MA2601-2: ECUACIONES DIFERENCIALES ORDINARIAS CLASE AUXILIAR 2

- 1. Ley de enfriamiento de Newton: Cuando las diferencias de temperatura entre un cuerpo y el ambiente es pequeña, el calor transferido en una unidad de tiempo entre el cuerpo y la atmósfera es proporcional a la diferencia de temperatura entre el cuerpo y el ambiente.
 - a) En base a la ley de enfriamiento, determine la relación entre la temperatura del mar T(t) y la temperatura del ambiente $T_A(t)$. Modele esta situación como una EDO, y resuélvala suponiendo que $T_A(t)$ es constante igual a T_A , y que $T(0) = T_0$.
 - b) Ahora suponga que la termperatura del ambiente T_A varía de manera periódica en el tiempo, es decir,

$$T_A(t) = T_A^0 + A\sin(\omega t)$$

donde ω es la frecuencia con que oscila. Encuentre la expresión en función del tiempo que determina la temperatura del mar.

2. La corriente del Ni $\tilde{n}o$: Se puede modelar la intensidad u(t) de las corrientes cálidas del Océano Pacífico en la dirección del Oeste al Este mediante la EDO siguiente:

$$u'(t) = \sigma \Delta T - k(u(t) - v(t))$$

para t>0. Las constantes σ y k son positivas, ΔT es la diferencia de temperatura del mar entre el Oeste y el Este, y

$$v(t) = A(1 + \sin(\omega t))$$

con A>0 y $\omega>0$. La función v expresa la intensidad de las contra-corrientes de Este al Oeste debidas al viento. Supongamos que $\Delta T>0$:

- a) Resolviendo la EDO, encuentre u.
- b) Pruebe que, independientemente de la condición inicial, u(t) > 0 para un tiempo suficientemente grande. Esto se puede interpretar como un sobrecalentamiento de las costas al Este en Sudamérica.
- 3. Cosidere la ecuación de Bernoulli:

$$y' + p(x)y = q(x)y^n$$

con $n \notin \{0,1\}$. Haciendo el cambio de variable $z = y^{1-n}$, reduzca la EDO anterior a una lineal de 1er orden no homogénea, y resuelva esta última. Deshaciendo el cambio de variables, encuentre y. Aplique este método para resolver $y' - 2xy = xy^3$.

4. Resuelva las siguientes EDO's:

- a) $xy' + y = xe^{x}$ b) $y' + y\cos(x) = \sin(x)\cos(x)$ c) $x^{3}y' xy = e^{-\frac{1}{x}}$, para x > 0. d) $y' = \frac{y^{2} 2x^{2}}{xy}$ e) $y' = \frac{x + y}{x y}$