)

The household has access to a technology that produces output (y) from capital

(k), given its inelastically supplied labor services. Let y = f(k) be the production

function. Assume that f(k) is strictly increasing and strictly concave.

The capital input into the production process is accumulated from forgone con-

sumption. That is, the household faces a resource constraint that decomposes output

into consumption and investment (it):

yt = ct + it.

The capital stock accumulates according to:

kt+1 = kt(1 − δ) + it

where δ ∈ (0, 1) is the rate of physical depreciation.

Essentially the household’s problem is to determine an optimal savings plan by

splitting output between these two competing uses. Note that we have assumed

the household produces using a concave production function rather than simply

renting labor and capital in a market for factors of production. In this way, the

model of the household is very special and often this is referred to as a Robinson

Crusoe economy as the household is entirely self-sufficient. Nonetheless the model is

informative about market economies as one can argue (see below) that the resulting

allocation can be decentralized as a competitive equilibrium. For now, our focus is

on solving for this allocation as the solution of a dynamic optimization problem.

To do so, we use the dynamic programming approach and consider the following

functional equation:
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V (k) = max
k′

u(f(k) + (1 − δ)k − k′) + βV (k′) (5.2)

for all k. Here the state variable is the stock of capital at the start of the period

and the control variable is the capital stock for the next period.38

With f(k) strictly concave, there will exist a maximal level of capital achievable

by this economy given by k̄ where

k̄ = (1 − δ)k̄ + f(k̄).

This provides a bound on the capital stock for this economy and thus guarantees

that our objective function, u(c), is bounded on the set of feasible consumption

levels, [0, f(k̄) + (1 − δ)k̄]. We assume that both u(c) and f(k) are continuous and

real-valued so there exists a V (k) that solves (5.2).39

The first-order condition is given by:

u′(c) = βV ′(k′). (5.3)

Of course, we don’t know V (k) directly so that we need to use (5.2) to determine

V ′(k). As (5.2) holds for all k ∈ [0, k̄], we can take a derivative and obtain:

V ′(k) = u′(c)(f ′(k) + (1 − δ)).

Updating this one period and inserting this into the first-order condition implies:

u′(c) = βu′(c′)(f ′(k′) + (1 − δ)).

This is an Euler condition that is not unlike the one we encountered in the cake

eating problem. Here the left side is the cost of reducing consumption by ε today.

The right side is then the increase in utility in the next period from the extra capital

created by investment of the ε. As in the cake eating structure, if the Euler equation

holds then no single period deviations will increase utility of the household. As with

that problem, this is a necessary but not a sufficient condition for optimality.40
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From the discussion in Chapter 2, V (k) is strictly concave. Consequently, from

(5.3), k′ must be increasing in k. To see why, suppose that current capital increases

but future capital falls. Then current consumption will certainly increase so that

the left side of (5.3) decreases. Yet with k′ falling and V (k) strictly concave, the

right side of (5.3) increases. This is a contradiction.

5.2.1 An Example

Suppose that u(c) = ln(c), f(k) = kα and δ = 1. With this special structure, we can

actually solve this model. As in Sargent (1987), we guess that the value function is

given by:

V (k) = A + B ln k

for all k. If this guess is correct, then we must be able to show that it satisfies (5.2).

If it does, then the first-order condition, (5.3), can be written:

1

c
=

βB

k′ .

Using the resource constraint (kα = c + k′),

βB(kα − k′) = k′

or

k′ = (
βB

1 + βB
)kα. (5.4)

So, if our guess on V (k) is correct, this is the policy function.

Given this policy function, we can now verify whether or not our guess on V (k)

satisfies the functional equation, (5.2). Substitution of (5.4) into (5.2) yields
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A + B ln k = ln[(
1

1 + βB
)kα] + β[A + B ln((

βB

1 + βB
)kα)] (5.5)

for all k. Here we use c = y − k′ so that

c = (
1

1 + βB
)kα.

Grouping constant terms implies:

A = ln(
1

1 + βB
) + β[A + B ln(

βB

1 + βB
)]

and grouping terms that multiply ln k,

B = α + βBα.

Hence B = α
1−βα

. Using this, A can be determined. Thus, we have found the solution

to the functional equation.

As for the policy functions, using B, we find

k′ = βαkα

and

c = (1 − βα)kα.

It is important to understand how this type of argument works. We started

with a guess of the value function. Using this guess, we derived a policy function.

Substituting this policy function into the functional equation gave us an expression,

(5.5), that depends only on the current state, k. As this expression must hold for all

k, we grouped terms and solved for the unknown coefficients of the proposed value

function.

Exercise 5.1
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To see how this approach to finding a solution to the nonstochastic growth model

could ”fail”, argue that the following cannot be solutions to the functional equation:

1. V (k) = A

2. V (k) = B ln k

3. V (k) = A + Bkα

5.2.2 Numerical Analysis

Though the non-stochastic growth model is too simple to seriously take to the

data, it provides an opportunity to again exploit the contraction mapping property

to obtain a numerical solution to the functional equation given in (5.2). This is

valuable as the set of economies which one can obtain an analytic solution to (5.2)

is very small. Thus techniques must be developed to obtain policy functions in more

general environments.

The Matlab code grow.m solves (5.2), for the functional forms given below,

using a value function iteration routine.41 The code has four main sections that we

discuss in turn.

Functional Forms

There are two primitive functions that must be specified for the nonstochastic growth

model. The first is the production function and the second is the utility function of

the household. The grow.m code assumes that the production function is given by:

f(k) = kα.

Here α is restricted to lie in the interval (0, 1) so that f(k) is strictly increasing and

strictly concave.
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The household’s utility function is given by:

u(c) =
c1−σ

1 − σ
.

With this utility function, the curvature of the utility function,

−u′′(c)c/u′(c)

is equal to σ.42 We assume that σ is positive so that u(c) is strictly increasing and

strictly concave. When σ = 1, u(c) is given by ln(c).

Parameter Values

The second component of the program specifies parameter values. The code is

written so that the user can either accept some baseline parameters (which you can

edit) or input values in the execution of the program. Let

Θ = (α, β, δ, σ)

denote the vector of parameters that are inputs to the program. In an estimation

exercise, Θ would be chosen so that the model’s quantitative implications match

data counterparts. Here we are simply interested in the anatomy of the program

and thus Θ is set at somewhat arbitrary values.

Spaces

As noted earlier, the value function iteration approach does require an approxima-

tion to the state space of the problem. That is, we need to make the capital state

space discrete. Let κ represent the capital state space. We solve the functional

equation for all k ∈ κ with the requirement that k′ lie in κ as well. So the code

for the non-stochastic growth model does not interpolate between the points in this

grid but rather solves the problem on the grid.
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The choice of κ is important. For the nonstochastic growth model we might be

interested in transition dynamics: if the economy is not at the steady state, how

does it return to the steady state? Let k∗ be the steady state value of the capital

stock which, from (5.2), solves

1 = β[αk∗(α−1) + (1 − δ)].

This value of the steady state is computed in grow.m. Then the state space is

built in the neighborhood of the steady state through the definitions of the highest

and lowest values of the capital stock, khi and klow in the code.43 Finally, a grid is

set-up between these two extreme values. The researcher specifies the fineness of the

grid with two considerations in mind. A finer grid provides a better approximation

but is ”expensive” in terms of computer time.44

Value function Iteration

The fourth section of the program solves (5.2) using a value function iteration rou-

tine. To do so, we need an initial guess on the value function. For this guess, the

program uses the one-period problem in which the household optimally consumes

all output as well as the undepreciated capital stock (termed ytot in grow.m). 45

Given this initial guess, a loop is set-up to perform value function iteration, as

described in some detail in Chapter 3. Note that the program requires two inputs.

The first is the total number of iterations that is allowed, termed T . The second

is the tolerance which is used to determine whether the value function iteration

routine has ”converged”. This tolerance is called toler and this scalar is compared

against the largest percent difference between the last two calculations of the value

function V and v in the grow.m program.
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Evaluating the Results

Once the program has converged, aspects of the policy function can be explored.

The program produces two plots. The first, (Figure 5.1 below), plots the policy

function: k′ as a function of k. The policy function is upward sloping as argued

earlier. The second, (Figure 5.2), plots the level of net investment (k′ − k) for

each level of k in the state space. This line crosses zero at the steady state and

is downward sloping. So, for value of k below the steady state the capital stock

is increasing (net investment is positive) while for k above k∗, net investment is

negative.

[Figure 5.1 approximately here]

[Figure 5.2 approximately here]

The program also allows you to calculate transition dynamics starting from an

(arbitrary) initial capital stock. There are at least two interesting exercises one can

perform from this piece of the code.

Exercise 5.2

1. Study how other variables (output, consumption, the real interest rate) behave

along the transition path. Explain the patterns of these variables.

2. Study how variations in the parameters in Θ influence the speed and other

properties of the transitional dynamics.

5.3 Stochastic Growth Model

We build upon the discussion of the nonstochastic growth model to introduce ran-

domness into the environment. We start from a specification of the basic economic
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environment. The point is to make clear the nature of the intertemporal choice

problem and the assumptions underlying the specification of preferences and tech-

nology.

We then turn to the planners’ optimization problem. We take the approach

of a planner with an objective of maximizing the expected lifetime utility of a

representative agent.46 In this way, we can characterize allocations as the results

of a single optimization problem rather than through the solution of a competitive

equilibrium. Given that there are no distortions in the economy, it is straightforward

to determine the prices that support the allocation as a competitive equilibrium.

We do this later in a discussion of the recursive equilibrium concept.

5.3.1 Environment

The stochastic growth model we study here is based upon an economy with infinitely

lived households. Each household consumes some of the single good (ct) and invests

the remainder (it). Investment augments the capital stock (kt) with a one period lag:

i.e. investment today creates more capital in the next period. There is an exogenous

rate of capital depreciation denoted by δ ∈ (0, 1). For now, we assume there is a

single good which is produced each period from capital and labor inputs.47 The

capital input is predetermined from past investment decisions and the labor input

is determined by the household.

Fluctuations in the economy are created by shocks to the process of producing

goods. Thus, “good times” represent higher productivity of both labor and capital

inputs. The planner will optimally respond to these variations in productivity by

adjusting household labor supply and savings (capital accumulation) decisions. Of

course, investment is a forward looking decision since the new capital is durable

and is not productive until the next period. Further, the extent to which the labor
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decision responds to the productivity variation depends, in part, on whether capital

and labor are likely to be more productive in the future. Consequently, the serial

correlation properties of the shocks are critical for understanding the responses of

employment and investment.

More formally, the households preferences over consumption (ct) and leisure (lt)

are given by:

∞∑
t=0

βtu(ct, lt)

where the discount factor β ∈ (0, 1). We will assume that the function u(c, l) is

continuously differentiable and strictly concave. The households face a constraint

on their time allocation:

1 = lt + nt

where the unit time endowment must be allocated between leisure and work (nt).

The production side of the economy is represented by a constant returns to scale

production function over the two inputs. Since scale is not determined, we model

the economy as if there was a single competitive firm that hires the labor services

of the households (Nt) and uses the households’ capital in the production process.

The production function is expressed as:

Yt = AtF (Kt, Nt)

where F (K,N) is increasing in both inputs, exhibits constant returns to scale and

is strictly concave. Variations in total factor productivity, At will be the source

of fluctuations in this economy. Here upper case variables refer to economywide

aggregates and lower case variables are household (per capita) variables.
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Finally, there is a resource constraint: the sum of consumption and investment

cannot exceed output in each period. That is:

Yt = Ct + It.

For characterizing the solution to the planner’s problem, this is all the informa-

tion that is necessary. That is, given the statement of preferences, the production

function and the time and resource constraints, the planner’s problem can be speci-

fied. In fact, the natural approach might be to allow the planner to choose a sequence

of history dependent functions that describe the choices of consumption, investment

and employment for all time periods conditional on the state of the economy at that

point in time. In this most general formulation the description of the state would

include all productivity shocks and the value of the capital stock.

Instead of solving a planner’s problem in which the choice is a sequence of state

contingent functions, the tools of dynamic programming can be used. We turn to

that approach now.

5.3.2 Bellman’s Equation

To begin the analysis, we assume that labor is inelastically supplied at one unit per

household. Thus we consider preferences represented by u(c). This allows us to

focus on the dynamics of the problem. Of course, we will want to include a labor

supply decision before confronting the data, else we would be unable to match any

moments with labor variations. Hence we turn to the more general endogenous

labor supply formulation later.

In this case, we use the constant returns to scale assumption on F (K,N) to

write per capita output (yt) as a strictly concave function of the per capita capital

stock (kt):
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yt ≡ AtF (Kt/N, 1) ≡ Atf(kt).

As F (K,N) exhibits constant returns to scale, f(k) will be strictly concave. Bell-

man’s equation for the infinite horizon stochastic growth model is specified as

V (A, k) = maxk′ u(Af(k) + (1 − δ)k − k′) + βEA′|AV (A′, k′) (5.6)

for all (A, k). Here the transition equation used to construct (5.6) is k′ = Af(k) +

(1 − δ)k − c.

An important element of this model is the multiplicative productivity shock.

Through the introduction of this shock, the model is constructed to capture pro-

cyclical fluctuations in productivity. An important question is whether the fluc-

tuations in output, employment, consumption, investment, etc. induced by these

shocks match relevant features of the data.

For the quantitative analysis, we assume that A is a bounded, discrete random

variable that follows a first-order Markov process. The transition matrix is given by

Π and this is, implicitly, used in the conditional expectation in (5.6).48

As in the general discussion of Chapter 2, one important question is whether

there exists a solution to the function equation. A second is characterizing the

optimal policy function.

For the growth model, it is important to be sure that the problem is bounded.

For this, let k̄ solve:

k = A+f(k) + (1 − δ)k (5.7)

where A+ is the largest productivity shock. Since consumption must be non-

negative, then, from the transition equation, the k that solves this expression is

the largest amount of capital that this economy could accumulate. Since f(k) is

strictly concave, there will exist a unique finite value of k̄ that satisfies (5.7). This



122

then implies that the largest level of consumption is also k̄: the largest feasible

consumption occurs when the largest capital stock is consumed in a single period.

Thus we can bound utility by u(k̄).

Given that we have bounded the problem, assumed that the discount factor is

less than one and assumed the shocks follow a bounded, first-order Markow process,

the results from Chapter 2 will apply. Thus we know that there exists a unique

value function V (A, k) that solves (5.6). Further, we know that there is a policy

function given by: k′ = φ(A, k).

Our goal is to learn more about the properties of this solution. To stress an

important point, the policy function represents the bridge from the optimization

problem to the data. The policy function itself depends on the underlying struc-

tural parameters and delivers a relationship between variables, some of which are

observable. So, the inference problem is clean: what can we determine about the

structural parameters from observations on output, capital, consumption, produc-

tivity, etc.?

5.3.3 Solution Methods

Linearization

One approach to characterizing a solution to the stochastic growth model written

above is through analysis of the resource constraints and the intertemporal Euler

equation. The latter is a necessary condition for optimality and can be obtained

directly from the sequence problem representation of the planners problem. Alter-

native, using Bellman’s equation, the first-order condition for the planner is

u′(Af(k) + (1 − δ)k − k′) = βEA′|AVk′(A′, k′) (5.8)
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for all (A, k). Though we do not know V (A, k), we can solve for its derivative. From

(5.6),

Vk(A, k) = u′(c)[Af ′(k) + (1 − δ)].

Substituting this into (5.8) and evaluating it at (A′, k′) implies:

u′(c) = βEA′|Au′(c′)[A′f ′(k′) + (1 − δ)] (5.9)

where

c = Af(k) + (1 − δ)k − k′ (5.10)

and c′ is defined accordingly. These two expressions, along with the evolution of A

(specified below) defines a system of equations. So, one can represent the optimal

growth model as a system of first order stochastic difference equations in (c, k, A).

In order to approximately characterize this solution, it is common to linearize

this condition and the resource constraints around the steady state, (c∗, k∗).49 To

do so, we fix A at its mean value, Ā. The steady state value of the capital stock

will then satisfy:

1 = β[Āf ′(k∗) + (1 − δ)]. (5.11)

Further, in steady state k′ = k = k∗ so the steady state level of consumption satisfies

c∗=Āf(k∗) − δk∗.

Following King et al. (1988), let ĉt, k̂t and Ât denote percent deviations from

their steady state values respectively. So, for example, x̂t ≡ xt−x∗
x∗ . Assume that in

terms of deviations from mean, the shocks follow a first-order autoregressive process,

Ât+1 = ρÂt + εt+1 with ρ ∈ (0, 1).

Then we can rewrite the Euler condition, (5.9), as:

ξĉt = ξĉt+1 + νρÂt + νχk̂t+1 (5.12)
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where ξ is the elasticity of the marginal utility of consumption, ξ ≡ u′′(c∗)c∗
u′(c∗)

. The

parameter ν ≡ βĀf ′(k∗) which equals 1−β(1−δ) in the steady state. The parameter

ρ is the serial correlation of the deviation of the shock from steady state and χ ≡
f ′′(k∗)k∗

f ′(k∗)
is the elasticity of the marginal product of capital with respect to capital.

The resource condition, (5.10), can be approximated by:

k̂t+1 =
1

β
k̂t +

δ

(1 − sc)
Ât − sc

(1 − sc)
δĉt. (5.13)

Here sc is consumption’s steady state share of output.

If the researcher specifies a problem such that preferences and the production

function exhibit constant elasticities then, ξ and χ are fixed parameters and one does

not have to ever solve explicitly for a steady state. For example, if the production

function is Cobb-Douglas where α is capital’s share, then χ is simply (α − 1).

Likewise, ν just depends on the discount factor and the rate of physical capital

depreciation. Finally, the consumption share sc is just a function of the parameters

of the economy as well.

For example, in the Cobb-Douglas case, (5.11) can be written as:

1 = β[α(y∗/k∗) + (1 − δ)]

where y∗ is the steady state level of output. Since the steady state level of investment

i∗ = δk∗, then this can be rewritten as:

1 = β[αδ/(1 − sc) + (1 − δ)].

Solving this,

(1 − sc) =
βαδ

1 − β(1 − δ)

so that sc can be calculated directly from the underlying parameters.

This approach thus delivers a log-linearized system whose parameter are deter-

mined by the underlying specification of preferences, technology and the driving
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processes of the economy. This system can be simplified by solving out for ĉt yield-

ing a stochastic system characterizing the evolution of the state variables, i.e. the

system can be written solely in terms of (Ât, k̂t). At this point, the response of

the system to productivity innovations can be evaluated and, as discussed further

below, taken to the data.50

Value Function Iteration

Instead of obtaining an approximate solution by log-linearization, one can attack

the dynamic programming problem directly. To more fully characterize a solution,

we often resort to specific examples or numerical analysis.

As a leading example, assume that u(c) = ln(c) and that the rate of depreciation

of capital is 100%. Further, suppose that the process for the shocks is given by

lnA′ = ρ lnA + ε

where ρ ∈ (−1, 1), so that the process is stationary. Finally, suppose that the

production function has the form f(k) = Akα.

With these restrictions, the Euler equation (5.9) reduces to:

1

c
= βEA′|A[

A′αk′(α−1)

c′
]. (5.14)

Note that here we take the expectation, over A′ given A, of the ratio since future

consumption, c′, will presumably depend on the realized value of the productivity

shock next period.

To solve for the policy function, we make a guess and verify it.51 We assert that

the policy function k′ = φ(A, k) is given by

φ(A, k) = λAkα

where λ is an unknown constant. That is, we will try a guess that the future capital

is proportional to output which is quite similar to the policy function we deduced
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for the example of the nonstochastic growth model. Given the resource constraint,

this implies

c = (1 − λ)Akα.

To verify this guess and determine λ, we use this proposed policy function in (5.14).

This yields:

1

(1 − λ)Akα
= βEA′|A[

A′αk′(α−1)

(1 − λ)A′k′α ].

Solving for the policy function yields:

k′ = βαAkα. (5.15)

Hence our guess is verified and λ = αβ. This implies that consumption is propor-

tional to income:

c = (1 − βα)Akα. (5.16)

In this case, one can show that the value function that solves (5.6) is given by:

V (A, k) = G + B ln(k) + D ln(A)

for all (A, k), where G,B and D are unknown constants which we can solve for.

If so, then using (5.15) and (5.16), the functional equation is given by:

G + B ln(k) + D ln(A) = ln((1 − βα)Akα) + β[G + B ln(βαAkα) + DEA′|A ln(A′).

(5.17)

for all (A, k). Importantly, there is no maximization here as we have substituted the

policy function into the functional equation.52 Since, EA′|A ln(A′) = ρ ln A, we make

use of the fact that this relationship holds for all (A, k) and group terms together

as we did in the analysis of the nonstochastic growth model. So the constants must
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be the same on both sides of (5.17):

G = ln(1 − βα) + βG + βB ln(βα).

Similarly, for the coefficients multiplying ln(k), we must have:

B = α + βBα.

Finally, with respect to ln(A),

D = 1 + βB + βDρ.

So if (G,B,D) solve this system of equation, then they solve the functional

equation. As this solution is unique, we verify our guess. While tedious, one can

show that the solution is:

G =
ln(1 − βα) + β( α

1−βα
) ln(βα)

1 − β
,B =

α

1 − βα
,D =

1

(1 − βρ)(1 − βα)
.

Note here the role of discounting: if β = 1, then G is infinity.

Unfortunately, this is a very special case. We will use it again when we discuss

empirical implications of the stochastic growth model.

Exercise 5.3

Verify that if there is less than 100% depreciation, the solution given by φ(A, k) =

λAkα fails.

Outside of the special examples, one is left with a direct analysis of (5.6). It is

straightforward to apply the analysis of Chapter 2 to this problem so that a solution

to the functional equation will exist.53 Further, one can show that the value function

is a strictly concave function of k. Consequently, the policy function is increasing
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in k. To see this, consider (5.8). An increase in k will increase the left side of this

expression. If k′ doesn’t rise, then (5.8) will not hold since the right side, from the

concavity of V (A, k) is a decreasing function of k′.

Further details about the policy function require numerical analysis. One can

build a stochastic version of the program termed grow.m that was discussed above.

Doing so is a good exercise to be sure that you understand how to write a value

function iteration program.54 We take this up again in the next section once we

introduce a labor supply decision to the model.

Exercise 5.4

Drawing on grow.m, write a value function iteration program to find the solution

to (5.6).

5.3.4 Decentralization

To study the decentralized economy, the household’s problem must be supplemented

by a budget constraint and the sources of income (labor income, capital income,

profits) would have to be specified along with the uses of these funds (consumption,

savings). Likewise, the firm’s demands for labor and capital inputs will have to be

specified as well. We discuss these in turn using the recursive equilibrium concept.55

The firm’s problem is static as we assume the households hold the capital. Thus

the firm rents capital from the household at a price of r per unit and hires labor at

a wage of ω per hour. The wage and rental rates are all in terms of current period

output. Taking these prices as given, the representative firm will maximize profits

by choosing inputs (K,N) such that:

AfN(K,N) = ω and AfK(K,N)+(1-δ) = r.
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Here we stipulate that the capital rental agreement allows the firm to use the capital

and to retain the undepreciated capital which it then sells for the same price as

output in the one-sector model. Due to the constant returns to scale assumption,

the number and size of the firms is not determined. We assume for simplicity that

there is a single firm (though it acts competitively) which employs all the capital

and labor in the economy, denoted by upper case letters.

For the households, their problem is:

V (A, k,K) = maxk′u(r(K)k + ω(K) + Π − k′) + βEA′|AV (A′, k′, K ′) (5.18)

where Π is the flow of profits from the firms to the households. This is a different

expression than (5.6) as there is an additional state variable, K. Here k is the

household’s own stock of capital while K is the per capita capital stock economy

wide. The household needs to know the current value of K since factor prices

depend on this aggregate state variable through the factor demand equations. This

is indicated in (5.18) by the dependence of r(K) and ω(K) on K.

Let K ′ = H(A,K) represent the evolution of the aggregate capital stock. As

the household is competitive, it takes the evolution of the aggregate state variable

as given. Thus the household takes current and future factor prices as given.

The first-order condition for the household’s capital decision is:

u′(c) = βEVk(A
′, k′, K ′). (5.19)

Here the household uses the law of motion for K. Using (5.18), we know that

Vk = r(K)u′(c) so that the first-order condition can be written as:

u′(c) = βEr′u′(c′). (5.20)

A recursive equilibrium is comprised of:
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• factor price functions: r(K) and ω(K)

• individual policy functions: h(A, k,K) from (5.18)

• a law for motion for K: H(A,K)

such that:

• households and firms optimize

• markets clear

• H(A, k) = h(A, k, k)

By using the first-order conditions from the factor demand of the operating firm,

it is easy to see that the solution to the planners problem is a recursive equilibrium.

5.4 A Stochastic Growth Model with Endogenous

Labor Supply

We now supplement the version of the stochastic growth model given above with

an endogenous labor supply decision. For now, we retain the perspective of the

planner’s problem and discuss decentralization later in this section.

5.4.1 Planner’s Dynamic Programming Problem

Supplementing preferences and the technology with a labor input, the modified

planner’s problem is given by:

V (A, k) = maxk′,nu(Af(k, n) + (1 − δ)k − k′, 1 − n) + βEA′|AV (A′, k′). (5.21)

for all (A, k). Here the variables are measured in per capita terms: k and n are the

capital and labor inputs per capita.
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The optimization problem entails the dynamic choice between consumption and

investment that was key to the stochastic growth model with fixed labor input. In

addition, given k′, (5.21) has a “static” choice of n.56 This distinction is impor-

tant when we turn to a discussion of programming the solution to this functional

equation.

For given (A, k, k′), define σ(A, k, k′) from:

σ(A, k, k′) = maxnu(Af(k, n) + (1 − δ)k − k′, 1 − n) (5.22)

and let n = φ̂(A, k, k′) denote the solution to the optimization problem. The first-

order condition for this problem is given by:

uc(c, 1 − n)Afn(k, n) = ul(c, 1 − n). (5.23)

This condition equates the marginal gain from increasing employment and consum-

ing the extra output with the marginal cost in terms of the reduction in leisure time.

This is clearly a necessary condition for optimality: in an optimal solution, this type

of static variation should not increase welfare.

Thus given the current productivity shock and the current capital stock and

given a level of capital for the future, φ̂(A, k, k′) characterizes the employment

decision. We can think of σ(A, k, k′) as a return function given the current state

(A, k) and the control (k′).

Using the return function from this choice of the labor input, rewrite the func-

tional equation as:

V (A, k) = maxk′σ(A, k, k′) + βEA′|AV (A′, k′). (5.24)

for all (A, k). This has the same structure as the stochastic growth model with a

fixed labor supply though the return function, σ(A, k, k′), is not a primitive object.

Instead, it is derived from a maximization problem and thus inherits its properties

from the more primitive u(c, 1 − n) and f(k, n) functions. Using the results in
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Chapter 2, there will be a solution to this problem and a stationary policy function

will exist. Denote the policy function by k′ = h(A, k).

The first-order condition for the choice of the future capital stock is given by:

σk′(A, k, k′) + βEA′|AVk′(A′, k′) = 0

where the subscripts denote partial derivatives. Using (5.24), we can solve for

EA′|AVk(A
′, k′) yielding an Euler equation:

−σk′(A, k, k′) = βEA′|Aσk′(A′, k′, k′′).

Using (5.22), this can be rewritten in more familiar terms as:

uc(c, 1 − n) = βEA′|A[uc(c
′, 1 − n′)[A′fk(k

′, n′) + (1 − δ)] (5.25)

where c = Af(k, n)+ (1− δ)k−k′ and c′ is defined similarly. This Euler equation is

another necessary condition for an optimum: else a variation in the level of savings

could increase lifetime expected utility.

The policy functions will exhibit a couple of key properties revolving around

the themes of intertemporal substitution and consumption smoothing. The issue is

essentially understanding the response of consumption and employment to a pro-

ductivity shock. By intertemporal substitution, the household will be induced to

work more when productivity is high. But, due to potentially offsetting income and

substitution effects, the response to a productivity shocks will be lower the more

permanent are these shocks.57 By consumption smoothing, a household will opti-

mally adjust consumption in all periods to an increase in productivity. The more

persistent is the shock to productivity, the more responsive will consumption be to

it.58
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5.4.2 Numerical Analysis

A discussion along the same lines as that for the stochastic growth model with

fixed labor input applies here as well. As in King et al. (1988), one can attack the

set of necessary conditions ((5.23), (5.25) and the resource constraint) through a

log-linearization procedure. The reader is urged to study that approach from their

paper.

Alternatively, one can again simply solve the functional equation directly. This

is just an extension of the programming exercise given at the end of the previous

section on the stochastic growth model with fixed labor supply. The outline of the

program will be discussed here leaving the details as an additional exercise.

The program should be structured to focus on solving (5.24) through value func-

tion iteration. The problem is that the return function is derived and thus must be

solved for inside of the program. The researcher can obtain an approximate solution

to the employment policy function, given above as φ̂(A, k, k′). This is achieved by

specifying grids for the shocks, the capital state space and the employment space.59

As noted earlier, this is the point of approximation in the value function iteration

routine: finer grids yield better approximations but are costly in terms of computer

time. Once φ̂(A, k, k′) is obtained, then

σ(A, k, k′) = u(Af(k, φ̂(A, k, k′)) + (1 − δ)k − k′, 1 − φ̂(A, k, k′))

can be calculated and stored. This should all be done prior to starting the value

function iteration phase of the program. So, given σ(A, k, k′), the program would

then proceed to solve (5.24) through the usual value function iteration routine.

The output of the program is then the policy function for capital accumulation,

k′ = h(A, k), and a policy function for employment, n = φ(A, k) where

φ(A, k) = φ̂(A, k, h(A, k)).
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Hence both of these policy functions ultimately depend only on the state variables,

(A, k). These policy functions provide a link between the primitive functions (and

their parameters) and observables. We turn now to a discussion of exploiting that

link as the stochastic growth model confronts the data.

5.5 Confronting the Data

Since Kydland and Prescott (1982), macroeconomists have debated the empirical

success of the stochastic growth model. This debate is of interest both because of

its importance for the study of business cycles and for its influence on empirical

methodology. Our focus here is on the latter point as we use the stochastic growth

model as a vehicle for exploring alternative approaches to the quantitative analysis

of dynamic equilibrium models.

Regardless of the methodology, the link between theory and data is provided by

the policy functions. To set notation, let Θ denote a vector of unknown parameters.

We will assume that the production function is Cobb-Douglas and is constant returns

to scale. Let α denote capital’s share. Further, we will assume that

u(c, 1 − n) = ln(c) + ξ(1 − n)

as our specification of the utility function.60 Thus the parameter vector is:

Θ = (α, δ, β, ξ, ρ, σ)

where α characterizes the technology, δ determines the rate of depreciation of the

capital stock, β is the discount factor, and ξ parameterizes preferences. The tech-

nology shock process is parameterized by a serial correlation (ρ) and a variance (σ).

To make clear that the properties of this model economy depend on these parame-

ters, we index the policy functions by Θ: k′ = hΘ(A, k) and n = φΘ(A, k). At this
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point, we assume that for a given Θ these policy functions have been obtained from

a value function iteration program. The question is then how to estimate Θ.

5.5.1 Moments

One common approach to estimation of Θ is based upon matching moments. The

researcher specifies a set of moments from the data and then finds the value of

Θ to match (as closely as possible) these moments. A key element, of course, is

determining the set of moments to match.

The presentation in Kydland and Prescott [1982] is a leading example of one ver-

sion of this approach termed calibration. Kydland and Prescott consider a much

richer model than that presented in the previous section as they include: a sophis-

ticated time to build model of capital accumulation, non-separable preferences, a

signal extraction problem associated with the technology shock. They pick the pa-

rameters for their economy using moments obtained from applied studies and from

low frequency observations of the U.S. economy. In their words,

”Our approach is to focus on certain statistics for which the noise intro-

duced by approximations and measurement errors is likely to be small

relative to the statistic.”

Since the model we have studied thus far is much closer to that analyzed by

King, Plosser and Rebelo, we return to a discussion of that paper for an illustration

of this calibration approach.61 King, Plosser and Rebelo calibrate their parameters

from a variety of sources. As do Kydland and Prescott, the technology parameter is

chosen to match factor shares. The Cobb-Douglas specification implies that labor’s

share in the National Income and Product Accounts should equal (1−α). The rate of

physical depreciation is set at 10% annually and the discount rate is chosen to match

a 6.5% average annual return on capital. The value of ξ is set so that on average
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hours worked are 20% of total hours corresponding to the average hours worked

between 1948 and 1986. King, Plosser and Rebelo use variations in the parameters

of the stochastic process (principally ρ) as a tool for understanding the response of

economic behavior as the permanence of shocks is varied. In other studies, such as

Kydland and Prescott, the parameters of the technology shock process is inferred

from the residual of the production function.

Note that for these calibration exercises, the model does not have to be solved

in order to pick the parameters. That is, the policy functions are not actually used

in the calibration of the parameters. Instead, the parameters are chosen by looking

at evidence that is outside of business cycle properties, such as time series averages.

Comparing the model’s predictions against actual business cycle moments is thus

an informal overidentification exercise.

The table below shows a set of moments from U.S. data as well as the predic-

tions of these moments from the King, Plosser and Rebelo model parameterized as

described above.62 The first set of moments is the standard deviation of key macroe-

conomic variables relative to output. The second set of moments is the correlation

of these variables with respect to output.

[Table 5.1 approximately here]

In this literature, this is a common set of moments to study. Note that the

stochastic growth model, as parameterized by King, Plosser and Rebelo exhibits

many important features of the data. In particular, the model produces consumption

smoothing as the standard deviation of consumption is less than that of output.

Further, as in U.S. data, the variability of investment exceeds that of output. The

cross correlations are all positive in the model as they are in the data. One apparent

puzzle is the low correlation of hours and output in the data relative to the model.63

Still, based on casual observation, the model “does well”. However, these papers do
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not provide “tests” of how close the moments produced by the model actually are

to the data.

Of course, one can go a lot further with this moment matching approach. Letting

ΨD be the list of 8 moments from U.S. data shown in Table 5.1, one could solve the

problem of:

min
Θ

(ΨD − ΨS(Θ))W (ΨD − ΨS(Θ))′. (5.26)

where ΨS(Θ) is a vector of simulated moments that depend on the vector of param-

eters (Θ) that are inputs into the stochastic growth model. As discussed in Chapter

4, W is a weighting matrix. So, for their parameterization, the ΨS(Θ) produced

by the KPR model is simply the column of moments reported in Table 5.1. But,

as noted earlier, the parameter vector was chosen based on other moments and

evidence from other studies.

Exercise 5.5

Using a version of the stochastic growth model to create the mapping ΨD, solve

5.26.

5.5.2 GMM

Another approach, closer to the use of orthogonality conditions in the GMM ap-

proach, is used by Christiano and Eichenbaum (1992). Their intent is to enrich

the RBC model to encompass the observations that the correlation between the

labor input (hours worked) and the return to working (the wage and/or the average

product of labor). To do so, they add shocks to government purchases, financed by

lump-sum taxes. Thus government shocks influence the labor choice of households

through income effects. For their exercise, this is important as this shift in labor

supply interacts with variations in labor demand thereby reducing the excessively
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high correlation between hours and the return to work induced by technology shocks

alone.

While the economics here is of course of interest, we explore the estimation

methodology employed by Christiano and Eichenbaum. They estimate eight pa-

rameters: the rate of physical depreciation(δ), the labor share of the Cobb-Douglas

technology (α), a preference parameter for household’s marginal rate of substitution

between consumption and leisure (γ), as well as the parameters characterizing the

distributions of the shocks to technology and government spending.

Their estimation routine has two phases. In the first, they estimate the param-

eters and in the second they look at additional implications of the model.

For the first phase, they use unconditional moments to estimate these parame-

ters. For example, using the capital accumulation equation, the rate of depreciation

can be solved for as:

δ = 1 − kt+1 − it
kt

.

Given data on the capital stock and on investment, an estimate of δ can be ob-

tained as the time series average of this expression. 64 Note that there is just

a single parameter in this condition so that δ is estimated independently of the

other parameters of the model. Building on this estimate, Christiano and Eichen-

baum then use the intertemporal optimality condition (under the assumption that

u(c)=ln(c))to determine capital’s share in the production function. They proceed

in this fashion of using unconditional movements to identify each of the structural

parameters.

Christiano and Eichenbaum then construct a larger parameter vector, termed Φ,

which consists of the parameters described above from their version of the stochastic

growth model and a vector of second moments from the data. They place these
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moments within the GMM framework. Given this structure, they can use GMM to

estimate the parameters and to obtain an estimate of the variance covariance matrix

which is then used to produce standard errors for their parameter estimates. 65

As the point of the paper is to confront observations on the correlation of hours

and the average product of labor, corr(y/n, n), and the relative standard deviations

of the labor input and the average productivity of labor, σn/σy/n. They test whether

their model, at the estimated parameters, is able to match the values of these

moments in the data. Note that this is in the spirit of an overidentification test

though the model they estimate is just identified. They find that the stochastic

growth model with the addition of government spending shocks is unable (with one

exception) to match the observations for these two labor market statistics. The

most successful version of the model is estimated with establishment data, assumes

that the labor input is indivisible and government spending is not valued at all by

the households.66

5.5.3 Indirect Inference

Smith (1993) illustrates the indirect inference methodology using a version of the

simple stochastic growth model with fixed employment, as in (5.6). There is one

important modification: Smith considers an accumulation equation of the form:

k′ = k(1 − δ) + Ztit

where Zt is a second shock in the model. Greenwood et al. (1988) interpret this as

a shock to next investment goods and Cooper and Ejarque (2000) view this as an

“intermediation shock”.

With this additional shock, the dynamic programming problem for the represen-

tative household becomes:

V (A,Z, k) = maxk′,nu(Af(k, n)+
(1 − δ)k − k′

Z
, 1−n)+βEA′|AV (A′, Z ′, k′). (5.27)
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Note the timing here: the realized value of Z is known prior to the accumulation

decision. As with the stochastic growth model, this dynamic programming problem

can be solved using value function iteration or by linearization around the steady

state.

From the perspective of the econometrics, by introducing this second source of

uncertainty, the model has enough randomness to avoid zero likelihood observations.67

As with the technology shock, there is a variance and a serial correlation parame-

ter used to characterize this normally distributed shock. Smith assumes that the

innovations to these shocks are uncorrelated.

To take the model to the data, Smith estimates a VAR(2) on log detrended

quarterly U.S. time series for the period 1947:1-1988:4. The vector used for the

analysis is:

xt = [yt it]
′

where yt is the detrended log of output and it is the detrended log of investment

expenditures. With two lags of each variable, two constants and three elements of

the variance-covariance matrix, Smith generates 13 coefficients.

He estimates 9 parameters using the SQML procedure. As outlined in his paper

and Chapter 3, this procedure finds the structural parameters which maximize the

likelihood of observing the data when the likelihood function is evaluated at the

coefficients produced by running the VARs on simulated data created from the

model at the estimated structural parameters. Alternatively, one could directly

choose the structural parameters to minimize the difference between the VAR(2)

coefficients on the actual and simulated data.
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5.5.4 Maximum Likelihood Estimation

Last but certainly not least versions of the stochastic growth model has been es-

timated using the maximum likelihood approach. As in the indirect inference ap-

proach, it is necessary to supplement the basic model with additional sources of

randomness to avoid the zero likelihood problem. This point is developed in the

discussion of maximum likelihood estimation in Kocherlakota et al. (1994). Their

goal is to evaluate the contribution of technology shocks to aggregate fluctuations.

Kocherlakota et al. (1994) construct a model economy which includes shocks to

the production function and stochastic depreciation. In particular, the production

function is given by Yt = AtK
α
t (NtXt)

1−α + Qt. Here Xt is exogenous technological

progress, Yt is the output of the single good, Kt is the capital stock and Nt is the labor

input. The transition equation for capital accumulation is: Kt+1 = (1 − δt)Kt + It

where δt is the rate of depreciation and It is the level of investment.

The authors first consider a version of the stochastic growth model without a

labor input. They show that the linearized decision rules imply that consumption

and the future capital stock are proportional to the current stock of capital.68

They then proceed to the estimation of their model economy with these three

sources of uncertainty. They assume that the shocks follow an AR(1) process.

Kocherlakota et al. (1994) construct a representation of the equilibrium process

for consumption, employment and output as a function of current and lagged values

of the shocks. This relationship can then be used to construct a likelihood function,

conditional on initial values of the shocks.

Kocherlakota et al. (1994) fix a number of the parameters that one might ulti-

mately be interested in estimating and focus attention on Σ, the variance-covariance

matrix of the shocks. This is particularly relevant to their exercise of determining

the contribution of technology shocks to fluctuations in aggregate output. In this
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regard, they argue that without additional assumptions about the stochastic process

of the shocks, they are unable to identify the relative variances of the shocks.

There are a number of other papers that have taken the maximum likelihood

approach.69 Altug (1989) estimates a version of the Kydland and Prescott (1982)

model with a single fundamental shock to technology and measurement error else-

where. Altug (1989) finds some difficulty matching the joint behavior of labor and

other series.

Hall (1996) studies a version of a labor hoarding model which is then compared

to the overtime labor model of Hansen and Sargent (1988). While the Hall (1996)

paper is too complex to present here, the paper is particularly noteworthy for its

comparison of results from estimating parameters using GMM and maximum like-

lihood.

5.6 Some Extensions

The final section of this chapter considers extensions of the basic models. These are

provided here partly as exercises for readers interested in going beyond the models

presented here.70 One of the compelling aspects of the stochastic growth model is

its flexibility in terms of admitting a multitude of extensions.

5.6.1 Technological Complementarities

As initially formulated in a team production context by Bryant (1983) and explored

subsequently in the stochastic growth model by Baxter and King (1991), supple-

menting the individual agent’s production function with a measure of the level of

activity by other agents is a convenient way to introduce interactions across agents.71

The idea is to introduce a complementarity into the production process so that high

levels of activity in other firms implies that a single firm is more productive as well.
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Let y represent the output at a given firm, Y be aggregate output, k and n the

firm’s input of capital and labor respectively. Consider a production function of:

y = AkαnφY γY ε
−1 (5.28)

where A is a productivity shock that is common across producers. Here γ param-

eterizes the contemporaneous interaction between producers. If γ is positive, then

there is a complementarity at work: as other agents produce more, the productiv-

ity of the individual agent increases as well. In addition, this specification allows

for a dynamic interaction as well parameterized by ε. As discussed in Cooper and

Johri (1997), this may be interpreted as a dynamic technological complementarity

or even a learning by doing effect. This production function can be imbedded into

a stochastic growth model.

Consider the problem of a representative household with access to a production

technology given by (5.28). This is essentially a version of (5.21) with a different

technology.

There are two ways to solve this problem. The first is to write the dynamic

programming problem, carefully distinguishing between individual and aggregate

variables. As in our discussion of the recursive equilibrium concept, a law of motion

must be specified for the evolution of the aggregate variables. Given this law of

motion, the individual household’s problem is solved and the resulting policy func-

tion compared to the one that governs the economy-wide variables. If these policy

functions match, then there is an equilibrium. Else, another law of motion for the

aggregate variables is specified and the search continues.72

Alternatively, one can use the first-order conditions for the individuals optimiza-

tion problem. As all agents are identical and all shocks are common, the represen-

tative household will accumulate its own capital, supply its own labor and interact

with other agents only due to the technological complementarity. In a symmetric
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equilibrium, yt = Yt. As in Baxter and King (1991), this equilibrium condition is

neatly imposed through the first-order conditions when the marginal products of la-

bor and capital are calculated. From the set of first-order conditions, the symmetric

equilibrium can be analyzed through by approximation around a steady state.

The distinguishing feature of this economy from the traditional RBC model is

the presence of the technological complementarity parameters, γ and ε. It is possible

to estimate these parameters directly from the production function or to infer them

from the equilibrium relationships. 73

5.6.2 Multiple Sectors

The stochastic growth model explored so far has a single sector of production. Of

course this is just an abstraction which allows the research to focus on intertempo-

ral allocations without being very precise about the multitude of activities arising

contemporaneously.

As an example, suppose there are two sectors in the economy. Sector one pro-

duces consumption goods and second two produces investment goods.74Let the pro-

duction function for sector j = 1, 2 be given by:

yj = Ajf(kj, nj)

Here there are sector specific total factor productivity shocks. An important issue

for this model is the degree of correlation across the sectors of activity.

Assuming that both capital and labor can be costlessly shifted across sectors of

production, the state vector contains the aggregate stock of capital rather than its

use in the previous period. Further, there is only a single accumulation equation for

capital. The dynamic programming problem for the planner becomes:
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V (A1, A2, k) = max{kj ,nj}u(c, 1 − n) + βEA1′,A2′|A1,A2V (A1′, A2′, k′). (5.29)

subject to:

c = A1f(k1, n1) (5.30)

k′ = k(1 − δ) + A2f(k2, n2) (5.31)

n = n1 + n2 (5.32)

k = k1 + k2 (5.33)

This optimization problem can be solved using value function iteration and the

properties of the simulated economy can, in principle, be compared to data. For this

economy, the policy functions will specify the state contingent allocation of capital

and labor across sectors.

Economies generally exhibit positive comovement of employment and output

across sectors. This type of correlation may be difficult for a multi-sector economy

to match unless there is sufficient correlation in the shocks across sectors.75

This problem can be enriched by introducing costs of reallocating capital and/or

labor across the sectors. At the extreme, capital may be entirely sector specific. In

that case, the state space for the dynamic programming problem must include the

allocation of capital across sectors inherited from the past. By adding this friction

to the model, the flow of factors across the sectors may be reduced.

Exercise 5.6

Extend the code for the one sector stochastic growth model to solve (5.29). Use

the resulting policy functions to simulate the model and compute moments as a

function of key parameters, such as the correlation of the shocks across the sectors.

Relate these to observed correlations across sectors.
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5.6.3 Taste Shocks

Another source of uncertainty that is considered within the stochastic growth model

allows for randomness in tastes. This may be a proxy for variations in the value

of leisure brought about by technology changes in a home production function.

Here we specify a model with shocks to the marginal rate of substitution between

consumption and work. Formally, consider:

V (A, S, k) = max{k′,n}u(c, 1 − n, S) + βEA′,S′|A,SV (A′, S ′, k′) (5.34)

subject to the usual production function and capital accumulation equations. Here

S represents the shocks to tastes. This problem may be interpreted as a two sector

model where the second sector produces leisure from time and a shock (S). Empir-

ically this type of specification is useful as there is a shock, internal to the model,

that allows the intratemporal first order condition to be violated, assuming that S

is not observable to the econometrician.

As usual, the policy functions will specify state contingent employment and

capital accumulation. Again, the model can be solved, say through value function

iteration, and then parameters selected to match moments of the data.

Exercise 5.7

Extend the code for the one sector stochastic growth model to solve (5.34). Use

the resulting policy functions to simulate the model and compute moments as a

function of key parameters, including the variance/covariance matrix for the shocks.

Relate these to observed correlations from US data. Does the existence of taste shocks

“help” the model fit the data better?
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5.6.4 Taxes

One important extension of the stochastic growth model introduces taxes and gov-

ernment spending. These exercises are partly motivated as attempts to determine

the sources of fluctuations. Further, from a policy perspective, the models are used

to evaluate the impacts of taxes and spending on economic variables and, given

that the models are based on optimizing households, one can evaluate the welfare

implications of various policies.

McGrattan (1994) and Braun (1994) study these issues. We summarize the

results and approach of McGrattan (1994) to elaborate on maximum likelihood

estimation of these models.

McGrattan (1994) specifies a version of the stochastic growth model with four

sources of fluctuations: productivity shocks, government spending shocks, capital

taxes and labor taxes. The government’s budget is balanced each period by the use

of lump-sum taxes/transfers to the households. So, household preferences are given

by U(c, g, n) where c is private consumption, g is public consumption and n is the

labor input.76. The budget constraint for the household in any period t is given by:

ct + it = (1 − τ k
t )rtkt + (1 − τn

t )wtnt + δτ k
t kt + Tt (5.35)

where it is investment by the household and the right side is represents income from

capital rentals, labor supply, depreciation allowances and a lump-sum transfer. Here

τ k
t and τn

t are the period t tax rates on capital and labor respectively. Given the

presence of these distortionary taxes,

McGrattan (1994) cannot appeal to a planner’s optimization problem to charac-

terize optimal decision rules and thus works directly with a decentralized allocation.

As in the above discussion of recursive equilibrium, the idea is to specify state

contingent transitions for the aggregate variables and thus, in equilibrium, for rela-

tive prices. These prices are of course relevant to the individual through the sequence
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of budget constraints, (5.35). Individual households take these aggregate variables

as given rules and optimize. In equilibrium, the representative household’s choices

and the evolution of the aggregate variables coincide.77

McGrattan (1994) estimates the model using maximum likelihood techniques.

To do so, the fundamental shocks are supplemented by measurement errors through

the specification of a measurement equation. Assuming innovations are normally

distributed, McGrattan (1994) can write down a likelihood function for the model

economy. Given quarterly observations on output, investment, government pur-

chases, hours, capital and the tax rates on capital and labor, the parameters of the

model are estimated. Included in the list of parameters are those that characterize

the utility function, production function as well as the stochastic process for the

shocks in the system. McGrattan (1994) finds a capital share of 0.397, a discount

factor of 0.9927 a capital depreciation rate of about .02. Interestingly, government

purchases do not appear to enter directly into the household’s utility function. Fur-

ther the log utility specification can not be rejected.

5.7 Conclusions

The models presented in this chapter represent some simple versions of the stochastic

growth model. This is one of the workhorse models of macroeconomics. There is an

enormous literature about this model and solution techniques. The intention was

more to provide insights into the solution and estimation of these models using the

dynamic programming approach than to provide a case for or against the usefulness

of these models in the evaluation of aggregate fluctuations.

There is an almost endless list of extensions of the basic framework. Using the

approach in this chapter, the researcher can solve these problems numerically and

begin the task of confronting the models with data.



Chapter 6

Consumption

6.1 Overview and Motivation

The next two chapters study consumption. We devote multiple chapters to this

topic due to its importance in macroeconomics and also due to the common (though

unfortunate) separation of consumption into a study of (i) nondurables and services

and (ii) durables.

From the perspective of business cycle theory, consumption is the largest com-

ponent of total expenditures. One of the main aspects of consumption theory is the

theme of consumption smoothing (defined below). This is evident in the data as

the consumption of nondurablers/services is not as volatile as income. Relatedly,

durable expenditures is one of the more volatile elements in the GDP accounts.

These are important facts that our theories and estimated models must confront.

This chapter focuses on the consumption of nondurables and services. We start

with a simple two-period model to build intuition. We then progress to more com-

plex models of consumption behavior by going to the infinite horizon, adding various

forms of uncertainty and also considering borrowing restrictions. In keeping with the

theme of this book, we pay particular attention to empirical studies that naturally

149
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grow out of consideration of these dynamic optimization problems.

6.2 Two-Period Problem

The two-period problem is, as always, a good starting point to build intuition about

the consumption and savings decisions. We start with a statement of this problem

and its solution and then discuss some extensions.

6.2.1 Basic Problem

The consumer maximizes the discount present value of consumption over the two-

period horizon. Assuming that preferences are separable across periods, we represent

lifetime utility as:

1∑
t=0

βtu(ct) = u(c0) + βu(c1) (6.1)

where β ∈ [0, 1] and is called the discount factor. As you may know from the

optimal growth model, this parameter of tastes is tied to the marginal product of

capital as part of an equilibrium allocation; here it is treated as a fixed parameter.

Period 0 is the initial period, making use of β0 = 1.

The consumer is endowed with some initial wealth at the start of period 0 and

earns income yt in period t=0,1. For now, these income flows are exogenous; we

later discuss adding a labor supply decision to the choice problem. We assume that

the agent can freely borrow and lend at a fixed interest rate between each of the two

periods of life. Thus the consumer faces a pair of constraints, one for each period

of life, given by:

a1 = r0(a0 + y0 − c0)

and
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a2 = r1(a1 + y1 − c1).

Here yt is period t income and at is the agent’s wealth at the start of period t.

It is important to appreciate the timing and notational assumptions made in these

budget constraints. First, rt represents the gross return on wealth between period

t and period t+1. Second, the consumer earns this interest on wealth plus income

less consumption over the period. It is as if the income and consumption decisions

were made at the start of the period and then interest was earned over the period.

Nothing critical hinges on these timing decisions but it is necessary to be consistent

about them.

There are some additional constraints to note. First, we restrict consumption to

be non-negative. Second, the stock of assets remaining at the end of the consumer’s

life (a2) must be non-negative. Else, the consumer would set a2 = −∞ and die (rel-

atively happily) with an enormous outstanding debt. We leave open the possibility

of a2 > 0.

This formulation of the consumers’ constraints are similar to the ones used

throughout this book in our statement of dynamic programming problems. These

constraints are often termed flow constraints since they emphasize the intertemporal

evolution of the stock of assets being influenced by consumption. As we shall see,

it is natural to think of the stock of assets as a state variables and consumption as

a control variable.

There is an alternative way to express the consumer’s constraints that combines

these two flow conditions by substituting the first into the second. After some

rearranging, this yields:

a2/(r1r0) + c1/r0 + c0 = (a0 + y0) + y1/r0 (6.2)
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The left side of this expression represents the expenditures of the consumer on goods

in both periods of life and on the stock of assets held at the start of period 2. The

right side measures the total amount of resources available to the household for

spending over its lifetime. This is a type of ”sources” vs. ”uses” formulation of

the lifetime budget constraint. The numeraire for this expression of the budget

constraint is period 0 consumption goods.

Maximization of (6.1) with respect to (c0, c1) subject to (6.2) yields:

u′(c0) = λ = βr0u
′(c1) (6.3)

as a necessary condition for optimality where λ is the multiplier on (6.2). This is

an intertemporal first order condition (often termed the consumer’s Euler equation)

that relates the marginal utility of consumption across two periods.

It is best to think about this condition from the perspective of a deviation from

a proposed solution to the consumers optimization problem. So, given a candidate

solution, suppose that the consumer reduces consumption by a small amount in

period 0 and increases savings by this same amount. The cost of this deviation

is given by u′(c0) from (6.3). The household will earn r0 between the two periods

and will consume those extra units of consumption in period 1. This leads to a

discounted gain in utility given by the right side of (6.3). When this condition

holds, lifetime utility cannot be increased through such a perturbation from the

optimal path.

As in our discussion of the cake eating problem in chapter 2, this is just a

necessary condition since (6.3) captures a very special type of deviation from a

proposed path: reduce consumption today and increase it tomorrow. For more

general problems (more than 2 periods) there will be other deviations to consider.

But, even in the two-period problem, the consumer could have taken the reduced
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consumption in period 0 and used it to increase a2.

Of course, there is another first-order condition associated with (6.1): the choice

of a2. The derivative with respect to a2 is given by:

λ = φ

where φ is the multiplier on the non-negativity constraint for a2. So, clearly the non-

negativity constraint binds (φ > 0) if and only if the marginal utility of consumption

is positive (λ > 0). That is, it is sub-optimal to leave money in the bank when more

consumption is desirable.

This (somewhat obvious but very important) point has two implications to keep

in mind. First, in thinking about perturbations from a candidate solution, we were

right to ignore the possibility of using the reduction in c0 to increase a2 as this is

clearly not desirable. Second, and perhaps more importantly, knowing that a2 = 0

is a critical part of solving this problem. Looking at the Euler equation (6.3) alone

guarantees that consumption is optimally allocated across periods but this condition

can hold for any value of a2. So it is valuable to realize that (6.3) is only a necessary

condition for optimality; a2 = 0 is necessary as well.

With a2 = 0, the consumer’s constraint simplifies to:

c1/r0 + c0 = a0 + y0 + y1/r0 ≡ w0 (6.4)

where w0 is lifetime wealth for the agent in terms of period 0 goods. Clearly,

the optimal consumption choices depend on the measure of lifetime wealth (w0)

and the intertemporal terms of trade (r0). In the absence of any capital market

restrictions, the timing of income across the households lifetime is irrelevant for

their consumption decisions. Instead, variations in the timing of income, given w0

are simply reflected in the level of savings between the two periods.78
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As an example, suppose utility is quadratic in consumption:

u(c) = a + bc − (d/2)c2

where we require that u′(c) = b−dc > 0. In this case, the Euler condition simplifies

to:

b − dc0 = βr0(b − dc1).

With the further simplification that βr0 = 1, we have constant consumption: c0 =

c1. Note that this prediction is independent of the timing of income over the periods

0 and 1. this is an example of a much more general phenomenon, termed consump-

tion smoothing That will guide our discussion of consumption policy functions.

6.2.2 Stochastic Income

We now add some uncertainty to the problem by supposing that income in period 1

(y1) is not known to the consumer in period 0. Further, we use the result of A2 = 0

and rewrite the optimization problem more compactly as:

max
c0

Ey1|y0 [u(c0) + βu(R0(A0 + y0 − c0) + y1)]

where we have substituted for c1 using the budget constraint. Note that the expec-

tation is taken here with respect to the only unknown variable (y1) conditional on

knowing y0, period 0 income. In fact, we assume that

y1 = ρy0 + ε1

where |ρ| ∈ [0, 1]. Here ε1 is a shock to income that is not forecastable using period

0 information. In solving the optimization problem, the consumer is assumed to
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take the information about future income conveyed by observed current income into

account.

The Euler equation for this problem is given by:

u′(c0) = Ey1|y0βR0u
′(R0(A0 + y0 − c0) + y1).

Note here that the marginal utility of future consumption is stochastic. Thus the

tradeoff given by the Euler equation reflects the loss of utility today from reduc-

ing consumption relative to the expected gain which depends on the realization of

income in period 1.

The special case of quadratic utility and βR0 = 1 highlights the dependence of

the consumption decision on the persistence of income fluctuations. For this case,

the Euler equation simplifies to:

c0 = Ey1|y0c1 = R0(A0 + y0 − c0) + Ey1|y0y1.

Solving for c0 and calculating Ey1|y0y1 yields:

c0 =
R0(A0 + y0)

(1 + R0)
+

ρy0

(1 + R0)
=

R0A0

(1 + R0)
+ y0

(R0 + ρ)

(1 + R0)
. (6.5)

This expression relates period 0 consumption to period 0 income through two

separate channels. First, variations in y0 directly affect the resources currently

available to the household. Second, variations in y0 provide information about

future income (unless ρ = 0).

From (6.5),

∂c0

∂y0

=
(R0 + ρ)

(1 + R0)
.

In the extreme case of iid income shocks (ρ = 0), consumers will save a fraction of an

income increase and consume the remainder. In the opposite extreme of permanent
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shocks (ρ = 1), current consumption moves one-for-one with current income. For

this case, savings does not respond to income at all. Clearly the sensitivity of

consumption to income variations depends on the permanence of those shocks.79

Both of these extreme results reflect a fundamental property of the optimal

consumption problem: consumption smoothing. This property means that vari-

ations in current income are spread over time periods in order to satisfy the Euler

equation condition that marginal utility today is equal to the discounted marginal

utility of consumption tomorrow, given the return R0. In fact, consumption smooth-

ing is the intertemporal expression of the normality of goods property found in static

demand theory.

But, there is an interesting aspect of consumption smoothing highlighted by

our example: as the persistence of shocks increases, so does the responsiveness

of consumption to income variations. In fact, this makes good sense: if income

increases today are likely to persist, there is no need to save any of the current

income gain since it will reappear in the next period. These themes of consumption

smoothing and the importance of the persistence of shocks will reappear throughout

our discussion of the infinite horizon consumer optimization problem.

6.2.3 Portfolio Choice

A second extension of the two-period problem is of interest: the addition of multiple

assets. Historically, there has been a close link between the optimization problem

of a consumer and asset pricing models. We will make these links clearer as we

proceed and begin here with a savings problem in which there are two assets.

Assume that the household has no initial wealth and can save current income

through two assets. One is nonstochastic and has a one period gross return of Rs.

The second asset is risky with a return denoted by R̃rand a mean return of R̄r. Let
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ar and as denote the consumer’s holdings of asset type j = r, s. Assets prices are

normalized at 1 in period 0.

The consumer’s choice problem can then be written as:

max
ar,as

u(y0 − ar − as) + ER̃rβu(R̃rar + Rsas + y1).

Here we make the simplifying assumption that y1 is known with certainty. The first

order conditions are:

u′(y0 − ar − as) = βRsER̃ru′(R̃rar + Rsas + y1)

and

u′(y0 − ar − as) = βER̃rR̃ru′(R̃rar + Rsas + y1).

Note we have not imposed any conditions regarding the holding of these assets. In

particular, we have allowed the agent to buy or sell the two assets.

Suppose that u(c) is strictly concave, so that the agent is risk averse. Further,

suppose we search for conditions such that the household is willing to hold positive

amounts of both assets. In this case, we would expect that the agent would have

to be compensated for the risk associated with holding the risky asset. This can

be seen by equating these two first order conditions (which hold with equality) and

then using the fact that the expectation of the product of two random variables is

the product of the expectations plus the covariance. This manipulation yields:

Rs = R̄r +
cov[R̃r, u′(R̃rar + Rsas + y1)]

ER̃ru′(R̃rar + Rsas + y1)
. (6.6)

The sign of the numerator of the ratio on the right depends on the sign of ar.

If the agent holds both the riskless and the risky asset (ar > 0 and as > 0 ),

then the strict concavity of u(c) implies that the covariance must be negative. In
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this case, R̄r must exceed Rs : the agent must be compensated for holding the risky

asset.

If the average returns are equal then the agent will not hold the risky asset

(ar = 0) and (6.6) will hold. Finally, if R̄r is less than Rs, the agent will sell the

risky asset and buy additional units of the riskless asset.

6.2.4 Borrowing Restrictions

A final extension of the two-period model is to impose a restriction on the borrowing

of agents. To illustrate, consider a very extreme constraint where the consumer is

able to save but not to borrow: c0 ≤ y0. Thus the optimization problem of the

agent is:

max
c0≤y0

[u(c0) + βu(R0(A0 − y0 − c0) + y1)].

Denote the multiplier on the borrowing constraint by µ, the first-order condition is

given by:

u′(c0) = βR0u
′(R0(A0 + y0 − c0) + y1) + µ.

If the constraint does not bind, then the consumer has non-negative savings and the

familiar Euler equation for the two-period problem holds. However, if µ > 0, then

c0 = y0 and

u′(y0) > βR0u
′(y1).

The borrowing constraint is less likely to bind if βR0 is not very large and if y0 is

large relative to y1.

An important implication of the model with borrowing constraints is that con-

sumption will depend on the timing of income receipts and not just W0. That is,

imagine a restructuring of income that increased y0 and decreased y1 leaving W0

unchanged. In the absence of a borrowing restriction, consumption patterns would
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not change. But, if the borrowing constraint binds, then this restructuring of income

will lead to an increase in c0 and a reduction in c1 as consumption “follows” income.

To the extent that this change in the timing of income flows could reflect govern-

ment tax policy (yt is then viewed as after tax income), the presence of borrowing

restrictions implies that the timing of taxes can matter for consumption flows and

thus for welfare.

The weakness of this and more general models is that the basis for the borrowing

restrictions is not provided. Given this, it is not surprising that researchers have

been interested in understanding the source of borrowing restrictions. We return to

this point below.

6.3 Infinite Horizon Formulation: Theory and Em-

pirical Evidence

We now consider the infinite horizon version of the optimal consumption problem.

In doing so, we see how the basic intuition of consumption smoothing and other

aspects of optimal consumption allocations carry over to the infinite horizon setting.

In addition, we introduce empirical evidence into our presentation.

6.3.1 Bellman’s equation for the Infinite Horizon Probem

Consider a household with a stock of wealth denoted by A, a current flow of income

y and a given return on its investments over the past period given by R−1. Then the

state vector of the consumer’s problem is (A, y,R−1) and the associated Bellman

equation is:

v(A, y,R−1) = max
c

u(c) + βEy′,R|R−1,yv(A′, y′, R)
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for all (A, y,R−1) where the transition equation for wealth is given by:

A′ = R(A + y − c).

We assume that the problem is stationary so that no time subscripts are necessary.80

This requires, among other things, the income and returns are stationary random

variables and that the joint distribution of (y′, R) depends only on (y,R−1).

The transition equation has the same timing as we assumed in the two period

problem: interest is earned on wealth plus income less consumption over the period.

Further, the interest rate that applies is not necessarily known at the time of the

consumption decision. Thus the expectation in Bellman’s equation is over the two

unknowns (y′, R′) where the given state variables provide information on forecasting

these variables.81

6.3.2 Stochastic Income

To analyze this problem, we first consider the special case where the return on

savings is known and the individual faces uncertainty only with respect to income.

We then build on this model by adding in a portfolio choice, endogenous labor

supply and borrowing restrictions.

Theory

In this case, we study:

v(A, y) = max
c

u(c) + βEy′|yv(A′, y′) (6.7)

where A′ = R(A + y − c) for all (A, y). The solution to this problem is a policy

function that relates consumption to the state vector: c = φ(A, y). The first order

condition is:
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u′(c) = βREy′|yvA(A′, y′) (6.8)

which holds for all (A, y), where vA(A′, y′) denotes ∂v(A′, y′)/∂A′.

Using (6.7) to solve for Ey′|yvA(A′, y′) yields the Euler equation:

u′(c) = βREy′|yu′(c′). (6.9)

The interpretation of this equation is that the marginal loss of reducing consumption

is balanced by the discounted expected marginal utility from consuming the proceeds

in the following period. As usual, this Euler equation implies that a one-period

deviation from a proposed solution that satisfies this relationship will not increase

utility. The Euler equation, (6.9), holds when consumption today and tomorrow

is evaluated using this policy function. In the special case of βR = 1, the theory

predicts that the marginal utiliity of consumption follows a random walk.

In general, one cannot generate a closed-form solution of the policy function

from these conditions for optimality. Still, some properties of the policy functions

can be deduced. Given that u(c) is strictly concave, one can show that v(A, y) is

strictly concave in A. As argued in Chapter 2, the value function will inherit some

of the curvature properties of the return function. Using this and (6.8), the policy

function, φ(A, y), must be increasing in A. Else, an increase in A would reduce

consumption and thus increase A′. This would contradict (6.8).

As a leading example, consider the specification of utility where

u(c) =
c1−γ − 1

1 − γ

where γ = 1 is the special case of u(c) = ln(c). This is called the constant relative

risk aversion case (CRRA) since −cu′′(c)/u′(c) = γ.

Using this utility function, (6.9) becomes:
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1 = βRE(
c′

c
)−γ

where the expectation is taken with respect to future consumption which, through

the policy function, depends on (A′, y′) . As discussed in some detail below, this

equation is then used to estimate the parameters of the utility function, (β, γ).

Evidence

Hall (1978) studies the case in which u(c) is quadratic so that the marginal utility

of consumption is linear. In this case, consumption itself is predicted to follow a

random walk. Hall uses this restriction to test the predictions of this model of

consumption. In particular, if consumption follows a random walk then:

ct+1 = ct + εt+1.

The theory predicts that the growth in consumption (εt+1) should be orthogonal to

any variables known in period t: Etεt+1 = 0. Hall uses aggregate quarterly data for

non durable consumption. He shows that lagged stock market prices significantly

predict consumption growth, which violates the permanent income hypothesis. 82

Flavin (1981) extends Hall’s analysis allowing for a general ARMA process for the

income. Income is commonly found as a predictor of consumption growth. Flavin

points out that this finding is not necessarily in opposition with the prediction of the

model. Current income might be correlated with consumption growth not because

of a failure of the permanent income hypothesis, but because current income signals

changes in the permanent income. However, she also rejects the model.

The importance of current income to explain consumption growth has been seen

as evidence of liquidity constraints (see section 6.3.5). A number of authors have

investigated this issue. 83 However, most of the papers used aggregate data to test

the model. Blundell et al. (1994) test the model on micro data and find that when
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one controls for demographics and household characteristics, current income does

not appear to predict consumption growth. Meghir and Weber (1996) explicitly test

for the presence of liquidity constraints using a US panel data and do not find any

evidence.

6.3.3 Stochastic Returns: Portfolio choice

We already considered a simple portfolio choice problem for the two-period problem

so this discussion will be intentionally brief. We then turn to empirical evidence

based upon this model.

Theory

Assume that there are N assets available. Let R−1 denote the N -vector of gross

returns between the current and previous period and let A be the current stock of

wealth. Let si denote the share of asset i = 1, 2, ...N held by the agent. Normalizing

the price of each asset to be unity, the current consumption of the agent is then:

c = A −
∑

i

si.

With this in mind, the Bellman equation is given by:

v(A, y,R−1) = max
si

u(A −
∑

i

si) + βER,y′|R−1,yv(
∑

i

Risi, y
′, R) (6.10)

where Ri is the stochastic return on asset i. Note that R−1 is in the state vector only

because of the informational value it provides on the return over the next period,

R.

The first order condition for the optimization problem holds for i = 1, 2, ..., N

and is:
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u′(c) = βER,y′|R−1,yRivA(
∑

i

Risi, y
′, R).

where again vA() is defined as ∂v()/∂A. Using (6.10) to solve for the derivative of

the value function, we obtain:

u′(c) = βER,y′|R−1,yRiu
′(c′) for i = 1, 2, ..N

where, of course, the level of future consumption will depend on the vector of returns,

R, and the realization of future income, y′.

This system of Euler equations forms the basis for financial models that link

asset prices to consumption flows. This system is also the basis for the argument

that conventional models are unable to explain the observed differential between the

return on equity and relatively safe bonds. Finally, these conditions are also used

to estimate the parameters of the utility function, such as the curvature parameter

in the traditional CRRA specification.

This approach is best seen through a review of Hansen and Singleton (1982). To

understand this approach recall that Hall uses the orthogonality conditions to test

a model of optimal consumption. Note that Hall’s exercise does not estimate any

parameters as the utility function is assumed to be quadratic and the real interest

rate is fixed. Instead, Hall essentially tests a restriction imposed by his model at

the assumed parameter values.

The logic pursued by Hansen-Singelton goes a step further. Instead of using the

orthogonality constraints to evaluate the predictions of a parameterized model they

use these conditions to estimate a model. In fact, if one imposes more conditions

than there are parameters (i.e. if the exercise if overidentified), then the researcher

can both estimate the parameters and test the validity of the model.
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Empirical implementation

The starting point for the analysis is the Euler equation for the household’s problem

with N assets. We rewrite that first order condition here using time subscripts to

make clear the timing of decisions and realizations of random variables:

u′(ct) = βEtRit+1u
′(ct+1) for i = 1, 2, ..N (6.11)

where Rit+1 is defined as the real return on asset i between period t and t + 1. The

expectation here is conditional on all variables observed in period t. Unknown t + 1

variables include the return on the assets as well as period t + 1 income.

The power of the GMM approach derives from this first-order condition. Es-

sentially, the theory tells us that while ex post this first-order condition need not

hold, any deviations from it must be unpredictable given period t information. That

is, the period t + 1 realization say, of income, may lead the consumer to increase

consumption is period t + 1 thus implying that ex post (6.11) does not hold. This

deviation is not inconsistent with the theory as long as it was not predictable given

period t information.

Formally, define εi
t+1(θ) as

εi
t+1(θ) ≡

βRit+1u
′(ct+1)

u′(ct)
− 1, for i = 1, 2, ..N (6.12)

Thus εi
t+1(θ) is a measure of the deviation for an asset i. We have added θ as an

argument in this error to highlight its dependence on the parameters describing the

household’s preferences. Household optimization implies that

Et(ε
i
t+1(θ)) = 0 for i = 1, 2, ..N.

Let zt be a q-vector of variables that are in the period t information set.84 This

restriction on conditional expectations implies:

E(εi
t+1(θ) ⊗ zt) = 0 for i = 1, 2, ..N. (6.13)
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where ⊗ is the Kronecker product. So the theory implies the Euler equation errors

from any of the N first-order conditions ought to be orthogonal to any of the zt

variables in the information set. There are N.q restrictions created.

The idea of GMM estimation is then to find the vector of structural parameters

(θ) such that (6.13) holds. Of course, applied economists only have access to a

sample, say of length T . Let mT (θ) be an N.q-vector where the component relating

asset i to one of the variables in zt, zj
t , is defined by:

1

T

T∑
t=1

(εi
t+1(θ)z

j
t ).

The GMM estimator is defined as the value of θ that minimizes

JT (θ) = mT (θ)′WT mT (θ).

Here WT is an NqxNq matrix that is used to weight the various moment restrictions.

Hansen and Singleton (1982) use monthly seasonally adjusted aggregate data on

US non durable consumption or nondurables and services between 1959 and 1978.

They use as a measure of stock returns, the equally weighted average return on all

stocks listed on the New York Stock Exchange. They choose a constant relative

risk aversion utility function u(c) = c1−γ/(1− γ). With this specification, there are

two parameters to estimate, the curvature of the utility function γ and the discount

factor β. Thus, θ = (β, γ) The authors use as instruments zj
t lagged values of εi

t+1

and estimate the model with 1, 2, 4 or 6 lags. Depending on the number of lags and

the series used, they find values for γ which vary between 0.67 and 0.97 and values

for the discount factor between 0.942 and 0.998. As the model is overidentified, there

is scope for an overidentification test. Depending on the number of lags and the

series used, the test gives mixed results as the restrictions are sometimes satisfied

and sometimes rejected.

Note that the authors do not adjust for possible trends in the estimation. Sup-
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pose that log consumption is characterized by a linear trend:

ct = exp(αt)c̃t

where c̃t is the detrended consumption. In that case, equation (6.12) is rewritten

as:

εi
t+1(θ) ≡

βe−αγRit+1c̃
−γ
t+1

c̃−γ
t

− 1, for i = 1, 2, ..N

Hence the estimated discount factor is a product between the true discount factor

and a trend effect. Ignoring the trend would result in a bias for the discount rate.

6.3.4 Endogenous Labor Supply

Of course, it is natural to add a labor supply decision to this model. In that case,

we can think that the stochastic income, taken as given above, actually comes from

a stochastic wage (w) and a labor supply decision (n). In this case, consider the

following functional equation:

v(A,w) = max
A′,n

U(A + wn − (A′/R), n) + βEw′|wv(A′, w′)

for all (A,w). Here we have substituted in for current consumption so that the agent

is choosing labor supply and future wealth.

Note that the labor supply choice, given (A,A′), is purely static. That is, the

level of employment and thus labor earnings has no dynamic aspect other than sup-

plementing the resources available to finance current consumption and future wealth.

Correspondingly, the first order condition with respect to the level of employment

does not directly involve the value function and is given by:

wUc(c, n) = −Un(c, n). (6.14)

Using c=A + wn− (A′/R), this first order condition relates n to (A,w,A′). Denote
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this relationship as n = ϕ(A,w,A′). This can then be substituted back into the

dynamic programming problem yielding a simpler functional equation:

v(A,w) = max
A′

Z(A,A′, w) + βEw′|wv(A′, w′)

where

Z(A,A′, w) ≡ U(A + wϕ(A,w,A′) − (A′/R), ϕ(A,w,A′))

This simplified Bellman equation can be analyzed using standard methods, thus

ignoring the static labor supply decision. 85 Once a solution is found, the level of

employment can then be determined from the condition n = ϕ(A,w,A′).

Using a similar model, MaCurdy (1981) studies the labor supply of young men

using the Panel Study on Income Dynamics (PSID). The estimation of the model

is done in several steps. First, the intra period allocation (6.14) is estimated. The

coefficients are then used to get at the intertemporal part of the model.

To estimate the parameters of the utility function, one has to observe hours

of work and consumption, but in the PSID, total consumption is not reported.

To identify the model, the author uses a utility function which is separable between

consumption and labor supply. The utility function is specified as u(ct, nt) = γ1tc
ω1
t −

γ2tn
ω2
t , where γ1t and γ2t are two deterministic functions of observed characteristics

which might affect preferences such as age, education or the number of children.

With this specification, the marginal utility of leisure, Un(c, n) is independent of

the consumption decision. Using (6.14), hours of work can be expressed as:

ln(nt) =
ln wt

ω2 − 1
+

1

ω2 − 1
(ln Uc(ct, nt) − ln γ2t − ln ω2)

While the first term in the right-hand-side is observed, the second term contains

the unobserved marginal utility of consumption. Uc(ct, nt) can be expressed as a
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function of the Lagrange multiplier associated with the wealth constraint in period

0:

Uc(ct, nt) =
λ0

βt(1 + r1) . . . (1 + rt)

The author treats the unobserved multiplier λ0, as a fixed effect and uses panel

data to estimate a subset of the parameters of the utility function using first differ-

ences. In a next step, the fixed effect is backed out. At this point, some additional

identification assumptions are needed. A specific functional form is assumed for the

Lagrange multiplier, written as a function of wages over the life cycle and initial

wealth, all of them being unobserved in the data set. The author uses then fixed

characteristics such that education or age to proxy for the Lagrange multiplier. The

author finds that a 10% increase in the real wage induces a one to five percent

increase in hours worked.

Eichenbaum et al. (1988) analyze the time series properties of a household model

with both a savings and a labor supply decision. They pay particular attention to

specifications in which preferences are non-separable, both across time and between

consumption and leisure contemporaneously. They estimate their model using GMM

on time series evidence on real consumption (excluding durables) and hours worked.

They find support for non-time separability in preferences though in some cases they

found little evidence against the hypothesis that preferences were separable within

a period.

6.3.5 Borrowing Constraints

The Model and Policy Function

The extension of the two period model with borrowing constraints to the infinite

horizon case is discussed by Deaton (1991). 86 One of the key additional insights

from extending the horizon is to note that even if the borrowing constraint does
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not bind in a period, this does not imply that consumption and savings take the

same values as they would in the problem without borrowing constraints. Simply

put, consumers anticipate that borrowing restrictions may bind in the future (i.e.

in other states) and this influences their choices in the current state.

Following Deaton (1991), let x = A + y represent cash on hand. Then the

transition equation for wealth implies:

A′ = R(x − c)

where c is consumption. In the event that income variations are iid, we can write

the Bellman equation for the household as:

v(x) = max
0≤c≤x

u(c) + βEy′v(R(x − c) + y′) (6.15)

so that the return R is earned on the available resources less consumption, x − c.

Note that income is not a state variable here as it is assumed to be iid. Hence cash

on hand completely summarizes the resources available to the consumer.

The borrowing restriction takes the simple form of c ≤ x so that the consumer

is unable to borrow. Of course this is extreme and entirely ad hoc but it does allow

us to explore the consequences of this restriction. As argued by Deaton, the Euler

equation for this problem must satisfy:

u′(c) = max{u′(x), βREu′(c′)}. (6.16)

So, either the borrowing restriction binds so that c = x or it doesn’t so that the

more familiar Euler equation holds. Only for low values of x will u′(x) > βREu′(c′)

and only in these states, as argued for the two-period problem, will the constraint

bind. To emphasize an important point: even if the u′(x) < βREu′(c′) so that the

standard condition of
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u′(c) = βREu′(c′)

holds, the actual state dependent levels of consumption may differ from those that

are optimal for the problem in which c is not bounded above by x.

Alternatively, one might consider a restriction on wealth of the form: A ≥

Amin(s) where s is the state vector describing the household. In this case the house-

hold may borrow but its assets are bounded below. In principle, the limit on wealth

may depend on the state variables of the household: all else the same, a household

with a high level of income may be able to borrow more. One can look at the im-

plications of this type of constraint and, through estimation, uncover Amin(s). (see

Adda and Eaton (1997)).

To solve the optimal problem, one can use the value function iteration approach,

described in chapters 2 and 3, based on the Bellman equation (6.15). Deaton (1991)

uses another approach, working from the Euler equation (6.16). The method is sim-

ilar to the projection methods presented in chapter 3, but the optimal consumption

function is obtained by successive iterations instead of solving a system of non linear

equations. Although there is no formal proof that iterations on the Euler equation

actually converge to the optimal solution, the author note that empirically conver-

gence always occur. Figure 6.1 displays the optimal consumption rule in the case

of a serially correlated income. In this case, the problem has two state variables,

the cash-on-hand and the current realization of income, which provide information

on future income. The policy rule has been computed using a (coarse) grid with

three points for the current income and with 60 equally spaced points for the cash-

on-hand. When cash-on-hand is low, the consumer is constrained and is forced to

consume all his cash-on-hand. The policy rule is then the 45 degree line. For higher

values of the cash-on-hand, the consumer saves part of the cash-on-hand for future
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consumption.

[Figure 6.1 approximately here]

[Figure 6.2 approximately here]

Figure 6.2 displays a simulation of consumption and assets over 200 periods. The

income follows an AR(1) process with unconditional mean of 100, a persistence of

0.5 and the innovations to income are drawn from N (0, 10). The path of income is

asymmetric, as good income shocks are smoothed by savings whereas the liquidity

constraints prevents the smoothing of low income realizations. Consumption is

smoother than income, with a standard deviation of 8.9 instead of 11.5.

An Estimation Exercise

In section 6.3.3, we presented a GMM estimation by Hansen and Singleton (1982)

based on the Euler equation. Hansen and Singleton (1982) find a value for γ of

about 0.8. This is under the null that the model is correctly specified, and in

particular, that the Euler equation holds in each periods. When liquidity constraints

are binding, the standard Euler equation does not hold. An estimation procedure

which does not take into account this fact would produce biased estimates.

Suppose that the real world is characterized by potentially binding liquidity con-

straints. If one ignores them and consider a simpler model without any constraints,

how would it affect the estimation of the parameter γ?

To answer this question, we chose different values for γ, solved the model with

liquidity constraints and simulated it. The simulated consumption series are used

to get an estimate γ̂GMM such that:

γ̂GMM = Argmin
γ

1

T

T∑
t=1

εt(γ) with εt(γ) = β(1 + r)
c−γ
t+1

c−γ
t

− 1

[Table 6.1 approximately here]
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The results are displayed in Table 6.1. When γ is low, the consumer is less risk

averse and consumes more out of the available cash-on-hand and saves less. The

result is that the liquidity constraints are binding more often. In this case, the bias

in the GMM estimate is the biggest. The bias is decreasing in the proportion of

liquidity constrained periods, as when liquidity constraints are almost absent, the

standard Euler equation holds. From Table 6.1, there is no value of γ which would

generate a GMM estimate of 0.8 as found by Hansen and Singelton.

6.3.6 Consumption Over the Life Cycle

Gourinchas and Parker (2001) investigate the ability of a model of intertemporal

choice with realistic income uncertainty to match observed life cycle profiles of con-

sumption. (For a related study see also Attanasio et al. (1999)). They parameterize

a model of consumption over the life cycle, which is solved numerically. The pa-

rameters of the model are estimated using a simulated method of moments method,

using data on household consumption over the life cycle. We first present a sim-

plified version of their model. We then discuss the numerical computation and the

estimation methods.

Following Zeldes (1989a) 87, the log income process is modelled as a random

walk with a moving average error. This specification is similar to the one used in

empirical work (see Abowd and Card (1989)) and seems to fit the data well. Denote

Yt the income of the individual:

Yt = PtUt

Pt = GtPt−1Nt

Income is the product of two components. Ut is a transitory shock which is indepen-

dently and identically distributed and takes a value of 0 with a probability p and a

positive value with a probability (1− p). Pt is a permanent component which grows

at a rate Gt which depends on age. Nt is the innovation to the permanent compo-
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nent. ln Nt and ln Ut, conditionally on Ut > 0, are normally distributed with mean

0 and variance σ2
n and σ2

u respectively. The consumer faces a budget constraint:

Wt+1 = (1 + r)(Wt + Yt − Ct)

The consumer can borrow and save freely. However, under the assumption that there

is a probability that income will be zero and that the marginal utility of consumption

is infinite at zero, the consumer will choose never to borrow against future income.

Hence, the outcome of the model is close to the one proposed by Deaton (1991) and

presented in section 6.3.5. Note that in the model, the agent can only consume non-

durables. The authors ignore the durable decision, or equivalently assume that this

decision is exogenous. This might be a strong assumption. Fernández-Villaverde

and Krueger (2001) argue that the joint dynamics of durables and non durables are

important to understand the savings and consumption decisions over the life cycle.

Define the cash-on-hand as the total of assets and income:

Xt = Wt + Yt Xt+1 = R(Xt − Ct) + Yt+1

Define Vt(Xt, Pt) as the value function at age T −t. The value function is indexed by

age as it is assumed that the consumer has a finite life horizon. The value function

depends on two state variables, the cash-on-hand which indicates the maximal limit

that can be consumed, and the realization of the permanent component which pro-

vides information on future values of income. The program of the agent is defined

as:

Vt(Xt, Pt) = max
Ct

[u(Ct) + βEtVt+1(Xt+1, Pt+1)]

The optimal behavior is given by the Euler equation:

u′(Ct) = βREtu
′(Ct+1)

As income is assumed to be growing over time, cash-on-hand and consumption are

also non-stationary. This problem can be solved by normalizing the variables by
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the permanent component. Denote xt = Xt/Pt and ct = Ct/Pt. The normalized

cash-on-hand evolves as:

xt+1 = (xt − ct)
R

Gt+1Nt+1

+ Ut+1

Under the assumption that the utility function is u(c) = c(1−γ)/(1 − γ), the Euler

equation can be rewritten with only stationary variables:

u′(ct) = βREtu
′(ct+1Gt+1Nt+1)

As the horizon of the agent is finite, one has to postulate some terminal condition

for the consumption rule. It is taken to be linear in the normalized cash-on-hand:

cT+1 = γ0 + γ1xT+1.

Gourinchas and Parker (2001) use this Euler equation to compute numerically

the optimal consumption rule. Normalized consumption is only a function of the

normalized cash-on-hand. By discretizing the cash-on-hand over a grid, the problem

is solved recursively by evaluating ct(x) at each point of the grid using:

u′(ct(x)) = βR(1 − p)

∫ ∫
u′
(

ct+1

(
(x − ct)

R

Gt+1N
+ U

)
Gt+1N

)
dF (N)dF (U)

+βRp

∫
u′
(

ct+1

(
(x − ct)

R

Gt+1N

)
Gt+1N

)
dF (N)

The first term on the right-hand-side calculates the expected value of the future

marginal utility conditional on a zero income, while the second term is the ex-

pectation conditional on a strictly positive income. The integrals are solved by a

quadrature method (see Chapter 3). The optimal consumption rules are obtained

by minimizing the distance between the left hand side and the right hand side.

Figure 6.3 displays the consumption rule at different ages. 88

Once the consumption rules are determined, the model can be simulated to gen-

erate average life cycle profiles of consumption. This is done using the approximated

consumption rules and by averaging the simulated behavior of a large number of
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households. The simulated profiles are then compared to actual profiles from US

data. Figure 6.4 displays the predicted consumption profile for two values of the in-

tertemporal elasticity of substitution , as well as the observed consumption profiles

constructed from the US Consumer Expenditure Survey. 89

More formally, the estimation method is the simulated method of moments (see

Chapter 4). The authors minimize the distance between observed consumption and

predicted one at different ages. As neither the cash-on-hand nor the permanent

component of income are directly observed, the authors integrate out the state

variables to calculate the unconditional mean of (log) consumption at a given age:

ln Ct(θ) =

∫
ln Ct(x, P, θ)dFt(x, P, θ)

where θ is the vector of parameters characterizing the model and where Ft() is the

density of the state variables for individuals of age t. Characterizing this density

is difficult as it has no closed form solution. Hence, the authors use simulations to

approximate ln Ct(θ). Denote

g(θ) =
1

It

It∑
i=1

ln Cit − 1

S

S∑
s=1

ln Ct(X
s
t , P

s
t , θ)

The first part is the average log consumption for households of age t and It is the

number of observed household in the data set. The second part is the average

predicted consumption over S simulated paths. θ is estimated by minimizing

g(θ)′Wg(θ)

where W is a weighting matrix.

The estimated model is then used to analyze the determinant of savings. There

are two reasons to accumulate savings in this model. First, it cushions the agent

from uninsurable income shocks, to avoid facing a low marginal utility. Second,

savings are used to finance retirement consumption. Gourinchas and Parker (2001)
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show that the precautionary motive dominates at least until age 40 whereas older

agents save mostly for retirement.

[Figure 6.3 approximately here]

[Figure 6.4 approximately here]

6.4 Conclusion

This chapter demonstrates how to use the approach of dynamic programming to

characterize the solution of the households optimal consumption problem and to

link it with observations. In fact, the chapter goes beyond the savings decision to

integrate it with the labor supply and portfolio decisions.

As in other chapters, there are numerous extensions that are open for the re-

searcher to consider. The next chapter is devoted to one of these, the introduction

of durable goods. Further, there are many policy related exercises that can be eval-

uated using one of these estimated models, included a variety of policies intended

to influence savings decisions.90



Chapter 7

Durable Consumption

7.1 Motivation

Up to now, the consumption goods we have looked at are all classified as either

nondurables or services. This should be clear since consumption expenditures af-

fected utility directly in the period of the purchase and then disappear.91 However,

durable goods play a prominent role in business cycles as durable expenditures are

quite volatile.92

This chapter studies two approaches to understanding durable consumption.

The first is an extension of the models studied in the previous chapter in which a

representative agent accumulates durables to provide a flow of services. Here we

present the results of Mankiw (1982) which effectively rejects the representative

agent model. 93

The second model introduces a non-convexity into the household’s optimization

problem. The motivation for doing so is evidence that households do not continu-

ously adjust their stock of durables. This section of the chapter explores this through

the specification and estimation of a dynamic discrete choice model.

178
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7.2 Permanent Income Hypothesis Model of Durable

Expenditures

We begin with a model that builds upon the permanent income hypothesis structure

that we used in the previous chapter to study nondurable expenditures. We first

exhibit theoretical properties of the model and then discuss its empirical implemen-

tation.

7.2.1 Theory

To model expenditures on both durable and non-durable goods, we consider a model

of household behavior in which the consumer has a stock of wealth (A), a stock

of durable goods (D) and current income (y). The consumer uses wealth plus

current income to finance expenditures on current nondurable consumption (c) and

to finance the purchase of durable goods (e) at a relative price of p.

There are two transition equations for this problem. One is the accumulation

equation for wealth given by:

A′ = R(A + y − c − pe).

The accumulation equation for durables is similar to that used for capital held by

the business sector:

D′ = D(1 − δ) + e (7.1)

where δ ∈ (0, 1) is the depreciation rate for the stock of durables.

Utility depends on the flow of services from the stock of durables and the pur-

chases of nondurables. In terms of timing, assume that durables bought in the

current period yield services starting in the next period. So, as with capital there
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is a time lag between the order and the use of the durable good.94

With these details in mind, the Bellman equation for the household is given by:

V (A,D, y, p) = max
D′,A′

u(c,D) + βEy′,p′|y,pV (A′, D′, y′, p′) (7.2)

for all (A,D, y, p) with

c = A + y − (A′/R) − p(D′ − (1 − δ)D) (7.3)

and the transition for the stock of durables given by (7.1). The maximization gives

rise to two first-order conditions:

uc(c,D) = βREy′,p′|y,pVA(A′, D′, y′) (7.4)

and

uc(c,D)p = βEy′,p′|y,pVD(A′, D′, y′).

In both cases, these conditions can be interpreted as equating the marginal costs of

reducing either nondurable or durable consumption in the current period with the

marginal benefits of increasing the (respective) state variables in the next period.

Using the functional equation (7.2), we can solve for the derivatives of the value

function and then update these two first order conditions. This implies:

uc(c,D) = βREy′|yuc(c
′, D′) (7.5)

and

puc(c,D) = βEy′,p′|y,p[uD(c′, D′) + p′(1 − δ)uc(c
′, D′)] (7.6)

The first condition should be familiar from the optimal consumption problem

without durables. The marginal gain of increasing consumption is offset by the

reduction in wealth and thus consumption in the following period. In this specifi-

cation, the marginal utility of non-durable consumption may depend on the level
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of durables. So, to the extent there is an interaction within the utility function be-

tween nondurable and durable goods, empirical work that looks solely at nondurable

consumption may be inappropriate.95

The second first order condition compares the benefits of buying durables with

the marginal costs. The benefits of a durable expenditure comes from two sources.

First, increasing the stock of durables has direct utility benefits in the subsequent

period. Second, as the Euler equation characterizes a one-period deviation from

a proposed solution, the undepreciated part of the additional stock is sold and

consumed. This is reflected by the second term on the right side. The marginal

cost of the durable purchase is the reduction in expenditures on nondurables that

the agent must incur.

A slight variation in the problem assumes that durables purchased in the current

period provide services starting that period. Since this formulation is also found

in the literature, we present it here as well. In this case, the dynamic programming

problem is:

V (A,D, y, p) = max
D′,A′

u(c,D′) + βEy′|yV (A′, D′, y′, p′) (7.7)

for all (A,D, y, p) with c defined in (7.3).

Manipulation of the conditions for optimality implies (7.5) and

puc(c,D
′) = [uD(c,D′) + βEy′,p′|y,pp

′(1 − δ)uc(c
′, D

′′
)] (7.8)

If prices are constant (p = p′), then this becomes

uD(c,D′) = βREy′|yuD(c′, D
′′
).

This condition corresponds to a variation in which the stock of durables is reduced by

ε in the current period, the resources are saved and then used to purchase durables

in the subsequent period.96 As in the case of nondurable consumption, in the special

case of βR = 1, the marginal utility from durables follows a random walk.
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Note too that regardless of the timing assumption, there are interactions between

the two Euler equations. One source of interrelationship arises if utility is not

separable between durables and nondurables (ucD �= 0). Further, shocks to income

will influence both durable and nondurable expenditures.

7.2.2 Estimation of a Quadratic Utility Specification

Mankiw (1982) studied the pattern of durable expenditures when u(c,D′) is sepa-

rable and quadratic. In this case, Mankiw finds that durable expenditures follows

an ARMA(1,1) process given by:

et+1 = a0 + a1et + εt+1 − (1 − δ)εt

where a1 = βR. Here the MA piece is parameterized by the rate of depreciation.

Empirically, Mankiw finds that estimating the model using U.S. data that δ is

quite close to 1. So, durables appear not to be so durable after all!

Adda and Cooper (2000b) study the robustness of Mankiw’s results across differ-

ent time periods, different frequencies and across countries (US and France). Their

results are summarized in the following table of estimates.

[Table 7.1 approximately here]

These are annual series for France and the US. The rows pertain to both aggre-

gated durable expenditures and estimates based on cars (both total expenditures

on cars (for France) and new car registrations). The model is estimated with and

without a linear trend.

For both countries, the hypothesis that the rate of depreciation is close to 100%

per year would not be rejected for most of the specifications. Mankiw’s ”puzzle”

seems to be robust across categories of durables, countries, time periods and the

method of detrending.
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Over the past few years, there has been considerable effort to understand Mankiw’s

result. One approach, described below is to embellish the basic representation agent

model through the addition of adjustment costs and the introduction of shocks other

than variations in income. A second approach, coming from Bar-Ilan and Blinder

(1992) and Bertola and Caballero (1990), is to recognize that at the household level

durable expenditures are often discrete. We turn to these lines of research in turn.

7.2.3 Quadratic Adjustment Costs

Bernanke (1985) goes beyond this formulation by adding in price variations and

costs of adjustment. As he notes, it is worthwhile to look jointly at the behavior of

durable and nondurable expenditures as well.97 Consider the dynamic optimization

problem of:

V (A,D, y, p) = max
D′,A′

u(c,D,D′) + βEy′|yV (A′, D′, y′, p′) (7.9)

for all (A,D, y, p) where the functional equation holds for all values of the state

vector. Bernanke assumes a quadratic utility function with quadratic adjustment

costs of the form:

u(c,D,D′) = −1

2
(c̄ − c)2 − a

2
(D̄ − D)2 − d

2
(D′ − D)2

where ct is non-durable consumption and Dt is the stock of durables. The adjustment

cost is part of the utility function rather than the budget constraints for tractability

reasons. Given the quadratic structure, the model (7.9) can be solved explicitly

as a (non-linear) function of the parameters. Current non-durable consumption

is a function of lagged non-durable consumption, the current and lagged stock of

durables and of the innovation to the income process. Durables can be expressed

as a function of the past stock of durables and of the innovation to income. The

two equations with an equation describing the evolution of income are estimated
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jointly by non-linear three stage least squares where current income, non-durable

consumption and the stock of durables were instrumented to control for simultaneity

and for measurement error bias. Instruments are lagged measures of prices, non-

durable consumption, durable stocks and disposable income.

Overall, the model is rejected by the data when testing the over identifying

restrictions. The estimation of the cost of adjustment gives conflicting results as

described in more detailed in Bernanke (1985). The non-linear function of this

parameter implies an important cost of adjustment whereas the parameter itself is

not statistically different from zero.

Bernanke (1984) tests the permanent hypothesis model at the micro level by

looking at car expenditures for a panel of households. While, Bernanke does not

reject the model on this type of data, it is at odds with observations (described

below) as it predicts continuous adjustment of the stock whereas car expenditures

are typically lumpy at the individual level.

Exercise 7.1

Write a program to solve (7.9). Obtain the decision rules by the household. Use

these decision rules to create a panel data set, allowing households to have different

realizations of income. Consider estimating the Euler equations from the house-

hold’s optimization problem. If there were non-separabilities present in u(c,D,D′),

particularly ucD �= 0, which were ignored by the researcher, what types of “incorrect

inferences” would be reached?

7.3 Non Convex Adjustment Costs

The model explored in the previous section is intended to capture the behavior of

a representative agent. Despite its theoretical elegance, the model has difficulty
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matching two aspects of the data. First, as noted above, Mankiw’s estimate of close

to 100% depreciation should be viewed as a rejection of the model. Second, there

is evidence at the household level that adjustment of the stock of durables is not

continuous. Instead, households purchases of some durables, such as cars as studied

by Lam (1991), are relatively infrequent. This may reflect irreversibility due to

imperfect information about the quality of used durable good, the discrete nature

of some durable goods or the nature of adjustment costs.

Bar-Ilan and Blinder (1992) and Bar-Ilan and Blinder (1988) present a simple

setting in which a fixed cost of adjustment implies inaction from the agent when the

stock of durable is not too far from the optimal one. They argue that the optimal

consumption of durables should follow an (S,s) policy. When the durable stock

depreciates to a lower value s, the agent increases the stock to a target value S as

depicted in Figure 7.1.

[Figure 7.1 approximately here]

7.3.1 General Setting

To gain some insight into the importance of irreversibility, consider the following

formalization of a model in which irreversibility is important. By this we mean that

due to some friction in the market for durables, households receive only a fraction

of the true value of a product they wish to sell. This can be thought of as a version

of Akerlof’s famous lemons problem.98

In particular, suppose that the price of durables is normalized to 1 when they

are purchases (e) but that the price of durables when they are sold (s) is given by

ps < 1. The Bellman equation for the household’s optimization problem is given by:

V (A,D, y) = max(V b(A,D, y), V s(A,D, y), V i(A,D, y)) (7.10)

where
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V b(A,D, y) = max
e,A′

u(A + y − (A′/R)− e,D) + βEy′|yV (A′, D(1− δ) + e, y′) (7.11)

V s(A,D, y) = max
s,A′

u(A+y−(A′/R)+pss,D)+βEy′|yV (A′, D(1−δ)−s, y′) (7.12)

V i(A,D, y) = max
A′

u(A + y − (A′/R), D) + βEy′|yV (A′, D(1 − δ), y′) (7.13)

for all (A,D, y). This is admittedly a complex problem as it includes elements of a

discrete choice (to adjust or not) and also an intensive margin (given adjustment,

the level of durable purchases (sales) must be determined).

The presence of a gap between the buying and selling price of durables will create

inaction. Imagine a household with a substantial stock of durables that experiences

an income loss say due to a layoff. In the absence of irreversibility (ps = 1), the

household may optimally sell off some durables. If a job is found and the income

flow returns, then the stock of durables will be rebuilt. However, in the presence

of irreversibility, the sale and subsequent purchase of durables is costly due to the

wedge between the buying and selling price of durables. Thus, in response to an

income shock, the household may be inactive and thus not adjust its stock.

The functional equation in (7.10) cannot be solved using linearization techniques

as there is no simple Euler equation given the discrete choice nature of the problem.

Instead, value function iteration techniques are needed. As in the dynamic discrete

choice problem specified in Chapter 3, one starts with initial guesses of the values

of the three options and then induces V (A,D, y) through the max operator. Given

these initial solutions, the iteration procedure begins. As there is also an intensive

margin in this problem (given adjustment, the stock of durables one can choose is a

continuous variable), a state space for durables as well as assets must be specified.

This is a complex setting but one that the value function iteration approach can

handle.
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So, given a vector of parameters describing preferences and the stochastic pro-

cesses, policy functions can be created. In principle, these can be used to generate

moments that can be matched with observations in an estimation exercise. This is

described in some detail, for a different model, in the subsequent subsections.

7.3.2 Irreversibility and Durable Purchases

Grossman and Laroque (1990) develop a model of durable consumption and also

consider an optimal portfolio choice. They assume that the durable good is illiquid

as the agent incurs a proportional transaction cost when selling the good. The

authors show that under the assumption of a constant relative risk aversion utility

function, the state variable is the ratio of wealth A over the stock of durables D.

The optimal behavior of the agent is to follow an [s, S] rule, with a target s∗ ∈ [s, S].

The agent does not change the stock of durable if the ratio A/D is within the two

bands s and S. If the ratio drifts out of this interval, the agent adjusts it by buying

or selling the good such that A/D = s∗.

Eberly (1994) empirically investigates the relevance of some aspects of the Grossman-

Laroque model. She uses data from the Survey of Consumer Finances which reports

information on assets, income and major purchases. She estimates the bands s and

S. These bands can be computed by observing the ratio A/D for individuals just

before an adjustment is made. The target s∗ can be computed as the average ra-

tio just after adjustment. Eberly (1994) estimates the band width and investigates

its determinants. She finds that the year to year income variance and the income

growth rate are strong predictors of the width of the band.

Attanasio (2000) develops a more elaborate estimation strategy for these bands,

allowing for unobserved heterogeneity at the individual level. This heterogeneity

is needed as, conditional on household characteristics and the value of the ratio
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of wealth to consumption, some are adjusting their stock and some are not. The

estimation is done by maximum likelihood on data drawn from the Consumer Ex-

penditure Survey. The width of the bands are functions of household characteristics

such as age and race. The estimated model is then aggregated to study the aggregate

demand for durables.

Caballero (1993) uses the Grossman and Laroque (1990) approach to investigate

the aggregate behavior of durable goods. The individual agent is assumed to follow

an [s,S] consumption rule because of transaction costs. In the absence of transac-

tion costs, the agent would follow a PIH type behavior as described in section 7.2.

Caballero postulates that the optimal behavior of the agent can be described by the

distance between the stock of durables held by the agent and the ”target” defined

as the optimal stock in the PIH model. The agent adjusts the stock when the gap

between the realized and the desired stock is big enough. In this setting, the state

variables are the stock of durables and the target. The target stock is assumed

to follow a known stochastic process. Hence in this model, it is assumed that the

evolution of the target is a sufficient statistic to inform of all the relevant economic

variables such as prices or income.

The aggregate demand for durables is the sum of all agents who decide to adjust

their stock in a given period. Hence, Caballero stresses the importance of the cross

sectional distribution of the gap between the target and the realized stock. When

there is an aggregate shock on the target, the aggregate response depends not only

on the size of the shock but also on the number of individuals close to the adjustment

line. The aggregate demand for durables can therefore display complicated dynamic

patterns. The model is estimated on aggregate US data.
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7.3.3 A Dynamic Discrete Choice Model

Suppose that instead of irreversibility, there is a restriction that households can

have either no car or one car.99 Thus, by assumption, the household solves a dy-

namic discrete choice problem. We discuss solutions of that problem, estimation of

parameters and aggregate implications in this section.100

Optimal Behavior

We start with the dynamic programming problem as specified in Adda and Cooper

(2000b). At the start of a period, the household has a car of a particular age, a

level of income and a realization of a taste shock. Formally, the household’s state

is described by the age of its car, i, a vector Z = (p, Y, ε) of aggregate variables

and a vector z = (y) of idiosyncratic variables. Here, p is the relative price of the

(new) durable good. Current income is given by the sum Y + y where Y represents

aggregate income and y represents idiosyncratic shocks to nondurable consumption

that could reflect variations in household income or required expenditures on car

maintenance and other necessities.101 The final element in the state vector is a taste

shock, ε.

At every point in time, the household decides whether to retain a car of age

i, trade it or scrap it. If the household decides to scrap the car, then it receives

the scrap value of π and has the option to purchase a new car. If the household

retains the car, then it receives the flow of services from that car and cannot, by

assumption, purchase another car. Thus the household is constrained to own at

most a single car.

Formally, let Vi(z,Z) represent the value of having a car of age i to a household

in state (z, Z). Further, let Vk
i (z,Z) and Vr

i (z,Z) represent the values from keeping

and replacing an age i car in state (z, Z). Then,
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Vi(z, Z) = max[V k
i (z, Z), V r

i (z, Z)]

where

V k
i (z, Z) = u(si, y + Y, ε) + β(1 − δ)EVi+1(z

′, Z ′) + (7.14)

βδ{EV1(z
′, Z ′) − u(s1, y

′ + Y ′, ε′) + u(s1, y
′ + Y ′ − p′ + π, ε′)}

and

V r
i (z, Z) = u(s1, y + Y − p + π, ε) + β(1 − δ)EV2(z

′, Z ′) +

βδ{EV1(z
′, Z ′) − u(s1, y

′ + Y ′, ε′) + u(s1, y
′ + Y ′ − p′ + π, ε′)}.

In the definition of V k
i (z, Z), the car is assumed to be destroyed (from accidents

and breakdowns) with probability δ leading the agent to purchase a new car in the

next period. The cost of a new car in numeraire terms is p′ − π, which is stochastic

since the price of a new car in the next period is random. Further, since it is assumed

that there is no borrowing and lending, the utility cost of the new car is given by

u(s1, y
′ + Y ′, ε′) − u(s1, y

′ + Y ′ − p′ + π, ε′) which exceeds p′ − π as long as u(·) is

strictly concave in nondurable consumption. It is precisely at this point that the

borrowing restriction appears as an additional transactions cost.

Adding in either borrowing and lending or the purchase and sale of used cars

presents no modelling difficulties. But adding in wealth as well as resale prices as

state variables certainly increases the dimensionality of the problem. This remains

as work in progress.

Exercise 7.2

Reformulate (7.14) to allow the household to borrow/lend and also to resell cars

in a used car market. What additional state variables would you have to add when
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these choices are included? What are the new necessary conditions for optimal

behavior of the household?

Further Specification

For the application the utility function is defined to be additively separable between

durables and nondurables:

u(si, c) =

[
i−γ +

ε(c/λ)1−ξ

1 − ξ

]
where c is the consumption of non-durable goods, γ is the curvature for the service

flow of car ownership, ξ the curvature for consumption and λ is a scale factor. In

this specification, the taste shock (ε) influences the contemporaneous marginal rate

of substitution between car services and non-durables.

In order for the agent’s optimization problem to be solved, a stochastic process

for income, prices and the aggregate taste shocks must be specified. Aggregate

income, prices and the unobserved preference shock are assumed to follow a VAR(1)

process given by:102

Yt = µY + ρY Y Yt−1 + ρY ppt−1 + uY t

pt = µp + ρpY Yt−1 + ρpppt−1 + upt

εt = µε + ρεY Yt−1 + ρεppt−1 + uεt

The covariance matrix of the innovations u = {uY t, upt, uεt} is

Ω =

 ωY ωY p 0

ωpY ωp 0

0 0 ωε


As the aggregate taste shock is unobserved, we impose a block diagonal structure

on the VAR, which enables us to identify all the parameters involving prices and

aggregate income in a simple first step regression. This considerably reduces the

number of parameters to be estimated in the structural model. We allow prices and

income to depend on lagged income and lagged prices. 103
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The aggregate taste shock potentially depends on lagged prices and income. The

coefficients of this process along with ωε are estimated within the structural model.

By allowing a positive correlation between the aggregate taste shock and lagged

prices, given that prices are serially correlated, we can reconcile the model with the

fact that sales and prices are positively correlated in the data. This allows us to

better capture some additional dynamics of sales and prices in the structural esti-

mation. An alternative way would be to model jointly the producer and consumer

side of the economy, to get an upward slopping supply curve. However, solving for

the equilibrium is computationally very demanding.

Solving the Model

The model is solved by the value function iteration method. Starting with an

initial guess for Vi(z, Z), the value function is updated by backward iterations until

convergence.

The policy functions that are generated from this optimization problem are of

an optimal stopping variety. That is, given the state of the household, the car is

scrapped and replaced if and only if the car is older than a critical age. Letting

hk(zt, Zt; θ) represent the probability that a car of age k is scrapped, the policy

functions imply that hk(zt, Zt; θ)=δ if k < J(zt, Zt;θ) and hk(zt, Zt;θ) = 1 otherwise.

Here J(zt, Zt; θ) is the optimal scrapping age in state (zt, Zt) when θ is the vector

of parameters describing the economic environment.

In particular, for each value of the idiosyncratic shock z, there is an optimal

scrapping age. Aggregating over all possible values of this idiosyncratic shock pro-

duces an aggregate policy function which indicates the fraction of cars of a given

vintage which are scrapped when the aggregate state of the world is Zt:

Hk(Zt, θ) =

∫
hk(zt, Zt, θ)φ(zt)dzt
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where φ(·) is the density function of zt, taken to be the normal distribution. Hk(·) is

an increasing function of the vintage and bounded between δ and 1. The aggregated

hazard can be used to predict aggregate sales and the evolution of the cross section

distribution of car vintages over time. Letting ft(k) the period t cross sectional

distribution of k, aggregate sales are given by

St(Zt, θ) =
∑

k

Hk(Zt, θ)ft(k) (7.15)

From an initial condition on the cross sectional distribution, it is possible to generate

a time series for the cross sectional distribution given a particular parameterization

of the hazard function. The evolution of ft(k) is given by:

ft+1(k, Zt, θ) = [1 − Hk(Zt; θ)]ft(k − 1) for k > 1 (7.16)

and

ft+1(1, Zt, θ) = St(Zt, θ)

Thus for a given θ and a given draw of T aggregate shocks one can simulate both

sales and the cross sectional distribution. This can be repeated N times to produce

N simulated data sets of length T , which can be used in the estimation. Define

Stn(Zt, θ) = St(pt, Yt, εnt, θ) as the predicted aggregate sales given prices, aggregate

income and unobserved taste shock εnt. Define S̄t(Zt, θ) = 1/N
∑N

n=1 Snt(Zt, θ) as

the average aggregate sales conditional on prices, aggregate income and period t−1

cross sectional distribution.

Estimation Method and Results

In total there are eight parameters to estimate: θ = {γ, δ, λ, ζ, σy, ρεY , ρεc, ωε}. The

estimation method follows Adda and Cooper (2000b) and is a mix between simulated

non-linear least squares and simulated method of moments. The first part of the

criterion matches predicted sales of new cars with the observed ones, conditional
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on prices and aggregate income. The second part of the criterion matches the

predicted shape of the cross section distribution of car vintages to the observed one.

The objective function to minimize is written as the sum of the two criteria:

LN(θ) = αL1
N(θ) + L2

N(θ)

where N is the number of simulated draws for the unobserved aggregate taste shock

εnt. The two criteria are defined by:

L1
N(θ) = 1

T

∑T
t=1

[
(St − S̄t(θ))

2 − 1
N(N−1)

∑N
n=1(Stn(θ) − S̄t(θ))

2
]

L2
N(θ) =

∑
i={5,10,15,AR,MA} αi(F̄

i − F̄ i(θ))2

where S̄t(θ) is the average F̄ i, i = 5, 10, 15 is the average fraction of cars of age i

across all periods and F̄ i, i = AR,MA are the autoregressive and moving average

coefficients from an ARMA(1,1) estimated on aggregate sales.

The estimation uses two criteria for identification reasons. Matching aggregate

sales at each period extracts information on the effect of prices and income on

behavior and helps to identify the parameter of the utility function as well as the

parameters describing the distribution of the aggregate taste shock. However, the

model is able to match aggregate sales under different values for the agent’s optimal

stopping time. In other words, there can be different cross section distributions

that produce aggregated sales which are close to the observed ones. In particular,

the parameter δ is poorly identified by using only the first criterion. The second

criterion pins down the shape of the cross section distribution of car vintages.

[Figure 7.2 approximately here]

[Figure 7.3 approximately here]

The data come from France and the US and consists of the cross sectional dis-

tribution of car vintages over time, as well as the aggregate sales of new cars, prices
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and aggregate income. The estimated aggregate hazard functions Ht(Z) over the

period 1972-1995 for France and 1981-1995 for the US are displayed in Figures 7.2

and 7.3. Note that the probability of replacement for young cars which is equal to

the δ is estimated at a low value between 5 to 10%. Hence, in contrast with the esti-

mated PIH models described in section 7.2, the model is able to produce a sensible

estimate of the rate of depreciation. Moreover, when estimating an ARMA(1,1), as

in section 7.2.2, on the predicted aggregate sales, the MA coefficient is estimated

close to zero as in the observed data. Hence, viewed from a PIH perspective, the

model appears to support a 100% depreciation rate at the aggregate level, whereas

at the micro level, the depreciation rate is low.

Once the model is estimated, Adda and Cooper (2000b) investigate the ability

of the model to reproduce a number of other features such as the impulse response

of sales to an increase in prices. They also use the estimated model to decompose

the source of variation in aggregate sales. Within the model, there are two main

sources, the endogenous evolution of the cross section distribution and the effect of

aggregate variables such as prices or income. Caballero (1993) seems to imply that

the evolution of the cross section distribution is an important determinant. However,

the empirical decomposition shows that its role is relatively minor, compared with

the effect of income and prices.

The Impact of Scrapping Subsidies

Adda and Cooper (2000a) uses the same framework to analyze the impact of scrap-

ping subsidies introduced first in France and later in a number of European countries

such as Spain or Italy.

From February 1994 to June 1995 the French government offered individuals

5000 francs (approximately 5 to 10% of the value of a new car) for the scrapping

of an old car (ten years or older) and the purchase of a new car. Sales of new cars
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which had been low in the preceding period (see Figure 7.4) increased markedly

during the period the policy was in place. In September 1995 to September 1996,

the government re-introduced the policy, with an age limit of eight years. After

September 1996, the demand for new cars collapsed at a record low level.

As evident from Figure 7.4, the demand for cars is very cyclical and follows the

business cycle. The increased demand for new cars during the period 1994-1996

could be due either to the policy or to the cyclical nature of demand. If the latter

is true, the French government has been wasting money on car owners who would

have replaced their cars during that period anyway. Even if the increased demand

was entirely fueled by the scrapping subsidies, the government has been giving out

money to car owners who would have replaced their car in the periods ahead. The

effect of the policy is then to anticipate new sales, and creating future and potentially

bigger cycles in car demand. As a large number of new cars were sold in this period,

demand for new cars was low when the policy stopped, but a peak in demand is

likely to appear about 10 years after the policy as the cars bought in 1995-1996 are

scrapped.

[Figure 7.4 approximately here]

Adda and Cooper (2000a) estimate the model in section 7.3.3 on the pre-policy

period. The policy works through the scrapping price π, which is constant and at a

low value (around 500 French francs) before 1993. When the policy is in place, this

scrapping price increases and is age specific:

π(i) = 500 if i < 10

π(i) = 5000 if i ≥ 10

Given the estimated model, the effect of the policy can be simulated as well as the

counterfactual without the policy in place. This is done conditional on the cross

section distribution of cars at the beginning of the period and conditional on the
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realized income and prices (prices of new cars are assumed to be independent of

the policy. While this is debatable, empirical evidence suggest that prices remained

stable throughout the period mainly because the government negotiated a stable

price with car producers).

While the first scrapping subsidy was largely unexpected by the consumers, the

second one was partly anticipated. Just after the first subsidy, there were discussions

on whether to implement a new one. This is taken into account in the model by

adding the scrapping price π(i) as a stochastic state variable. More precisely, π is

assumed to follow a first order Markov process, with four states. These four states

are described in Table 7.2. The first state models the 1994 reform and the second one

the 1995 reform. State 3 is a state with heightened uncertainty, in which there are

no subsidies. State 4 is the baseline state. In state 1, the scrap value is set at 5500 F

for cars older than 10 years. This state is not assumed to be very permanent: there

is only a one percent chance that the subsidy will be in effect in the next period,

conditional on being in force in the current period. In state 2, the scrap value is

also 5500F but for cars older than 8 years old.

[Table 7.2 approximately here]

Figures 7.5 and 7.6 display the predicted sales and government revenue relative

to baseline. The model captures the peak in sales during the two policies, as well

as the decline in between due to the uncertainty. The sales are lower for about 10

years, with little evidence of a subsequent peak. This result is in line with the one

discussed in section 7.3.3 where it was find that the evolution of the cross section

distribution has little effect on aggregate sales.

[Figure 7.5 approximately here]

[Figure 7.6 approximately here]
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Government revenues are lower over the whole period. The government revenue

is formed by the value added taxes perceived from the purchases of new cars, minus

the scrapping subsidies given out for eligible cars. From the perspective of govern-

ment revenues, the policy is clearly undesirable. In terms of sales, the subsidies

accounted for about 8 to 10% of the increased demand.



Chapter 8

Investment

8.1 Overview/Motivation

This chapter studies capital accumulation. Investment expenditures are one of the

most volatile elements of the aggregate economy. From the perspective of policy

interventions, investment is also key. The dependence of investment on real interest

rates is critical to many discussions of the impact of monetary policy. Further, many

fiscal policy instruments, such as investment tax credits and accelerated depreciation

allowances, act directly through their influence on capital accumulation.

It should seem then that macroeconomics would have developed and evaluated

numerous models to meet this challenge. Yet, relative to the enormous work done

on consumption, research on investment lags behind. As noted in Caballero (1999),

this has changed dramatically in the last 10 or so years.104 Partly, we now have the

ability to characterize investment behavior in fairly rich settings. Combined with

plant-level data sets, researchers are able to confront a rich set of observations with

these sophisticated models.

Investment, with its emphasis on uncertainty and nonconvexities is a ripe area for

applications of dynamic programming techniques. In this chapter, we first analyze a

199
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general dynamic optimization problem and then focus on special cases of convex and

non-convex adjustment costs. This then sets the stage for the empirical analyzes

that follow. We also discuss the use of these estimates for the analysis of policy

interventions.

8.2 General Problem

The unit of analysis will be the plant though for some applications (such as consider-

ation of borrowing constraints) focusing on the firm may be more appropriate. The

”manager” is assumed to maximize the value of the plant: there are no incentive

problems between the manager and the owners. The problem involves the choice of

factors of production that are rented for the production period, the hiring of labor

and the accumulation of capital. To focus on the investment decision, we assume

that demand for the variable inputs (denoted by x) is optimally determined given

factor prices (represented by the vector w) and the state variables of the plant’s

optimization problem, represented by (A,K). Here the vector of flexible factors of

production might include labor, materials and energy inputs into the production

process.

The result of this optimization leaves a profit function, denoted by Π(A,K)

which depends solely on the state of the plant, where

Π(A,K) = max
x

R(Â,K, x) − wx.

Here R(Â,K, x) denotes revenues given the inputs of capital (K), the variable factors

(x) and a shock to revenues and/or productivity, denoted by Â. The reduced form

profit function thus depends on the stochastic variable A, that encompasses both

Â and w, and the stock of physical capital (K). Thus we often refer to A as

a profitability shock since it reflects variations in technology, demand and factor
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prices.

Taking this profit function as given, we consider variations of the following sta-

tionary dynamic programming problem:

V (A,K, p) = max
K′

Π(A,K)−C(K ′, A,K)− p(K ′ − (1− δ)K) + βEA′|AV (A′, K ′, p′)

(8.1)

for all (A,K, p) where K ′ = K(1 − δ) + I is the capital accumulation equation and

I is investment. Here unprimed variables are current values and primed variables

refer to future values. In this problem, the manager chooses the level of the future

capital stock denoted K ′. The timing assumption is that new investment becomes

productive with a one-period lag. The rate of depreciation of the capital stock is

denoted by δ ∈ [0, 1]. The manager discounts the future at a fixed rate of β.105

Exercise 8.1

Suppose that, in contrast to (8.1), investment in period t is productive in that

period. Compare these two formulations of the investment problem. Assuming that

all functions are differentiable, create Euler equations for each specification. Explain

any differences.

Exercise 8.2

How would you modify (8.1) to allow the manager’s discount factor to be influ-

enced by variations in the real interest rate?

There are no borrowing restrictions in this framework. So, the choice of in-

vestment and thus future capital is not constrained by current profits or retained

earnings. We return to this issue later in the chapter when we discuss the implica-

tions of capital market imperfections.
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There are two costs of obtaining new capital. The first is the direct purchase

price, denoted by p. Notice that this price is part of the state vector as it is a source

of variation in this economy.106

Second, there are costs of adjustment given by the function C(K ′, A,K). These

costs are assumed to be internal to the plant and might include: installation costs,

disruption of productive activities in the plant, the need to retrain workers, the need

to reconfigure other aspects of the production process, etc. This function is general

enough to have components of both convex and non-convex costs of adjustment as

well as a variety of transactions costs.

8.3 No Adjustment Costs

To make clear the contribution of adjustment costs, it is useful to start with a

benchmark case in which these costs are absent: C(K ′, A,K) ≡ 0 for all (K ′, A,K).

Note though that there is still a time to build aspect of investment so that capital

accumulation remains forward looking. The first-order condition for the optimal

investment policy is given by:

βEA′,p′|A,pVk(A
′, K ′, p′) = p (8.2)

where subscripts on the functions denote partial derivatives. This condition implies

that the optimal capital stock depends on the realized value of profitability, A, only

through an expectations mechanism: given the time to build, current profitability

is not relevant for investment except as a signal of future profitability. Further the

optimal capital stock does not depend on the current stock of capital. Using (8.1)

to solve for E(A′,p′|A,p)Vk(A
′, K ′, p′) yields:

βE(A′,p′|A,p)[Πk(A
′, K ′) + (1 − δ)p′] = p. (8.3)
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This condition has a natural interpretation. The cost of an additional unit of capital

today (p) is equated to the marginal return on capital. This marginal return has

two pieces: the marginal profits from the capital (Πk(A
′, K ′)) and the resale value

of undepreciated capital at the future price ((1 − δ)p′).

Substituting for the future price of capital and iterating forward, we find:

pt = β
∞∑

τ=0

[β(1 − δ)]τEAt+τ |AtΠK(Kt+τ+1, At+τ+1)

where pt is the price of capital in period t. So the firm’s investment policy equates

the purchase price of capital today with the discounted present value of marginal

profits in the future. Note that in stating this condition, we are assuming that the

firm will be optimally resetting its capital stock in the future so that (8.3) holds in

all subsequent periods.

While simple, the model without adjustment costs does not fit the data well.

Cooper and Haltiwanger (2000) argue that relative to observations, this model

without adjustment costs implies excessive sensitivity of investment to variations

in profitability. So, one of the empirical motivations for the introduction of adjust-

ment costs is to temper the otherwise excessively volatile movements in investment.

Further, this model is unable to match the observation of inaction in capital ad-

justment seen (and discussed below) in plant-level data. For these reasons, various

models of adjustment costs are considered.107

8.4 Convex Adjustment Costs

In this section, we assume that C(K ′, A,K) is a strictly increasing, strictly convex

function of future capital, K ′.108 The firm chooses tomorrow’s capital (K ′) using its

conditional expectations of future profitability, A′. Of course, to the extent that A′

is correlated with A, current profits will be correlated with future profits.
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Assuming that V (K,A, p) exists, an optimal policy, obtained by solving the

maximization problem in (8.1), must satisfy:

CK′(K ′, A,K) + p = βE(A′,p′|A,p)VK′(A′, K ′, p′). (8.4)

The left side of this condition is a measure of the marginal cost of capital accumula-

tion and includes the direct cost of new capital as well as the marginal adjustment

cost. The right side of this expression measures the expected marginal gains of

more capital through the derivative of the value function. This is conventionally

termed ”marginal Q” and denoted by q. Note the timing: the appropriate measure

of marginal Q is the expected discounted value for the following period due to the

one-period investment delay.

Using (8.1) to solve for E(A′,p′|A,p)VK′(A′, K ′, p′), (8.4) can be simplified to an

Euler equation:

CK′(K ′, A,K) + p = βE(A′,p′|A,p){ΠK(K ′, A′) + p′(1 − δ) − CK′(K ′′, A′, K ′)}. (8.5)

To interpret this necessary condition for an optimal solution, consider increasing

current investment by a small amount. The cost of this investment is measured on

the left side of this expression: there is the direct cost of the capital (p) as well as the

marginal adjustment cost. The gain comes in the following period. The additional

capital increases profits. Further, as the manager ”returns” to the optimal path

following this deviation, the undepreciated capital is valued at the future market

price p′ and adjustment costs are reduced.

Exercise 8.3

Suppose that the problem had been written, perhaps more traditionally, with the

choice of investment rather than the future capital stock. Derive and analyze the

resulting Euler equation.
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8.4.1 Q Theory: Models

One of the difficult aspects of investment theory with adjustment costs is empirical

implementation. As the value function and hence its derivative is not observable,

(8.4) cannot be directly estimated. Thus the theory is tested either by finding a

suitable proxy for the derivative of V (A,K, p) or by estimating the Euler equation,

(8.5). We focus here on the development of a theory which facilitates estimation

based upon using the average value of the firm as a substitute for the marginal value

of an additional unit of capital.

This approach, called Q theory, places additional structure on (8.1). In particu-

lar, following Hayashi (1982), assume that: Π(K,A) is proportional to K, and that

the cost of adjustment function is quadratic.109 Further, we assume that the price

of capital is constant. So consider:

V (A,K) = max
K′

AK− γ

2

(
K ′ − (1 − δ)K

K

)2

K−p(K ′−(1−δ)K)+βEA′|AV (A′, K ′)

(8.6)

As always, Bellman’s equation must be true for all (A,K). Suppose that the shock

to profitability, A, follows an autoregressive process given by:

A′ = ρA + ε′

where |ρ| < 1 and ε′ is white noise. The first order condition for the choice of the

investment level implies that the investment rate in (i ≡ I/K) is given by:

i =
1

γ
(βEA′|AVK(A′, K ′) − p). (8.7)
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Here EA′|AVK(A′, K ′) is again the expected value of the derivative of the value func-

tion, a term we called ”marginal Q”. To solve this dynamic programming problem,

we can guess at a solution and verify that it works. Given the linear-quadratic

structure of the problem, it is natural to guess that:

V (A,K) = φ(A)K

where φ(A) is some unknown function. Using this guess, expected marginal Q is a

function of A given by:

EA′|AVK(A′, K ′) = EA′|Aφ(A′) ≡ φ̃(A).

Note that in this case the expected value of marginal and average Q (defined as

V (A,K)/K = φ(A)) are the same.110 Using this in the Euler equation implies that

i =
1

γ
(βφ̃(A) − p) ≡ z(A).

This expression implies that the investment rate is actually independent of the

current level of the capital stock.

To verify our guess, substitute this investment policy function into the original

functional equation implying:

φ(A)K = AK − γ

2
(z(A))2K − pz(A)K + βφ̃(A)K[(1 − δ) + z(A)]

must hold for all (A,K). Clearly, the guess that the value function is proportional to

K is indeed correct: the value of K cancels from the above expression. So, given the

conjecture that V (A,K) is proportional to K, we find an optimal investment policy

which confirm the asserted proportionality. The remaining part of the unknown

value function φ(A) is given implicity by the expression above.111

The result the value function is proportional to the stock of capital is, at this

point, a nice property of the linear-quadratic formulation of the capital accumulation
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problem. In the discussion of empirical evidence, it forms the basis for a wide range

of empirical exercises since it allows the researcher to substitute the average value

of Q (observable from the stock market) for marginal Q (unobservable).

8.4.2 Q Theory: Evidence

Due to its relatively simple structure, the convex adjustment cost model is one of the

leading models of investment. In fact, as discussed above, the convex model is often

simplified further so that adjustment costs are quadratic, as in (8.6). Necessary

conditions for optimality for this model are expressed in two ways.

First, from the first-order conditions, the investment rate is linearly related to

the difference between the future marginal value of new capital and the current

price of capital, as in (8.7). Using the arguments from above, this marginal value of

capital can under some conditions be replaced by the average value of capital. This

sets the basis for the Q-theory empirical approach discussed below.

Second, one can base an empirical analysis on the Euler equation that emerges

from (8.6). This naturally leads to estimation using GMM and is discussed below

as well.

The discussion of estimation based upon Q-theory draws heavily upon two pa-

pers. The first by Gilchrist and Himmelberg (1995) provides a clean and clear

presentation of the basic approach and evidence on Q-theory based estimation of

capital adjustment models. A theme in this and related papers is that empirically

investment depends on variables other than average Q, particularly measures of cash

flow.

The second by Cooper and Ejarque (2001) works from Gilchrist and Himmel-

berg (1995) to explore the significance of imperfect competition and credit market

frictions.112 This paper illustrates the use of indirect inference.
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Tests of Q theory on panel data are frequently conducted using an empirical

specification of:

(I/K)it = ai0 + a1βEq̄it+1 + a2(Xit/Kit) + υit (8.8)

Here the i subscript refers to firm or plant i and the t subscript represents time.

From (8.7), a1 should equal 1/γ. This is an interesting aspect of this specification:

under the null hypothesis, one can infer the adjustment cost parameter from this

regression. There is a constant term in the regression which is plant specific. This

comes from a modification of the quadratic cost of adjustment to:

C(K ′, K) =
γ

2
(
K ′ − (1 − δ)K

K
− ai)

2K.

as in Gilchrist and Himmelberg (1995).113

Finally, this regression includes a third term, (Xit/Kit). In fact, Q theory does

not suggest the inclusion of other variables in (8.8) since all relevant information is

incorporated in average Q. Rather, these variables are included as a means of testing

the theory, where the theory predicts that these variables from the information set

should be insignificant. Hence researchers focus on the statistical and economic

significance of a2. In particular, Xit often includes financial variables as a way of

evaluating an alternative hypothesis in which the effects of financial constraints are

not included in average Q.

The results obtained using this approach have been mixed. Estimates of large

adjustment costs are not uncommon. Hayashi (1982) estimates a1 = 0.0423 and

thus γ of about 25. Gilchrist and Himmelberg (1995) estimate a1 at 0.033.

Further, many studies, estimate a positive value for a2 when Xit is a measure of

profits and/or cash flow.114 This is taken as a rejection of the Q theory, which of

course implies that the inference drawn about γ from the estimate of a1 may not

be valid. Moreover, the significance of the financial variables has lead researchers
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to conclude that capital market imperfections must be present.

Cooper and Ejarque (2001) argue that the apparent failure of Q theory stems

from misspecification of the firm’s optimization problem: market power is ignored.

As shown by Hayashi (1982), if firms have market power, then average and marginal

Q diverge. Consequently, the substitution of marginal for average Q in the standard

investment regression induces measurement error that may be positively correlated

with profits.115 Cooper and Ejarque (2001) ask whether one might find positive and

significant a2 in (8.8) in a model without any capital market imperfections.

Their methodology follows the indirect inference procedures described in Gourier-

oux and Monfort (1996) and Gourieroux et al. (1993). This approach to estimation

was discussed in Chapter 4. This is a minimum distance estimation routine in which

the structural parameters of the optimization problem are chosen to bring the re-

duced form coefficients from the regression on the simulated data close to those from

the actual data. The key is that the same reduced form regression is run on both

the actual and simulated data.

Cooper and Ejarque (2001) use the parameter estimates of Gilchrist and Himmel-

berg (1995) for (8.8) as representative of the Q theory based investment literature.

Denote these estimates from their pooled panel sample using the average (Tobin’s)

Q measure by (a∗
1, a

∗
2)= (.03, .24).116 Cooper and Ejarque (2001) add three other

moments reported by Gilchrist and Himmelberg (1995): the serial correlation of

investment rates (.4), the standard deviation of profit rates (.3) and the average

value of average Q (3). Let Ψd denote the vector moments from the data. In the

Cooper and Ejarque (2001) study,

Ψd = [.03 .24 .4 .3 3].

The estimation focuses on two key parameters: the curvature of the profit func-

tion (α) and the level of the adjustment costs (γ). So, they set other parameters
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at levels found in previous studies: δ = .15 and β = .95. This leaves (α,γ) and

the stochastic process for the firm-specific shocks to profitability as the param-

eters remaining to be estimated. Cooper and Ejarque (2001) estimate the serial

correlation (ρ) and the standard deviation (σ) of the profitability shocks while the

aggregate shock process is represented process as a two-state Markov process with

a symmetric transition matrix in which the probability of remaining in either of the

two aggregate states is .8.117

As described in Chapter 4, the indirect inference procedure proceeds, in this

application, by:

• given a vector of parameters, Θ ≡ (α,γ, ρ, σ), solve the firm’s dynamic pro-

gramming problem of

V (A,K) = max
K′

AKα−γ

2

(
K ′ − (1 − δ)K

K

)2

K−p(K ′−(1−δ)K)+βEA′|AV (A′, K ′)

(8.9)

for all (A,K) using value function iteration. The method outlined in Tauchen

(1986) is used to create a discrete state space representation of the shock

process given (ρ, σ). Use this in the conditional expectation of the optimization

problem.

• given the policy functions obtained by solving the dynamic programming prob-

lem, create a panel data set by simulation

• estimate the Q theory model, as in (8.8), on the simulated model and calculate

relevant moments. Let Ψs(Θ) denote the corresponding moments from the

simulated data

• Compute J(Θ) defined as:
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J(Θ) = (Ψd − Ψs(Θ))′W (Ψd − Ψs(Θ)) (8.10)

where W is an estimate of the inverse of the variance-covariance matrix of Ψd.

• The estimator of Θ, Θ̂, solves:

min
Θ

J(Θ).

The second row of Table 8.1 presents the estimates of structural parameters and

standard errors reported in Cooper and Ejarque (2001).118 Table 8.2 reports the

resulting regression results and moments. Here the row labelled GH95 represents

the regression results and moments reported by Gilchrist and Himmelberg (1995).

[Table 8.1 approximately here]

[Table 8.2 approximately here]

The model, with its four parameters, does a good job of matching four of the five

estimates/moments but is unable to reproduce the high level of serial correlation in

plant-level investment rates. This appears to be a consequence of the fairly low level

of γ which implies that adjustment costs are not very large. Raising the adjustment

costs will increase the serial correlation of investment.

The estimated curvature of the profit function of .689 implies a markup of about

15%.119 This estimate of α and hence the markup is not at variance with results

reported in the literature.

The other interesting parameter is the estimate of the level associated with the

quadratic cost of adjustment, γ. Relative to other studies, this appears quite low.

However, an interesting point from these results is that the estimate of γ is

not identified from the regression coefficient on average Q. From this table, the
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estimated value of γ = .149 is far from the inverse of the coefficient on average Q

(about 4). So clearly the identification of the quadratic cost of adjustment parameter

from a2 is misleading in the presence of market power.

Exercise 8.4

Write a program to solve

V (A,K) = max
K′

AKα−γ

2

(
K ′ − (1 − δ)K

K

)2

K−p(K ′−(1−δ)K)+βEA′|AV (A′, K ′)

(8.11)

using a value function iteration routine given a parameterization of the problem.

Use the results to explore the relationship of investment to average Q. Is there a

nonlinearity in this relationship? How is investment related to profitability in your

simulated data set?

8.4.3 Euler Equation Estimation

This approach to estimation shares with the consumption applications presented

in Chapter 6 a simple but powerful logic. The Euler equation given in (8.5) is a

necessary condition for optimality. In the quadratic cost of adjustment model case

this simplifies to:

it =
1

γ

[
β[Et(πK(At+1, Kt+1) + pt+1(1 − δ) +

γ

2
i2t+1 + γ(1 − δ)it+1] − pt

]
.

Let εt+1 be defined from realized values of these variables:

εt+1 = it − 1

γ

[
β[(πK(At+1, Kt+1) + pt+1(1 − δ) +

γ

2
i2t+1 + γ(1 − δ)it+1)] − pt

]
.

(8.12)

Then the restriction imposed by the theory is that Etεt+1 = 0. It is precisely

this orthogonality condition that the GMM procedure exploits in the estimation of
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underlying structural parameters, θ = (β, γ, δ, α).

To illustrate, we have solved and simulated a model with quadratic adjustment

costs (γ = 2) with constant investment good prices. Using that data set, we can

estimate the parameters of the firm’s problem using GMM.

To make this as transparent as possible, assume that the researcher knows the

values of all parameters except for γ. Thus, we can rely on a single orthogonality

condition to determine γ. Suppose that we use the lagged profitability shock as the

instrument. Define

Ω(γ) =
1

T

∑
t

εt+1(γ)At (8.13)

The GMM estimate of γ is obtained from the minimization of Ω(γ). This function

is shown in Figure 8.1. Clearly, this function is minimized near γ = 2.120

[Figure 8.1 approximately here]

Whited (1998) contains a thorough review and analysis of existing evidence

on Euler equation estimation of investment models. As Whited notes, the Euler

equation approach certainly has a virtue over the Q-theory based model: there is no

need to try to measure marginal Q. Thus some of the restrictions imposed on the

estimation, such as the conditions specified by Hayashi, do not have to be imposed.

Estimation based upon an investment Euler equation generally leads to rejection of

the overidentifying restrictions and, as in the Q-theory based empirical work, the

inclusion of financial constraints improves the performance of the model.

The point of Whited (1998) is to dig further into these results. Importantly, her

analysis brings the importance of fixed adjustment costs into the evaluation of the

Euler equation estimation. As noted earlier and discussed at some length below,

investment studies have been broadened to go beyond convex adjustment costs to

match the observations of non-adjustment in the capital stock. Whited (1998) takes
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this into account by dividing her sample into the set of firms which undertakes

positive investment. Estimation of the Euler equation for this subset is much more

successful. Further Whited (1998) finds that while financial variables are important

overall, they are also weakly relevant for the firms with ongoing investment.

These results are provocative. They force us to think jointly about the pres-

ence of non-convex adjustment costs and financial variables. We now turn to these

important topics.

8.4.4 Borrowing Restrictions

Thus far, we have ignored the potential presence of borrowing restrictions. These

have a long history in empirical investment analysis. As in our discussion of the

empirical Q-theory literature, financial frictions are often viewed as the source of

the significance of profit rates and/or cash flow in investment regressions.

There is nothing particularly difficult about introducing borrowing restrictions

into the capital accumulation problem. Consider:

V (A,K) = max
K′∈Γ(A,K)

AKα − γ

2

(
K ′ − (1 − δ)K

K

)2

K (8.14)

− p(K ′ − (1 − δ)K) + βEA′|AV (A′, K ′) (8.15)

for all (A,K) where Γ(A,K) constrains the choice set for the future capital stock.

So, for example, if capital purchases had to be financed out of current profits, then

the financial restriction is

K ′ − (1 − δ)K ≤ AKα (8.16)

so that

Γ(A,K) = [0, AKα + (1 − δ)K] (8.17)

The dynamic optimization problem with a restriction of this form can certainly

be evaluated using value function iteration techniques. The problem of the firm can
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be broadened to include retained earnings as a state variable and to include other

financial variables in the state vector. There are a number of unresolved issues

though that have limited research in this area:

• What are the Γ(A,K) functions suggested by theory?

• For what Γ(A,K) functions is there a wedge between average and marginal

Q?

The first point is worthy of note: while we have many models of capital accu-

mulation without borrowing restrictions, the alternative model of investment with

borrowing restrictions is not on the table. Thus, the rejection of the model without

constraints in favor of one with constraints is not as convincing as it could be.

The second point, related to work by Chirinko (1993) and Gomes (2001), returns

to the evidence discussed earlier on Q theory based empirical models of investment.

The value function, V (A,K) that solves (8.15) contains all the information about

the constrained optimization problem. As long as this function is differentiable

(which restricts the Γ(A,K) function), marginal Q will still measure the return to

an extra unit of capital. The issue is whether the borrowing friction introduces a

wedge between marginal and average Q.121 Empirically, the issue is whether this

wedge between marginal and average Q can create the regression results such as

those reported in Gilchrist and Himmelberg (1995).

8.5 Non-Convex Adjustment: Theory

Empirically, one finds that at the plant level there are frequent periods of invest-

ment inactivity and also bursts of investment activity. Table 8.3 below, taken from

Cooper and Haltiwanger (2000), documents the nature of capital adjustment in

the Longitudinal Research Database (LRD), a plant level U.S. manufacturing data
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set.122

[Table 8.3 approximately here]

Here inaction is defined as a plant level investment rate less than .01 and a spike

is an investment rate in excess of 20%. Clearly the data exhibit both inaction as

well as large bursts of investment.

As argued by Caballero et al. (1995), Cooper et al. (1999) and Cooper and

Haltiwanger (2000) it is difficult to match this type of evidence with a quadratic

cost of adjustment model. Thus we turn to alternative models which can produce

inaction. In the first type of model, we relax the convex adjustment cost structure

and assume that the costs of adjustment depend only on whether investment has

been undertaken and not its magnitude. We then consider a second type of model

in which there is some type of irreversibility. The next section reports on estimation

of these models.

8.5.1 Non-convex Adjustment Costs

For this formulation of adjustment costs, we follow Cooper and Haltiwanger (1993)

and Cooper et al. (1999) and consider a dynamic programming problem specified at

the plant level as:

V (A,K, p) = max{V i(A,K, p), V a(A,K, p)} for all (A,K, p) (8.18)

where the superscripts refer to active investment ”a” and inactivity ”i”. These

options, in turn, are defined by:

V i(A,K, p) = Π(A,K) + βEA′,p′|A,pV (A′, K(1 − δ), p′)

and



217

V a(A,K, p) = max
K′

Π(A,K)λ − FK − p(K ′ − (1 − δ)K) + βEA′,p′|A,pV (A′, K ′, p′).

Here there are two costs of adjustment that are independent of the level of investment

activity. The first is a loss of profit flow equal to (1−λ). This is intended to capture

an opportunity cost of investment in which the plant must be shut down during a

period of investment activity. The second non-convex cost is simply subtracted from

the flow of profits as FK. The inclusion of K here is intended to capture the idea

that these fixed costs, while independent of the current level of investment activity,

may have some scale aspects to them.123 In this formulation, the relative price of

capital (p) is allowed to vary as well.

Before proceeding to a discussion of results, it might be useful to recall from

Chapter 3 how one might obtain a solution to a problem such as (8.18).124 The first

step is to specify a profit function, say Π(A,K) = AKα and to set the parameters,

(F, β, λ, α, δ) as well as the stochastic processes for the random variables (A, p).

Denote this parameter vector by Θ. The second step is to specify a space for

the state variables, (A,K, p) and thus for control variable K ′. Once these steps

are complete, the value function iteration logic (subscripts denote iterations of the

mapping) takes over:

• provide an initial guess for V1(A,K, p), such as the one period solution

• using this initial guess, compute the values for the two options, V a
1 (A,K, p)

and V i
1 (A,K, p)

• using these values, solve for the next guess of the value function: V2(A,K, p) =

max {V a
1 (A,K, p) , V i

1 (A,K, p)}

• continue this process until convergence
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• once the value function is known, it is straightforward to compute the set of

state variables such that action (inaction) are optimal as well as the investment

level in the event adjustment is optimal.

• given these policy functions, the model can be simulated to create either a

panel or a time series data set.

The policy function for this problem will have two important dimensions. First,

there is the determination of whether the plant will adjust its capital stock or not.

Second, conditional on adjustment, the plant must determine its level of investment.

As usual, the optimal choice of investment depends on the marginal value of capital

in the next period. However, in contrast to say the quadratic cost of adjustment

model, the future value of additional capital depends on future choice with respect

to adjustment. Thus there is no simple Euler equation linking the marginal cost of

additional capital today with future marginal benefit, as in (8.5), since there is no

guarantee that this plant will be adjusting its capital stock in the future period.

Note that the two types of costs have very different implications for the cyclical

properties of investment. In particular, when adjustment costs interfere with the

flow of profits (λ < 1) then it is more expensive to investment in periods of high

profitability. Yet, if the shocks are sufficiently correlated, there is a gain to investing

in good times. In contrast, if costs are largely lump sum, then given the time to

build aspect of the accumulation decision, the best time to invest is when it is prof-

itable to do so (A is high) assuming that these shocks are serially correlated. Thus

whether investment is procyclical or countercyclical depends on both the nature of

the adjustment costs and the persistence of shocks.

We shall discuss the policy functions for an estimated version of this model

below. For now, we look at a simple example to build intuition.
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Machine Replacement Example

As an example, we turn to a modified version of the simple model of machine

replacement studied by Cooper and Haltiwanger (1993). Here there is no choice of

the size of the investment expenditure. Investment means the purchase of a new

machine at a net price of p. By assumption the old machine is scrapped. The size

of the new machine is normalized to 1.125

Further, to simplify the argument, we assume that new capital becomes pro-

ductive immediately. In addition, the price of new capital good is assumed to be

constant and can be interpreted as including the fixed cost of adjusting the capital

stock. In this case, we can write the Bellman equation as:

V (A,K) = max{V i(A,K), V a(A,K)}

for all (A,K) where the superscripts refer to active investment “a” and inactivity

“i”. These options, in turn, are defined by:

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1 − δ))

and

V a(A,K) = Π(A, 1)λ − p + βEA′|AV (A′, (1 − δ)).

So here ”action” means that a new machine is bought and is immediately productive.

The cost of this is the net price of the new capital and the disruption caused by the

adjustment process. Let ∆(A,K) be the relative gains to action so:

∆(A,K) ≡ V a(A,K) − V i(A,K) = Π(A, 1)λ − Π(A,K) − p +

β
(
EA′|AV (A′, (1 − δ)) − EA′|AV (A′, K(1 − δ))

)
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The problem posed in this fashion is clearly one of the optimal stopping vari-

ety. Given the state of profitability (A), there is a critical size of the capital stock

(K∗(A)) such that machine replacement occurs if and only if K < K∗(A). To see

why this policy is optimal, note that by our timing assumption, V a(A,K) is in fact

independent of K. Clearly V i(A,K) is increasing in K. Thus there is a unique cross-

ing of these two functions at K∗(A). In other words, ∆(A,K) is decreasing in K,

given A with ∆(A,K∗(A)) = 0.

Is K∗ between 0 and 1? With Π(A, 0) sufficiently small, V i(A,K) < V a(A,K)

for K near 0. Hence, K∗ > 0. Further, with the costs of acquiring new capital

(p > 0, λ < 1), large enough and the rate of depreciation low enough, capital will

not be replaced each period: K∗ < 1. Thus there will be a ”replacement cycle” in

which there is a burst of investment activity followed by inactivity until the capital

ages enough to warrant replacement.126

The policy function is then given by z(A,K) ∈ {0, 1} where z(A,K) = 0 means

inaction and z(A,K) = 1 means replacement. From the argument above, for each

A there exists K∗(A) such that z(A,K) = 1 if and only if K ≤ K∗(A).

With the assumption that capital becomes productively immediately, the re-

sponse of K∗(A) to variations in A can be analyzed.127 Suppose for example that

λ = 1 and A is iid. In this case, the dependence of ∆(A,K) on A is solely through

current profits. Thus ∆(A,K) is increasing in A as long as the marginal productiv-

ity of capital is increasing in A, ΠAK(A,K) > 0. So, K∗(A) will be increasing in A

and replacement will be more likely in good times.

Alternatively, suppose that λ < 1. In this case, during periods of high produc-

tivity it is desirable to have new capital but it is also costly to install it. If A is

positively serially correlated, then the effect of A on ∆(A,K) will reflect both the

direct effect on current profits and the effects on the future values. If the opportu-

nity cost is large (a small λ) and shocks are not persistent enough, then machine
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replacement will be delayed until capital is less productive.

Aggregate Implications of Machine Replacement

This model of capital adjustment at the plant level can be used to generate aggre-

gate implications. Let ft(K) be the current distribution of capital across a fixed

population of plants. Suppose that the shock in period t, At, has two components,

At = atεt. The first is aggregate and the second is plant specific. Following Cooper

et al. (1999), assume that the aggregate shock takes on two values and the plant

specific shock takes on 20 values. Further, assume that the idiosyncratic shocks

are iid. With this decomposition, write the policy function as z(at, εt, Kt) where

z(at, εt, Kt) = 1 signifies actions and z(at, εt, Kt) = 0 indicates inaction. Clearly

the decision on replacement will generally depend differentially on the two types of

shocks since they may be drawn from different stochastic properties. For example,

if the aggregate shock is more persistent than the plant specific one, the response

to a variation in at will be larger than the response to an innovation in εt.

Define

H(at, K) =

∫
ε

z(at, εt, K)dGt(ε)

where Gt(ε) is the period t cumulative distribution function of the plant specific

shocks. Here H(at, K) is a hazard function representing the probability of adjust-

ment for all plants with capital K in aggregate state at. To the extent that the

researcher may be able to observe aggregate but not plant specific shocks, H(at, K)

represents a hazard that averages over the {0, 1} choices of the individual plants so

that H(at, K) ∈ [0, 1].

Using this formulation, let I(at; ft(K)) be the rate of investment in state at

given the distribution of capital holdings ft(K) across plants. Aggregate investment

is defined as:
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I(at; ft(K)) =
∑
K

H(at, K)ft(K). (8.19)

Thus total investment reflects the interaction between the average adjustment haz-

ard and the cross sectional distribution of capital holdings.

The evolution of the cross sectional distribution of capital is given by:

gt+1((1 − δ)K) = (1 − H(at, K))gt(K) (8.20)

Expressions such as these are common in aggregate models of discrete adjust-

ment, see for example, Rust (1985) and Caballero et al. (1995). Given an initial

cross sectional distribution and a hazard function, a sequence of shocks will thus

generate a sequence of aggregate investment levels from (8.19) and a sequence of

cross sectional distributions from (8.20).

Thus the machine replacement problem can generate both a panel data set and,

through aggregation, time series as well. In principle, estimation from aggregate

data supplements the perhaps more direct route of estimating a model such as this

from a panel.

Exercise 8.5

Use a value function iteration routine to solve the dynamic optimization problem

with a firm when there are non-convex adjustment costs. Suppose there is a panel of

such firms. Use the resulting policy functions to simulate the time series of aggre-

gate investment. Now, use a value function iteration routine to solve the dynamic

optimization problem with a firm when there are quadratic adjustment costs. Create

a time series from the simulated panel. How well can a quadratic adjustment cost

model approximate the aggregate investment time series created by the model with

non-convex adjustment costs?
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8.5.2 Irreversibility

The specifications considered thus far do not distinguish between the buying and

selling prices of capital. However, there are good reasons to think that investment

is at least partially irreversible so that the selling price of a unit of used capital is

less than the cost of a unit of new capital. This reflects frictions in the market for

used capital as well as specific aspects of capital equipment that may make them

imperfectly suitable for uses at other production sites. To allow for this, we alter

our optimization problem to distinguish the buying and selling prices of capital:

The value function for this specification is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)}

for all (A,K) where the superscripts refer to the act of buying capital ”b”, selling

capital ”s” and inaction ”i”. These options, in turn, are defined by:

V b(A,K) = max
I

Π(A,K) − I + βEA′|AV (A′, K(1 − δ) + I),

V s(A,K) = max
R

Π(A,K) + psR + βEA′|AV (A′, K(1 − δ) − R)

and

V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1 − δ)).

Under the buy option, the plant obtains capital at a cost normalized to one.

Under the sell option, the plant retires R units of capital at a price ps. The third

option is inaction so that the capital stock depreciates at a rate of δ. Intuitively, the

gap between the buying and selling price of capital will produce inaction. Suppose

that there is an adverse shock to the profitability of the plant. If this shock was

known to be temporary, then selling capital and repurchasing it in the near future
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would not be profitable for the plant as long as ps < 1. Thus inaction may be

optimal. Clearly though, the amount of inaction that this model can produce will

depend on both the size of ps relative to 1 and the serial correlation of the shocks.128

8.6 Estimation of a Rich Model of Adjustment

Costs

Using this dynamic programming structure to understand the optimal capital deci-

sion at the plant (firm) level, we confront the data on investment decisions allowing

for a rich structure of adjustment costs.129 To do so, we follow Cooper and Halti-

wanger (2000) and consider a model with quadratic adjustment costs, non-convex

adjustment costs and irreversibility. We describe the optimization problem and then

the estimation results obtained by Cooper and Haltiwanger.

8.6.1 General Model

The dynamic programming problem for a plant is given by:

V (A,K) = max{V b(A,K), V s(A,K), V i(A,K)} (8.21)

for all (A,K) where, as above, the superscripts refer to the act of buying capital

”b”, selling capital ”s” and inaction ”i”. These options, in turn, are defined by:

V b(A,K) = max
I

Π(A,K) − FK − I − γ

2
[I/K]2K + βEA′|AV (A′, K(1 − δ) + I),

V s(A,K) = max
R

Π(A,K) + psR − FK − γ

2
[R/K]2K + βEA′|AV (A′, K(1 − δ) − R)

and
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V i(A,K) = Π(A,K) + βEA′|AV (A′, K(1 − δ)).

Cooper and Haltiwanger (2000) estimate three parameters, Θ ≡ (F, γ, ps) and

assume that β = .95, δ = .069. Further, they specify a profit function of Π(A,K) =

AKθ with θ=.50 estimated from a panel data set of manufacturing plants.130 Note

that the adjustment costs in (8.21) exclude any disruptions to the production process

so that the Π(A,K) can be estimated and the shock process inferred independently

of the estimation of adjustment costs. If these additional adjustment costs were

added, then the profit function and the shocks would have to be estimated along

with the parameters of the adjustment cost function.

These parameters are estimated using an indirect inference routine. The reduced

form regression used in the analysis is:

iit = αi + ψ0 + ψ1ait + ψ2(ait)
2 + uit (8.22)

where iit is the investment rate at plant i in period t, ait is the log of a profitability

shock at plant i in period t and αi is a fixed effect.131 This specification was chosen

as it captures in a parsimonious way the nonlinear relationship between investment

rates and fundamentals. The profitability shocks are inferred from the plant level

data using the estimated profit function.132 Cooper and Haltiwanger document the

extent of the nonlinear response of investment to shocks.

Table 8.4 reports Cooper and Haltiwanger’s results for four different models

along with standard errors. The first row shows the estimated parameters for the

most general model. The parameter vector Θ = [0.043, 0.00039, 0.967] implies the

presence of statistically significant convex and non-convex adjustment costs (but

non-zero) and a relatively substantial transaction cost. Restricted versions of the

model are also reported for purposes of comparison. Clearly the mixed model does
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better than any of the restricted models.

[Table 8.4 approximately here]

Cooper and Haltiwanger argue that these results are reasonable.133 First, as

noted above a low level for the convex cost of adjustment parameter is consistent

with the estimates obtained from the Q-theory based models due to the presence

of imperfect competition. Further, the estimation implies that the fixed cost of

adjustment is about 0.04% of average plant level profits. Cooper and Haltiwanger

find that this cost is significant relative to the difference between adjusting and not

adjusting the capital stock. So, in fact, the estimated fixed cost of adjustment, along

with the irreversibility, produces a large amount of inaction. Finally, the estimated

selling price of capital is much higher than the estimate report in Ramey and Shapiro

(2001) for some plants in the aerospace industry.

Cooper and Haltiwanger (2000) also explore the aggregate implications of their

model. They contrast the time series behavior of the estimated model with both

convex and non-convex adjustment costs against one in which there are only convex

adjustment costs. Even though the model with only convex adjustment costs does

relatively poorly on the plant-level data, it does reasonably well in terms of matching

time series. In particular, Cooper and Haltiwanger (2000) find that over 90% of the

time series variation in investment created by a simulation of the estimated model

can be accounted for by a quadratic adjustment model. Of course, this also implies

that the quadratic model misses 10% of the variation.

Note too that this framework for aggregation captures the smoothing by ag-

gregating over heterogeneous plants but misses smoothing created by variations in

relative prices. From Thomas (2000) and Kahn and Thomas (2001) we know that

this additional source of smoothing can be quite powerful as well.
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8.6.2 Maximum Likelihood Estimation

A final approach to estimation follows the approach in Rust (1987). Consider again,

for example, the stochastic machine replacement problem given by:

V (A,K, F ) = max{V i(A,K, F ), V a(A,K, F )} for all (A,K, F ) (8.23)

where:

V i(A,K, F ) = Π(A,K) + βEA′|AV (A′, K(1 − δ), F ′)

and

V a(A,K, F ) = max
K′

Π(A,K)λ − FK − p(K ′ − (1 − δ)K) + βEA′|AV (A′, K ′, F ′).

Here we have added the fixed cost of adjustment into the state vector as we assume

that the adjustment costs are random at the plant level. Let G(F ) represent the cu-

mulative distribution function for these adjustment costs. Assume that these are iid

shocks. Then, given a guess for the functions {V (A,K, F ), V i(A,K, F ), V a(A,K, F )},

the likelihood of inaction can be computed directly from the cumulative distribu-

tion function G(·). Thus a likelihood function can be constructed which depends

on the parameters of the distribution of adjustment costs and those underlying the

dynamic optimization problem. From there, a maximum likelihood estimate can be

obtained.134

8.7 Conclusions

The theme of this chapter has been the dynamics of capital accumulation. From

the plant-level perspective, the investment process is quite rich and entails periods
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of intense activity followed by times of inaction. This has been documented at the

plant-level. Using the techniques of the estimation of dynamic programming models,

this chapter has presented evidence on the nature of adjustment costs.

Many open issues remain. First, the time series implications of non-convexities is

still not clear. How much does the lumpiness at the plant-level matter for aggregate

behavior? Put differently, how much smoothing obtains from the aggregate across

heterogeneous plants as well as through variations in relative prices?

Second, there are a host of policy experiments to be considered. What, for exam-

ple, are the implications of investment tax credits given the estimates of adjustment

cost parameters?

Exercise 8.6

Add in variations in the price of new capital into the optimization problem given

in (8.21). How would you use this to study the impact of, say, an investment tax

credit?



Chapter 9

Dynamics of Employment

Adjustment

9.1 Motivation

This chapter studies labor demand. The usual textbook model of labor demand

depicts a firm as choosing the number of workers and their hours given a wage rate.

But, the determination of wages, employment and hours is much more complex than

this. The key is to recognize that the adjustment of many factors of production,

including labor, is not costless. We study the dynamics of capital accumulation

elsewhere in this book and in this chapter focus attention on labor demand.

Understanding the nature of adjustment costs and thus the factors determined

labor demand is important for a number of reasons. First, many competing models

of the business cycle depend crucially on the operation of labor markets. As empha-

sized in Sargent (1978), a critical point in distinguishing competing theories of the

business cycle is whether labor market observations could plausibly be the outcome

of a dynamic market clearing model. Second, attempts to forecast macroeconomic

conditions often resort to consideration of observed movements in hours and em-

229
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ployment to infer the state of economic activity. Finally, policy interventions in the

labor market are numerous and widespread. These include: restrictions on wages,

restrictions on hours, costs of firing workers and so forth. Policy evaluate requires

a model of labor demand.

We begin the chapter with the simplest models of dynamic labor demand where

adjustment costs are assumed to be convex and continuously differentiable. These

models are analytically tractable as we can often estimate their parameters directly

from first-order conditions. However, they have implications of constant adjustment

that are not consistent with microeconomic observations. Nickell (1978) argues:

“One point worth noting is that there seems little reason to suppose

costs per worker associated with either hiring or firing increase with the

rate at which employees flow in or out. Indeed, given the large fixed costs

associated with personnel and legal departments, it may even be more

reasonable to suppose that the average cost of adjusting the workforce

diminishes rather than increases with the speed of adjustment.”

This quote is supported by recent evidence in Hamermesh (1989) and Caballero

et al. (1997) that labor adjustment is rather erratic at the plant level with periods of

inactivity punctuated by large adjustments. Thus this chapter goes beyond the con-

vex case and considers models of adjustment which can mimic these microeconomic

facts.

9.2 General Model of Dynamic Labor Demand

In this chapter, we consider variants of the following dynamic programming problem:

V (A, e−1) = max
h,e

R(A, e, h) − ω(e, h, A) − C(e, e−1) + βEA′|AV (A′, e). (9.1)
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for all (A, e−1). Here A represents a shock to the profitability of the plant and/or

firm. As in our discussion of the investment problem, this shock could reflect vari-

ations in product demands or variations in the productivity of inputs. Generally

A will have a component that is common across plants, denoted a, and one that is

plant specific, denoted ε.135 The function R(A, e, h) represents the revenues which

depend on the hours worked (h) and the number of workers (e) as well as the prof-

itability shock. Other factors of production, such as capital, are assumed to be

rented and optimization over these inputs are incorporated into R(A, e, h).136

The function ω(e, h, A) is the total cost of hiring e workers when each supplies

h units of labor time. This general specification allows for overtime pay and other

provisions. Assume that this compensation function is increasing in both of its

arguments and is convex with respect to hours. Further, we allow this compensation

function to be state dependent. This may reflect a covariance with the idiosyncratic

profitability shocks (due, perhaps, to profit sharing arrangements) or an exogenous

stochastic component in aggregate wages.

The function C(e, e−1) is the cost of adjusting the number of workers. Hamer-

mesh (1993) and Hamermesh and Pfann (1996) provide a lengthy discussion of var-

ious interpretations and motivations for adjustment costs. This function is meant

to cover costs associated with:

• search and recruiting

• training

• explicit firing costs

• variations in complementary activities (capital accumulation, reorganization

of production activities, etc.)

It is important to note the timing implicit in the statement of the optimization
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problem. The state vector includes the stock of workers in the previous period,

e−1. In contrast to the capital accumulation problem, the number of workers in the

current period is not predetermined. Instead, workers hired in the current period

are immediately utilized in the production process: there is no ”time to build”.

The next section of the chapter is devoted to the study of adjustment cost

functions such that the marginal cost of adjustment is positive and increasing in e

given e−1. We then turn to more general adjustment cost functions which allow for

more nonlinear and discontinuous behavior.

9.3 Quadratic Adjustment Costs

Without putting additional structure on the problem, particularly the nature of

adjustment costs, it is difficult to say much about dynamic labor demand. As a

starting point, suppose that the cost of adjustment is given by

C(e, e−1) =
η

2
(e − (1 − q)e−1)

2. (9.2)

so C(e, e−1) is convex in e and continuously differentiable. Here, q is an exogenous

quit rate.

In this specification of adjustment costs, the plant/firm incurs a cost of changing

the level of employment relative to the stock of workers ((1 − q)e−1) that remain

on the job from the previous period. Of course, this is a modelling choice: one can

also consider the case where the adjustment cost is based on net rather than gross

hires.137

The first-order conditions for (9.1) using (9.2) are:

Rh(A, e, h) = ωh(e, h, A) and (9.3)

Re(A, e, h) − ωe(e, h, A) − η(e − (1 − q)e−1) + βEVe(A
′, e) = 0. (9.4)

Here the choice of hours, given in (9.3) is static: the firm weighs the gains to the
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increasing labor input against the marginal cost (assumed to be increasing in hours)

of increasing hours.

In contrast, (9.4) is a dynamic relationship since the number of employees is a

state variable. Assuming that the value function is differentiable, EVe(A
′, e′) can be

evaluated using (9.1) leading to:

Re(A, e, h) − ωe(e, h, A) − η(e − (1 − q)e−1) + βE[η(e′ − (1 − q)e)(1 − q)] = 0 (9.5)

The solution to this problem will yield policy functions for hours and employment

given the state vector. Let e = φ(A, e−1) denote the employment policy function

and h = H(A, e−1) denote the hours policy function. These functions jointly satisfy

(9.3) and (9.5).

As a benchmark, suppose there were no adjustment costs, η ≡ 0, and the com-

pensation function is given by:

ω(e, h, A) = eω̃(h).

Here compensation per worker depends only on hours worked. Further, suppose

that revenues depend on the product eh so that only total hours matters for the

production process. Specially,

R(A, e, h) = AR̃(eh) (9.6)

with R̃(eh) strictly increasing and strictly concave.

In this special case, the two first-order conditions can be manipulated to imply

1 = h
ω̃′(h)

ω̃(h)
.

So, in the absence of adjustment costs and with the functional forms given above,

hours are independent of either e or A. Consequently, all variations in the labor

input arise from variations in the number of workers rather than hours. This is

efficient given that the marginal cost of hours is increasing in the number of hours
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worked while there are no adjustment costs associated with varying the number of

workers.

At another extreme, suppose there are adjustment costs (η �= 0). Further, sup-

pose that compensation is simply

ω(e, h, A) = eh

so there are no costs to hours variation. In this case, (9.3) implies AR̃′(eh) = 1.

Using this, (9.5) is clearly satisfied at a constant level of e. Hence, the variation

in the labor input would be only in terms of hours and we would never observe

employment variations.

Of course, in the presence of adjustment costs and a strictly convex (in h) com-

pensation function, the plant/firm will optimally balance the costs of adjustment

hours against those of adjusting the labor force. This is empirically relevant since

in the data both employment and hours variation are observed. Note though that

it is only adjustment in the number of workers that contains a dynamic element.

The dynamic in hours is derived from the dynamic adjustment of employees.138 It

is this tradeoff between hours and worker adjustment that lies at the heart of the

optimization problem.

Given functional forms, these first-order conditions can be used in an estimation

routine which exploits the implied orthogonality conditions. Alternatively, a value

function iteration routine can be used to approximate the solution to (9.1) using

(9.2). We consider below some specifications.

A Simulated Example

Here we follow Cooper and Willis (2001) and study the policy functions gener-

ated by a quadratic adjustment cost model with some particular functional form

assumptions.139 Suppose output is a Cobb-Douglas function of total labor input
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(eh) and capital and assume the firm has market power as a seller. In this case,

consider:

R(A, e, h) = A(eh)α (9.7)

where α reflects labor’s share in the production function as well as the elasticity of

the demand curve faced by the firm.

Further, impose a compensation schedule that follows Bils (1987):

ω(e, h) = w ∗ e ∗ [w0 + h + w1 (h − 40) + w2 (h − 40)2] (9.8)

where w is the straight-time wage.

Instead of working with (9.5), Cooper and Willis (2001) solve the dynamic pro-

gramming problem, (9.1), with the above functional forms, using value function

iteration. The functional equation for the problem is:

V (A, e−1) = max
h,e

A(eh)α − ω(e, h) − η

2

(e − e−1)
2

e−1

+ βEA′|AV (A′, e) (9.9)

for all (A, e−1).

In this analysis, decisions are assumed to be made at the plant level. Accordingly,

the profitability shocks are assumed to have two components: a piece that is common

across plants (an aggregate shock) and a piece that is plant specific. Both types of

shocks are assumed to follow first-order Markov processes. These are embedded in

the conditional expectation in (9.9).

In this formulation, the adjustment costs are paid on net changes in employment.

Further, the adjustment costs depend on the rate of adjustment rather than the

absolute change alone.140

The policy function that solves (9.9) is given by e = φ(A, e−1). This policy

function can be characterized given a parameterization of (9.9).

Cooper and Willis (2001) assume:

• Labor’s share is 0.65 and the markup is 25% so that α in (9.7) is .72 .



236

• the compensation function uses the estimates of Bils (1987) and Shapiro

(1986): {w0, w1, w2} = {1.5, 0.19, 0.03} and the straight time wage, w, is

normalized to 0.05 for convenience. The elasticity of the wage with respect to

hours is close to 1 on average

• the profitability shocks are represented by a first-order Markov process and

are decomposed into aggregate (A) and idiosyncratic components (ε). A ∈

{0.9, 1.1} and ε takes on 15 possible values. The serial correlation for the

plant-level shocks is 0.83 and is 0.8 for the aggregate shocks.141

This specification leaves open the parameterization of η in the cost of adjustment

function. In the literature, this is a key parameter to estimate.

The policy functions computed for two values of A at these parameter choices are

depicted in Figure 9.1. Here we have set η = 1 which is at the low end of estimates

in the literature. These policy functions have two important characteristics:

• φ(A, e−1) is increasing in (e−1).

• φ(A, e−1) is increasing in A: as profitability increases, so does the marginal

gain to adjustment and thus e is higher.

[Figure 9.1 approximately here]

The quadratic adjustment cost model can be estimated either from plant (firm)

data or aggregate data. To illustrate this, we next discuss the approach of Sargent

(1978). We then discuss a more general approach to estimation in a model with a

richer specification of adjustment costs.

Exercise 9.1

Write down the necessary conditions for the optimal choices of hours and em-

ployment in (9.9). Provide an interpretation of these conditions.
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Sargent: Linear Quadratic Specification

A leading example of bringing the quadratic adjustment cost model directly to the

data is Sargent (1978). In that application, Sargent assumes there are two types of

labor input: straight-time and overtime workers. The production function is linear-

quadratic in each of the two inputs and the costs of adjustment are quadratic and

separable across the types of labor. As the two types of labor inputs do not interact

in either the production function or the adjustment cost function, we will focus on

the model of straight-time employment in isolation. Following, Sargent assume that

revenue from straight-time employment is given by:

R(A, e) = (R0 + A)e − (R1/2)e2 (9.10)

Here A is a productivity shock and follows an AR(1) process. Sargent does not

include hours variation in his model except through the use of overtime labor. Ac-

cordingly, there is no direct dependence of the wage bill on hours. Instead he assumes

that the wage rate follows an exogenous (with respect to employment) given by:

wt = ν0 +
i=n∑
i=1

νiwt−i + ζt. (9.11)

In principle, the innovation to wages can be correlated with the shocks to revenues.142

With this structure, the firm’s first-order condition with respect to employment

is given by:

βEtet+1 − et

(
R1

η
+ (1 + β)

)
+ et−1 =

1

η
(wt − R0 − At) (9.12)

From this Euler equation, current employment will depend on the lagged level of

employment (through the cost of adjustment) and on (expected) future values of

the stochastic variables, productivity and wages, as these variables influence the

future level of employment. As described by Sargent, the solution to this Euler

equation can be obtained so that employment in a given period depends on lagged
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employment, current and (conditional expectations of) future wages and current and

(conditional expectations of) future productivity shocks. Given the driving process

for wages and productivity shocks, this conditional expectations can be evaluated

so that employment in period t is solely a function of lagged employment, current

and past wages. The past wages are relevant for predicting future wages.

Sargent estimates the resulting VAR model of wages employment using max-

imum likelihood techniques.143 The parameters he estimated included (R1, η, ρ)

where ρ is the serial correlation of the productivity shocks. In addition, Sargent

estimated the parameters of the wage process.

The model is estimated using quarterly data on total US civilian employment.

Interestingly, he also decides to use seasonally unadjusted data for some of the

estimation, arguing that, in effect, there is no reason to separate the responses to

seasonal and nonseasonal variations. The data are detrended to correspond to the

stationarity of the model.

He finds evidence of adjustment costs insofar as η is significantly different from

zero.144 Sargent [pg. 1041] argues that these results ”..are moderately comforting to

the view that the employment-real-wage observations lie along a demand schedule

for employment”.

Exercise 9.2

There are a number of exercises to consider working from this simple model.

1. Write a program to solve (9.9) for the employment and hours policy functions

using value function iteration. What are the properties of these policy functions?

How do these functions change as you vary the elasticity of the compensation func-

tion and the cost of adjustment parameter?

2. Solve (9.9) using a log-linearization technique. Compare your results with

those obtained by the value function iteration approach.
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3. Consider some moments such as the relative variability of hours and employ-

ment and the serial correlations of these two variables. Calculate these moments

from a simulated panel and also from a time series constructed from the panel.

Look for studies that characterize these moments at the micro and/or aggregate lev-

els. Or, better yet, calculate them yourself. Construct an estimation exercise using

these moments.

4. Suppose that you wanted to estimate the parameters of (9.9) using GMM.

How would you proceed?

9.4 Richer Models of Adjustment

In part, the popularity of the quadratic adjustment cost structure reflects it tractabil-

ity. But, the implications of these models conflict with evidence of inactivity and

bursts at the plant level. Thus researchers have been motivated to consider a richer

set of models. Those are studied here and then are used for estimation purposes be-

low. For these models of adjustment, we discuss the dynamic optimization problem

and present policy functions.

9.4.1 Piecewise Linear Adjustment Costs

One of the criticisms of the quadratic adjustment cost specification is the implication

of continuous adjustment. At the plant-level, as mentioned earlier, there is evidence

that adjustment is much more erratic than the pattern implied by the quadratic

model. Piecewise linear adjustment costs can produce inaction.

For this case, the cost of adjustment function is:

C(e, e−1) =

{
γ+∆e if ∆e > 0

γ−∆e if ∆e < 0
. (9.13)
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The optimal policy rules are then determined by solving (9.1) using this specification

of the adjustment cost function.

The optimal policy rule will look quite different from the one produced with

quadratic adjustment costs. This difference is a consequence of the lack of differen-

tiability in the neighborhood of zero adjustment. Consequently, small adjustments

will not occur since the marginal cost of adjustment does not go to zero as the size of

the adjustment goes to zero. Further, this specificiation of adjustment costs implies

there is no partial adjustment. Since the marginal cost of adjustment is constant,

there is no basis for smoothing adjustment.

The optimal policy is characterized by two boundaries: e−(A) and e+(A) If

e−1 ∈ [e−(A), e+(A)], then there is no adjustment. In the event of adjustment, the

optimal adjustment is to e−(A) if e−1 < e−(A) and is to e+(A) if e−1 > e+(A).

Following Cooper and Willis (2001) and using the same basic parameters as

described above, we can study the optimal policy function for this type of adjustment

cost. Assume that γ+ = γ− = .05 which produces inaction at the plant level in 23%

of the observations. 145 Then (9.1) along with (9.13) can be solved using value

function iteration and the resulting policy functions evaluated.

These are shown in Figure 9.2. Note that there is no adjustment for values of

e−1 in an interval: the employment policy function coincides with the 45 degree

line. Outside of that internal there are two targets: e−(A) and e+(A). Again, as

this policy function is indexed by the values of γ+ and γ−. So these parameters

can be estimated by matching the implications of the model against observations

of employment adjustment at the plant and/or aggregate levels. We will return to

this point below.

[Figure 9.2 approximately here]

Exercise 9.3
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Specify the dynamic programming problem for labor adjustment using a piece-wise

linear adjustment cost structure. What determines the region of inaction? Study this

model numerically by solving the dynamic programming problem and obtaining policy

functions.

9.4.2 Non-Convex Adjustment Costs

The observations of inactivity at the plant level that motivate the piecewise linear

specification are also used to motivate consideration of fixed costs in the adjustment

process. As noted by Hamermesh and Pfann (1996) the annual recruiting activities

of economics departments provide a familiar example of the role of fixed costs. In

the US, hiring requires the posting of an advertisement of vacancies, the extensive

review of material provided by candidates, the travel of a recruiting team to a

convention site, interviews of leading candidates, university visits and finally a vote

to select among the candidates. Clearly there are fixed cost components to many of

these activities that comprise the hiring of new employees. 146

As a formal model of this, consider:

V (A, e−1) = max [V a (A, e−1) , V n (A, e−1)] (9.14)

for all (A, e−1) where V a (A, e−1) represents the value of adjusting employment and

V n (A, e−1) represents the value of not adjusting employment. These are given by

V a (A, e−1) = max
h,e

R(A, e, h) − ω(e, h) − F + βEA′|AV (A′, e) (9.15)

V n (A, e−1) = max
h

R(A, e−1, h) − ω(e−1, h) + βEA′|AV (A′, e−1). (9.16)

So, in this specification, the firm can either adjust the number of employees or

not. These two options are labelled action (V a (A, e−1)) and inaction (V n (A, e−1)).

In either case, hours are assumed to be freely adjusted and thus will respond to
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variations in profitability even if there is no adjustment in the number of workers.

Note too that this specification assumes adjustment costs depend on gross changes

in the number of workers. In this way the model can potentially match the inaction

in employment adjustment at the plant level defined by zero changes in the number

of workers.

The optimal policy has three dimensions. First, there is the choice of whether

to adjust or not. Let z(A, e−1) ∈ {0, 1} indicate this choice where z(A, e−1) = 1

if and only if there is adjustment. Second, there is the choice of employment in

the event of adjustment. Let φ(A, e−1) denote that choice where φ(A, e−1) = e−1 if

z(A, e−1) = 0. Finally, there is the choice of hours, h(A, e−1), which will reflect the

decision of the firm whether or not to adjust employment. As these employment

adjustments depend on (A, e−1) through e = φ(A, e−1), one can always consider

hours to be a function of the state vector alone.

There are some rich trade-offs between hours and employment variations imbed-

ded in this model. Suppose that there is a positive shock to profitability: A rises. If

this variation is large and permanent, then the optimal response of the firm will be

to adjust employment. Hours will vary only slightly. If the shock to profitability is

not large or permanent enough to trigger adjustment, then by definition employment

will remain fixed. In that case, the main variation will be in worker hours.

These variations in hours and employment are shown in Figure 9.3. The policy

functions underlying this figure were created using a baseline parameters with fixed

costs at .1 of the steady state profits.147

[Figure 9.3 approximately here]

Exercise 9.4

Specify the dynamic programming problem for labor adjustment using a non-

convex adjustment cost structure. What determines the frequency of inaction? What
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comovement of hours and employment is predicted by the model? What features

of the policy functions distinguish this model from the one with piece-wise linear

adjustment costs? Study this model numerically by solving the dynamic programming

problem and obtaining policy functions.

9.4.3 Asymmetries

As discussed in Hamermesh and Pfann (1996), there is certainly evidence in favor of

asymmetries in the adjustment costs. For example, there may be a cost of advertising

and evaluation that is proportional to the number of workers hired but no costs of

firing workers. Alternatively, it may be of interest to evaluate the effects of firing

costs on hiring policies as discussed in the context of some European economies.

It is relatively straightforward to introduce asymmetries into the model. Given

the approach to obtaining policy functions by solving (9.1) through a value function

iteration routine, asymmetries do not present any additional difficulties. As with

the other parameterizations of adjustment costs, these model can be estimated using

a variety of techniques. Pfann and Palm (1993) provide a nice example of this

approach. They specify an adjustment cost function of:

C(e, e−1) = −1 + eγ∆e − γ∆e +
1

2
η(∆e)2. (9.17)

where ∆e ≡ (e − e−1). If γ ≡ 0, then this reduces to (9.2) with q = 0.

As Pfann and Palm (1993) illustrate, the asymmetry in adjustment costs is

controlled by γ. For example, if γ < 0, then firing costs exceed hiring costs.

Using this model of adjustment costs, Pfann and Palm (1993) estimate parame-

ters using a GMM approach on data for manufacturing in the Netherlands (quarterly,

seasonally unadjusted data, 1971(I)-1984(IV)) and annual data for U.K. manufac-

turing. They have data on both production and nonproduction workers and the
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employment choices are interdependent from the production function.

For both countries they find evidence of the standard quadratic adjustment cost

model: η is positive and significantly different from zero for both types of workers.

Moreover, there is evidence of asymmetry. They report that the costs of firing

production workers are lower than the hiring costs. But, the opposite is true for the

non-production workers.

9.5 The Gap Approach

The work in Caballero and Engel (1993b) and Caballero et al. (1997) pursues an

alternative approach to studying dynamic labor adjustment. Instead of solving an

explicit dynamic optimization problem, they postulate that labor adjustment will

respond to a gap between the actual and desired employment level at a plant. They

then test for nonlinearities in this relationship.

The theme of creating an employment target to define an employment gap as

a proxy for the current state is quite intuitive and powerful. As noted in our dis-

cussion of non-convex adjustment costs, when a firm is hit by a profitability shock,

a gap naturally emerges between the current level of employment and the level of

employment the firm would choose if there were no costs of adjustment. This gap

should then be a good proxy for the gains to adjustment. These gains, of course, are

then compared to the costs of adjustment which depend on the specification of the

adjustment cost function. This section studies some attempts to study the nature

of adjustment costs using this approach.148

The power of this approach is the simplification of the dynamic optimization

problem as the target level of employment summarizes the current state. However,

as we shall see, these gains may be difficult to realize. The problem arises from the

fact that the target level of employment and thus the gap is not observable.
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To understand this approach, it is useful to begin with a discussion of the par-

tial adjustment model. We then return to evidence on adjustment costs from this

approach.

9.5.1 Partial Adjustment Model

Researchers often specify a partial adjustment model in which the firm is assumed

to adjust the level of employment to a target.149 The assumed model of labor

adjustment would be:

et − et−1 = λ(e∗ − et−1). (9.18)

So here the change in employment et−et−1 is proportional to the difference between

the previous level of employment and a target, e∗, where λ parameterizes how quickly

the gap is closed.

Where does this partial adjustment structure come from? What does the target

represent?

Cooper and Willis (2001) consider a dynamic programming problem given by:

£(e∗, e−1) = min
e

(e − e∗)2

2
+

κ

2
(e − e−1)

2 + βEe∗′|e∗£(e∗′, e). (9.19)

where the loss depends on the gap between the current stock of workers (e) and the

target (e∗). The target is taken as an exogenous process though in general it reflects

the underlying shocks to profitability that are explicit in the optimizing model. In

particular, suppose that e∗ follows an AR(1) process with serial correlation of ρ.

Further, assume that there are quadratic adjustment costs, parameterized by κ.

The first-order condition to the optimization problem is:

(e − e∗) + κ(e − e−1) − βκE(e′ − e) = 0 (9.20)

where the last term was obtained from using (9.19) to solve for ∂£/∂e. Given

that the problem is quadratic, it is natural to conjecture a policy function in which



246

the control variable (e) is linearly related to the two elements of the state vector

(e∗, e−1).

e = λ1e
∗ + λ2e−1. (9.21)

Using this conjecture in (9.20) and taking expectations of the future value of e∗

yields:

(e − e∗) + κ(e − e−1) − βκ(λ1ρe∗ + (λ2 − 1)e) = 0. (9.22)

This can be used to solve for e as a linear function of (e∗, e−1) with coefficients

given by:

λ1 =
1 + βκλ1ρ

1 + κ − βκ(λ2 − 1)
(9.23)

and

λ2 =
κ

(1 + κ − βκ (λ2 − 1))
. (9.24)

Clearly, if the shocks follow a random walk (ρ = 1), then partial adjustment is

optimal (λ1 + λ2 = 1). Otherwise, the optimal policy created by minimization of

the quadratic loss is linear but does not dictate partial adjustment.

9.5.2 Measuring the Target and the Gap

Taking this type of model directly to the data is problematic as the target e∗ is not

observable. In the literature (see, for example, the discussion in Caballero and Engel

(1993b)) the target is meant to representation the destination of the adjustment

process. There are two representations of the target.

One, termed a static target, treats e∗ as the solution of a static optimization

problem, as if adjustment costs did not exist. Thus, e∗ solves (9.5) with η ≡ 0 and

hours set optimally.

A second approach is treats e∗ as the level of employment the firm would choose

if there were no adjustment costs for a single period. This is termed the frictionless

target. This level of employment solves e = φ(A, e) where φ(A, e−1) is the policy
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function for employment for the quadratic adjustment cost model. Thus the target

is the level of employment where the policy function, contingent on the profitability

shock, crosses the 45 degree line, as in Figure 9.1.

Following Caballero et al. (1997) define the gap as the difference between desired

(e∗i,t) and actual employment levels (in logs):

z̃i,t ≡ e∗i,t − ei,t−1. (9.25)

Here ei,t−1 is number of workers inherited from the previous period. So z̃i,t

measures the gap between the desired and actual levels of employment in period

t prior to any adjustments but after any relevant period t random variables are

realized as these shocks are embedded in the target and thus the gap.

The policy function for the firm is assumed to be:150

∆ei,t = φ(z̃i,t). (9.26)

The key of the empirical work is to estimate the function φ(·).

Unfortunately, estimation of (9.26) is not feasible as the target and thus the gap

are not observable. So, the basic theory must be augmented with a technique to

measure the gap. There are two approaches in the literature corresponding to the

two notions of a target level of employment, described earlier.

Caballero et al. (1997) pursue the theme of a frictionless target. To implement

this, they postulate a second relationship between another (closely related) measure

of the gap, (z̃1
i,t), and plant specific deviations in hours:

z̃1
i,t = θ(hi,t − h̄). (9.27)

Here z̃1
i,t is the gap in period t after adjustments in the level of e have been made:

z̃1
i,t = z̃i,t − ∆ei,t.

The argument in favor of this approach again returns to our discussion of the

choice between employment and hours variation in the presence of adjustment costs.
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In that case we saw that the firm chose between these two forms of increasing output

when profitability rose. Thus, if hours are measured to be above average, this will

reflect a gap between actual and desired workers. If there was no cost of adjustment,

the firm would choose to hire more workers. But, in the presence of these costs the

firm maintains a positive gap and hours worked are above average.

The key to (9.27) is θ. Since the left side of (9.27) is also not observable, the

analysis is further amended to generate an estimate of θ. Caballero et al. (1997)

estimate θ from:

∆ei,t = α − θ∆hi,t + εi,t. (9.28)

where the error term includes unobserved changes in the target level of employment,

∆e∗i,t) as well as measurement error. Caballero et al. (1997) note that the equation

may have omitted variable bias as the change in the target may be correlated with

changes in hours. From the discussion in Cooper and Willis (2001), this omitted

variable bias can be quite important.

Once θ is estimated, Caballero et al. (1997) can construct plant specific gap

measures using observed hours variations. In principle, the model of employment

adjustment using these gap measures can be estimated from plant level data. In-

stead, Caballero et al. (1997) focus on the aggregate time series implications of their

model. In particular, the growth rate of aggregate employment is given by:

∆Et =

∫
z

zΦ(z)ft(z) (9.29)

where Φ(z) is the adjustment rate or hazard function characterizing the fraction

of the gap that is closed by employment adjustment. From aggregate data, this

expression can be used to estimate Φ(z). As discussed in Caballero et al. (1997),

if Φ(z) is say a quadratic, then (9.29) can be expanded implying that employment

growth will depend on the first and third moments of the cross sectional distribution
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of gaps.

The findings of Caballero et al. (1997) can be summarized as:

• using (9.28), θ is estimated at 1.26.

• the relationship between the average adjustment rate and the gap is nonlinear.

• they find some evidence of inaction in employment adjustment.

• aggregate employment growth depends on the second moment of the distribu-

tion of employment gaps.

In contrast, Caballero and Engel (1993b) do not estimate θ. Instead they cali-

brate it from a structural model of static optimization by a firm with market power.

In doing so, they are adopting a target that ignores the dynamics of adjustment.

From their perspective, the gap is defined using (9.25) where e∗i,t corresponds to the

solution of a static optimization problem over both hours and employment with-

out any adjustment costs. They argue that this static target will approximate the

frictionless target quite well if shocks are random walks. As with Caballero et al.

(1997), once the target is determined a measure of the gap can be created.

This approach to approximating the dynamic optimization problem is applied

extensively because it is so easy to characterize. Further, it is a natural extension

of the partial adjustment model. But as argued in Cooper and Willis (2001) the

approach may place excessive emphasis on static optimization.151

Caballero and Engel (1993b) estimate their model using aggregate observations

on net and gross flows for US manufacturing employment. They find that a quadratic

hazard specification fits the aggregate data better than the flat hazard specification.

The key point in both of these papers is the rejection of the flat hazard model.

Both Caballero et al. (1997) and Caballero and Engel (1993b) argue that the es-

timates of the hazard function from aggregate data imply that the cross sectional
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distribution “matters” for aggregate dynamics. Put differently, both studies reject

a flat hazard specification in which a constant fraction of the gap is closed each

period.

Given that this evidence is obtained from time series, this implies that the non-

convexities at the plant-level have aggregate implications. This is an important

finding in terms of the way macroeconomists build models of labor adjustment.

To the extent that the flat hazard model is the outcome of a quadratic adjustment

cost model, both papers reject that specification in favor of a model that generates

some nonlinearities in the adjustment process. But, as these papers do not consider

explicit models of adjustment, one can not infer from these results anything about

the underlying adjustment cost structure.

Further, as argued by Cooper and Willis (2001), the methodology of these studies

may itself induce the nonlinear relationship between employment adjustment and

the gap. Cooper and Willis (2001) construct a model economy with quadratic

adjustment costs. They assume that shocks follow a first-order Markov process, with

serial correlation less than unity.152 They find that using either the Caballero et al.

(1997) or Caballero and Engel (1993b) measurements of the gap, the cross sectional

distribution of employment gaps may be significant in a time series regression of

employment growth.

9.6 Estimation of a Rich Model of Adjustment

Costs

Thus far we have discussed some evidence associated with the quadratic adjustment

cost models and provided some insights into the optimal policy functions from more

complex adjustment cost models. In this section we go a step further and discuss



251

attempts to evaluate models that may have both convex and non-convex adjustment

costs.

As with other dynamic optimization problems studied in this book, there is, of

course, a direct way to estimate the parameters of labor adjustment costs. This

requires the specification of a model of adjustment that nests the variety of special

cases described above along with a technique to estimate the parameters. In this

subsection, we outline this approach.153

Letting A represent the profitability of a production unit (e.g. a plant), we

consider the following dynamic programming problem:

V (A, e−1) = max
h,e

R(A, e, h) − ω(e, h, A) − C (A, e−1, e) + βEA′|AV (A′, e). (9.30)

As above, let,

R(A, e, h) = A(eh)α (9.31)

where the parameter α is again determined by the shares of capital and labor in the

production function as well as the elasticity of demand.

The function ω(e, h, A) represents total compensation to workers as a function of

the number of workers and their average hours. As before, this compensation func-

tion could be taken from other studies or perhaps a constant elasticity formulation

might be adequate: w = w0 + w1h
ζ .

The costs of adjustment function nests quadratic and non-convex adjustment

costs of changing employment

C (A, e−1, e) =
FH + ν

2

(
e−e−1

e−1

)2

e−1, if e > e−1

F F + ν
2

(
e−e−1

e−1

)2

e−1, if e < e−1

(9.32)

where FH and F F represent the respective fixed costs of hiring and firing workers.

Note that quadratic adjustment costs are based upon net not gross hires. In (9.32),
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ν parameterizes the level of the adjustment cost function. This adjustment cost

function yields the following dynamic optimization problem

V (A, e−1) = max
{
V H(A, e−1), V

F (A, e−1), V
N(A, e−1)

}
(9.33)

for all (A, e−1) where N refers to the choice of no adjustment of employment. These

options are defined by:

V H(A, e−1) = max
h,e

R(A, e, h) − ω(e, h, A) − FH

−ν

2

(
e − e−1

e−1

)2

e−1 + βEA′|AV (A′, e) if e > e−1

V F (A, e−1) = max
h,e

R(A, e, h) − ω(e, h, A) − F F

−ν

2

(
e − e−1

e−1

)2

e−1 + βEA′|AV (A′, e) if e < e−1

V N(A, e−1) = max
h

R(A, e−1, h) − ω(e−1, h, A) + βEA′|AV (A′, e−1)

This problem looks formidable. It contains both an extensive (adjustment or

no adjustment) as well an an intensive (the choice of e, given adjustment) margin.

Further, there is no simple Euler equation to study given the non-convex adjustment

costs.154

But, given the methodology of this book, attacking a problem like this is feasible.

In fact, one could build additional features into this model, such as allowing for a

piece-wise linear adjustment cost a structure.155

From our previous discussion, we know that “solving” a model with this com-

plexity is relatively straightforward. Let Θ represent the vector of parameters nec-

essary to solve the model.156 Then, for a given value of this vector, a value function

iteration procedure will generate a solution to (9.30).
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Once a solution to the functional equation is obtained, then policy functions can

be easily created. Figure 9.4 produces a policy function for the case of η = 1 and

F F = FH = .01.

[Figure 9.4 approximately here]

One can obtain correlations from a simulated panel. For this parameterization,

some moments of interest are: corr(e,A)=.856; corr(h,A)=.839 and corr(e,h)=.461.

Clearly, employment and hours adjustment are both positively related to the shock.

Further, we find that the correlation of hours and employment is positive indicating

that the adjustment towards a target, in which the correlation is negative, is offset

by the joint response of these variables to a shock.

Computation of these moments for a given Θ opens the door to estimation. If

these moments can be computed for a given Θ, then:

• it is easy to compute other moments (including regression coefficients)

• it is easy to find a value of Θ to bring the actual and simulated moments close

together

The techniques of this book are then easily applied to a study of labor market

dynamics using either panel data or time series.157 Of course, this exercise may be

even more interesting using data from countries other than the US who, through

institutional constraints, have richer adjustment costs.

9.7 Conclusions

This point of this chapter has been to explore the dynamics of labor adjustment. In

the presence of adjustment costs, the conventional model of static labor demand is
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replaced by a possibly complex dynamic optimization problem. Solving these prob-

lems and estimating parameters using either plant-level or aggregate observations

is certainly feasible using the techniques developed in this book.

In terms of policy implications, governments often impose restrictions on em-

ployment and hours. The dynamic optimization framework facilitates the analysis

of those interventions.158 Further, these policies (such as restrictions on hours and/or

the introduction of firing costs) may provide an opportunity to infer key structural

parameters.159



Chapter 10

Future Developments

10.1 Overview/Motivation

This final section of this book covers an assortment of additional topics. These

represent active areas of research which utlize the approach of this book. In some

cases, the research is not yet that far along. Examples of this would include ongoing

research on the integration of pricing and inventory problems or the joint evolution

of capital and labor. In a second category are search models of the labor market

which illustrate the usefulness of empirical work on dynamic programming though

generally are not part of standard course in applied macroeconomics.

Consequently, the presentation is different than other chapters. Here we focus

mainly on the statement of coherent dynamic optimization problems and properties

of policy functions. To the extent that there are empirical studies, we summarize

them.

10.2 Price Setting

We begin with a very important problem in macroeconomics, the determination of

prices. For this discussion, we do not rely on the Walrasian auctioneer to miracu-

255
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lously set prices. Instead, we allow firms to set prices and study this interaction in

a monopolistic competition setting.160

The natural specification includes a fixed cost of adjusting prices so that the

firm optimally chooses between adjusting or not. Hence we term this the state de-

pendent pricing model. These have been most recently termed “menu cost” models

to highlight the fact that a leading parable of the model is one where a seller finds

it costly to literally change the posted price. In fact, this terminology is somewhat

unfortunate as it tends to trivialize the problem. Instead, it is best to view these

costs as representing a wide range of sources of frictions in the pricing of goods.

Besides presenting a basic optimization problem, this section summarizes two

empirical exercises. The first reports on an attempt to use indirect inference to

estimate the cost of price adjustment for magazine prices. The second is a study of

the aggregate implications of state dependent pricing.

10.2.1 Optimization Problem

Consider a dynamic optimization problem at the firm level where, by assumption,

prices are costly to adjust. The firm has some market power, represented by a

downward sloping demand curve. This demand curve may shift around so that

the price the firm would set in the absence of adjustment costs is stochastic. The

question is: how, in the presence of adjustment costs, do firms behave?

Suppose, to be concrete, that product demand comes from the CES specification

of utility so that the demand for product i is given by:

qd
i (p,D, P ) =

( p

P

)−γ D

P
(10.1)

Here all variables are nominal. The price of product i is p while the general price level

is P . Finally, nominal spending, taken to be exogenous and stochastic is denoted
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D.

Given this specification of demand and the realized state, (p,D, P ), the firm’s

real profits are:

π(p,D, P ) = qd
i (p,D, P )

p

P
− c(qd

i (p,D, P )) (10.2)

where c(·) is assumed to be a strictly increasing and strictly convex function of

output.

The dynamic optimization problem of the firm, taking the current values and

evolution of (D,P ) as given, is:

V (p,D, P, F ) = max{V a(p,D, P, F ), V n(p,D, P, F )} (10.3)

for all (p,D, P, F ) where

V a(p,D, P, F ) = maxp̃ π(p̃, D, P ) − F + βE(D′,P ′,F ′|D,P,F )V (p̃, D′, P ′, F ′) (10.4)

V n(p,D, P, F ) = π(p,D, P ) + βE(D′,P ′,F ′|D,P,F )V (p,D′, P ′, F ′) (10.5)

Here the state vector is (p,D, P, F ). The cost of changing a price is F . It enters

the state vector since, in this specification, we allow this adjustment cost to be

stochastic.161

The firm has two options. If the firm does not change its price, it enjoys a profit

flow, avoids adjustment costs and then, in the next period, has the same nominal

price. Of course, if the aggregate price level changes (P �= P ′), then the firm’s

relative price will change over time. Note that the cost here is associated with

adjustment of the nominal price.

Alternatively, the firm can pay the “menu cost” F and adjust its price to p̃. This

price change becomes effective immediately so that the profit flow given adjustment

is π(p̃, D, P ). This price then becomes part of the state vector for the next period.

The policy function for this problem will have two components. First, there is

a discrete component indicating whether or not price adjustment will take place.
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Second, conditional on adjustment, there is the policy function characterizing the

dependence of p̃ on the state vector (D,P, F ). Interestingly, the choice of p̃ is

independent of p once the decision to adjust has been made.

There is a very important difference between this optimization problem and most

of the others studied in this book. From (10.3), the choice at the individual firm

level depends on the choices of other firms, summarized by P . Thus, given the

specification of demand, the behavior of a single firm depends on the behavior of

other firms.162 This feature opens up a number of alternative ways of solving the

model.

As a starting point, one might characterize the exogenous evolution of P , per-

haps through a regression model, and impose this in the optimization problem of

the firm.163 In this case, the individual optimizer is simply using an empirical model

of the evolution of P .

Using this approach, there is no guarantee that the aggregate evolution of P

assumed by the individual agent actually accords with the aggregated behavior of

these agents. This suggests a second approach in which this consistency between the

beliefs of agents and their aggregate actions is imposed on the model. Essentially

this amounts to:

• solving (10.3) given a transition equation for P

• using the resulting policy functions to solve for the predicted evolution of P

• stopping if these functions are essentially the same

• iterating if they are not.

There is a point of caution here though. For the dynamic programming problem, we

can rely on the contraction mapping property to guarantee that the value function

iteration process will find the unique solution to the functional equation. We have no
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such theorem to guide us in the iterative procedure described above. Consequently,

finding an equilibrium may be difficult and, further, there is no reason to suspect

that the equilibrium is unique.164

10.2.2 Evidence on Magazine Prices

Willis (2000a) studies the determination of magazine price adjustment using a data

set initially used by Cecchetti (1986). The idea is to use data on the frequency and

magnitude of magazine price adjustment to estimate a dynamic menu cost model.165

Willis postulates a theory model similar to that given above. For the empir-

ical analysis, he specifies an auxiliary equation in which the probability of price

adjustment is assumed to depend on:

• the number of years since the last price adjustment

• cumulative inflation since the last price adjustment

• cumulative growth in industry demand since the last price adjustment

• current inflation

• current industry demand.

This specification is partly chosen as it mimics some of the key elements of the

specification in Cecchetti (1986). Further, the cumulative inflation and demand since

the last price change are, from the dynamic programming problem, key elements in

the incentive to adjust prices. Interestingly, there seems to be little support for any

time dependence, given the presence of the proxies for the state variables.

Willis estimates this auxiliary model and then uses it, through an indirect infer-

ence procedure, to estimate the structural parameters of his model. These include:

• the curvature of the profit function



260

• the curvature of the cost function

• the distribution of menu costs.

Willis (2000a) finds that magazine sellers have a significant amount of market

power but that production is essentially constant returns to scale. Finally, Willis is

able the distinguish the average adjustment cost in the distribution from the average

that is actually paid. He finds that the former is about 35% of revenues while the

latter is only about 4% of revenues.166

10.2.3 Aggregate Implications

A large part of the motivation for studying models with some form of price rigidity

reflected the arguments, advanced by macroeconomists, that inflexible prices were

a source of aggregate inefficiency. Further, rigidity of prices and/or wages provides

a basis for the non-neutrality of money, thus generating a link between the stock

of nominal money and real economic activity. But, these arguments rest on the

presence of quantitatively relevant rigidities at the level of individual sellers. Can

these costs of adjusting prices “explain” observations at both the microeconomic

and aggregate levels?

One approach to studying these issues is to model the pricing behavior of sellers

in a particular industry. This estimated model can then be aggregated to study the

effects of, say, money on output. An alternative, more aggregate approach, is to

specify and estimate a macroeconomic model with price rigidities.

At this point, while the estimation of such a model is not complete, there is some

progress. A recent paper by Dotsey et al. (1999) studies the quantitative implications

of state dependent pricing for aggregate variables. We summarize those results here.

The economy studied by Dotsey et al. (1999) has a number of key elements:
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• as in Blanchard and Kiyotaki (1987) the model is based upon monopolistic

competition between producers of final goods

• sellers face a (stochastic) iid fixed cost of adjusting their price (expressed in

terms of labor time)

• sellers meet all demand forthcoming at their current price

• there is an exogenously specified demand for money

At the individual level, firms solve a version of (10.3) where the cost of adjustment

F is assumed to be iid. Further, heterogeneity across firms is restricted to two

dimensions, (F, p). That is, firms may be in different states because they began the

period with a different price or because their price adjustment cost for that period

is different from that of other firms. There is a very important consequence of this

restricted form of heterogeneity: if two firms choose to adjust, they select the same

price.

Interestingly, Dotsey et al. solve the dynamic optimization problem of a firm by

using a first-order condition. This is somewhat surprising as we have not used first-

order conditions to characterize the solutions to dynamic discrete choice problems.

Consider the choice of a price by a firm conditional on adjustment, as in (10.4). The

firm optimally sets the price taking into account the effects on current profits and

on the future value.

In the price setting model, the price only effects the future value if the firm elects

not to adjust in the next period. If the firm adjusts its price in the next period, as

in (10.4), then the value of the price at the start of the period is irrelevant.

So, there is a first-order condition which weighs the effects of the price on current

profits and on future values along the no-adjustment branch of the value function.

As long as the value function of the firm along this branch is differentiable in p̃,
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there will be a first-order condition characterizing this optimal choice given by:

∂π(p̃, D, P )/∂p + βG(F ∗)E(D′,P ′,F ′|D,P,F )∂V n(p̃, D′, P ′, F ′)/∂p = 0. (10.6)

where G(F ∗) is the state contingent probability of not adjusting in the next period.

This is not quite an Euler equation as the derivative of the future value remains in

this expression. Dotsey et al. iterate this condition forward and, using a restriction

that the firm eventually adjusts, derivatives of the primitive profit function can

substitute for ∂V n(p̃, D′, P ′, F ′)/∂p.167

The solution of the optimization problem and the equilibrium analysis relies on

a discrete representation of the possible states of the firms. Given a value of p, there

will exist a critical adjustment cost such that sellers adjust if and only if the realized

value of F is less than this critical level. So, given the state of the system, there is

an endogenously determined probability of adjustment for each seller. Dotsey et al.

(1999) use this discrete representation, these endogenous probabilities of adjustment

and the (common) price charged by sellers who adjust to characterize the equilibrium

evolution of their model economy.

Details on computing an equilibrium are provided in Dotsey et al. (1999). In

terms of the effects of money on output they find:

• if the inflation rate is constant at 10% then prices are adjusted at least once

every 5 quarter.

• comparing different constant inflation rate regimes, the higher the inflation

rate, the shorter is the average time to adjustment and the mark-up only

increases slightly

• an unanticipated, permanent monetary expansion leads to higher prices and

higher output at impact and there is some persistence in the output effects.
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• as the money shocks become less persistent, the price response dampens and

consequently the output effect is larger.

This discussion of the aggregate implications of monetary shocks in an environ-

ment with state dependent prices nicely complements our earlier discussion of the

estimation of a state dependent pricing model using micro-data. Clearly, there is an

open issue here concerning the estimation of a state dependent pricing model using

aggregate data.168

10.3 Optimal Inventory Policy

The models we have studied thus far miss an important element of firm behavior,

the holding of inventories. This is somewhat ironic as the optimal inventory problem

was one of the earlier dynamic optimization problems studied in economics.169

We begin with a traditional model of inventories in which a seller with a convex

cost function uses inventories to smooth production when demand is stochastic. We

then turn to models which include non-convexities. The section ends with a brief

discussion of a model with dynamic choices over prices and inventories.

10.3.1 Inventories and the Production Smoothing Model

The basic production smoothing argument for the holding of inventories rests upon

the assumption that the marginal cost of production is increasing. In the face of

fluctuating demand, the firm would then profit by smoothing production relative to

sales. This requires the firm to build inventories in periods of low demand and to

liquidate them in periods of high demand.

Formally, consider:

V (s, I) = maxyr(s) − c(y) + βEs′|sV (s′, I ′) (10.7)
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for all (s, I). Here the state vector is the level of sales s and the stock of inventories

at the start of the period, I. The level of sales is assumed to be random and

outside of the firm’s control. From sales, the firm earns revenues of r(s). The firm

chooses its level of production (y) where c(y) is a strictly increasing, strictly convex

cost function. Inventories at the start of the next period are given by a transition

equation:

I ′ = R(I + y − s). (10.8)

where R is the return on a marginal unit of inventory (which may be less than

unity).170 From this problem, a necessary condition for optimality is:

c′(y) = βREs′|sc′(y′) (10.9)

where future output is stochastic and will generally depend on the sales realization

in the next period.

To make clear the idea of production smoothing, suppose that sales follow an

iid process: Es′|ss is independent of s. In that case, the right side of (10.9) is

independent of the current realization of sales. Hence, since (10.9) must hold for

all s, the left side must be constant too. Since production costs are assumed to be

strictly convex, this implies that y must be independent of s.

Exercise 10.1

Solve (10.7) using a value function iteration routine (or another for comparison

purposes). Under what conditions will the variance of production be less than the

variance of sales?

Despite its appeal, the implications of the production smoothing model contrast

sharply with observation. In particular, the model’s prediction that production will

be smoother than sales but the data do not exhibit such production smoothing.171
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One response to this difference between the model’s predictions and observation

is to introduce other shocks into the problem to increase the variability of pro-

duction. A natural candidate would be variations in productivity or the costs of

production. Letting A denote a productivity shock, consider:

V (s, I, A) = maxyr(s) − c(y,A) + βEA′,s′|A,sV (s′, I ′, A′) (10.10)

so that the cost of producing y units is stochastic. In this case, (10.9) becomes:

cy(y,A) = βREA′,s′|A,scy(y
′, A′). (10.11)

In this case, inventories are used so that goods can be produced during periods of

relatively low cost and, in the absence of demand variations, sold smoothly over

time.172

Kahn (1987) studies a model with an explicit model of stock-out avoidance. Note

that in (10.7), the seller was allowed to hold negative inventories. As discussed

in Kahn (1987), some researchers add a nonnegativity constraint to the inventory

problem while others are more explicit about a cost of being away from a target level

of inventories (such as a fraction of sales). Kahn (1987) finds that even without a

strictly convex cost function, the nonnegativity constraint alone can increase the

volatility of output relative to sales.

Exercise 10.2

Solve (10.10) using a value function iteration routine (or another for comparison

purposes). Under what conditions on the variance of the two types of shocks and

on the cost function will the variance of production be less than the variance of

sales? Supplement the model with a nonnegativity constraint on inventories and/or

an explicit target level of investment. Explore the relationship between the variance

of sales and the variance of output.
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Alternatively, researchers have introduced non-convexities into this problem.

One approach, as in Cooper and Haltiwanger (1992), is to introduce production

bunching due to the fixed costs of a production run. For that model, consider a

version of (10.7) where the cost of production is given by:

c(y) =


0 for y = 0

K + ay for y ∈ (0, Y ]

∞ otherwise

(10.12)

Here Y represents the total output produced if there is a production run. It repre-

sents a capacity constraint on the existing capital.

In this case, production is naturally more volatile than sales as the firm has an

incentive to have a large production run and then to sell from inventories until the

next burst of production.173

Further, the original inventory models that gave rise to the development of the

(S,s) literature were based upon a fixed cost of ordering.174 One dynamic stochastic

formalization of the models discussed in Arrow et al. (1951) might be:

v(x, y) = max{vo(x, y), vn(x, y)} (10.13)

where x measures the state of demand and y the inventories on hand at the sales

site. The optimizer has two options: to order new goods for inventory (vo) or not

(vn). These options are defined as:

vo(x, y) = maxqr(s) − c(q) − K + βEx′|xv(x′, (y − s + q)(1 − δ)) (10.14)

and

vn(x, y) = r(s) + βEx′|xv(x′, (y − s)(1 − δ). (10.15)

Here s is a measure of sales and is given as the maximum of (x, y): demand can only

be met from inventories on hand. The function r(s) is simply the revenues earned

from selling s units.
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If the firm orders new inventories, it incurs a fixed cost of K and pays c(q),

an increasing and convex function, to obtain q units. In the case of ordering new

goods, the inventories next period reflect the sales and the new orders. The rate of

inventory depreciation is given by δ.

If the firm does not order inventories, then its inventories in the following period

are the depreciated level of initial inventories less sales. This is zero is the firm

stocks out.

This problem, which is similar to the stochastic investment problem with non-

convex adjustment costs, can be easily solved numerically. It combines a discrete

choice along with a continuous decision given that the firm decides to order new

goods. 175

10.3.2 Prices and Inventory Adjustment

Thus far we have treated pricing problems and inventory problems separately. So,

in the model of costly price adjustment, sellers had no inventories. And, in the

inventory models, sales are usually taken as given. Yet, there is good reason to

think jointly about pricing decisions and inventories.176

First, one of the motivations for the holding of inventories is to smooth produc-

tion relative to sales. But, there is another mechanism for smoothing sales: as its

demand fluctuates, the firm (assuming it has some market power) could adjust its

price. Yet, if prices are costly to adjust, this may be an expensive mechanism. So,

the choices of pricing and inventory policies reflect the efficient response of a profit

maximizing firm to variations in demand and/or technology.

At one extreme, suppose that the firm can hold inventories and faces a cost of

changing its price. In this case, the functional equation for the firm is given by:

V (p, I; S, P ) = max{V a(p, I; S, P ), V n(p, I; S, P )} (10.16)
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where

V a(p, I; S, P ) = maxp̃ π(p̃, I; S, P ) − F + βE(S′,P ′|S,P )V (p̃, I ′; S ′, P ′) (10.17)

V n(p, I; S, P ) = π(p, I; S, P ) + βE(S′,P ′|S,P )V (p, I ′; S ′, P ′) (10.18)

where the transition equation for inventories is again I ′ = R(I + y − s). In this

optimization problem, p is again the price of the seller and I is the stock of invento-

ries. These are both controlled by the firm. The other elements in the state vector,

S and P , represent a shock to profits and the general price level respectively. The

function π(p, I; S, P ) represent the flow of profit when the firm charges a price p,

holding inventories I when the demand shock is S and the general price level is P .

Here, in contrast to the inventory problems described above, sales are not ex-

ogenous. Instead, sales come a stochastic demand function that depends on the

firm’s price (p) and the price index (P ). From this, we see that the firm can in-

fluence sales by its price adjustment. But, of course, this adjustment is costly so

that the firm must balance meeting fluctuating demand through variations in in-

ventories, variations in production or through price changes. The optimal pattern

of adjustment will presumably depend on the driving process of the shocks, the cost

of price adjustment and the curvature of the production cost function (underlying

π(p, I; S, P )).

Exercise 10.3

A recent literature asserts that technology shocks are negatively correlated with

employment in the presence of sticky prices. Use (10.19) to study this issue by

interpreting S as a technology shock.

At the other extreme, suppose that new goods are delivered infrequently due to

the presence of a fixed ordering cost. In that case, the firm will seek other ways
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to meet fluctuations in demand, such as changing its price. Formally, consider the

optimization problem of the seller if there is a fixed cost to ordering and, in contrast

to (10.13), prices are endogenous:

V (p, I; S, P ) = max{V o(p, I; S, P ), V n(p, I; S, P )} (10.19)

where

V o(p, I; S, P ) = maxp̃,q π(p̃, I; S, P )−K−c(q)+βE(S′,P ′|S,P )V (p̃, I ′; S ′, P ′) (10.20)

V n(p, I; S, P ) = maxp̃,π(p̃, I; S, P ) + βE(S′,P ′|S,P )V (p̃, I ′; S ′, P ′). (10.21)

The transition equation for inventories is again I ′ = R(I + q − s).

Aguirregabiria (1999) studies a model with menu costs and lump-sum costs of ad-

justing inventories. This research is partly motivated by the presence of long periods

of time in which prices are not adjusted and by observations of sales promotions.

Interestingly, the model has predictions for the joint behavior of markups and

inventories even if the costs of adjustment are independent. Aguirregabiria (1999)

argues that markups will be high when inventories are low. This reflects the effects

of stock-outs on the elasticity of sales. Specifically, Aguirregabiria assumes that:

s = min(D(p), q + I) (10.22)

where as above, s is sales, q is orders of new goods for inventory and I is the stock of

inventories. Here D(p) represents demand that depends, among other things, on the

current price set by the seller. So, when demand is less than output and the stock

of inventories, then sales equal demand and the price elasticity of sales is equal to

that of demand. But, when demand exceeds q + I, then the elasticity of sales with

respect to price is zero: when the stock-out constraint binds, realized ”demand” is

very inelastic. In the model of Aguirregabiria (1999) the firm chooses its price and

the level of inventories prior to the realizations of a demand shock so that stock-outs

may occur.
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Aguirregabiria (1999) estimates the model using monthly data on a supermar-

ket chain. His initial estimation is of a reduced form model for the choice to adjust

prices and/or inventories. In this discrete choice framework he finds an interesting

interaction between the adjustments of inventories and prices. The level of invento-

ries are significant in the likelihood of price adjustment: large inventories increases

the probability of price adjustment.

Aguirregabiria (1999) estimates a structural model based upon a dynamic pro-

gramming model.177 He finds support for the presence of both types of lump-sum

adjustment costs. Moreover, he argues that the costs of increasing a price appear

to exceed the cost of price reductions.

10.4 Capital and Labor

The grand problem we consider here allows for adjustment costs for both labor and

capital.178 Intuitively, many of the stories of adjustment costs for one factor have

implications for the adjustment of the other. For example, if part of the adjustment

cost for capital requires the shutting down of a plant to install new equipment,

then this may also be a good time to train new workers. Moreover, we observe

inaction in the adjustment of both labor and capital and bursts as well. So, it seems

reasonable to entertain the possibility that both factors are costly to adjust and

that the adjustment processes are interdependent.

For this more general dynamic factor demand problem, we assume that the

dynamic programming problem for a plant is given by:

V (A,K,L) = max
K′,L′,h

Π(A,K,L′, h) − ω(L′, h,K,A) − (10.23)

C(A,K,L,K ′, L′) + βEA′|AV (A′, K ′, L′).

for all (A,K,L). Here the flow of profits, Π(A,K,L′, h), depends on the profitability
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shock, A, the predetermined capital stock, K,the number of workers, L′, and the

hours workers, h. The function ω(L′, h,K,A) represents the total state dependent

compensation paid to workers. Finally, the general adjustment cost function is given

by C(A,K,L,K ′, L′).

To allow the model to capture inaction, the adjustment cost function in (10.23)

contains convex and non-convex adjustment costs for both labor and capital. Fur-

ther, one or both of these components might be interactive. So, for example, there

may be a fixed cost of adjusting capital that may ”cover” any adjustments in labor

as well. Or, within the convex piece of the adjustment cost function, there may be

some interaction between the factors.

Writing down and analyzing this dynamic optimization problem is by itself not

difficult. There are some computational challenges posed by the larger state space.

The key is the estimation of the richer set of parameters.

One approach would be to continue in the indirect inference spirit and consider

a VAR estimated from plant-level data in, say, hours, employment and capital.

As with the single factor models, we might also include some nonlinearities in the

specification. We could use the reduced form parameters as the basis for indirect

inference of the structural parameters.

One of the interesting applications of the estimated model will be policy exper-

iments. In particular, the model with both factors will be useful in evaluating the

implications of policy which directly influences one factor on the other. So, for ex-

ample, we can study how restrictions on worker hours might influence the demand

for equipment. Or, how do investment tax credits impact on labor demand?
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10.5 Technological Complementarities: Equilib-

rium Analysis

Here we continue discussion of a topic broached in Chapter 5 where we studied the

stochastic growth model. There we noted that researchers, starting with Bryant

(1983) and Baxter and King (1991), introduced interactions across agents through

the production function. The model captures, in a tractable way, the theme that

high levels of activity by other agents increases the productivity of each agent.179

Let y represent the output at a given firm, Y be aggregate output, k and n the

firm’s input of capital and labor respectively. Consider a production function of:

y = AkαnφY γY ε
−1 (10.24)

where A is a productivity shock that is common across producers. Here γ param-

eterizes the contemporaneous interaction between producers. If γ is positive, then

there is a complementarity at work: as other agents produce more, the productivity

of the individual agent increases as well. In addition, this specification allows for

a dynamic interaction as well parameterized by ε, where Y−1 is the lagged level of

aggregate output. As discussed in Cooper and Johri (1997), this may be interpreted

as a dynamic technological complementarity or even a learning by doing effect. This

production function can be imbedded into a stochastic growth model.

Consider the problem of a representative household with access to a production

technology given by (10.24). This is essentially a version of the stochastic growth

model with labor but with a different technology.

There are two ways to solve this problem. The first is to write the dynamic

programming problem, carefully distinguishing between individual and aggregate

variables. As in our discussion of the recursive equilibrium concept, a law of motion

must be specified for the evolution of the aggregate variables. Given this law of
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motion, the individual household’s problem is solved and the resulting policy func-

tion compared to the one that governs the economy-wide variables. If these policy

functions match, then there is an equilibrium. Else, another law of motion for the

aggregate variables is specified and the search continues. This is similar to the ap-

proach described above for finding the equilibrium in the state dependent pricing

model. 180

Alternatively, one can use the first-order conditions for the individual’s optimiza-

tion problem. As all agents are identical and all shocks are common, the represen-

tative household will accumulate its own capital, supply its own labor and interact

with other agents only due to the technological complementarity. In a symmetric

equilibrium, yt = Yt. As in Baxter and King (1991), this equilibrium condition is

neatly imposed through the first-order conditions when the marginal products of la-

bor and capital are calculated. From the set of first-order conditions, the symmetric

equilibrium can be analyzed through by approximation around a steady state.

The distinguishing feature of this economy from the traditional Real Business

Cycle model is the presence of the technological complementarity parameters, γ and

ε. It is possible to estimate these parameters directly from the production function

or to infer them from the equilibrium relationships. 181

10.6 Search Models

This is a very large and active area of research in which the structural approach

to individual decision making has found fertile ground. This partly reflects the

elegance of the search problem at the individual level, the important policy question

surrounding the provision of unemployment insurance and the existence of rich data

sets on firms and workers. This subsection will only introduce the problem and

briefly touch on empirical methodology and results.
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10.6.1 A Simple Labor Search Model

The starting point is a model in the spirit of McCall (1970).182 A prospective worker

has a job offer, denoted by ω. If this job is accepted, then the worker stays in this

job for life and receives a return of u(ω)
1−β

. Alternatively, the offer can be rejected.

In this case, the worker can receive unemployment benefits of b for a period and

then may draw again from the distribution. Assume that the draws from the wage

distribution are iid. 183

The Bellman equation for a worker with a wage offer of ω in hand is:

v(ω) = max

{
u(ω)

1 − β
, u(b) + βEv(ω′)

}
. (10.25)

for all ω. The worker either accepts the job, the first option, or rejects it in favor of

taking a draw in the next period.

Given the assumption of iid draws, the return to another draw, Ev(ω′) is just

a constant, denoted κ. It is intuitive to think of this functional equation from the

perspective of value function iteration. For a given value of κ, (10.25) implies a

function v(ω). Use this to create a new expected value of search and thus a new

value for κ. Continue to iterate in this fashion until the process converges.184

Clearly, the gain to accepting the job is increasing in ω while the return associated

with rejecting the job and drawing again is independent of ω. Assuming that the

lower (upper) support of the wage offer distribution is sufficiently low (high) relative

to b, there will exist a critical wage, termed the reservation wage, such that the

worker is indifferent between accepting and rejecting the job. The reservation wage,

w∗ is determined from:

u(w∗)
1 − β

= u(b) + βκ (10.26)
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where

κ = Ev(w) =

∫ +∞

−∞
v(w)dF (w) (10.27)

= F (w∗) (u(b) + βκ) +

∫ ∞

w∗

u(w)

1 − β
dF (w)

For wages below the reservation wage, the value v(·) is constant and independent

of w as the individual chooses to stay in unemployment. For wages above w∗, the

individual accept the offer and gets the utility of the wage for ever.

Exercise 10.4

Write a program to solve (10.25) using the approach suggested above.

10.6.2 Estimation of the Labor Search Model

There is now a large literature on the estimation of these models. Here we focus

on estimating the simple model given above and then discuss other parts of the

literature.

The theory implies that there exists a reservation wage that depends on the

underlying parameters of the search problem: w∗(Θ).185 Suppose that the researcher

has data on a set of I individuals over T periods. In particular, suppose that an

observation for agent i in period t is zit ∈ {0, 1} where zit = 0 means that the agent

is searching and zit = 1 means that the agent has a job. For purposes of discussion,

we assume that the model is correct: once an agent has a job, he keeps it forever.

Consider then the record for agent i who, say, accepted a job in period k + 1.

According to the model, the likelihood of this is

F (w∗)k(1 − F (w∗)). (10.28)

The likelihood function for this problem is equivalent to the coin flipping exam-

ple that we introduced in Chapter 4. There we saw that the likelihood function
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would provide a way to estimate the probability of ”heads” but would not allow the

researcher to identify the parameters that jointly determine this probability.

The same point is true for the search problem. Using (10.28) for all agents in

the sample, we can represent the likelihood of observing the various durations of

search. But, in the end, the likelihood will only depend on the vector Θ through

w∗.

Wolpin (1987) estimates a version of this search model with a finite horizon

and costly search. This implies, among other things, that the reservation wage is

not constant as the problem is no longer stationary. Instead, he argues that the

reservation wage falls over time.186 This time variation in the reservation wage is

useful for identification since it creates time variation in the acceptance probability

for given Θ.

Wolpin (1987) also assumes that agents receive an offer each period with a prob-

ability less than one. In order to estimate the model, he specifies a function for the

likelihood an agent receives an offer in a given period. This probability is allowed

to depend on the duration of unemployment.

Wolpin uses data on both duration to employment and accepted wages. The ad-

dition of wage data is interesting for a couple of reasons. First, the lowest accepted

wage yields an upper bound on the reservation wage. Second, the researcher gener-

ally observes accepted wage but not the offered wage. Thus there is an interesting

problem of deducing the wage distribution from data on accepted wages.

Wolpin (1987) estimates the model using a panel from the 1979 NLS youth

cohort. In doing so, he allows for measurement error in the wage and also specifies

a distribution for wage offers. Among other things, he finds that a log-normal

distribution of wages fits better than a normal distribution. Further, the estimated

hazard function (giving the likelihood of accepting a job after j periods of search)

mimics the negative slope of that found in the data.
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10.6.3 Extensions

Of course, much has been accomplished in the search literature over the recent years.

This includes introducing equilibrium aspects to the problem so that the wage dis-

tribution is not completely exogenous. Other contributions introduce bargaining

and search intensity, such as Eckstein and Wolpin (1995). Postel-Vinay and Robin

(2002) develop an equilibrium model where the distribution of wage offers is en-

dogenous to the model and results from heterogenous workers and firms and from

frictions in the matching process. The model is then estimated on French data by

maximum likelihood techniques.

The simple model of labour search (10.25) can be extended to include transitions

into unemployment, learning by doing and experience effects, as well as the effect

of unobserved heterogeneity. The model of labor search can also be extended to

education choices. The education choices can be a function of an immediate cost of

education and the future rewards in terms of increased wages. Eckstein and Wolpin

(1999) develop such a model.

Wages and Experience

The model in (10.25) can also be extended to understand why wages are increasing

in age. An important part of the labor literature has tried to understand this

phenomenon. This increase can come from two sources, either through an increase

in productivity through general experience or possibly seniority within the firm, or

through labor market mobility and on the job search. Altonji and Shakotko (1987),

Topel (1991), Altonji and Williams (1997) and Dustmann and Meghir (2001) explore

these issues, although in a non structural framework.

Distinguishing the effect of experience from seniority is mainly done by com-

paring individuals with similar experience but with different seniority. However,
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seniority depends on the job to job mobility which is a choice for the agent, possi-

bly influenced by heterogeneity in the return to experience. Hence seniority (and

experience) has to be considered as an endogenous variable. It is difficult to find

good instruments which can deal with the endogeneity. Altonji and Shakotko (1987)

instrument the seniority variable with deviations from job means, while Dustmann

and Meghir (2001) use workers who are fired when the whole plant close down as

an exogenous event.

We present a structural model below which can potentially be used to distinguish

between the two sources of wage determinants. The wage is a function of labor

market experience X, of seniority in the firm S, of an unobserved fixed component

ε, which is possibly individual specific and a stochastic individual component η

which is specific to the match between the agent and the firm and is potentially

serially correlated. An employed individual earns a wage w(X,S, ε, η). At the end

of the period, the agent has a probability δ of being fired. If not, next period, the

individual receives a job offer represented by a wage w(X ′, 0, ε, η̃′). This is compared

to a wage within the firm of w(X ′, S ′, ε, η′). The value of work and of unemployment

are defined as: 187

V W (X,S, ε, η) = w(X,S, ε, η) + βδV U(X ′, ε) (10.29)

+β(1 − δ)Eη′|η,η̃′ max[V W (X ′, S ′, ε, η′), V W (X ′, 0, ε, η̃′)]

V U(X, ε) = b(X) + βEη′ max[V U(X, ε), V W (X, 0, ε, η′)]

When employed, the labor market experience evolves as X ′ = X+1 and seniority, S,

evolves in a similar way. When unemployed, the individual earns an unemployment

benefit b(X) and receive at the end of the period a job offer characterized by a wage

w(X, 0, ε, η′). The individual then chooses whether to accept the job or to remain

for at least an additional period in unemployment.
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An important issue is the unobserved heterogeneity in the return to experience.

The model capture this with the term ε. Here, the identification of the different

sources of wage growth comes from the structural framework and no instruments

are needed. This model could be solved numerically using a value function iteration

approach and then estimated by maximum likelihood, integrating out the unob-

served heterogeneity. This can be done as in Heckman and Singer (1984) allowing

for mass point heterogeneity (see for example Eckstein and Wolpin (1999) for an

implementation in the context of a structural dynamic programming problem).

Equilibrium Search

Yashiv (2000) specifies and estimates a model of search and matching. The impor-

tant feature of this exercise is that it accounts for the behavior of both firms and

workers. In this model, unemployed workers search for jobs and firms with vacancies

search for workers.

Firms have stochastic profit functions and face costs of attracting workers through

the posting of vacancies. Workers have an objective of maximizing the discounted

expected earnings. Workers too face a cost of search and choose their search inten-

sity. These choices yield Euler equations which are used in the GMM estimation.

The key piece of the model is a matching function that brings the search of the

workers and the vacancies of the firms together. The matching function has inputs

of the vacancies opened by firms and the search intensity by the unemployed work-

ers. Though all agents (firms and workers) take the matching probability as given,

this probability is determined by their joint efforts in equilibrium. Empirically, an

important component of the analysis is the estimation of the matching function.

Yashiv (2000) finds that the matching function exhibits increasing returns, contrary

to the assumption made in much of the empirical literature on matching.

There is a very interesting link between this research and the discussion of dy-
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namic labor demand. While researchers have specified labor adjustment costs, the

exact source of these costs is less clear. The analysis in Yashiv (2000) is a step

towards bridging this gap: he provides an interpretation of labor adjustment costs

in the estimated search model.

10.7 Conclusions

The intention of this book was to describe a research methodology for bringing

dynamic optimization problems to the data. In this chapter, we have described

some ongoing research programs that utilize this methodology.

Still, there are many avenues for further contributions. In particular, the applica-

tions described here have generally been associated with the dynamic optimization

problem of a single agent. Of course, this agent may be influenced by relative prices

but these prices have been exogenous to the agent.

This does not present a problem as long as we are content to study individual

optimization. But, as noted in the motivation of the book, one of the potential gains

associated with the estimation of structural parameters is the confidence gained in

the examination of alternative policies. In that case, we need to include policy

induced variations in equilibrium variables. That is, we need to go beyond the

single-agent problem to study equilibrium behavior. While some progress has been

made on these issues, estimation of a dynamic equilibrium model with heterogeneous

agents and allowing for non-convex adjustment of factors of production and/or prices

still lies ahead.188

Related to this point, the models we have studied do not allow any strategic

interaction between agents. One might consider the estimation of a structure in

which a small set of agents interact in a dynamic game. The natural approach

is to compute a Markov-perfect equilibrium and use it as a basis for estimating
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observed behavior by the agents. Pakes (2000) provides a thorough review of these

issues in the context of applications in industrial organization. Again, extensions to

macroeconomics lie ahead. , ,
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scrapping subsidies, 195

search model, 273–280

duration, 276

seniority, 277

sequence problem, 10

finite horizon, 10

serial correlation, 92

simulated maximum likelihood, 73

theory, 72, 98–100

simulated method of moments

asymptotic properties, 95

efficient method of moments, 102

example

cake eating problem, 94

consumption, 176

durables, 193–194

theory, 73, 94–96

simulated non linear least squares

example

cake eating problem, 97

durables, 193–194

theory, 96–98

simulation methods, 65

solution methods

linearization, 122

projection methods, 46–51

value function iteration, 41–45, 52–

54, 125

specification test

GMM, 89

indirect inference, 104

spline interpolation, 60

[s,S] models, 185, 187

state space, 42, 52, 115

large, 54

state variable, 19

state vector, 29

stationarity, 19, 30

stochastic cake eating problem

projection methods approach, 46

value function approach, 40
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stochastic growth model, 109

calibration, 135

confronting the data, 134–142

calibration, 135

GMM, 137

indirect inference, 139

maximum likelihood, 141

decentralization, 128

endogenous labor supply, 130

example, 125

functional equation, 120

GMM, 137

indirect inference, 139

intermediation shocks, 139

investment shocks, 139

linearization, 122

multiple sectors, 144

overview, 117

taste shocks, 146

technological complementarities, 142

technology, 119

value function iteration, 125, 133

stochastic income, 154, 160

stochastic returns, 163

supply and demand, 79

taste shock

aggregate, 189

cake eating problem, 24, 51, 52

durables, 189

in estimation, 90

stochastic growth model, 141, 146

tax credits, 199

taxes, 147, 153, 198

technological complementarities, 272,

see complementarities

tenure, return to, 277

transition equation, 19, 29

transition matrix, 25

transversality condition, 111

uncertainty

consumption/saving choice, 154–156,

160–163

unobserved heterogeneity, 187, 261, 278,

279

utility

quadratic, 182

utility function

adjustment costs, 183

CRRA, 41, 161

quadratic, 183

value function

implementation, 41, 52
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value function iteration, 33

example, 192–193

non-stochastic growth model, 114

stochastic growth model, 125

VAR, 191

wage offer, 277

weighting matrix, 86, 88
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Notes

1This exercise is described in some detail in the chapter on consumer durables

in this book.

2Some of the tools for numerical analysis are also covered in Ljungqvist and

Sargent (2000) and Judd (1996).

3Assume that there are J commodities in this economy. This presentation as-

sumes that you understand the conditions under which this optimization problem

has a solution and when that solution can be characterized by first-order conditions.

4For a very complete treatment of the finite horizon problem with uncertainty,

see Bertsekas (1976).

5Throughout, the notation {xt}T
1 is used to define the sequence (x1, x2, ....xT ) for

some variable x.

6This comes from the Weierstrass theorem. See Bertsekas (1976), Appendix B,

or Stokey and Lucas (1989), Chpt. 3, for a discussion.

7By the sequence approach, we mean solving the problem using the direct ap-

proach outlined in the previous section.

8As you may already know, stationarity is vital in econometrics as well. Thus

making assumptions of stationarity in economic theory have a natural counterpart

in empirical studies. In some cases, we will have to modify optimization problems

to ensure stationarity.

9To be careful, here we are adding shocks that take values in a finite and thus

countable set. See the discussion in Bertsekas (1976), Section 2.1, for an introduction
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to the complexities of the problem with more general statements of uncertainty.

10For more details on markov chains we refer the reader to Ljungqvist and Sargent

(2000).

11The evolution can also depend on the control of the previous period. Note too

that by appropriate rewriting of the state space, richer specifications of uncertainty

can be encompassed.

12This is a point that we return to below in our discussion of the capital accumu-

lation problem.

13Throughout we denote the conditional expectation of ε′ given ε as Eε′|ε.

14Eckstein and Wolpin (1989) provide an extensive discussions of the formulation

and estimation of these problems in the context of labor applications.

15In the following chapter on the numerical approach to dynamic programming,

we study this case in considerable detail.

16This section is intended to be self-contained and thus repeats some of the ma-

terial from the earlier examples. Our presentation is by design not as formal as say

that provided in Bertsekas (1976) or Stokey and Lucas (1989). The reader interested

in more mathematical rigor is urged to review those texts and their many references.

17Ensuring that the problem is bounded is an issue in some economic applications,

such as the growth model. Often these problems are dealt with by bounding the

sets C and S.

18Essentially, this formulation inverts the transition equation and substitutes for

c in the objective function. This substitution is reflected in the alternative notation

for the return function.
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19Some of the applications explored in this book will not exactly fit these con-

ditions either. In those cases, we will alert the reader and discuss the conditions

under which there exists a solution to the functional equation.

20The notation dates back at least to Bertsekas (1976).

21See Stokey and Lucas (1989) for a statement and proof of this theorem.

22Define σ(s, s′) as concave if σ(λ(s1, s
′
1) + (1 − λ)(s2, s

′
2)) ≥ λσ(s1, s

′
1) + (1 −

λ)σ(s2, s
′
2) for all 0 < λ < 1 where the inequality is strict if s1 �= s2.

23As noted earlier, this structure is stronger than necessary but accords with the

approach we will take in our empirical implementation. The results reported in

Bertsekas (1976) require that Ψ is countable.

24We present additional code for this approach in the context of the nonstochastic

growth model presented in Chapter 5.

25In some application, it can be useful to define a grid which is not uniformally

spaced, see the discrete cake eating problem in section 3.3.

26Popular orthogonal bases are Chebyshev, Legendre or Hermite polynomials.

27The polynomials are also defined recursively by pi(X) = 2Xpi−1(X)− pi−2(X),

i ≥ 2, with p0(0) = 1 and p(X, 1) = X.

28This is in fact the structure of a probit model.

29 This is not I since we have the restriction
∑

i Pi = 1.

30If we also want to estimate σD, σS and ρSD, we can include additional moments

such as E(p), E(q), V (p), V (q) or cov(p, q).
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31The variance of U1 and U2 are defined as:

σ2
1 =

σ2
D + σ2

S − 2ρDS

(αp − βp)
2 σ2

2 =
α2

pσ
2
D + β2

pσ
2
S − 2αpβpρDS

(αp − βp)
2

and the covariance between U1 and U2 is:

ρ12 =
αpσ

2
D + βpσ

2
S − ρDS(αp + βp)

(αp − βp)
2

The joint density of U1 and U2 can be expressed as:

f(u1, u2) =
1

2πσ1σ2

√
1 − ρ2

exp− 1

2(1 − ρ2)

(
u2

1

σ2
1

+
u2

2

σ2
2

+ 2ρu1u2

)
with ρ = ρ12/(σ1σ2).

32Here we view T as the length of the data for time series applications and as the

number of observations in a cross section.

33 For instance, if εt = ρεt−1 + ut with ut ∼N(0,σ2), the probability that the cake

is eaten in period 2 is:

p2 = P (ε1 < ε∗(W1), ε2 > ε∗(W2))

= P (ε1 < ε∗(W1)) P (ε2 > ε∗(W2)|ε1 < ε∗(W1))

= Φ

(
ε∗1(W1)

σ/
√

1 − ρ2

)
1√
2πσ

∫ +∞

ε∗2

∫ ε∗1

−∞
exp(− 1

2σ2
(u − ρv)2)dudv

If ρ = 0 then the double integral resumes to a simple integral of the normal distri-

bution.

34for instance, µ(x) = [x, x2] if one wants to focus on matching the mean and the

variance of the process

35To see this, define θ∞, the solution to the minimization of the above criterion,
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when the sample size T goes to infinity.

θ∞ = arg min
θ

lim
T

1

T

T∑
t=1

(x(ut, θ0) − x̄(θ))2

= arg min
θ

E(x(u, θ0) − x̄(θ))2

= arg min
θ

E
(
x(u, θ0)

2 + x̄(θ)2 − 2x(u, θ0)x̄(θ)
)

= arg min
θ

V (x(u, θ0)) + V (x̄(θ)) + (Ex(u, θ0) − Ex̄(θ))2

This result holds as Exx̄ = ExEx̄, i.e. the covariance between ut and us
t is zero.

Differentiating the last line with respect to θ, we obtain the first order conditions

satisfied by θ∞:

∂

∂θ
V (x̄(θ∞)) + 2

∂

∂θ
Ex̄(θ∞)[Ex̄(θ∞) − Ex(u, θ0))] = 0

If θ∞ = θ0, this first order condition is only satisfied if ∂
∂θ

V (x̄(θ0)) = 0, which is not

guaranteed. Hence, θ∞ is not necessarily a consistent estimator. This term depends

on the (gradient of the) variance of the variable, where the stochastic element is the

simulated shocks. Using simulated paths instead of the true realization of the shock

leads to this inconsistency.

36The specification of the model should also be rich enough so that the estimation

makes sense. In particular, the model must contain a stochastic element which

explains why the model is not fitting the data exactly. This can be the case if some

characteristics, such as taste shocks, are unobserved.

37Though in the standard real business cycle model there is no rationale for such

intervention.

38 Equivalently, we could have specified the problem with k as the state, c as the

control and then used a transition equation of: k′ = f(k) + (1 − δ)k − c.

39This follows from the arguments in Chapter 2.
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40As noted in the discussion of the cake eating problem, this is but one form of a

deviation from a proposed optimal path. Deviations for a finite number of periods

also do not increase utility if (5.2) holds. In addition, a transversality condition

must be imposed to rule out deviations over an infinite number of period.

41That code and explanations for its use is available on the web page for this

book.

42In the discussion of King et al. (1988), this term is often called the elasticity of

the marginal utility of consumption with respect to consumption.

43One must take care that the state space is not binding. For the growth model,

we know that k′ is increasing in k and that k′ exceeds (is less than) k when k is less

than (exceeds) k∗. Thus the state space is not binding.

44This tradeoff can be seen by varying the size of the state space in grow.m. In

many empirical applications, there is a limit to the size of the state space in that a

finer grid doesn’t influence the moments obtained from a given parameter vector.

45A useful exercise is to alter this initial guess and determine whether the solution

of the problem is independent of it. Making good initial guesses is often quite

valuable for estimation routines in which there are many loops over parameters so

that solving the functional equation quickly is quite important.

46Later in this chapter we move away from this framework to discuss economies

with distortions and heterogeneity.

47Later in this chapter, we discuss extensions that would include multiple sectors.

48Some of these restrictions are stronger than necessary to obtain a solution. As we

are going to literally compute the solution to (5.6), we will eventually have to create
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a discrete representation anyways. So we have imposed some of these features at

the start of the formulation of the problem. The assumptions on the shocks parallel

those made in the presentation of the stochastic dynamic programming problem in

Chapter 2.

49Thus the problem is quite similar to that described by King et al. (1988) though

here we have not yet introduced employment.

50The discussion in the appendix of King et al. (1988) is recommended for those

who want to study this linearization approach in detail.

51Here we formulate the guess of the policy function rather than the value function.

In either case, the key is to check that the functional equation is satisfied.

52Alternatively, one could start from this guess of the value function and then use

it to deduce the policy function.

53Given that u(c) and f(k) are both strictly concave, it is straightforward to see

that the value function for the one period problem is strictly concave in k. As argued

in Chapter 2, this property is preserved by the T (V ) mapping used to construct a

solution to the functional equation.

54See Tauchen (1990) for a discussion of this economy and a comparison of the

value function iteration solution relative to other solution methods.

55See also the presentation of various decentralizations in Stokey and Lucas (1989).

56Of course, this is static for a given k′. The point is that the choice of n does not

influence the evolution of the state variable.

57In fact, preferences are often specified so that there is no response in hours

worked to permanent shocks. Another specification of preferences, pursued in
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Hansen (1985), arises from the assumption that employment is a discrete variable

at the individual level. Rogerson (1988) provides the basic framework for the ”in-

divisible labor model”.

58We will see this in more detail in the following chapter on household savings

and consumption when there is stochastic income.

59For some specifications of the utility function, φ̂(A, k, k′) can be solved for an-

alytically and inserted into the program. For example, suppose u(c, 1− n) = U(c +

ξ(1 − n)), where ξ is a parameter. Then the first order condition is Afn(k, n) = ξ

which can be solved to obtain φ̂(A, k, k′) given the production function. To verify

this, assume that Af(k, n) is a Cobb-Douglas function.

60The interested reader can clearly go beyond this structure though the arguments

put forth by King et al. (1988) on restrictions necessary for balanced growth should

be kept in mind. Here the function ξ(1 − n) is left unspecified for the moment

though we assume it has a constant elasticity given by η.

61Note though that King, Plosser and Rebelo build a deterministic trend into their

analysis which they remove to render the model stationary. As noted in Section 3.2.1

of their paper, this has implications for selecting a discount factor.

62Specifically, the moments from the KPR model are taken from their Table 4,

using the panel data labor supply elasticity and ρ = .9. and the standard deviation

of the technology shock (deviation from steady state) is set at 2.29.

63See King et al. (1988) for a discussion of this.

64As the authors appear to note, this procedure may actually just uncover the de-

preciation rate used to construct the capital series from observations on investment.
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65Thus in contrast to many studies in the calibration tradition, this is truly an

estimation exercise, complete with standard errors.

66In this case, the model cannot be rejected at a 15 % level using the J-statistic

computed from the match of these two moments.

67This is the case since the empirical analysis focuses on output and investment

fluctuations.

68When employment is variable and wages are observed, then (5.23) has no error

term either. In this case, researchers include taste shocks. Using this, they find

that current consumption can be written as a function of current output and lagged

consumption without any error term. This prediction is surely inconsistent with

the data.

69See Hansen et al. (1994) for a general formulation of this approach.

70Each of these extensions creates an environment which the interested reader can

use as a basis for specifying and solving a dynamic programming and confronting it

with data.

71Cooper (1999) explores a wide variety of ways to model complementarities.

Enriching the neoclassical production function is the one closest to existing models.

See the discussion in Benhabib and Farmer (1994) and Farmer and Guo (1994) about

the use of these models to study indeterminacy. Manski (1993) and Cooper (2002)

discuss issues associated with the estimation of models with complementarities and

multiple equilibria.

72In contrast to the contraction mapping theorem, there is no guarantee that this

process will converge. In some cases, the household’s response to an aggregate law

of motion can be used as the next guess on the aggregate law of motion. Iteration
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of this may lead to a recursive equilibrium.

73See Cooper (1999) and the references therein.

74For now think of these are producer durables though one could also add con-

sumer durables to this sector or create another sector.

75Similar problems of matching positive comovements arise in multiple-country

real business cycle models.

76McGrattan (1994) allows for past labor to enter current utility as well.

77See McGrattan (1994) and the references therein for a discussion of computing

such equilibria.

78This has a well understood implication for the timing of taxes. Essentially, a

government with a fixed level of spending must decide on the timing of its taxes.

If we interpret the income flows in our example as net of taxes, then intertemporal

variation in taxes (holding fixed their present value) will only change the timing of

household income and not its present value. Thus, tax policy will influence savings

but not consumption decisions.

79If ρ > 1, then ∂c0
∂y0

will exceed 1.

80We assume that there exists a solution to this function equation. This requires,

as always, that the choice be bounded, perhaps by a constraint on the total debt

that a household can accumulate.

81In fact, if there are other variables known to the decision maker that provide

information on (y′, R) then these variables would be included in the state vector as

well.

82Sargent (1978) also provides a test for the permanent income hypothesis and
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rejects the model.

83See for instance Zeldes (1989b) or Campbell and Mankiw (1989).

84In fact, the theory does not imply which of the many possible variables should

be used when employing these restrictions in an estimation exercise. That is, the

question of “which moments to match?” is not answered by the theory.

85This is similar to the trick we used in the stochastic growth model with endoge-

nous employment.

86See also Wright and Williams (1984) and Miranda and Helmberger (1988) for

an early contribution on this subject, including numerical solutions and simulations

of these models

87see also Carroll (1992)

88The figure was computed using the following parameterization: β = 0.96, γ =

0.5, σ2
u = 0.0212, σ2

n = 0.044, p = 0.03. γ0 = 0.0196, γ1 = 0.0533. We are grateful

to Gourinchas and Parker for providing us with their codes and data.

89See footnote 88 for the parameterization.

90As an outstanding example, Rust and Phelan (1997) explore the effects of social

security policies on labor supply and retirement decisions in a dynamic programming

framework.

91In a model of habit formation, past consumption can influence current utility

even if the consumption is of a nondurable or service. In that case, the state vector

is supplemented to keep track of that experience. For the case of durable goods, we

will supplement the state vector to take the stock of durables into account.

92From Baxter (1996), the volatility of durable consumption is about five times
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that of nondurable consumption.

93To be complete, as we explain there are also maintained assumption about

preferences, shocks and the lack of adjustment costs.

94Of course, other possible assumptions on timing are implementable in this frame-

work. We discuss this below.

95That is, movement in the marginal utility of consumption of nondurables may

be the consequence of variations in the stock of durables. We return to this point

in the discussion of empirical evidence.

96This condition doesn’t obtain under the previous timing due to the time to build

aspect of durables assumed there.

97See also Eichenbaum and Hansen (1990).

98See House and Leahy (2000) for a model of durables with an endogenous lemons

premium.

99The assumption that one car is the max is just for convenience. What is im-

portant is that the car choice set is not continuous.

100This presentation relies heavily on Adda and Cooper (2000b).

101 Adda and Cooper (2000b) explicitly views this as a household specific income

shock but a broader interpretation is acceptable, particularly in light of their iid

assumption associated with this source of variation.

102Here only a single lag is assumed to economize on the state space of the agents’

problem.

103 As in Adda and Cooper (2000b), we assume that the costs of production are
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independent of the level of production. Combined with an assumption of constant

mark-ups, this implies that the product price is independent of the cross sectional

distribution of car vintages.

This assumption of an exogenous price process greatly simplifies the empirical

implementation of the model since we do not have to solve an equilibrium problem.

In fact, we have found that adding information on the moments of the cross sectional

distribution of car vintages has no explanatory power in forecasting car prices in

the French case. Results are mixed for the US case, as the average age of cars

significantly predicts future prices.

104There are numerous surveys of investment. See Caballero (1999) and Chirinko

(1993) and the references therein for further summaries of existing research.

105This is corresponds to the outcome of a stochastic growth model if there are

risk neutral consumers. Otherwise, a formulation with variable real interest rates

may be warranted.

106In many economies, it is also influenced by policy variations in the form of

investment tax credits.

107Moreover, the special case of no adjustment costs is generally nested in these

other models.

108In some applications, the cost of adjustment function depends on investment

and is written C(I,K) where I = K ′ − (1 − δ)K .

109Abel and Eberly (1994) contain further discussion of the applicability of Q

theory for more general adjustment cost and profit functions.

110Hayashi (1982) was the first to point out that in this case average and marginal
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q coincide though his formulation was nonstochastic.

111 Interestingly, the natural conjecture that φ(A) = A does not satisfy the func-

tional equation.

112We are grateful to Joao Ejarque for allowing us to use this material.

113The error term in (8.8) is often ascribed to stochastic elements in the cost of

adjustment function so that ai is modified to become ait = ai + εit.

114 Hubbard (1994) reviews these findings.

115Cooper and Ejarque (2001) do not attempt to characterize this measurement

error analytically but use their simulated environment to understand its implica-

tions. See Erickson and Whited (2000) for a detailed and precise discussion of the

significance of measurement error in the Q regressions.

116 Cooper and Ejarque (2001) have no unobserved heterogeneity in the model so

that the constant from the regression as well as the fixed effects are ignored. The

remaining coefficients are taken to be common across all firms.

117 In fact, the estimates are not very sensitive to the aggregate shocks. The model

is essentially estimated from the rich cross sectional variation, as in the panel study

of Gilchrist and Himmelberg (1995).

118The computation of standard errors follows the description in Chapter 4 of

Gourieroux and Monfort (1996).

119Cooper and Ejarque (2001) show that if p = y−η is the demand curve and

y = Akφl(1−φ) the production function. Maximization of profit over the flexible

factor, l, leads to a reduced form profit function where the exponent on capital is

φ(η−1)
(1−φ)(1−η)−1

. With φ = .33, η = .1315, implying a markup of about 15%.
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120The program to estimate this model is very simple. Once Ω(γ) is programmed,

it is simply a basic routine to minimize this function. Obtaining Ω(γ) is easy too

using the information on parameters plus observations in the data set on investment

rates and the ratio of output to capital (which is used to determine marginal profit

rates). The minimization may not occur exactly at γ = 2 due to sampling error.

The interested reader can extend this analysis to create a distribution of estimates

by redrawing shocks, simulating and then re-estimating γ from the GMM procedure.

121If, in the example above, α = 1, then the constraint is proportional to K. In

this case, it appears that average and marginal Q are equal.

122Cooper and Haltiwanger provide a detailed description of the data.

123See Abel and Eberly (1994) for a model in which fixed costs are proportional to

K. If these costs were independent of size, then large plants would face lower adjust-

ment costs (relative to their capital stock) and thus might adjust more frequently.

So, as in the quadratic specification, the costs are scaled by size. This is though an

assumption and the relationship between plant size and investment activity is still

an open issue.

124 Recall the outline of the basic value function iteration program for the non-

stochastic growth model and the modification of that for non-convex adjustment

costs in Chapter 3.

125As discussed in Cooper and Haltiwanger (1993) and Cooper et al. (1999), this

assumption that a new machine has fixed size can be derived from a model with

embodied technological progress which is rendered stationary by dividing through by

the productivity of the new machine. In this case, the rate of depreciation measures

both physical deterioration and obsolescence.
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126 Cooper and Haltiwanger (2000) and Cooper et al. (1999) argue that these

features also hold when there is a one period lag in the installation process.

127Cooper et al. (1999) analyze the more complicated case of a one-period lag in

the installation of new capital.

128An interesting extension of the model would make this gap endogenous.

129The data set is described in Cooper and Haltiwanger (2000) and is a balanced

panel of US manufacturing plants. Comparable data sets are available in other

countries. Similar estimation exercises using these data sets would be of considerable

interest.

130See the discussion in Cooper and Haltiwanger (2000) of the estimation of this

profit function.

131More recent versions of the Cooper-Haltiwanger paper explore adding lagged

investment rates to this reduced form to pick up some of the dynamics of the ad-

justment process.

132This is an important step in the analysis. Determining the nature of adjustment

costs will depend on the characterization of the underlying profitability shocks. For

example, if a researcher is trying to identify non-convex adjustment costs from bursts

of investment, then getting the distribution of shocks right is critical.

133The results are robust to allowing the discount factor to vary with the aggregate

shock in order to mimic the relationship between real interest rates and consumption

growth from a household’s Euler equation.

134The interested reader should read closely the discussion in Rust (1987) and the

papers that followed this line of work. Note that often assumptions are made on
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G(·) to ease the computation of the likelihood function.

135Here we are also assuming that the discount factor is fixed. More generally it

might depend on a and a′.

136So, in contrast to the chapter on capital adjustment, here we assume that there

are no costs to adjusting the stock of capital. This is, of course, for convenience

only and a complete model would incorporate both forms of adjustment costs.

137We can study the implications of that specification by setting q = 0 in (9.2) to

study the alternative.

138As well as from the dynamic adjustment of other factors, such as capital.

139As discussed later in this chapter, this model is used in Cooper and Willis (2001)

as a basis for a quantitative analysis of the gap approach.

140The literature on labor adjustment costs contains both specifications. Cooper

and Willis (2001) find that their results are not sensitive to this part of the specifi-

cation.

141Alternatively, the parameters of these processes could be part of an estimation

exercise.

142The factors that help the firm forecast future wages are then included in the

state space of the problem; i.e. they are in the aggregate component of A.

143Sargent (1978) estimates a model with both regular and overtime employment.

For simplicity, we have presented the model of regular employment alone.

144He also discusses in detail the issue of identification and in fact finds multiple

peaks in the likelihood function. Informally, the issue is distinguishing between the

serial correlation in employment induced by lagged employment from that induced
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by the serial correlation of the productivity shocks.

145This inaction rate is too high relative to observation: the parameterization is

for illustration only.

146In fact, this depiction also motivates consideration of a search model as the

primitive that underlies a model of adjustment costs. See the discussion of this in

the discussion of Yashiv (2000) in Chapter 10.

147At this level of fixed costs, there is about 50% employment inaction. Again the

parameterization is just for illustration.

148This presentation draws heavily upon Cooper and Willis (2001). We are grateful

to John Haltiwanger and Jon Willis for helpful discussions on this topic.

149In fact the structure is used to study adjustment of capital as well.

150Based on discussions above, the policy function of the firm should depend jointly

on (A, e−1) and not the gap alone.

151 This point was made some years ago. Nickell (1978) says,

“... the majority of existing models of factor demand simply analyze

the optimal adjustment of the firm towards a static equilibrium and it

is very difficult to deduce from this anything whatever about optimal

behavior when there is no ‘equilibrium’ to aim at.”

152The process is taken from the Cooper and Haltiwanger (2000) study of capital

adjustment. As these shocks were measured using static labor first order condition,

Cooper and Willis (2001) study the robustness of their results to variations in these

Markov processes.
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153This discussion parallels the approach in Cooper and Haltiwanger (2000).

154Though see the discussion Aguirregabiria (1997) for progress in this direction.

155Of course, it then becomes a question of identification: can one distinguish the

non-convex and piecewise linear models.

156Note that Θ would include the parameters of the stochastic processes as well.

157This is the goal of an ongoing project.

158Though in some cases a more general equilibrium approach is needed to assess

the complete implications of the policy.

159This suggestion is along the lines of the so-called “natural experiments” ap-

proach to estimation where the researcher searches for “exogenous” events that may

allow for the identification of key parameters. Evaluating this approach in the con-

text of structural model is of interest.

160Early formulations of the framework we discuss include Benassy (1982), Blan-

chard and Kiyotaki (1987),Caballero and Engel (1993a), Caplin and Leahy (1991)

and Caplin and Leahy (1997).

161This is similar to the stochastic adjustment cost structure used in Rust (1987).

162As discussed, for example, in Blanchard and Kiyotaki (1987), there is a com-

plementarity that naturally arises in the pricing decisions in this environment.

163Of course, this may entails adding additional elements to the state space. See

Adda and Cooper (2000a) and Willis (2000a) for discussions of this point.

164Ball and Romer (1990) provide an example of this. John and Wolman (1999)

study these issues in a dynamic setting of price adjustment.
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165The contribution here is bringing the dynamic menu cost model to the data.

Bils and Klenow (2002) provide further evidence on price setting behavior based

upon BLS price data.

166For this specification, there is assumed to be no serial correlation in the adjust-

ment costs. See Willis (2000a) for further discussion of this point and estimates

which relax this restriction.

167Thus in principle one can use this condition for estimation of some parameters

of the model using orthogonality conditions as moments. See the discussion of this

point in Pakes (1994) and Aguirregabiria (1997), where the latter paper includes a

labor example.

168The findings of Dotsey et al. (1999) are based on a parameterization of the

adjustment cost distribution and the other assumptions noted above. Whether

these properties obtain in an estimated model is an open issue. See Willis (2000b)

for progress on this issue.

169See the discussion in Arrow et al. (1951) and the references therein.

170Taken literally R in excess of unity means that inventories accumulate on their

own which may seem odd. The literature is much more explicit about various

marginal gains to holding inventories. If R is less than unity, than output will

be independent of the state but will be rising over time. This policy may require

negative inventories, an issue we address below.

171See Blinder (1986), Blinder and Maccini (1991) and the references therein for

the extensive literature on these points.

172See, for example, the discussion in Blinder (1986), Eichenbaum (1989) and

Christiano (1988).
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173Hall (2000) studies a model of production scheduling using data on automobile

assembly plants and finds some support for hypothesis that nonconvexities in the

production process lie behind the observations on the relative volatility of production

and sales.

174See Scarf (1959) for developments of this argument.

175Hall and Rust (2000) examines a model of optimal inventory behavior in an

environment where there is a fixed ordering cost with a stochastic product price.

They argue that a calibrated version of their model fits important aspects of their

data from a US steel wholesaler.

176Kahn (1987) includes a period of price predetermination.

177The estimation methodology is complex and the reader is urged to study Aguir-

regabiria (1999).

178Estimation of this more general structure using plant level data is part of ongoing

research of R. Cooper and J. Haltiwanger. See Sakellaris (2001) for some interesting

facts concerning the interaction of capital and labor adjustment.

179This is the underlying theme of the macroeconomic complementarities literature,

as in Cooper (1999).

180In contrast to the contraction mapping theorem, there is no guarantee that this

process will converge. In some cases, the household’s response to an aggregate law

of motion can be used as the next guess on the aggregate law of motion. Iteration

of this may lead to a recursive equilibrium.

181See Cooper (1999) and the references therein.

182Interestingly, McCall mentions that his paper draws on Stanford class notes
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from K. Arrow on the reservation wage property.

183This model is frequently used for expositional purposes in other presentations of

the search process. It can be enriched in many ways, including adding: fires, quits,

costly search, etc.

184Writing a small program to do this would be a useful exercise. Note that this

dynamic programming model is close to the discrete cake eating problem presented

in Chapters 2 to 4.

185Here Θ would include the parameters for the individual agent (eg. those char-

acterizing u(w) as well as β) and the parameters of the wage distribution.

186Sometimes unobserved heterogeneity is added to create the same effect.

187Adda et al. (2002) estimate a related model using a panel data of German

workers.

188As noted earlier, Willis (2000b) makes some progress on this in a pricing problem

and Thomas (2000) studies some of these issues in the context of an investment

problem.



Table 5.1: Observed and Predicted Moments

Moments US data KPR calibrated model

Std relative to output

consumption .69 .64

investment 1.35 2.31

hours .52 .48

wages 1.14 .69

Cross correlation with output

consumption .85 .82

investment .60 .92

hours .07 .79

wages .76 .90



Table 6.1: GMM Estimation Based on the Euler Equation

γ Prop of liquidity γ̂GMM

constrained periods

0.5 80% 2.54

1 50% 3.05

2 27% 3.92

3 23% 4.61

4 11% 5.23

5 9% 5.78

6 8% 6.25

Note: ρ = 0, σ = 10, µ = 100, β =

0.9, r = 0.05. Estimation done on

3000 simulated observations.



Table 7.1: ARMA(1,1) Estimates on US and French Data

Specification No trend Linear trend

α1 δ α1 δ

US durable expenditures 1.00(.03) 1.5 (.15) 0.76 (0.12) 1.42 (0.17)

US car registration 0.36(.29) 1.34 (.30) 0.33 (0.30) 1.35(0.31)

France durable expenditures 0.98 (0.04) 1.20 (0.2) 0.56 (0.24) 1.2 (0.36)

France car expenditures 0.97(0.06) 1.3 (0.2) 0.49 (0.28) 1.20 (0.32)

France car registrations 0.85 (0.13) 1.00 (0.26) 0.41 (0.4) 1.20 (0.41)

Notes: Annual data. For the US, source FRED database, 1959:1-1997:3. French

data: source INSEE, 1970:1-1997:2. US registration: 1968-1995.



Table 7.2: Transition Matrix for π

state tomorrow

1 2 3 4

1 0.01 0.01 0.01 0.97

state 2 0.01 0.01 0.01 0.97

today 3 0.225 0.225 0.1 0.45

4 0.01 0.01 0.01 0.97



Table 8.1: Estimated Structural Parameters

Structural Parameters

α γ ρ σ θ

GH95

CE .689(.011) .149(.016) .106(.008) .855 (.04) 2



Table 8.2: Regression Results and Moments

Reduced Form Coef . Estimates/Moments

a1 a2 sc I
K

std π
K

q̄

GH95 .03 .24 .4 .25 3

CE .041 .237 .027 .251 2.95



Table 8.3: Descriptive Statistics, LRD

Variable LRD

Average Investment Rate 12.2%

Inaction Rate: Investment 8.1%

Fraction of Observations with Negative Investment 10.4%

Spike Rate: Positive Investment 18%

Spike Rate: Negative Investment 1.4%



Table 8.4: Parameter Estimates

Spec. Structural Parm. Estimates (s.e.) parm. est. for (8.22)

γ F ps ψ0 ψ1 ψ2

LRD -.013 .265 .20

all .043 (0.00224) .00039(.0000549) .967(.00112) -.013 .255 .171

F only 0 .0333(.0000155) 1 -.02 .317 .268

γ only .125(.000105) 0 1 -.007 .241 .103

ps only 0 0 .93(.000312) -.016 .266 .223



Figure 3.1: Stochastic Cake Eating Problem,

i_s=1

do until i_s>n_s * Loop over all sizes of the total

amount of cake X *

c_L=X_L * Min value for consumption *

c_H=X[i_s] * Max value for consumption *

i_c=1

do until i_c>n_c * Loop over all consumption levels *

c=c_L+(c_H-c_L)/n_c*(i_c-1)

i_y=1

EnextV=0 * initialize the next value to zero

do until i_y>n_y * Loop over all possible realizations

of the future endowment *

nextX=R*(X[i_s]-c)+Y[i_y] * Next period amount of cake *

nextV=V(nextX) * Here we use interpolation to find

the next value function *

EnextV=EnextV+nextV*Pi[i_y] * Store the expected future value

using the transition matrix *

i_y=i_y+1

endo * end of loop over endowment *

aux[i_c]=u(c)+beta*EnextV * stores the value of a given

consumption level *

i_c=i_c+1

endo * end of loop over consumption *

newV[i_s,i_y]=max(aux) * Take the max over all consumption

levels *

i_s=i_s+1

endo * end of loop over size of cake *

V=newV * update the new value function *



Figure 3.2: Value Function, Stochastic Cake Problem



Figure 3.3: Policy Function, Stochastic Cake Eating Problem



Figure 3.4: Stochastic Cake Eating Problem, Projection Method

procedure c(x) * Here we define an approximation for

cc=psi_0+psi_1*x+psi_2*x*x the consumption function based on

return(cc) a second order polynomial *

endprocedure

i_s=1

do until i_s>n_s * Loop over all sizes of the total

amount of cake *

utoday=U’(c(X[i_s])) * marginal utility of consuming *

ucorner=U’(X[i_s]) * marginal utility if corner solution *

i_y=1

do until i_y>n_y * Loop over all possible realizations

of the future endowment *

nextX=R(X[i_s]-c(X[i_s]))+Y[i_y] * next amount of cake *

nextU=U’(nextX) * next marginal utility of consumption *

EnextU=EnextU+nextU*Pi[i_y] * here we compute the expected future

marginal utility of consumption using

the transition matrix Pi *

i_y=i_y+1

endo * end of loop over endowment *

F[i_s]=utoday-max(ucorner,beta*EnextU)

i_s=i_s+1

endo * end of loop over size of cake *



Figure 3.5: Basis Functions, Finite Element Method
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Figure 3.6: Discrete Cake Eating Problem,

i_s=2

do until i_s>n_s * Loop over all sizes of the cake *

i_e=1

do until i_e>2 * Loop over all possible realizations

of the taste shock *

ueat=u(W[i_s],e[i_e]) * utility of eating the eating now *

nextV1=V[i_s-1, 1] * next period value if low taste shock *

nextV2=V[i_s-1, 2] * next period value if high taste shock *

EnextV=nextV1*p[i_e,1]+nextV2*p[i_e,2]

newV[i_s,i_e]=max(ueat,beta*EnextV)

* Take the max between eating now

or waiting *

i_e=i_e+1

endo * end of loop over taste shock *

i_s=i_s+1

endo * end of loop over size of cake *

V=newV * update the new value function *



Figure 3.7: Value Function, Discrete Cake Eating Problem



Figure 3.8: Decision Rule, Discrete Cake Eating Problem



Figure 3.9: Approximation Methods



Figure 3.10: Example of Discretization, N=3
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Figure 3.11: Simulation of a Markov Process

t=1

oldind=1 * variable to keep track of state in period t-1 *

y[t]=z[oldind] * initialize first period *

do until t>T * Loop over all time periods *

u=uniform(0,1) * Generate a uniform random variable *

sum=0 * will contain the cumulative sum of pi *

ind=1 * index over all possible values for process *

do until u<=sum * loop to find out the state in period t *

sum=sum+pi[oldind,ind] * cumulative sum of pi *

ind=ind+1

endo

y[t]=z[ind] * state in period t *

oldind=ind * keep track of lagged state *

t=t+1

endo



Figure 4.1: Log Likelihood, True θ0 = 0



Figure 4.2: Objective Function, Simulated Method of Moments, true θ0 = 0



Figure 4.3: Just Identification
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Figure 4.4: Non Identification
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Figure 4.5: Zero Likelihood
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Figure 4.6: Overview of Methodology
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Figure 5.1: Policy Function
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Figure 5.2: Net Investment
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Figure 6.1: Consumption and Liquidity Constraints: Optimal Consumption Rule



Figure 6.2: Simulations of Consumption and Assets with Serially Correlated Income



Figure 6.3: Optimal Consumption Rule



Figure 6.4: Observed and Predicted Consumption Profiles



Figure 7.1: [s,S] rule



Figure 7.2: Estimated Hazard Function, France



Figure 7.3: Estimated Hazard Function, US



Figure 7.4: Sales of New Cars, in thousands, monthly



Figure 7.5: Expected Aggregate Sales, Relative to Baseline



Figure 7.6: Expected Government Revenue, Relative to Baseline



Figure 8.1: The function Ω(γ)
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Figure 9.1: Employment Policy Functions: Quadratic Costs
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Figure 9.2: Employment Policy Functions: Piece-wise Linear Adjustment Costs
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Figure 9.3: Employment Policy Functions: Non-convex Adjustment Costs
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Figure 9.4: Employment Policy Functions: Mixed Adjustment Costs
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