
4

SHORTEST PATHS: LABEL-SE11'1NG
ALGORITHMS

A journey of a thousand miles starts with a single step and if
that step is the right step. it becomes the last step.

-Lao Tzu

ClJapter Outlme

4.1 Introduction
4.2 Applications
4.3 Tree of Shortest Paths
4.4 Shortest Path Problems in Acyclic Networks
4.5 Dijkstra's Algorithm
4.6 Dial's Implementation
4.7 Heap Implementations
4.8 Radix Heap Implementation
4.9 Summary

4.1 INTRODUCTION

Shortest path problems lie at the heart of network flows. They are alluring to both
researchers and to practitioners for several reasons: (1) they arise frequently in
practice since in a wide variety of application settings we wish to send some material
(e.g., a computer data packet, a telephone call, a vehicle) between two specified
points in a network as quickly, as cheaply, or as reliably as possible; (2) they are
easy to solve efficiently; (3) as the simplest network models, they capture many of
the most salient core ingredients of network flows and so they provide both a bench­
mark and a point of departure for studying more complex network models; and (4)
they arise frequently as subproblems when solving many combinatorial and network
optimization problems. Even though shortest path problems are relatively easy to
solve, the design and analysis of most efficient algorithms for solving them requires
considerable ingenuity. Consequently, the study of shortest path problems is a nat­
ural starting point for introducing many key ideas from network flows, including the
use of clever data structures and ideas such as data scaling to improve the worst­
case algorithmic performance. Therefore, in this and the next chapter, we begin our
discussion of network flow algorithms by studying shortest path problems.

We first set our notation and describe several assumptions that we will invoke
throughout our discussion.

93

Notation and Assumptions

We consider a directed network G = (N, A) with an arc length (or arc cost) Cij
associated with each arc (i, j) EA. The network has a distinguished node s, called
the source. Let A(i) represent the arc adjacency list of node i and let C = max{cij:
(i, j) E A}. We define the length of a directed path as the sum of the lengths of
arcs in the path. The shortest path problem is to determine for every nonsource
node i E N a shortest length directed path from node s to node i. Alternatively, we
might view the problem as sending 1 unit of flow as cheaply as possible (with arc
flow costs as cij) from node s to each of the nodes in N - {s} in an uncapacitated
network. This viewpoint gives rise to the following linear programming formulation
of the shortest path problem.

Minimize ~ c ijXij
U,j)EA

subject to

~ Xi) - ~ Xji = { n - 1
{j:(i,j)EA} {j:(j,i)EA} - 1

for i = s
for all i E N - {s}

for all (i, j) E A.

(4.1a)

(4.1b)

(4.1c)

In our study of the shortest path problem, we will impose several assumptions.

Assumption 4.1. All arc lengths are integers.

The integrality assumption imposed on arc lengths is necessary for some al­
gorithms and unnecessary for others. That is, for some algorithms we can relax it
and still perform the same analysis. Algorithms whose complexity bound depends
on C assume integrality of the data. Note that we can always transform rational arc
capacities to integer arc capacities by multiplying them by a suitably large number.
Moreover, we necessarily need to convert irrational numbers to rational numbers
to represent them on a computer. Therefore, the integrality assumption is really not
a restrictive assumption in practice.

Assumption 4.2. The network contains a directed path from node s to every
other node in the network.

We can always satisfy this assumption by adding a "fictitious" arc (s, i) of
suitably large cost for each node i that is not connected to node s by a directed path.

Assumption 4.3. The network does not contain a negative cycle (i.e., a di­
rected cycle of negative length).

Observe that for any network containing a negative cycle W, the linear pro­
gramming formulation (4.1) has an unbounded solution because we can send an
infinite amount of flow along W. The shortest path problem with a negative cycle

94 Shortest Paths: Label-Setting Algorithms Chap. 4

is substantially harder to solve than is the shortest path problem without a negative
cycle. Indeed, because the shortest path problem with a negative cycle is an .NI!P­
complete problem, no polynomial-time algorithm for this problem is likely to exist
(see Appendix B for the definition of .NI!P-complete problems). Negative cycles com­
plicate matters, in part, for the following reason. All algorithms that are capable of
solving shortest path problems with negative length arcs essentially determine short­
est length directed walks from the source to other nodes. If the network contains
no negative cycle, then some shortest length directed walk is a path (Le., does not
repeat nodes), since we can eliminate directed cycles from this walk without in­
creasing its length. The situation for networks with negative cycles is quite different;
in these situations, the shortest length directed walk might traverse a negative cycle
an infinite number of times since each such repetition reduces the length of the walk.
In these cases we need to prohibit walks that revisit nodes; the addition of this
apparently mild stipulation has significant computational implications: With it, the
shortest path problem becomes substantially more difficult to solve.

Assumption 4.4. The network is directed.

If the network were undirected and all arc lengths were nonnegative, we could
transform this shortest path problem to one on a directed network. We described
this transformation in Section 2.4. If we wish to solve the shortest path problem on
an undirected network and some arc lengths are negative, the transformation de­
scribed in Section 2.4 does not work because each arc with negative length would
produce a negative cycle. We need a more complex transformation to handle this
situation, which we describe in Section 12.7.

Various Types of Shortest Path Problems

Researchers have studied several different types of (directed) shortest path problems:

1. Finding shortest paths from one node to all other nodes when arc lengths are
nonnegative

2. Finding shortest paths from one node to all other nodes for networks with
arbitrary arc lengths

3. Finding shortest paths from every node to every other node
4. Various generalizations of the shortest path problem

In this and the following chapter we discuss the first three of these problem
types. We refer to problem types (1) and (2) as the single-source shortest path prob­
lem (or, simply, the shortest path problem), and the problem type (3) as the all-pairs
shortest path problem. In the exercises of this chapter we consider the following
variations of the shortest path problem: (1) the maximum capacity path problem,
(2) the maximum reliability path problem, (3) shortest paths with turn penalties, (4)
shortest paths with an additional constraint, and (5) the resource-constrained shortest
path problem.

Sec. 4.1 Introduction 95

Analog Solution of the Shortest Path Problem

The shortest path problem has a particularly simple structure that has allowed re­
searchers to develop several intuitively appealing algorithms for solving it. The fol­
lowing analog model for the shortest path problem (with nonnegative arc lengths)
provides valuable insight that helps in understanding some of the essential features
of the shortest path problem. Consider a shortest path problem between a specified
pair of nodes sand t (this discussion extends easily for the general shortest path
model with multiple destination nodes and with nonnegative arc lengths). We con­
struct a string model with nodes represented by knots, and for any arc (i, j) in A,
a string with length equal to c(doining the two knots i and j. We assume that none
of the strings can be stretched. After constructing the model, we hold the knot
representing node s in one hand, the knot representing node t in the other hand, and
pull our hands apart. One or more paths will be held tight; these are the shortest
paths from node s to node t.

We can extract several insights about the shortest path problem from this simple
string model:

1. For any arc on a shortest path, the string will be taut. Therefore, the shortest
path distance between any two successive nodes i andj on this path will equal
the length Cij of the arc (i, j) between these nodes.

2. For any two nodes i and j on the shortest path (which need not be successive
nodes on the path) that are connected by an arc (i, j) in A, the shortest path
distance from the source to node i plus Cij (a composite distance) is always as
large as the shortest path distance from the source to node j. The composite
distance might be larger because the string between nodes i and j might not be
taut.

3. To solve the shortest path problem, we have solved an associated maximization
problem (by pulling the string apart). As we will see in our later discussions,
in general, all network flow problems modeled as minimization problems have
an associated "dual" maximization problem; by solving one problem, we gen­
erally solve the other as well.

Label-Setting and Label-Correcting Algorithms

The network flow literature typically classifies algorithmic approaches for solving
shortest path problems into two groups: label setting and label correcting. Both
approaches are iterative. They assign tentative distance labels to nodes at each step;
the distance labels are estimates of (i.e., upper bounds on) the shortest path dis­
tances. The approaches vary in how they update the distance labels from step to
step and how they "converge" toward the shortest path distances. Label-setting
algorithms designate one label as permanent (optimal) at each iteration. In contrast,
label-correcting algorithms consider all labels as temporary until the final step, when
they all become permanent. One distinguishing feature of these approaches is the
class of problems that they solve. Label-setting algorithms are applicable only to (1)
shortest path problems defined on acyclic networks with arbitrary arc lengths, and
to (2) shortest path problems with nonnegative arc lengths. The label-correcting

96 Shortest Paths: Label-Setting Algorithms Chap. 4

algorithms are more general and apply to all classes of problems, including those
with negative arc lengths. The label-setting algorithms are much more efficient, that
is, have much better worst-case complexity bounds; on the other hand, the label­
correcting algorithms not only apply to more general classes of problems, but as we
will see, they also offer more algorithmic flexibility. In fact, we can view the label­
setting algorithms as special cases of the label-correcting algorithms.

In this chapter we study label-setting algorithms; in Chapter 5 we study label­
correcting algorithms. We have divided our discussion in two parts for several rea­
sons. First, we wish to emphasize the difference between these two solution ap­
proaches and the different algorithmic strategies that they employ. The two problem
approaches also differ in the types of data structures that they employ. Moreover,
the analysis of the two types of algorithms is quite different. The convergence proofs
for label-setting algorithms are much simpler and rely on elementary combinatorial
arguments. The proofs for the label-correcting algorithms tend to be much more
subtle and require more careful analysis.

Chapter Overview

The basic label-setting algorithm has become known as Dijkstra' s algorithm because
Dijkstra was one of several people to discover it independently. In this chapter we
study several variants of Dijkstra's algorithm. We first describe a simple imple­
mentation that achieves a time bound of O(n 2

). Other implementations improve on
this implementation either empirically or theoretically. We describe an implemen­
tation due to Dial that achieves an excellent running time in practice. We also con­
sider several versions of Dijkstra's algorithm that improve upon its worst-case com­
plexity. Each of these implementations uses a heap (or priority queue) data structure.
We consider several such implementations, using data structures known as binary
heaps, d-heaps, Fibonacci heaps, and the recently developed radix heap. Before
examining these various algorithmic approaches, we first describe some applications
of the shortest path problem.

4.1 APPLICATIONS

Shortest path problems arise in a wide variety of practical problem settings, both
as stand-alone models and as subproblems in more complex problem settings. For
example, they arise in the telecommunications and transportation industries when­
ever we want to send a message or a vehicle between two geographical locations
as quickly or as cheaply as possible. Urban traffic planning provides another im­
portant example: The models that urban planners use for computing traffic flow
patterns are complex nonlinear optimization problems or complex equilibrium
models; they build, however, on the behavioral assumption that users of the trans­
portation system travel, with respect to prevailing traffic congestion, along shortest
paths from their origins to their destinations. Consequently, most algorithmic ap­
proaches for finding urban traffic patterns solve a large number of shortest path
problems as subproblems (one for each origin-destination pair in the network).

In this book we consider many other applications like this with embedded
shortest path models. These many and varied applications attest to the importance

Sec. 4.2 Applications 97

i
/(x)

of shortest path problems in practice. In Chapters 1 and 19 we discuss a number of
stand-alone shortest path models in such problem contexts as urban housing, project
management, inventory planning, and DNA sequencing. In this section and in the
exercises in this chapter, we consider several other applications of shortest paths
that are indicative of the range of applications of this core network flow model.
These applications include generic mathematical applications-approximating func­
tions, solving certain types of difference equations, and solving the so-called knap­
sack problem-as well as direct applications in the domains of production planning,
telephone operator scheduling, and vehicle fleet planning.

Application 4.1 Approximating Piecewise Linear
Functions

Numerous applications encountered within many different scientific fields use piece­
wise linear functions. On several occasions, these functions contain a large number
of breakpoints; hence they are expensive to store and to manipulate (e.g., even to
evaluate). In these situations it might be advantageous to replace the piecewise linear
function by another approximating function that uses fewer breakpoints. By ap­
proximating the function we will generally be able to save on storage space and on
the cost of using the function; we will, however, incur a cost because of the inac­
curacy of the approximating function. In making the approximation, we would like
to make the best possible trade-off between these conflicting costs and benefits.

Let f.(x) be a piecewise linear function ofa scalar x. We represent the function
in the two-dimensional plane: It passes through n points al = (XI, YI), a2 =
(X2' Y2), ... , an = (xn, Yn). Suppose that we have ordered the points so that XI :S

X2 :S ... :S Xn. We assume that the function varies linearly between every two consec­
utive points Xi and Xi+ I. We consider situations in which n is very large and for
practical reasons we wish to approximate the function f I (x) by another function
f2(X) that passes through only a subset of the points a1, a2, ... , an (including al
and an). As an example, consider Figure 4.I(a): In this figure we have approximated
a function fl(x) passing through 10 points by a function f2(X) drawn with dashed
lines) passing through only five of the points.

This approximation results in a savings in storage space and in the use of the
function. For purposes of illustration, assume that we can measure these costs by
a per unit cost 0: associated with any single interval used in the approximation (which

98

x----+­
(8)

(b)

Figure 4.1 Illustrating Applications 4.1: (a) approximating the function II (x) passing through

10 points by the function h(x); (b) corresponding shortest path problem.

Shortest Paths: Label-Setting Algorithms Chap. 4

is defined by two points, aj and aj). As we have noted, the approximation also
introduces errors that have an associated penalty. We assume that the error of an
approximation is proportional to the sum of the squared errors between the actual
data points and the estimated points (i.e., the penalty is ~ L7=. [I. (Xi) - I2(Xi»)2
for some constant ~). Our decision problem is to identify the subset of points to be
used to define the approximation function I2 (X) so that we incur the minimum total
cost as measured by the sum of the cost of storing and using the approximating
function and the cost of the errors imposed by the approximation.

We will formulate this problem as a shortest path problem on a network G with
n nodes, numbered 1 through n, as follows. The network contains an arc (i, j) for
each pair of nodes i and j such that i < j. Figure 4.l(b) gives an example of the
network with n = 5 nodes. The arc (i,j) in this network signifies that we approximate
the linear segments of the function II (X) between the points aj, aj+., ... , aj by
one linear segment joining the points aj and aj. The cost C ij of the arc (i, j) has two
components: the storage cost a and the penalty associated with approximating all
the points between aj and aj by the corresponding points lying on the line joining ai
and aj. In the interval [Xi, Xj], the approximating function is I2(X) = It(Xi) + (x -
xi)[I. (Xj) - II (xj»)/(xj - Xi), so the total cost in this interval is

cij = a + ~[~; (fl(x,) - f2(x.»2 J
Each directed path from node 1 to node n in G corresponds to a function I2(X),

and the cost of this path equals the total cost for storing this function and for using
it to approximate the original function. For example, the path 1-3-5 corresponds
to the function I2(X) passing through the points aI, a3, and as. As a consequence
of these observations, we see that the shortest path from node 1 to node n specifies
the optimal set of points needed to define the approximating function I2(X).

Application 4.2 Anocating Inspection Effort on a
Production Line

A production line consists of an ordered sequence of n production stages, and each
stage has a manufacturing operation followed by a potential inspection. The product
enters stage 1 of the production line in batches of size B ;::: 1. As the items within
a batch move through the manufacturing stages, the operations might introduce
defects. The probability of producing a defect at stage i is ai. We assume that all of
the defects are nonrepairable, so we must scrap any defective item. After each stage,
we can either inspect all of the items or none of them (we do not sample the items);
we assume that the inspection identifies every defective item. The production line
must end with an inspection station so that we do not ship any defective units. Our
decision problem is to find an optimal inspection plan that specifies at which stages
we should inspect the items so that we minimize the total cost of production and
inspection. Using fewer inspection stations might decrease the inspection costs, but
will increase the production costs because we might perform unnecessary manu­
facturing operations on some units that are already defective. The optimal number
of inspection stations will achieve an appropriate trade-off between these two con­
flicting cost considerations.

Sec. 4.2 Applications 99

Suppose that the following cost data are available: (1) Pi, the manufacturing
cost per unit in stage i; (2) fu, the fixed cost of inspecting a batch after stagej, given
that we last inspected the batch after stage i; and (3) gij, the variable per unit cost
for inspecting an item after stagej, given that we last inspected the batch after stage
i. The inspection costs at station j depend on when the batch was inspected last,
say at station i, because the inspector needs to look for defects incurred at any of
the intermediate stages i + 1, i + 2, ... ,j.

We can formulate this inspection problem as a shortest path problem on a
network with (n + 1) nodes, numbered 0, 1, ... , n. The network contains an arc
(i, j) for each node pair i and j for which i < j. Figure 4.2 shows the network for an

Figure 4.2 Shortest path network
associated with the inspection problem.

inspection problem with four stations. Each path in the network from node 0 to node
4 defines an inspection plan. For example, the path 0-2-4 implies that we inspect
the batches after the second and fourth stages. Letting B(i) = B n~= 1 (1 - Uk)

denote the expected number of nondefective units at the end of stage i, we associate
the following cost Cij with any arc (i, j) in the network:

j

Cij = f ij + B(i)gij + B(i) L Pk. (4.2)
k=i+l

It is easy to see that Cij denotes the total cost incurred in the stages i + 1, i +
2, ... ,j; the first two terms on the right-hand side of (4.2) are the fixed and variable
inspection costs, and the third term is the production cost incurred in these stages.
This shortest path formulation permits us to solve the inspection application as a
network flow problem.

Application 4.8 Knapsack Problem

In Section 3.3 we introduced the knapsack problem and formulated this classical
operations research model as an integer program. For convenience, let us recall the
underlying motivation for this problem. A hiker must decide which goods to include
in her knapsack on a forthcoming trip. She must choose from among P objects:
Object i has weight Wi (in pounds) and a utility Ui to the hiker. The objective is to
maximize the utility of the hiker's trip subject to the weight limitation that she can
carry no more than W pounds. In Section 3.3 we described a dynamic programming
algorithm for solving this problem. Here we formulate the knapsack problem as a
longest path problem on an acyclic network and then show how to transform the
longest path problem into a shortest path problem. This application illustrates an
intimate connection between dynamic programming and shortest path problems on
acyclic networks. By making the appropriate identification between the stages and
"states" of any dynamic program and the nodes of a network, we can formulate
essentially all deterministic dynamic programming problems as equivalent shortest

100 Shortest Paths: Label-Setting Algorithms Chap. 4

path problems. For these reasons, the range of applications of shortest path problems
includes most applications of dynamic programming, which is a large and extensive
field in its own right.

We illustrate our formulation using a knapsack problem with four items that
have the weights and utilities indicated in the accompanying table:

j 1 2 3 4

Uj 40 15 20 10

Wj 4 2 3 1

Figure 4.3 shows the longest path formulation for this sample knapsack prob­
lem, assuming that the knapsack has a capacity of W = 6. The network in the
formulation has several layers of nodes: It has one layer corresponding to each item
and one layer corresponding to a source node s and another corresponding to a sink
node t. The layer corresponding to an item i has W + 1 nodes, iO, it, ... , iW. Node

layer 0 layer I layer 2 layer 3 layer 4 layer 5

Figure 4.3 Longest path formulation of the knapsack problem.

Sec. 4.2 Applications 101

ik in the network signifies that the items 1, 2, ... , i have consumed k units of the
knapsack's capacity. The node ik has at most two outgoing arcs, corresponding to
two decisions: (1) do not include item (i + 1) in the knapsack, or (2) include item
i + 1 in the knapsack. [Notice that we can choose the second of these alternatives
only when the knapsack has sufficient spare capacity to accommodate item U + 1),
i.e., k + Wi+! ::5 W.] The arc corresponding to the first decision is Uk, U + 1)k) with
zero utility and the arc corresponding to the second decision (provided that k +
Wi+! ::5 W) is Uk, U + l)k+wi+l) with utility Ui+!. The source node has two incident
arcs, (s, 1°) and (s, lWl), corresponding to the choices of whether or not to include
item 1 in an empty knapsack. Finally, we connect all the nodes in the layer corre­
sponding to the last item to the sink node t with arcs of zero utility.

Every feasible solution of the knapsack problem defines a directed path from
node s to node t; both the feasible solution and the path have the same utility.
Conversely, every path from node s to node t defines a feasible solution to the
knapsack problem with the same utility. For example, the path s-I°-22 -35 -45-t
implies the solution in which we include items 2 and 3 in the knapsack and exclude
items 1 and 4. This correspondence shows that we can find the maximum utility
selection of items by finding a maximum utility path, that is, a longest path in the
network.

The longest path problem and the shortest path problem are closely related.
We can transform the longest path problem to a shortest path problem by defining
arc costs equal to the negative ofthe arc utilities. If the longest path problem contains
any positive length directed cycle, the resulting shortest path problem contains a
negative cycle and we cannot solve it using any of the techniques discussed in the
book. However, if all directed cycles in the longest path problem have nonpositive
lengths, then in the corresponding shortest path problem all directed cycles have
nonnegative lengths and this problem can be solved efficiently. Notice that in the
longest path formulation of the knapsack problem, the network is acyclic; so the
resulting shortest path problem is efficiently solvable.

To conclude our discussion of this application, we offer a couple of concluding
remarks concerning the relationship between shortest paths and dynamic program­
ming. In Section 3.3 we solved the knapsack problem by using a recursive relation­
ship for computing a quantity dU, j) that we defined as the maximum utility of
selecting items if we restrict our selection to items 1 through i and impose a weight
restriction of j. Note that dU, j) can be interpreted as the longest path length from
node s to node i j

• Moreover, as we will see, the recursion that we used to solve the
dynamic programming formulation of the knapsack problem is just a special imple­
mentation of one of the standard algorithms for solving shortest path problems on
acyclic networks (we describe this algorithm in Section 4.4). This observation pro­
vides us with a concrete illustration of the meta statement that "(deterministic)
dynamic programming is a special case of the shortest path problem."

Second, as we show in Section 4.4, shortest path problems on acyclic networks
are very easy to solve-by methods that are linear in the number n of nodes and
number m of arcs. Since the nodes of the network representation correspond to the
"stages" and "states" of the dynamic programming formulation, the dynamic pro­
gramming model will be easy to solve if the number of states and stages is not very
large (i.e., do not grow exponentially fast in some underlying problem parameter).

102 Shortest Paths: Label-Setting Algorithms Chap. 4

Application 4.4 Tramp Steamer Problem

A tramp steamer travels from port to port carrying cargo and passengers. A voyage
of the steamer from port i to port j earns Pij units of profit and requires Tij units of
time. The captain of the steamer would like to know which tour W of the steamer
(i.e., a directed cycle) achieves the largest possible mean daily profit when we define
the daily profit for any tour W by the expression

/-L(W)

L pij
(i.j)EW

L Tij
(i,j)EW

We assume that Tij ;:=: 0 for every arc (i, j) E A, and that LU,j)EW Tij > 0 for every
directed cycle W in the network.

In Section 5.7 we study the tramp steamer problem. In this application we
examine a more restricted version of the tramp steamer problem: The captain of the
steamer wants to know whether some tour W will be able to achieve a mean daily
profit greater than a specified threshold /-Lo. We will show how to formulate this
problem as a negative cycle detection problem. In this restricted version of the tramp
steamer problem, we wish to determine whether the underlying network G contains
a directed cycle W satisfying the following condition:

L Pij
(i.j)EW

'" > /-Lo· £.oJ Tij
(i,j)EW

By writing this inequality as L(i.j)EW (/-LOTij - pij) < 0, we see that G contains
a directed cycle W in G whose mean profit exceeds /-Lo if and only if the network
contains a negative cycle when the cost of arc (i, j) is (/-LOTij - pij). In Section 5.5
we show that label-correcting algorithms for solving the shortest path problem are
able to detect negative cycles, which implies that we can solve this restricted version
of the tramp steamer problem by applying a shortest path algorithm.

Application 4.5 System of Difference Constraints
In some linear programming applications, with constraints of the form Six ::5 b, the
n x m constraint matrix Si contains one + 1 and one - 1 in each row; all the other
entries are zero. Suppose that the kth row has a + 1 entry in column jk and a -1
entry in column ik ; the entries in the vector b have arbitrary signs. Then this linear
program defines the following set of m difference constraints in the n variables x ==
(x(1), x(2), ... , x(n»:

for each k = 1, ... , m. (4.3)

We wish to determine whether the system of difference constraints given by
(4.3) has a feasible solution, and if so, we want to identify a feasible solution. This
model arises in a variety of applications; in Application 4.6 we describe the use of
this model in the telephone operator scheduling, and in Application 19.6 we describe
the use of this model in the scaling of data.

Each system of difference constraints has an associated graph G, which we

Sec. 4.2 Applications 103

call a constraint graph. The constraint graph has n nodes corresponding to the n
variables and m arcs corresponding to the m difference constraints. We associate
an arc Uk, A) of length b(k) in G with the constraint x(A) - XUk) :5 b(k). As an
example, consider the following system of constraints whose corresponding graph
is shown in Figure 4.4(a):

-10

5

8

-11

(a)

x(3) - x(4) :5 5,

x(4) - x(1) :5 -10,

x(1) - x(3) :5 8,

x(2) - x(1) :5 -11,

x(3) - x(2) :5 2.

o /
/

/
I

./
./

/ /0
I /

/'~
/'

2 ti'~ -10

\ "" 0
\ "
\ "
" " o ",-

'- '-----

5

8

-11

------(b)

Figure 4.4 Graph corresponding to a system of difference constraints.

2

(4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

In Section 5.2 we show that the constraints (4.4) are identical with the optimality
conditions for the shortest path problem in- Figure 4.4(a) and that we can satisfy
these conditions if and only if the network contains no negative (cost) cycle. The
network shown in Figure 4.4(a) contains a negative cycle 1-2-3 of length -1, and
the corresponding constraints [i.e., x(2) - x(1) :5 - 11, x(3) - x(2) :5 2, and
x(1) - x(3) :5 8] are inconsistent because summing these constraints yields the invalid
inequality 0 :5 - 1.

As noted previously, we can detect the presence of a negative cycle in a network
by using the label-correcting algorithms described in Chapter 5. The label-correcting
algorithms do require that all the nodes are reachable by a directed path from some
node, which we use as the source node for the shortest path problem. To satisfy
this requirement, we introduce a new node s andjoin it to all the nodes in the network
with arcs of zero cost. For our example, Figure 4.4(b) shows the modified network.
Since all the arcs incident to node s are directed out of this node, node s is not
contained in any directed cycle, so the modification does not create any new directed
cycles and so does not introduce any cycles with negative costs. The label-correcting
algorithms either indicate the presence of a negative cycle or provide the shortest
path distances. In the former case the system of difference constraints has no so­
lution, and in the latter case the shortest path distances constitute a solution of (4.4).

104 Shortest Paths: Label-~ettihg Algorithms Chap. 4

Application 4.6 Telephone Operator Scheduling

As an application of the system of difference constraints, consider the following
telephone operator scheduling problem. A telephone company needs to schedule
operators around the clock. Let b(i) for i = 0, 1,2, ... ,23, denote the minimum
number of operators needed for the ith hour of the day [here b(O) denotes number
of operators required between midnight and 1 A.M.]. Each telephone operator works
in a shift of 8 consecutive hours and a shift can begin at any hour of the day. The
telephone company wants to determine a "cyclic schedule" that repeats daily (i.e.,
the number of operators assigned to the shift starting at 6 A.M. and ending at 2 P.M.

is the same for each day). The optimization problem requires that we identify the
fewest operators needed to satisfy the minimum operator requirement for each hour
of the day. Letting Yi denote the number of workers whose shift begins at the ith
hour, we can state the telephone operator scheduling problem as the following op­
timization model:

23

Minimize L Yi
i~O

subject to

(4.5a)

Yi-7 + Yi-6 + + Yi 2:: b(i) for all i = 8 to 23, (4.5b)

Y17+i + ... + Y23 + Yo + + Yi 2:: b(i) for all i = 0 to 7, (4.5c)

Yi 2:: 0 for all i = 0 to 23. (4.5d)

Notice that this linear program has a very special structure because the as­
sociated constraint matrix contains only 0 and 1 elements and the l' s in each row
appear consecutively. In this application we study a restricted version of the tele­
phone operator scheduling problem: We wish to determine whether some feasible
schedule uses p or fewer operators. We convert this restricted problem into a system
of difference constraints by redefining the variables. Let x(O) -::: Yo, x(1) = Yo + Yl,
x(2) = Yo + Yl + Y2, ... , and x(23) = Yo + Y2 + .. , + Y23 = p. Now notice that
we can rewrite each constraint in (4.5b) as

x(i) - x(i - 8) 2:: b(i)

and each constraints in (4.5c) as

for all i = 8 to 23, (4.6a)

x(23) - x(16 + i) + x(i)
= p - x(16 + i) + x(i) 2:: b(i)

Finally, the nonnegativity constraints (4.5d) become

x(i) - x(i - 1) 2:: O.

for all i = 0 to 7. (4.6b)

(4.6c)

By virtue of this transformation, we have reduced the restricted version of the
telephone operator scheduling problem into a problem of finding a feasible solution
ofthe system of difference constraints. We discuss a solution method for the general
problem in Exercise 4.12. Exercise 9.9 considers a further generalization that in­
corporates costs associated with various shifts.

In the telephone operator scheduling problem, the rows of the underlying op-

Sec. 4.2 Applications 105

timization model (in the variables y) satisfy a "wraparound consecutive l' s prop­
erty"; that is, the variables in each row have only 0 and 1 coefficients and all of the
variables with 1 coefficients are consecutive (if we consider the first and last variables
to be consecutive). In the telephone operator scheduling problem, each row has
exactly eight variables with coefficients of value 1. In general, as long as any op­
timization model satisfies the wraparound consecutive 1 's property, even if the rows
have different numbers of variables with coefficients of value 1, the transformation
we have described would permit us to model the problem as a network flow model.

4.3 TREE OF SHORTEST PATHS

In the shortest path problem, we wish to determine a shortest path from the source
node to all other (n - 1) nodes. How much storage would we need to store these
paths? One naive answer would be an upper bound of (n - 1? since each path could
contain at most (n - 1) arcs. Fortunately, we need not use this much storage: (n
- 1) storage locations are sufficient to represent all these paths. This result follows
from the fact that we can always find a directed out-tree rooted from the source
with the property that the unique path from the source to any node is a shortest path
to that node. For obvious reasons we refer to such a tree as a shortest path tree.
Each shortest path algorithm discussed in this book is capable of determining this
tree as it computes the shortest path distances. The existence of the shortest path
tree relies on the following property.

Property 4.1. If the path s = i l i2 - ... - ih = k is a shortest path from
node s to node k, then for every q = 2,3, ... , h - 1, the subpath s = i l - i2 -

- iq is a shortest path from the source node to node iq •

This property is fairly easy to establish. In Figure 4.5 we assume that the
shortest path P I -P3 from node s to node k passes through some node p, but the
subpath PI up to node p is not a shortest path to node p; suppose instead that path
P2 is a shorter path to node p. Notice that P2-P3 is a directed walk whose length is
less than that of path P I -P3 • Also, notice that any directed walk from node s to
node k decomposes into a directed path plus some directed cycles (see Exercise
3.51), and these cycles, by our assumption, must have nonnegative length. As a
result, some directed path from node s to node k is shorter than the path PI-P3 ,

contradicting its optimality.

Figure 4.5 Proving Property 4.1.

Let dO denote the shortest path distances. Property 4.1 implies that if P is a
shortest path from the source node to some node k, then d(j) = d(i) + Cij for every
arc (i, j) E P. The converse of this result is also true; that is, if d(j) = d(i) + cij

106 Shortest Paths: Label-Setting Algorithms Chap. 4

for every arc in a directed path P from the source to node k, then P must be a shortest
path. To establish this result, let s = it - iz - ... - ih = k be the node sequence
in P. Then

d(k) == d(ih) = (d(ih) - d(ih-t» + (d(ih- d - d(ih-2» + ... + (d(i2) - d(id),

where we use the fact that d(id = O. By assumption, d(j) - d(i) == Cij for every
arc (i, j) E P. Using this equality we see that

(i,j)EP

,,'
Consequently, P is a directed path from the source node to node k of length

d(k). Since, by assumption, d(k) is the shortest path distance to node k, P must be
a shortest path to node k. We have thus established the following result.

Property 4.2. Let the vector d represent the shortest path distances. Then a
directed path P from the source node to node k is a shortest path if and only if
d(j) = d(i) + cijfor every arc (i,j) E P.

We are now in a position to prove the existence of a shortest path tree. Since
only a finite number of paths connect the source to every node, the network contains
a shortest path to every node. Property 4.2 implies that we can always find a shortest
path from the source to every other node satisfying the property that for every arc
(i, j) on the path, d(j) = d(i) + Cij. Therefore, if we perform a breadth-first search
of the network using the arcs satisfying the equality d(j) = d(i) + Cij, we must be
able to reach every node. The breadth-first search tree contains a unique path from
the source to every other node, which by Property 4.2 must be a shortest path to
that node.

4.4 SHORTEST PATH PROBLEMS IN ACYCLIC NETWORKS

Recall that a network is said to be acyclic if it contains no directed cycle. In this
section we show how to solve the shortest path problem on an acyclic network in
Oem) time even though the arc lengths might be negative. Note that no other al­
gorithm for solving the shortest path problem on acyclic networks could be any
faster (in terms of the worst-case complexity) become any algorithm for solving the
problem must examine every arc, which itself would take Oem) time.

Recall from Section 3.4 that we can always number (or order) nodes in an
acyclic network G = (N, A) in Oem) time so that i <j for every arc (i,j) EA. This
ordering of nodes is called a topological ordering. Conceptually, once we have de­
termined the topological ordering, the shortest path problem is quite easy to solve
by a simple dynamic programming algorithm. Suppose that we have determined the
shortest path distances d(i) from the source node to nodes i = 1, 2, ... , k - 1.
Consider node k. The topological ordering implies that all the arcs directed into this
node emanate from one of the nodes 1 through k - 1. By Property 4.1, the shortest
path to node k is composed of a shortest path to one of the nodes i = 1, 2, ... ,
k - 1 together with the arc (i, k). Therefore, to compute the shortest path distance

Sec. 4.4 Shortest Path Problems in Acyclic Networks 107

to node k, we need only select the minimum of d(i) + Cik for all incoming arcs
(i, k). This algorithm is a pulling algorithm in that to find the shortest path distance to
any node, it "pulls" shortest path distances forward from lower-numbered nodes.
Notice that to implement this algorithm, we need to access conveniently all the arcs
directed into each node. Since we frequently store the adjacency list A(i) of each
node i, which gives the arcs emanating out of a node, we might also like to implement
a reaching algorithm that propagates information from each node to higher-indexed
nodes, and so uses the usual adjacency list. We next describe one such algorithm.

We first set des) = 0 and the remaining distance labels to a very large number.
Then we examine nodes in the topological order and for each node i being examined,
we scan arcs in A(i). Iffor any arc (i, j) E A(i), we find that d(j) > d(i) + Cij, then
we set d(j) = d(i) + Cij. When the algorithm has examined all the nodes once in
this order, the distance labels are optimal.

We use induction to show that whenever the algorithm examines a node, its
distance label is optimal. Suppose that the algorithm has examined nodes 1, 2, ... ,
k and their distance labels are optimal. Consider the point at which the algorithm
examines node k + 1. Let the shortest path from the source to node k + 1 be s =
it - iz - '" - ih - (k + 1). Observe that the path it - i2 - ... - ih must be a
shortest path from the source to node ih (by Property 4.1). The facts that the nodes
are topologically ordered and that the arc (ih, k + 1) E A imply that ih E {1, 2, ... ,
k} and, by the inductive hypothesis, the distance label of node ih is equal to the
length of the path it - i2 - ... - ih • Consequently, while examining node ih , the
algorithm must have scanned the arc (ih, k + 1) and set the distance label of node
(k + 1) equal to the length of the path it - i2 - ••• - ih - (k + 1). Therefore,
when the algorithm examines the node k + 1, its distance label is optimal. The
following result is now immediate.

Theorem 4.3. The reaching algorithm solves the shortest path problem on
acyclic networks in Oem) time.

In this section we have seen how we can solve the shortest path problem on
acyclic networks very efficiently using the simplest possible algorithm. Unfortu­
nately, we cannot apply this one-pass algorithm, and examine each node and each
arc exactly once, for networks containing cycles; nevertheless, we can utilize the
same basic reaching strategy used in this algorithm and solve any shortest path
problem with nonnegative arc lengths using a modest additional amount of work.
As we will see, we incur additional work because we no longer have a set order for
examining the nodes, so at each step we will need to investigate several nodes in
order to determine which node to reach out from next.

4.5 D1JKSTRA'S ALGORITHM

As noted previously, Dijkstra's algorithm finds shortest paths from the source node
s to all other nodes in a network with nonnegative arc lengths. Dijkstra's algorithm
maintains a distance label d(i) with each node i, which is an upper bound on the

108 Shortest Paths: Label-Setting Algorithms Chap. 4

shortest path length to node i. At any intermediate step, the algorithm divides the
nodes into two groups: those which it designates as permanently labeled (or per­
manent) and those it designates as temporarily labeled (or temporary). The distance
label to any permanent node represents the shortest distance from the source to that
node. For any temporary node, the distance label is an upper bound on the shortest
path distance to that node. The basic idea of the algorithm is to fan out from node
s and permanently label nodes in the order of their distances from node s. Initially,
we give node s a permanent label of zero, and each other node j a temporary label
equal to 00. At each iteration, the label of a node i is its shortest distance from the
source node along a path whose internal nodes (i.e., nodes other than s or the node
i itself) are all permanently labeled. The algorithm selects a node i with the minimum
temporary label (breaking ties arbitrarily), makes it permanent, and reaches out from
that node-that is, scans arcs inA(t) to update the distance labels of adjacent nodes.
The algorithm terminates when it has designated all nodes as permanent. The cor­
rectness of the algorithm relies on the key observation (which we prove later) that
we can always designate the node with the minimum temporary label as permanent.

Dijkstra's algorithm maintains a directed out-tree T rooted at the source that
spans the nodes with finite distance labels. The algorithm maintains this tree using
predecessor indices [i.e., if (t, j) E T, then pred(j) = il. The algorithm maintains
the invariant property that every tree arc (i, j) satisfies the condition d(j) = d(i) +
Cij with respect to the current distance labels. At termination, when distance labels
represent shortest path distances, T is a shortest path tree (from Property 4.2).

Figure 4.6 gives a formal algorithmic description of Dijkstra's algorithm.
In Dijkstra's algorithm, we refer to the operation of selecting a minimum tem­

porary distance label as a node selection operation. We also refer to the operation
of checking whether the current labels for nodes i and j satisfy the condition
d(j) > d(t) + Cij and, if so, then setting d(j) = d(i) + Cij as a distance update
operation.

We illustrate Dijkstra's algorithm using the numerical example given in Figure
4.7(a). The algorithm permanently labels the nodes 3, 4, 2, and 5 in the given se­
quence: Figure 4.7(b) to (e) illustrate the operations for these iterations. Figure 4.7(f)
shows the shortest path tree for this example.

Sec. 4.5

algorithm Dijkstra;
begin

S: = IiI; S: = N;
d(/) : = 00 for each node i E N;
d(s) := 0 and pred(s) : = 0;
while lSI < n do
begin

let i E Sbe a node for which d(/) = min{d(j) : j E S};
S: = S U {J};
s: = S - {I};
for each (i, j) E A(I) do

if d(j) > d(I) + cij then d(j) : = d(I) + Clj and pred(j) : = i;
end;

end;

Figure 4.6 Dijkstra's algorithm.

Dijkstra's Algorithm 109

111 '.,">,

Id(ol IdWI

CD cij .0)
w+-El El rm ' /: El--.w

3 3

111 J:«,~~~ 8

7 7

~El
(a)

8 W
(b)
8~

rm W " ~. ,~

W 111
(c)

Figure 4.7 Illustrating Dijkstra's algorithm.

Correctness of Dijkstra.'s Algorithm

We use inductive arguments to establish the validity of Dijkstra's algorithm. At any
iteration, the algorithm has partitioned the nodes into two sets, Sand S. Our induction
hypothesis are (1) that the distance label of each node in S is optimal, and (2) that
the distance label of each node in S is the shortest path length from the source
provided that each internal node in the path lies in S. We perform induction on the
cardinality of the set S.

To prove the first inductive hypothesis, recall that at each iteration the algo­
rithm transfers a node i in the set S with smallest distance label to the set S. We
need to show that the distance label d(i) of node i is optimal. Notice that by our
induction hypothesis, d(i) is the length of a shortest path to node i among all paths
that do not contain any node in S as an internal node. We now show that the length
of any path from s to i that contains some nodes in S as an internal node will be at
least d(i). Consider any path P from the source to node i that contains at least one
node in S as an internal node. The path P can be decomposed into two segments
PI and P2 : the path segment PI does not contain any node in S as an internal node,
but terminates at a node k in S (see Figure 4.8). By the induction hypothesis, the
length of the path PI is at least d(k) and since node i is the smallest distance label

110 Shortest Paths: Label-Setting Algorithms Chap. 4

s s

in S, d(k) 2:: d(i). Therefore, the path segment PI has length at least d(i). Further­
more, since all arc lengths are nonnegative, the length of the path segment P2 is
nonnegative. Consequently, length ofthe path P is at least d(i). This result establishes
the fact that d(i) is the shortest path length of node i from the source node.

We next show that the algorithm preserves the second induction hypothesis.
After the algorithm has labeled a new node i permanently, the distance labels of
some nodes in S - {i} might decrease, because node i could become an internal
node in the tentative shortest paths to these nodes. But recall that after permanently
labeling node i, the algorithm examines each arc (i, j) E A(i) and if d(j) > d(i) +
Cij, then it sets d(j) = d(i) + cij and pred(j) = i. Therefore, after the distance update
operation, by the induction hypothesis the path from node j to the source node
defined by the predecessor indices satisfies Property 4.2 and so the distance label
of each node in S - {i} is the length of a shortest path subject to the restriction that
each internal node in the path must belong to S U {i}.

Running Time of Dijkstra's Algorithm

We now study the worst-case complexity of Dijkstra's algorithm. We might view
the computational time for Dijkstra's algorithm as allocated to the following two
basic operations:

1. Node selections. The algorithm performs this operation n times and each such
operation requires that it scans each temporarily labeled node. Therefore, the
total node selection time is n + (n - 1) -+ (n - 2) + ... + 1 = 0(n2).

2. Distance updates. The algorithm performs this operation I A(i) I times for node
i. Overall, the algorithm performs this operation LiEN I A(i) I = m times. Since
each distance update operation requires 0(1) time, the algorithm requires Oem)
total time for updating all distance labels.

We have established the following result.

Theorem 4.4. Dijkstra's algorithm solves the shortest path problem in 0(n2)
time.

Sec. 4.5 Dijkstra's Algorithm 111

The O(n2) time bound for Dijkstra's algorithm is the best possible for com­
pletely dense networks [i.e., m = O(n 2

)], but can be improved for sparse networks.
Notice that the times required by the node selections and distance updates are not
balanced. The node selections require a total of O(n2) time, and the distance updates
require only Oem) time. Researchers have attempted to reduce the node selection
time without substantially increasing the time for updating the distances. Conse­
quently, they have, using clever data structures, suggested several implementations
of the algorithm. These implementations have either dramatically reduced the run­
ning time of the algorithm in practice or improved its worst-case complexity. In
Section 4.6 we describe Dial's algorithm, which is an excellent implementation of
Dijkstra's algorithm in practice. Sections 4.7 and 4.8 describe several implemen­
tations of Dijkstra's algorithm with improved worst-case complexity.

Reverse Dijkstra's Algorithm

In the (forward) Dijkstra's algorithm, we determine a shortest path from node s to
every other node in N - {s}. Suppose that we wish to determine a shortest path
from every node in N - {t} to a sink node t. To solve this problem, we use a slight
modification of Dijkstra's algorithm, which we refer to as the reverse Dijkstra's
algorithm. The reverse Dijkstra's algorithm maintains a distance d'U) with each
node j, which is an upper bound on the shortest path length from node j to node t.
As before, the algorithm designates a set of nodes, say S', as permanently labeled
and the remaining set of nodes, say 8', as temporarily labeled. At each iteration,
the algorithm designates a node with the minimum temporary distance label, say
d'U), as permanent. It then examines each incoming arc (i, j) and modifies the
distance label of node i to min{d'(i), Cij + d'U)}. The algorithm terminates when
all the nodes have become permanently labeled.

Bidirectional Dijkstra,'s Algorithm

In some applications of the shortest path problem, we need not determine a shortest
path from node s to every other node in the network. Suppose, instead, that we
want to determine a shortest path from node s to a specified node t. To solve this
problem and eliminate some computations, we could terminate Dijkstra's algorithm
as soon as it has selected t from 8 (even though some nodes are still temporarily
labeled). The bidirectional Dijkstra's algorithm, which we describe next, allows us
to solve this problem even faster in practice (though not in the worst case).

In the bidirectional Dijkstra's algorithm, we simultaneously apply the forward
Dijkstra's algorithm from node s and reverse Dijkstra's algorithm from node t. The
algorithm alternatively designates a node in 8 and a node in 8' as permanent until
both the forward and reverse algorithms have permanently labeled the same node,
say node k (i.e., S n s' = {k}). At this point, let P(i) denote the shortest path from
node s to node i E S found by the forward Dijkstra's algorithm, and let P'U) denote
the shortest path from nodej E S' to node tfound by the reverse Dijkstra's algorithm.
A straightforward argument (see Exercise 4.52) shows that the shortest path from
node s to node t is either the path P(k) U P'(k) or a path P(i) U {(i, j)} U P'U) for
some arc (i,j), i E S andj E S'. This algorithm is very efficient because it tends to

112 Shortest Paths: Label-Setting Algorithms Chap. 4

permanently label few nodes and hence never examines the arcs incident to a large
number of nodes.

4.6 DIAL'S IMPLEMENTATION

The bottleneck operation in Dijkstra's algorithm is node selection. To improve the
algorithm's performance, we need to address the following question. Instead of scan­
ning all temporarily labeled nodes at each iteration to find the one with the minimum
distance label, can we reduce the computation time by maintaining distances in some
sorted fashion? Dial's algorithm tries to accomplish this objective, and reduces the
algorithm's computation time in practice, using the following fact:

Property 4.5. The distance labels that Dijkstra' s algorithm designates as per­
manent are nondecreasing.

This property follows from the fact that the algorithm permanently labels a
node i with a smallest temporary label d(i), and while scanning arcs in A(i) during
the distance update operations, never decreases the distance label of any temporarily
labeled node below d(i) because arc lengths are nonnegative.

Dial's algorithm stores nodes with finite temporary labels in a sorted fashion.
It maintains nC + 1 sets, called buckets, numbered 0,1,2, ... , nC: Bucket k stores
all nodes with temporary distance label equal to k. Recall that C represents the largest
arc length in the network, and therefore nC is an upper bound on the distance label
of any finitely labeled node. We need not store nodes with infinite temporary distance
labels in any of the buckets-we can add them to a bucket when they first receive
a finite distance label. We represent the content of bucket k by the set content(k).

In the node selection operation, we scan buckets numbered 0, 1,2, ... , until
we identify the first nonempty bucket. Suppose that bucket k is the first nonempty
bucket. Then each node in content(k) has the minimum distance label. One by one,
we delete these nodes from the bucket, designate them as permanently labeled, and
scan their arc lists to update the distance labels of adjacent nodes. Whenever we
update the distance label of a node i from dt to d2;~e'move node i from content(d t)

to content(d2). In the next node selection operation, we resume the scanning of
buckets numbered k + 1, k + 2, ... to select the next nonempty bucket. Property
4.5 implies that the buckets numbered 0, 1, 2, ... , k will always be empty in the
subsequent iterations and the algorithm need not examine them again.

As a data structure for storing the content of the buckets, we store each set
content(k) as a doubly linked list (see Appendix A). This data structure permits us
to perform each of the following operations in 0(1) time: (1) checking whether a
bucket is empty or nonempty, (2) deleting an element from a bucket, and (3) adding
an element to a bucket. With this data structure, the algorithm requires 0(1) time
for each distance update, and thus a total of O(m) time for all distance updates. The
bottleneck operation in this implementation is scanning nC + 1 buckets during node
selections. Consequently, the running time of Dial's algorithm is O(m + nC).

Since Dial's algorithm uses nC + 1 buckets, its memory requirements can be
prohibitively large. The following fact allows us to reduce the number of buckets to
C+l.

Sec. 4.6 Dial's Implementation 113

Property 4.6. If d(i) is the distance label that the algorithm designates as
permanent at the beginning of an iteration, then at the end of that iteration, d(j)
::5 d(i) + C for each finitely labeled node j in S.

This fact follows by noting that (1) d(l) ::5 d(i) for each node IE S (by Property
4.5), and (2) for each finitely labeled node j in S, d(j) = d(l) + Clj for some node
I E S (by the property of distance updates). Therefore, d(j) = d(l) + Clj ::5 dU) +
C. In other words, all finite temporary labels are bracketed from below by d(i) and
from above by d(i) + C. Consequently, C + 1 buckets suffice to store nodes with
finite temporary distance labels.

Dial's algorithm uses C + 1 buckets numbered 0, 1,2, ... ,C, which we might
view as arranged in a circular fashion as in Figure 4.9. We store a temporarily labeled
node j with distance label d(j) in the bucket d(j) mod(C + 1). Consequently, during
the entire execution of the algorithm, bucket k stores nodes with temporary distance
labels k, k + (C + 1), k + 2(C + 1), and so on; however, because of Property 4.6,
at any point in time, this bucket will hold only nodes with the same distance label.
This storage scheme also implies that if bucket k contains a node with the minimum
distance label, then buckets k + 1, k + 2, ... , C, 0, 1, 2, ... , k - 1 store nodes
in increasing values of the distance labels.

c 0

k k-l

3

Figure 4.9 Bucket arrangement in
Dial's algorithm.

Dial's algorithm examines the buckets sequentially, in a wraparound fashion,
to identify the first nonempty bucket. In the next iteration, it reexamines the buckets
starting at the place where it left off previously. A potential disadvantage of Dial's
algorithm compared to the original O(n2) implementation of Dijkstra's algorithm is
that it requires a large amount of storage when C is very large. In addition, because
the algorithm might wrap around as many as n - 1 times, the computational time
could be large. The algorithm runs in O(m + nC) time, which is not even polynomial,
but rather, is pseudopolynomial. For example, ifC = n4, the algorithm runs in O(n5)

time, and if C ;, 2n , the algorithm requires exponential time in the worst case.
However, the algorithm typically does not achieve the bound of O(m + nC) time.
For most applications, C is modest in size, and the number of passes through all of
the buckets is much less than n - 1. Consequently, the running time of Dial's
algorithm is much better than that indicated by its worst-case complexity.

114 Shortest Paths: Label-Setting Algorithms Chap. 4

4.7 HEAP IMPLEMENTATIONS

This section requires that the reader is familiar with heap data structures. We refer
an unfamiliar reader to Appendix A, where we describe several such data structures.

A heap (or priority queue) is a data structure that allows us to perform the
following operations on a collection H of objects, each with an associated real num­
ber called its key. More properly, a priority queue is an abstract data type, and is
usually implemented using one of several heap data structures. However, in this
treatment we are using the words "heap" and "priority queue" interchangeably.

create-heap(H). Create an empty heap.
find-min{i, H). Find and return an object i of minimum key.
insert{i, H). Insert a new object i with a predefined key.
decrease-key(value, i, H). Redl!ce the key of an object i from its current value
to value, which must be smaller than the key it is replacing.
delete-min(i, H). Delete an object i of minimum key.

If we implement Dijkstra's algorithm using a heap, H would be the collection
of nodes with finite temporary distance labels and the key of a node would be its
distance label. Using a heap, we could implement Dijkstra's algorithm as described
in Figure 4.10.

As is clear from this description, the heap implementation of Dijkstra's algo­
rithm performs the operations find-min, delete-min, and insert at most n times and
the operation decrease-key at most m times. We now analyze the running times of
Dijkstra's algorithm implemented using different types of heaps: binary heaps, d­
heaps, Fibonacci heaps, and another data structure suggested by Johnson. We de­
scribe the first three of these four data structures in Appendix A and provide a
reference for the fourth data structure in the reference notes.

algorithm heap-Dijkstra;
begin

create-heap(H);
d(j) : = 00 for all j E N;
d(s) : = 0 and pred(s) : = 0;
insert(s, H);
while H ¥0do
begin

find-min(i, H);
delete-min(i, H);
for each (i, j) E A(/) do
begin

value: = d(/) + Cij;

if d(j) > value then
if d(j) = 00 then d(j) : = value, pred(j) : = i, and insert (j, H)
else set d(j) : = value, pred(j) : = i, and decrease-key(value, i. H);

end;
end;

end;

Figure 4.10 Dijkstra's algorithm using a heap.

Sec. 4.7 Heap Implementations 115

Binary heap implementation. As discussed in Appendix A, a binary heap
data structure requires O(log n) time to perform insert, decrease-key, and delete­
min, and it requires 0(1) time for the other heap operations. Consequently, the binary
heap version of Dijkstra's algorithm runs in Oem log n) time. Notice that the binary
heap implementation is slower than the original implementation of Dijkstra' s algo­
rithm for completely dense networks [i.e., m = O(n2)], but is faster when m =
0(n2/log n).

d-Heap implementation. For a given parameter d ;::: 2, the d-heap data
structure requires O(lOgd n) time to perform the insert and decrease-key operations;
it requires Oed logd n) time for delete-min, and it requires 0(1) steps for the other
heap operations. Consequently, the running time of this version of Dijkstra's al­
gorithm is Oem logd n + nd logd n). To obtain an optimal choice of d, we equate
the two terms (see Section 3.2), giving d = max{2, rm/nl}. The resulting running
time is Oem logd n). Observe that for very sparse networks [i.e., m = O(n)J, the run­
ning time of the d-heap implementation is O(n log n). For nonsparse networks [i.e.,
m = O(n 1 + €) for some E > OJ, the running time of d-heap implementation is Oem
logd n) = O«m log n)/(log d» = O«m log n)/(log n€» = O«m log n)/(E log n» =

Oem/E) = Oem). The last equality is true since E is a constant. Thus the running
time is Oem), which is optimal.

Fibonacci heap implementation. The Fibonacci heap data structure per­
forms every heap operation in 0(1) amortized time except delete-min, which requires
O(Iog n) time. Consequently the running time of this version of Dijkstra's algorithm
is Oem + n log n). This time bound is consistently better than that of binary heap
and d-heap implementations for all network densities. This implementation is also
currently the best strongly polynomial-time algorithm for solving the shortest path
problem.

Johnson's implementation. Johnson's data structure (see the reference
notes) is applicable only when all arc lengths are integer. This data structure requires
O(log log C) time to perform each heap operation. Consequently, this implemen­
tation of Dijkstra's algorithm runs in Oem log log C) time.

We next discuss one more heap implementation of Dijkstra's algorithm, known
as the radix heap implementation. The radix heap implementation is one ofthe more
recent implementations; its running time is Oem + n 10g(nC».

4.8 RADIX HEAP IMPLEMENTATION

The radix heap implementation of Dijkstra's algorithm is a hybrid of the original
0(n2) implementation and Dial's implementation (the one that uses nC + 1 buckets).
These two implementations represent two extremes. The original implementation
considers all the temporarily labeled nodes together (in one large bucket, so to speak)
and searches for a node with the smallest label. Dial's algorithm uses a large number
of buckets and separates nodes by storing any two nodes with different labels in

116 ,'Shortest Paths,' Label-Setting Algorithms Chap. 4

different buckets. The radix heap implementation improves on these methods by
adopting an intermediate approach: It stores many, but not all, labels in a bucket.
For example, instead of storing only nodes with a temporary label k in the kth bucket,
as in Dial's implementation, we might store temporary labels from lOOk to lOOk +
99 in bucket k. The different temporary labels that can be stored in a bucket make
up the range of the bucket; the cardinality of the range is called its width. For the
preceding example, the range of bucket k is (lOOk, lOOk + 99] and its width is 100.
Using widths of size k permits us to reduce the number of buckets needed by a
factor of k. But to find the smallest distance label, we need to search all of the
elements in the smallest indexed nonempty bucket. Indeed, if k is arbitrarily large,
we need only one bucket, and the resulting algorithm reduces to Dijkstra's original
implementation.

Using a width of 100, say, for each bucket reduces the number of buckets, but
still requires us to search through the lowest-numbered nonempty bucket to find the
node with minimum temporary label. If we could devise a variable width scheme,
with a width of 1 for the lowest-numbered bucket, we could conceivably retain the
advantages of both the wide-bucket and narrow bucket approaches. The radix heap
algorithm we consider next uses variable widths and changes the ranges dynamically.
In the version of the radix heap that we present:

1. The widths of the buckets are 1, 1, 2, 4, 8, 16, ... , so that the number of
buckets needed is only O(log(nC».

2. We dynamically modify the ranges of the buckets and we reallocate nodes with
temporary distance labels in a way that stores the minimum distance label in
a bucket whose width is 1.

Property 1 allows us to maintain only O(log(nC» buckets and thereby over­
comes the drawback of Dial's implementation of using too many buckets. Property
2 permits us, as in Dial's algorithm, to avoid the need to search the entire bucket
to find a node with the minimum distance label. When implemented in this way, this
version of the radix heap algorithm has a running time of Oem + n 10g(nC».

To describe the radix heap in more detail, we first set some notation. For a
given shortest path problem, the radix heap consists of 1 + pog(nC)l buckets. The
buckets are numbered 0,1,2, ... ,K = rlog(nC)l. We represent the range of bucket
k by range(k) which is a (possibly empty) closed interval of integers. We store a
temporary node i in bucket k if d(i) E range(k). We do not store permanent nodes.
The set content(k) denotes the nodes in bucket k. The algorithm will change the
ranges of the buckets dynamically, and each time it changes the ranges, it redis­
tributes the nodes in the buckets. Initially, the buckets have the following ranges:

Sec. 4.8

range(O) = [0];
range(1) = [1];
range(2) = [2, 3];
range(3) = [4, 7];
range(4) = [8, 15];

range(K) ~ [2K- 1 , 2K - 1].

Radix Heap Implementation 117

These ranges change as the algorithm proceeds; however, the widths of the buckets
never increase beyond their initial widths.

As we have noted the fundamental difficulty associated with using bucket
widths larger than 1, as in the radix heap algorithm, is that we have to examine
every node in the bucket containing a node with the minimum distance label and
this time might be "too large" from a worst-case perspective. The radix heap al­
gorithm overcomes this difficulty in the following manner. Suppose that at some
stage the minimum indexed nonempty bucket is bucket 4, whose range is [8, 15].
The algorithm would examine every node in content(4) to identify a node with the
smallest distance label. Suppose that the smallest distance label of a node in con­
tent(4) is 9. Property 4.5 implies that no temporary distance label will ever again be
less than 9 and, consequently, we will never again need the buckets 0 to 3. Rather
than leaving these buckets idle, the algorithm redistributes the range [9, 15] to
the previous buckets, resulting in the ranges range(O) = [9], range(1) = [10],
range(2) = [11, 12], range(3) = [13,15] and range(4) = 0. Since the range of bucket
4 is now empty, the algorithm shifts (or redistributes) the nodes in content(4) into
the appropriate buckets (0, 1, 2, and 3). Thus each of the nodes in bucket 4 moves
to a lower-indexed bucket and all nodes with the smallest distance label move to
bucket 0, which has width 1.

To summarize, whenever the algorithm finds that nodes with the minimum
distance label are in a bucket with width larger than 1, it examines all nodes in the
bucket to identify a node with minimum distance label. Then the algorithm redis­
tributes the bucket ranges and shifts each node in the bucket to the lower-indexed
bucket. Since the radix heap contains K buckets, a node can shift at most K times,
and consequently, the algorithm will examine any node at most K times. Hence the
total number of node examinations is O(nK), which is not "too large."

We now illustrate the radix heap data structure on the shortest path example
given in Figure 4.11 with s = 1. In the figure, the number beside each arc indicates
its length. For this problem C = 20 and K = flog(120)l = 7. Figure 4.12 specifies
the distance labels determined by Dijkstra's algorithm after it has examined node
1; it also shows the corresponding radix heap.

To select the node with the smallest distance label, we scan the buckets 0, 1,
2, ... , K to find the first nonempty bucket. In our example, bucket 0 is nonempty.
Since bucket 0 has width 1, every node in this bucket has the same (minimum)
distance label. So the algorithm designates node 3 as permanent, deletes node 3 from
the radix heap, and scans the arc (3, 5) to change the distance label of node 5 from

13 2

20
o 4

Figure 4.11 Shortest path example.

118 Shortest Paths: Label-Setting Algorithms Chap. 4

node i 1 2 3 4 5 6

label d(/) 0 13 0 15 20 00

bucket k 0 1 2 3 4 5 6 7

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64, 127]

content(k) {3} fJ fJ fJ {2,4} {5} fJ

Figure 4.12 Initial radix heap.

20 to 9. We check whether the new distance label of node 5 is contained in the range
of its present bucket, which is bucket 5. It is not. Since its distance label has de­
creased, node 5 should move to a lower-indexed bucket. So we sequentially scan
the buckets from right to left, starting at bucket 5, to identify the first bucket whose
range contains the number 9, which is bucket 4. Node 5 moves from bucket 5 to
bucket 4. Figure 4.13 shows the new radix heap.

node i 2 4 5 6

label d(/) 13 15 9 00

bucket k 0 1 2 3 4 5 6 7

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127]

content(k) fJ fJ fJ fJ {2, 4, 5} fJ fJ fJ

Figure 4.13 Radix heap at the end of iteration 1.

We again look for the node with the smallest distance label. Scanning the
buckets sequentially, we find that bucket k = 4 is the first nonempty bucket. Since
the range of this bucket contains more than one integer, the first node in the bucket
need not have the minimum distance label. Since the algorithm will never use the
ranges range(O), ... , range(k - 1) for storing temporary distance labels, we can
redistribute the range of bucket k into the buckets 0, 1, ... , k - 1, and reinsert
its nodes into the lower-indexed buckets. In our example, the range of bucket 4 is
[8, 15], but the smallest distance label in this bucket is 9. We therefore redistribute
the range [9, 15] over the lower-indexed buckets in the following manner:

Sec. 4.8 Radix Heap Implementation 119

range(O) = [9],
range(1) = [10],
range(2) = [11, 12],
range(3) = [13, 15],
range(4) = 0.

Other ranges do not change. The range of bucket 4 is now empty, and we must
reassign the contents of bucket 4 to buckets ° through 3. We do so by successively
selecting nodes in bucket 4, sequentially scanning the buckets 3, 2, 1, ° and inserting
the node in the appropriate bucket. The resulting buckets have the following con­
tents:

content(O) = {5},
content(1) = 0,
content(2) = 0,
content(3) = {2, 4},
content(4) = 0.

This redistribution necessarily empties bucket 4 and moves the node with the smallest
distance label to bucket 0.

We are now in a position to outline the general algorithm and analyze its com­
plexity. We first consider moving nodes between the buckets. Suppose that j E
content(k) and that we are re-assigning nodej to a lower-numbered bucket (because
either d(j) decreases or we are redistributing the useful range of bucket k and re­
moving the nodes from this bucket). If d(j) E range(k), we sequentially scan lower­
numbered buckets from right to left and add the node to the appropriate bucket.
Overall, this operation requires Oem + nK) time. The term m reflects the number
of distance updates, and the term nK arises because every time a node moves, it
moves to a lower-indexed bucket: Since there are K + 1 buckets, a node can move
at most K times. Therefore, O(nK) is a bound on the total number of node move­
ments.

Next we consider the node selection operation. Node selection begins by scan­
ning the buckets from left to right to identify the first nonempty bucket, say bucket
k. This operation requires O(K) time per iteration and O(nK) time in total. If k = ° or k = 1, any node in the selected bucket has the minimum distance label. If k ?

2, we redistribute the "useful" range of bucket k into the buckets 0, 1, ... , k -
1 and reinsert its contents in those buckets. If the range of bucket k is [l, u] and the
smallest distance label of a node in the bucket is dmin , the useful range of the bucket
is [dmin, u].

The algorithm redistributes the useful range in the following manner: We assign
the first integer to bucket 0, the next integer to bucket 1, the next two integers to
bucket 2, the next four integers to bucket 3, and so on. Since bucket k has width
less than 2k - 1, and since the widths of the first k buckets can be as large as 1, 1,
2, ... ,2k

-
2 for a total potential width of2k

-
1

, we can redistribute the useful range
of bucket k over the buckets 0, 1, ... , k - 1 in the manner described. This redis­
tribution of ranges and the subsequent reinsertions of nodes empties bucket k and
moves the nodes with the smallest distance labels to bucket 0. The redistribution of
ranges requires O(K) time per iteration and O(nK) time over all the iterations. As

120 Shortest Paths: Label-Setting Algorithms Chap. 4

we have already shown, the algorithm requires O(nK) time in total to move nodes
and reinsert them in lower-indexed buckets. Consequently, the running time of the
algorithm is O(m + nK). Since K = pog(nC)l, the algorithm runs in O(m +
n 10g(nC» time. We summarize our discussion as follows.

Theorem 4.7. The radix heap implementation of Dijkstra's algorithm solves
the shortest path problem in O(m + n 10g(nC» time.

This algorithm requires 1 + flog(nC)l buckets. As in Dial's algorithm, Property
4.6 permits us to reduce the number of buckets to 1 + flog Cl. This refined im­
plementation of the algorithm runs in O(m + n log C) time. Using a Fibonacci heap
data structure within the radix heap implementation, it is possible to reduce this
bound further to O(m + n Vlog C), which gives one of the fastest polynomial-time
algorithm to solve the shortest path problem with nonnegative arc lengths.

4.9 SUMMARY

The shortest path problem is a core model that lies at the heart of network opti­
mization. Mter describing several applications, we developed several algorithms for
solving shortest path problems with nonnegative arc lengths. These algorithms,
known as label-setting algorithms, assign tentative distance labels to the nodes and
then iteratively identify a true shortest path distance (a permanent label) to one or
more nodes at each step. The shortest path problem with arbitrary arc lengths re­
quires different solution approaches; we address this problem class in Chapter 5.

The basic shortest path problem that we studied requires that we determine a
shortest (directed) path from a source node s to each node i E N - {s}. We showed
how to store these (n - 1) shortest paths compactly in the form of a directed out­
tree rooted at node s, called the tree of shortest paths. This result uses the fact that
if P is a shortest path from node s to some node j, then any subpath of P from node
s to any of its internal nodes is also a shortest path to this node.

We began our discussion of shortest path algorithms by describing an O(m)
algorithm for solving the shortest path problem in acyclic networks. This algorithm
computes shortest path distances to the nodes as it examines them in a topological
order. This discussion illustrates a fact that we will revisit many times throughout
this book: It is often possible to develop very efficient algorithms when we restrict
the underlying network by imposing special structure on the data or on the network's
topological structure (as in this case).

We next studied Dijkstra's algorithm, which is a natural and simple algorithm
for solving shortest path problems with nonnegative arc lengths. Mter describing
the original implementation of Dijkstra's algorithm, we examined several other im­
plementations that either improve on its running time in practice or improve on its
worst-case complexity. We considered the following implementations: Dial's im­
plementation, ~ d-heap implementation, a Fibonacci heap implementation, and a
radix heap implementation. Figure 4.14 summarizes the basic features of these im­
plementations.

Sec. 4.9 Summary 121

Algorithm RUnning time Features

Original O(n2) 1. Selects a node with the minimum temporary
implementation distance label, designating it as permanent,

and examines arcs incident to it to modify other
distance labels.

2. Very easy to implement.
3. Achieves the best available running time for

dense networks.

Dial's implementation O(m + nC) 1. Stores the temporary labeled nodes in a sorted
order in unit length buckets and identifies the
minimum temporary distance label by sequen-
tially examining the buckets.

2. Easy to implement and has excellent empirical
behavior.

3. The algorithm's running time is pseudopoly-
nomial and hence is theoretically unattractive.

d-Heap implementation O(m logdn), 1. Uses the d-heap data structure to maintain tem-
where d = min porary labeled nodes.

2. Linear running time whenever m = 0'(n1 +<) for
any positive E > O.

Fibonacci heap O(m + n log n) 1. Uses the Fibonacci heap data structure to
implementation maintain temporary labeled nodes.

2. Achieves the best available strongly polynom-
ial running time for solving shortest paths
problems.

3. Intricate and difficult to implement.

Radix heap O(m + n 10g(nC)) 1. Uses a radix heap to implement Dijkstra's al-
implementation gorithm.

2. Improves Dial's algorithm by storing tempo-
rarily labeled nodes in buckets with varied
widths.

3. Achieves an excellent running time for prob-
lems that satisfy the similarity assumption.

Figure 4.14 Summary of different implementations of Dijkstra's algorithm.

REFERENCE NOTES

The shortest path problem and its generalizations have a voluminous research lit­
erature. As a guide to these results before 1984, we refer the reader to the extensive
bibliography compiled by Deo and Pang [1984]. In this discussion we present some
selected references; additional references can be found in the survey papers of Ahuja,
Magnanti, and Orlin [1989, 1991].

The first label-setting algorithm was suggested by Dijkstra [1959] and, inde­
pendently, by Dantzig [1960], and Whiting and Hillier [1960]. The original imple­
mentation of Dijkstra's algorithm runs in O(n2) time, which is the optimal running
time for fully dense networks [those with m = O(n2)J because any algorithm must
examine every arc. However, the use of heaps permits us to obtain improved running
times for sparse networks. The d-heap implementation of Dijkstra's algorithm with

122 Shortest Paths: Label-Setting Algorithms Chap. 4

d = max{2, r min H runs in O(m logd n) time and is due to Johnson [1977a]. The
Fibonacci heap implementation, due to Fredman and TaIjan [1984], runs in O(m +
n log n) time. Johnson [1982] suggested the O(m log log C) implementation of Dijk­
stra's algorithm, based on earlier work by Boas, Kaas, and Zijlstra [1977]. Gabow's
[1985] scaling algorithm, discussed in Exercise 5.51, is another efficient shortest path
algorithm.

Dial [1969] (and also, independently, Wagner [1976]) suggested the O(m + nC)
implementation of Dijkstra's algorithm that we discussed in Section 4.6. Dial, Glover,
Karney, and Klingman [1979] proposed an improved version of Dial's implemen­
tation that runs better in practice. AlthQ,ugh Dial's implementation is only pseudo­
polynomial time, it has led to algorithms with better worst-case behavior. Denardo
and Fox [1979] suggested several such improvements. The radix heap implemen­
tation that we described in Section 4.8 is due to Ahuja, Mehlhorn, Orlin, and TaIjan
[1990]; we can view it as an improved version of Denardo and Fox's implementations.
Our description of the radix heap implementation runs in O(m + n 10g(nC» time.
Ahuja et al. [1990] also suggested several improved versions of the radix heap im­
plementation that run in O(m + n log C), O(m + (n log C)/(log log C», O(m + n
\flog C) time.

Currently, the best time bound for solving the shortest path problem with non­
negative arc lengths is O(min{m + n log n, m log log C, m + n \flog C}); this
expression contains three terms because different time bounds are better for different
values of n, m, and C. We refer to the overall time bound as S(n, m, C); Fredman
and TaIjan [1984], Johnson [1982], and Ahuja et al. [1990] have obtained the three
bounds it contains. The best strongly polynomial-time bound for solving the shortest
path problem with nonnegative arc lengths is O(m + n log n), which we subse­
quently refer to as S(n, m).

Researchers have extensively tested label-setting algorithms empirically. Some
ofthe more recent computational results can be found in Gallo and Pallottino [1988],
Hung and Divoky [1988], and Divoky and Hung [1990]. These results suggest that
Dial's implementation is the fastest label-setting algorithm for most classes of net­
works tested. Dial's implementation is, however, slower than some of the label­
correcting algorithms that we discuss in Chapter 5.

The applications of the shortest path problem that we described in Section 4.2
are adapted from the following papers:

1. Approximating piecewise linear functions (Imai and Iri [1986])
2. Allocating inspection effort on a production line (White [1969])
3. Knapsack problem (Fulkerson [1966])
4. Tramp steamer problem (Lawler [1966])
5. System of difference constraints (Bellman [1958])
6. Telephone operator scheduling (Bartholdi, Orlin, and Ratliff [1980])

Elsewhere in this book we have described other applications of the shortest
path problem. These applications include (1) reallocation of housing (Application
1.1, Wright [1975]), (2) assortment of steel beams (Application 1.2, Frank [1965]),
(3) the paragraph problem (Exercise 1.7), (4) compact book storage in libraries (Ex-

Chap. 4 Reference Notes 123

ercise 4.3, Ravindran [1971]), (5) the money-changing problem (Exercise 4.5), (6)
cluster analysis (Exercise 4.6), (7) concentrator location on a line (Exercises 4.7 and
4.8, Balakrishnan, Magnanti, and Wong [1989b]), (8) the personnel planning problem
(Exercise 4.9, Clark and Hastings [1977]), (9) single-duty crew scheduling (Exercise
4.13, Veinott and Wagner [1962]), (10) equipment replacement (Application 9.6,
Veinott and Wagner [1962]), (11) asymmetric data scaling with lower and upper
bounds (Application 19.5, Orlin and Rothblum [1985]), (12) DNA sequence alignment
(Application 19.7, Waterman [1988]), (13) determining minimum project duration
(Application 19.9), (14) just-in-time scheduling (Application 19.10, Elmaghraby
[1978], Levner and Nemirovsky [1991]), (15) dynamic lot sizing (Applications 19.19,
Application 19.20, Application 19.21, Veinott and Wagner [1962], Zangwill [1969]),
and (16) dynamic facility location (Exercise 19.22).

The literature considers many other applications of shortest paths that we do
not cover in this book. These applications include (1) assembly line balancing
(Gutjahr and Nemhauser [1964]), (2) optimal improvement of transportation net­
works (Goldman and Nemhauser [1967]), (3) machining process optimization (Szad­
kowski [1970]), (4) capacity expansion (Luss [1979]), (5) routing in computer com­
munication networks (Schwartz and Stern [1980]), (6) scaling of matrices (Golitschek
and Schneider [1984]), (7) city traffic congestion (Zawack and Thompson [1987]),
(8) molecular confirmation (Dress and Havel [1988]), (9) order picking in an isle
(GoetschaIckx and Ratliff [1988]), and (10) robot design (Haymond, Thornton, and
Warner [1988]).

Shortest path problems often arise as important subroutines within algorithms
for solving many different types of network optimization problems. These appli­
cations are too numerous to mention. We do describe several such applications in
subsequent chapters, however, when we show that shortest path problems are key
subroutines in algorithms for the minimum cost flow problem (see Chapter 9), the
assignment problem (see Section 12.4), the constrained shortest path problem (see
Section 16.4), and the network design problem (see Application 16.4).

EXERCISES

4.1. Mr. Dow Jones, 50 years old, wishes to place his IRA (Individual Retirement Account)
funds in various investment opportunities so that at the age of 65 years, when he with­
draws the funds, he has accrued maximum possible amount of money. Assume that
Mr. Jones knows the investment alternatives for the next 15 years: their maturity (in
years) and the appreciation they offer. How would you formulate this investment prob­
lem as a shortest path problem, assuming that at any point in time, Mr. Jones invests
all his funds in a single investment alternative.

4.2. Beverly owns a vacation home in Cape Cod that she wishes to rent for the period May
1 to August 31. She has solicited a number of bids, each having the following form:
the day the rental starts (a rental day starts at 3 P.M.), the day the rental ends (checkout
time is noon), and the total amount of the bid (in dollars). Beverly wants to identify a
selection of bids that would maximize her total revenue. Can you help her find the best
bids to accept?

4.3. Compact book storage in libraries (Ravindran [1971]). A library can store books ac­
cording to their subject or author classification, or by their size, or by any other method
that permits an orderly retrieval of the books. This exercise concerns an optimal storage
of books by their size to minimize the storage cost for a given collection of books.

124 Shortest Paths: Label-Setting Algorithms Chap. 4

Suppose that we know the heights and thicknesses of all the books in a collection
(assuming that all widths fit on the same shelving, we consider only a two-dimensional
problem and ignore book widths). Suppose that we have arranged the book heights in
ascending order of their n known heights HI. H2, ... , Hn; that is, HI < H2 < ... <
Hn. Since we know the thicknesses of the books, we can compute the required length
of shelving for each height class. Let Li denote the length of shelving for books of height
H;. If we order shelves of height Hi for length Xi, we incur cost equal to Fi + CiXi; Fi
is a fixed ordering cost (and is independent of the length ordered) and C; is the cost of
the shelf per unit length. Notice-thatin order to save the fixed cost of ordering, we
might not order shelves of every possible height because we can use a shelf of height
Hi to store books of smaller heights. We want to determine the length of shelving for
each height class that would minimize the total cost of the shelving. Formulate this
problem as a shortest path problem.

4.4. Consider the compact book storage problem discussed in Exercise 4.3. Show that the
storage problem is trivial if the fixed cost of ordering shelves is zero. Next, solve the
compact book storage problem with the following data.

i 1 2 3 4 5 6

Hi 5 in. 6 in. 7 in. 9 in. 12 in. 14 in.

Li 100 300 200 300 500 100

Ei 1000 1200 1100 1600 1800 2000

Ci 5 6 7 9 12 14

4.5. Money-changing problem. The money-changing problem requires that we determine
whether we can change a given number p into coins of known denominations aI,
a2, ... , ak. For example, if k = 3, al = 3, a2 = 5, a3 = q; we can change all the
numbers in the set {8, 12, 54}; on the other hand, we cannot change the number 4. In
general, the money-changing problem asks whether p = L7~ I aiXi for some nonnegative
integers XI, X2, ... , Xk.
(a) Describe a method for identifying all numbers in a given range of numbers [I, u]

that we can change.
(b) Describe a method that identifies whether we can change a given number p, and

if so, then identifies a denomination with the least number of coins.
4.6. Cluster analysis. Consider a set of n scalar numbers a), a2, ... , an arranged in non­

decreasing order of their values. We wish to partition these numbers into clusters (or
groups) so that (1) each cluster contains at least p numbers; (2) each cluster contains
consecutive numbers from the list aI, a2, ... , an; and (3) the sum of the squared
deviation of the numbers from their cluster means is as small as possible. Let a(S) =
(LiES a;)/ISI denote the mean of a set S of numbers defining a cluster. If the number
ak belongs to cluster S, the squared deviation of the number ak from the cluster mean
is (ak - a(S»2. Show how to formulate this problem as a shortest path problem. Il­
lustrate your formulation using the following data: p = 2, n = 6, al = 0.5, a2 = 0.8,
a3 = 1.1, a4 = 1.5, a5 = 1.6, and a6 = 2.0.

4.7. Concentrator location on a line (Balakrishnan, Magnanti, and Wong [1989]). In the
telecommunication industry, telephone companies typically connect each customer di­
rectly to a switching center, which is a device that routes calls between the users in

Chap. 4 Exercises 125

the system. Alternatively, to use fewer cables for routing the telephone calls, a company
can combine the calls of several customers in a message compression device known
as a concentrator and then use a single cable to route all of the calls transmitted by
those users to the switching center. Constructing a concentrator at any node in the
telephone network incurs a node-specific cost and assigning each customer to any con­
centrator incurs a "homing cost" that depends on the customer and the concentrator
location. Suppose that all of the customers lie on a path and that we wish to identify
the optimal location of concentrators to service these customers (assume that we must
assign each customer to one of the concentrators). Suppose further that the set of
customers allocated to any concentrator must be contiguous on the path (many tele­
phone companies use this customer grouping policy). How would you find the optimal
location of a single concentrator that serves any contiguous set of customers? Show
how to use the solution of these single-location subproblems (one for each interval of
customers) to solve the concentrator location problem on the path as a shortest path
problem.

4.8. Modified concentrator location problem. Show how to formulate each of the following
variants of the concentrator location problem that we consider in Exercise 4.7 as a
shortest path problem. Assume in each case that all the customer lie on a path.
(a) The cost of connecting each customer to a concentrator is negligible, but each

concentrator can handle at most five customers.
(b) Several types of concentrators are available at each node; each type of concentr~tor

has its own cost and its own capacity (which is the maximum number of customers
it can accommodate).

(c) In the situations considered in Exercise 4.7 and in parts (a) and (b) of this exercise,
no customer can be assigned to a concentrator more that 1200 meters from the
concentrator (because of line degradation of transmitted signals).

4.9. Personnel planning problem (Clark and Hastings [1977]). A construction company's
work schedule on a certain site requires the following number of skilled personnel,
called steel erectors, in the months of March through August:

126

Month Mar. Apr. May June July Aug.

Personnel 4 6 7 4 6 2

Personnel work at the site on the monthly basis. Suppose that three steel erectors are
on the site in February and three steel erectors must be on site in September. The
problem is to determine how many workers to have on site in each month in order to
minimize costs, subject to the following conditions:

Transfer costs. Adding a worker to this site costs $100 per worker and redeploying a
worker to another site costs $160.
Transfer rules. The company can transfer no more than three workers at the start of
any month, and under a union agreement, it can redeploy no more than one-third of
the current workers in any trade from a site at the end of any month.
Shortage time and overtime. The company incurs a cost of $200 per worker per month
for having a surplus of steel erectors on site and a cost of $200 per worker per month
for having a shortage of workers at the site (which must be made up in overtime).
Overtime cannot exceed 25 percent of the regular work time.

Formulate this problem as a shortest path problem and solve it. (Hint: Give a dynamic
programming-based formulation and use as many nodes for each month as the maximum
possible number of steel erectors.)

Shortest Paths: Label-Setting Algorithms Chap. 4

4.10. Multiple-knapsack problem. In the shortest path formulation of the knapsack problem
discussed in Application 4.3, an item is either placed in the knapsack or not. Conse­
quently, each Xj E {O, I}. Consider a situation in which the hiker can place multiple
copies of an item in her knapsack (i.e., Xj E {O, 1,2,3, ... }). How would you formulate
this problem as a shortest path problem? Illustrate your formulation on the example
given in Application 4.3.

4.11. Modified system of difference constraints. In discussing system of difference constraints
in Application 4.5, we assumed that each constraint is of the form X(jk) - X(ik) ~ b(k).
Suppose, instead, that some constraints are of the form X(jk) ~ b(k) or X(ik) ~ b(k).
Describe how you would solve this modified system of constraints using a shortest path
algorithm. .

4.12. Telephone operator scheduling. In our discussion of the telephone operator scheduling
problem in Application 4.6, we described a method for solving a restricted problem of
determining whether some feasible schedule uses at most p operators. Describe a
polynomial-time algorithm for determining a schedule with the fewest operators that
uses the restricted problem as a subproblem.

4.13. Single-dnty crew scheduling. The following table illustrates a number of possible duties
for the drivers of a bus company. We wish to ensure, at the lowest possible cost, that
at least one driver is on duty for each hour of the planning period (9 A.M. to 5 P.M.).

Formulate and solve this scheduling problem as a shortest path problem.

Duty hours 9-1 9-11 12-3 12-5 2-5 1-4 4-5

Cost 30 18 21 38 20 22 9

4.14. Solve the shortest path problems shown in Figure 4.15 using the original implementation
of Dijkstra's algorithm. Count the number of distance updates.

3

2 6

6 4
5

7

8 2
o

(a) (b)

Figure 4.15 Some shortest path networks.

4.15. Solve the shortest path problem shown in Figure 4. 15(a) using Dial's implementation
of Dijkstra's algorithm. Show all of the buckets along with their content after the al­
gorithm has examined the most recent permanently labeled node at each step.

4.16. Solve the shortest path problem shown in Figure 4. 15(a) using the radix heap algorithm.

Chap. 4 Exercises 127

4.17. Consider the network shown in Figure 4.16. Assign integer lengths to the arcs in the
network so that for every k E [0, 2K - 1], the network contains a directed path of
length k from the source node to sink node.

source sink

Figure 4.16 Network for Exercise 4.17.

4.18. Suppose that all the arcs in a network G have length 1. Show that Dijkstra's algorithm
examines nodes for this network in the same order as the breadth-first search algorithm
described in Section 3.4. Consequently, show that it is possible to solve the shortest
path problem in this unit length network in Oem) time.

4.19. Construct an example of the shortest path problem with some negative arc lengths, but
no negative cycle, that Dijkstra's algorithm will solve correctly. Construct another
example that Dijkstra's algorithm will solve incorrectly.

4.20. (Malik, Mittal, and Gupta [1989]) Consider a network without any negative cost cycle.
For every node j E N, let dS(j) denote the length of a shortest path from node s to
node j and let d'(j) denote the length of a shortest path from node j to node t.
(a) Show that an arc (i, j) is on a shortest path from node s to node t if and only if

dS(t) = dS(i) + Cij + d'(j).
(b) Show that dS(t) = min{ds(i) + cij + d'(j) : (i, j) E A}.

4.21. Which of the following claims are true and which are false? Justify your answer by
giving a proof or by constructing a counterexample.
(a) If all arcs in a network have different costs, the network has a unique shortest path

tree.
(b) In a directed network with positive arc lengths, if we eliminate the direction on

every arc (i.e., make it undirected), the shortest path distances will not change.
(c) In a shortest path problem, if each arc length increases by k units, shortest path

distances increase by a mUltiple of k.
(d) In a shortest path problem, if each arc length decreases by k units, shortest path

distances decrease by a mUltiple of k.
(e) Among all shortest paths in a network, Dijkstra's algorithm always finds a shortest

path with the least number of arcs.
4.22. Suppose that you are given a shortest path problem in which all arc lengths are the

same. How will you solve this problem in the least possible time?
4.23. In our discussion of shortest path algorithms, we often assumed that the underlying

network has no parallel arcs (i.e., at most one arc has the same tail and head nodes).
How would you solve a problem with parallel arcs? (Hint: If the network contains k
parallel arcs directed from node i to node j, show that we can eliminate all but one of
these arcs.)

4.24. Suppose that you want to determine a path of shortest length that can start at either
of the nodes s) or S2 and can terminate at either of the nodes t) and t2. How would you /
solve this problem? l/

4.25. Show that in the shortest path problem if the length of some arc decreases by k units,
the shortest path distance between any pair of nodes decreases by at most k units.

4.26. Most vital arc problem. A vital arc of a network is an arc whose removal from the
network causes the shortest distance between two specified nodes, say node s and node
t, to increase. A most vital arc is a vital arc whose removal yields the greatest increase

128 Shortest Paths: Label-Setting Algorithms Chap. 4

in the shortest distance from node s to node t. Assume that the network is directed,
arc lengths are positive, and some arc is vital. Prove that the following statements are
true or show through counterexamples that they are false.
(a) A most vital arc is an arc with the maximum value of Cij.

(b) A most vital arc is an arc with the maximum value of cij on some shortest path
from node s to node t.

(c) An arc that does not belong to any shortest path from node s to node t cannot be
a most vital arc.

(d) A network might contain several most vital arcs.
4.27. Describe an algorithm for determining a most vital arc in a directed network. What is

the running time of your algorithm?
4.28. A longest path is a directed path from node s to node t with the maximum length.

Suggest an O(m) algorithm for determining a longest path in an acyclic network with
nonnegative arc lengths. Will your algorithm work if the network contains directed
cycles?

4.29. Dijkstra's algorithm, as stated in Figure 4.6, identifies a shortest directed path from
node s to every nodej E N - {s}. Modify this algorithm so that it identifies a shortest
directed path from each node j E N - {t} to node t.

4.30. Show that if we add a constant ex to the length of every arc emanating from the so'urce
node, the shortest path tree remains the same. What is the relationship between the
shortest path distances of the modified problem and those of the original problem?

4.31. Can adding a constant ex to the length of every arc emanating from a nonsource node
produce a change in the shortest path tree? Justify your answer.

4.32. Show that Dijkstra's algorithm runs correctly even when a network contains negative
cost arcs, provided that all such arcs emanate from the source node. (Hint: Use the
result of Exercise 4.30.)

4.33. Improved Dial's implementation (Denardo and Fox [1979]). This problem discusses a
practical speed-up of Dial's implementation. Let Cmin = min{cij: (i, j) E A} and w =
max{l, Cmin}. Consider a version of Dial's implementation in which we use buckets of
width w. Show that the algorithm will never decrease the distance label of any node
in the least index nonempty bucket; consequently, we can permanently label any node
in this bucket. What is the running time of this version of Dial's implementation?

4.34. Suppose that we arrange all directed paths from node s to node t in nondecreasing order
of their lengths, breaking ties arbitrarily. The kth shortes(path problem is to identify
a path that can be at the kth place in this order. Describe an algorithm to find the kth
shortest path for k = 2. (Hint: The second shortest path must differ from the first
shortest path by at least one arc.)

4.35. Suppose that every directed cycle in a graph G has a positive length. Show that a
shortest directed walk from node s to node t is always a path. Construct an example
for which the first shortest directed walk is a path, but the second shortest directed
walk is not a path.

4.36. Describe a method for identifying the first K shortest paths from node s to node t in
an acyclic directed network. The running time of your algorithm should be polynomial
in terms of n, m, and K. (Hint: For each node j, keep track of the first K shortest paths
from node s to node j. Also, use the results in Exercise 4.34.)

4.37. Maximum capacity path problem. Let Cij 2: 0 denote the capacity of an arc in a given
network. Define the capacity of a directed path P as the minimum arc capacity in P.
The maximum capacity path problem is to determine a maximum capacity path from
a specified source node s to every other node in the network. Modify Dijkstra's al­
gorithm so that it solves the maximum capacity path problem. Justify your algorithm.

4.38. Let (ibjd, (i2,h), ... , (im,jm) denote the arcs ofa network in nondecreasing order
of their arc capacities. Show that the maximum capacity path from node s to any node
j remains unchanged if ·we modify some or all of the arc capacities but maintain the
same (capacity) order for the arcs. Use this result to show that if we already have a

Chap. 4 Exercises 129

sorted list of the arcs, we can solve the maximum capacity path problem in Oem) time.
(Hint: Modify arc capacities so that they are all between 1 and m. Then use a variation
of Dial's implementation.)

4.39. Maximum reliability path problems. In the network G we associate a reliability 0 <
J.1ij ~ 1 with every arc (i, j) E A; the reliability measures the probability that the arc
will be operational. We define the reliability of a directed path P as the product of the
reliability of arcs in the path [i.e., J.1(P) = IIu,j)EP J.1ij], The maximum reliability path
problem is to identify a directed path of maximum reliability from the source node s
to every other node in the network,
(a) Show that if we are allowed to. take logarithms, we can reduce the maximum re­

liability path problem to a shortest path problem.
(b) Suppose that you are not allowed to take logarithms because they yield irrational

data, Specify an O(n2) algorithm for solving the maximum reliability path problem
and prove the correctness of this algorithm, (Hint: Modify Dijkstra's algorithm,)

(c) Will your algorithms in parts (a) and (b) work if some of the coefficients J.1ij are
strictly greater than I?

4.40. Shortest paths with turn penalties. Figure 4. 15(b) gives a road network in which all road
segments are parallel to either the x-axis or the y-axis, The figure also gives the traversal
costs of arcs. Suppose that we incur an additional cost (or penalty) of IX units every
time we make a left turn. Describe an algorithm for solving the shortest path problem
with these turn penalties and apply it to the shortest path example in Figure 4.15(b).
Assume that IX = 5. [Hint: Create a new graph G* with a node i - j corresponding to
each arc (i, j) E A and with each pair of nodes i - j andj - kin N joined by an arc.
Assign appropriate arc lengths to the new graph.]

4.41. Max-min result. We develop a max-min type of result for the maximum capacity path
problem that we defined in Exercise 4.37. As in that exercise, suppose that we ~ish
to find the maximum capacity path from node s to node t. We say that a cut [S, S] is
an s-t cut if s E Sand t E S. Define the bottleneck value of an s-t cut as the largest
arc capacity in the cut. Show that the capacity of the maximum capacity path from
node s to node t equals the minimum bottleneck value of a cut.

4.42. A farmer wishes to transport a truckload of eggs from one city to another city through
a given road network. The truck will incur a certain amount of breakage on each road
segment; let wij denote the fraction of the eggs broken if the truck traverses the road
segment (i, j). How should the truck be routed to minimize the total breakage? How
would you formulate this problem as a shortest path problem.

4.43. A * algorithm. Suppose that we want to identify a shortest path from node s to node t,
and not necessarily from s to any other node, in a network with nonnegative arc lengths.
In this case we can terminate Dijkstra's algorithm whenever we permanently label node
t. This exercise studies a modification of Dijkstra's algorithm that would speed up the
algorithm in practice by designating node t as a permanent labeled node more quickly.
Let h(i) be a lower bound on the length of the shortest path from node i to node
t and suppose that the lower bounds satisfy the conditions h(i) ~ h(j) + cij for all
(i, j) E A. For instance, if nodes are points in a two-dimensional plane with coordi­
nates (Xi, Yi) and arc lengths equal Euclidean distances betwetn points, then h(i) =
[(Xi - X,)2 + (Yi - y,)2]1/2 (i.e., the Euclidean distance from I to t) is a valid lower
bound on the length of the shortest path from node i to node t.
(a) Let ct = cij + h(j) - h(i) for all (i, j) E A. Show that replacing the arc lengths

Cij by ct does not affect the shortest paths between any pair of nodes.
(b) If we apply Dijkstra's algorithm with ct as arc lengths, why should this modification

improve the empirical behavior of the algorithm? [Hint: What is its impact if each
h(i) represents actual shortest path distances from node i to node t?]

4.44. Arc tolerances. Let T be a shortest path tree of a network. Define the tolerances of an
arc (i, j) as the maximum increase, IXij, and the maximum decrease, !3ij, that the arc
can tolerate without changing the tree of shortest paths.

130 Shortest Paths: Label-Setting Algorithms Chap. 4

(a) Show that if the arc (i, j) eo T, then (Xij = + 00 and !3ij will be a finite number.
Describe an 0(1) method for computing !3ij.

(b) Show that if the arc (i, j) E T, then !3ij = + 00 and (Xij will be a finite number.
Describe an Oem) method for computing (Xij.

4.45. (a) Describe an algorithm that will determine a shortest walk from a source node s to
a sink node t subject to the additional condition that the walk must visit a specified
node p. Will this walk always be a path?

(b) Describe an algorithm for determining a shortest walk from node s to node t that
must visit a specified arc (p, q).

4.46. Constrained shortest path problem. Suppose that we associate two integer numbers with
each arc in a network G: the arc's length cij and its traversal time 'Tij > 0 (we assume
that the traversal times are integers). The constrained shortest path problem is to de­
termine a shortest length path from a source node s to every other node with the ad­
ditional constraint that the traversal time of the path does not exceed 'To. In this exercise
we describe a dynamic programming algorithm for solving the constrained shortest path
problem. Let dj('T) denote the length of a shortest path from node s to node j subject
to the condition that the traversal time of the path does not exceed 'T. Suppose that we
set di'T) = 00 for 'T < O. Justify the following equations:

ds(O) = 0,
dj('T) = min[dj('T - 1), minddk('T - 'T1g) + Ckj}].

Use these equations to design an algorithm for the constrained shortest path problem
and analyze its running time.

4.47. Generalized knapsack problem. In the knapsack problem discussed in Application 4.3,
suppose that each itemj has three associated numbers: value Vj, weight Wj, and volume
rj. We want to maximize the value of the items put in the knapsack subject to the
condition that the total weight of the items is at most Wand the total volume is at most
R. Formulate this problem as a shortest path problem with an additional constraint.

4.48. Consider the generalized knapsack problem studied in Exercise 4.47. Extend the for­
mulation in Application 4.3 in order to transform this problem into a longest path prob­
lem in an acyclic network.

4.49. Suppose that we associate two numbers with each arc (i, j) in a directed network G =
(N, A): the arc's length Cij and its reliability rij. We define t,!e reliability of a directed
path P as the product of the reliabilities of arcs in the path. Describe a method for
identifying a shortest length path from node s to node t whose reliability is at least r.

4.50. Resource-constrained shortest path problem. Suppose that the traversal time 'Tij of an
arc (i, j) in a network is a function fu(d) of the discrete amount of a resource d that
we consume while traversing the arc. Suppose that we want to identify the shortest
directed path from node s to node t subject to a budget D on the amount of the resource
we can consume. (For example, we might be able to reduce the traversal time of an
arc by using more fuel, and we want to travel from node s to node t before we run out
of fuel.) Show how to formulate this problem as a shortest path problem. Assume that
d = 3. (Hint: Give a dynamic programming-based formulation.)

4.51. Modified function approximation problem. In the function approximation problem that
we studied in Application 4.1, we approximated a given piecewise linear function fl(x)
by another piecewise linear function f2(X) in order to minimize a weighted function
of the two costs: (1) the cost required to store the data needed to represent the func­
tion f2(X), and (2) the errors introduced by the approximating fl(x) by f2(X). Suppose
that, instead, we wish to identify a subset of at most p points so that the function
fz(x) defined by these points minimizes the errors of the approximation (i.e., Lk= I
[ft (Xk) - f2(Xk)f). That is, instead of imposing a cost on the use of any breakpoint
in the approximation, we impose a limit on the number of breakpoints we can use. How
would you solve this problem?

Chap. 4 Exercises 131

4.52. Bidirectional Dijkstra's algorithm (Helgason, Kennington, and Stewart [1988]). Show
that the bidirectional shortest path algorithm described in Section 4.5 correctly deter­
mines a shortest path from node s to node t. [Hint: At the termination of the algorithm,
let Sand S' be the sets of nodes that the forward and reverse versions of Dijkstra's
algorithm have designated as permanently labeled. Let k E S n S I. Let p* be some
shortest path from node s to node t; suppose that the first q nodes of p* are in Sand
that the (q + l)st node of p* is not in S. Show first that some shortest path from node
s to node t has the same first q nodes as p* and has its (q + l)st node in S'. Next
show that some shortest path has the same first q nodes as p* and each subsequent
node in S'.]

4.53. Shortest paths in bipartite networks (Orlin [1988]). In this exercise we discuss an im­
proved algorithm for solving shortest path problem in "unbalanced" bipartite networks
G = (Nt U N 2, A), that is, those satisfying the condition that nt = I Nt I ~ I N2 I ==
n2. Assume that the degree of any node in N2 is at most K for some constant K, and
that all arc costs are nonnegative. Shortest path problems with this structure arise in
the context of solving the minimum cost flow problem (see Section 10.6). Let us define
a graph G' = (Nt, A') whose arc set A' is defined as the following set of arcs: For
every pair of arcs (i, j) and (j, k) in A, A I has an arc (i, k) of cost equal to cij + Cjk.

(a) Show how to solve the shortest path problem in G by solving a shortest path problem

132

in G' . What is the resulting running time of solving the shortest path problem in
G in terms of the parameters n, m and K?

(b) A network G is semi-bipartite if we can partition its node set N into the subsets
Nt and N2 so that no arc has both of its endpoints in N 2. Assume again that I Nt I
~ I N21 and the degree of any node in N2 is at most K. Suggest an improved
algorithm for solving shortest path problems in semi-bipartite networks.

Shortest Paths: Label-Setting Algorithms Chap. 4

5

SHORTEST PATHS: LABEL-CORRECTING
ALGORITHMS

To get to heaven, turn right and keep straight ahead.
-Anonymous

Chapter Outline

5.1 Introduction
5.2 Optimality Conditions
5.3 Generic Label-Correcting Algorithms
5.4 Special Implementations of the Modified Label-Correcting Algorithm
5.5 Detecting Negative Cycles
5.6 All-Pairs Shortest Path Problem
5.7 Minimum Cost-to-Time Ratio Cycle Problem
5.8 Summary

5.1 INTRODUCTION

In Chapter 4 we saw how to solve shortest path problems very efficiently when they
have special structure: either a special network topology (acyclic networks) or a
special cost structure (nonnegative arc lengths). When networks have arbitrary costs
and arbitrary topology, the situation becomes more complicated. As we noted in
Chapter 4, for the most general situations-that is, general networks with negative
cycles-finding shortest paths appears to be very difficult. In the parlance of com­
putational complexity theory, these problems are NP-complete, so they are equiv­
alent to solving many of the most noted and elusive problems encountered in the
realm of combinatorial optimization and integer programming. Consequently, we
have little hope of devising polynomial-time algorithms for the most general problem
setting. Instead, we consider a tractable compromise somewhere between the special
cases we examined in Chapter 4 and the most general situations: namely, algorithms
that either identify a negative cycle, when one exists, or if the underlying network
contains no negative cycle, solves the shortest path problem.

Essentially, all shortest path algorithms rely on the same important concept:
distance labels. At any point during the execution of an algorithm, we associate a
numerical value, or distance label, with each node. If the label of any node is infinite,
we have yet to find a path joining the source node and that node. If the label is finite,
it is the distance from the source node to that node along some path. The most basic
algorithm that we consider in this chapter, the generic label-correcting algorithm,
reduces the distance label of one node at each iteration by considering only local

133

information, namely the length of the single arc and the current distance labels of
its incident nodes. Since we can bound the sum of the distance labels from above
and below in terms of the problem data, then under the assumption of integral costs,
the distance labels will be integral and so the generic algorithm will always be finite.
As is our penchant in this book, however, we wish to discover algorithms that are
not only finite but that require a number of computations that grow as a (small)
polynomial in the problem's size.

We begin the chapter by describing optimality conditions that permit us to
assess when a set of distance labels are optimal-that is, are the shortest path dis­
tances from the source node. These conditions provide us with a termination cri­
terion, or optimality certificate, for telling when a feasible solution to our problem
is optimal and so we need perform no further computations. The concept of opti­
mality conditions is a central theme in the field of optimization and will be a recurring
theme throughout our treatment of network flows in this book. Typically, optimality
conditions provide us with much more than a termination condition; they often pro­
vide considerable problem insight and also frequently suggest algorithms for solving
optimization problems. When a tentative solution does not satisfy the optimality
conditions, the conditions often suggest how we might modify the current solution
so that it becomes "closer" to an optimal solution, as measured by some underlying
metric. Our use of the shortest path optimality conditions in this chapter for de­
veloping label-correcting algorithms demonstrates the power of optimality conditions
in guiding the design of solution algorithms.

Although the general label-correcting algorithm is finite, it requires O(n 2 C)L
computations to solve shortest path problems on networks with n nodes and with a
bound of C on the maximum absolute value of any arc length. This bound is not
very satisfactory because it depends linearly on the values of the arc costs. One of
the advantages of the generic label-correcting algorithm is its flexibility: It offers
considerable freedom in the tactics used for choosing arcs that will lead to improve­
ments in the shortest path distances. To develop algorithms that are better in theory
and in practice, we consider specific strategies for examining the arcs. One "bal­
ancing" strategy that considers arcs in a sequential wraparound fashion requires
only O(nm) computations. Another implementation that gives priority to arcs em­
anating from nodes whose labels were changed most recently, the so-called dequeue
implementation, has performed very well in practice even though it has poor worst­
case performance. In Section 5.4 we study both of these modified versions of the
generic label-correcting algorithm.

We next consider networks with negative cycles and show how to make several
types of modifications to the various label-correcting algorithms so that they can
detect the presence of negative cycles, if the underlying network contains any. One
nice feature of these methods is that they do not add to the worst-case computational
complexity of any of the label-correcting algorithms.

We conclude this chapter by considering algorithms for finding shortest paths
between all pairs of nodes in a network. We consider two approaches to this problem.
One approach repeatedly applies the label-setting algorithm that we considered in
Chapter 4, with each node serving as the source node. As the first step in this
procedure, we apply the label-correcting algorithm to find the shortest paths from
one arbitrary node, and use the results of this shortest path computation to redefine

134 Shortest Paths: Label-Correcting Algorithms Chap. 5

the costs so that they are all nonnegative and so that the subsequent n single-source
problems are all in a form so that we can apply more efficient label-setting algorithms.
The computational requirements for this algorithm is essentially the same as that
required to solve n shortest path problems with nonnegative arc lengths and depends
on which label-setting algorithm we adopt from those that we described in Chapter
4. The second approach is a label-correcting algorithm that simultaneously finds the
shortest path distances between all pairs of nodes. This algorithm is very easy to
implement; it uses a clever dynamic programming recursion and is able to solve the
all-pairs shortest path problem in O(n3) computations.

5.2 OPTIMALITY CONDITIONS

As noted previously, label-correcting algorithms maintain a distance label d(j) for
every node j E N. At intermediate stages of computation, the distance label d(j) is
an estimate of (an upper bound on) the shOrtest path distance from the source node
s to node j, and at termination it is the shortest path distance. In this section we
develop necessary and sufficient conditions for a set of distance labels to represent
shortest path distances. Let d(j) for j oF s denote the length of a shortest path from
the source node to the nodej [we set d(s) = 0]. If the distance labels are shortest
path distances, they must satisfy the following necessary optimality conditions:

d(j) :5 d(i) + cij, for all (i, j) EA. (5.1)

These inequalities state that for every arc (i, j) in the network, the length of
the shortest path to node j is no greater than the length of the shortest path to node
i plus the length of the arc (i, j). For, if not, some arc U, j) E A must satisfy the
condition d(j) > dU) + Cij; in this case, We could improve the length ofthe shortest
path to node j by passing through node i, thereby contradicting the optimality of
distance labels d(j).

These conditions also are sufficient for optimality, in the _.sense that if each d(j)
represents the length of some directed path from the source node to node j and this
solution satisfies the conditions (5.1), then it must be optimal. To establish this result,
consider any solution d(j) satisfying (5.1). Let s = i l - i2 - ... - ik = j be any
directed path P from the source to node j. The conditions (5.1) imply that

d(j) = d(h) :5 d(h-I) + Cik-lik,

The last equality follows from the fact that dUt) = d(s) = O. Adding these in­
equalities, we find that

d(j) = d(ik) :5 Cik_lik + Cik-2ik-1 + Cik-3ik-2 + ... + Cil;' = L cij'
(i,j)EP

Thus d(j) is a lower bound on the length of any directed path from the source
to node j. Since d(j) is the length of some directed path from the source to node j,

Sec. 5.2 Optimality Conditions 135

it also is an upper bound on the shortest path length. Therefore, d(j) is the shortest
path length, and we have established the following result.

Theorem 5.1 (Shortest Path Optimality Conditions). For every node j E N, let
d(j) denote the length of some directed path from the source node to node j. Then
the numbers d(j) represent shortest path distances if and only if they satisfy the
following shortest path optimality conditions:

d(j) ::; d(i) + Cij for all (i, j) EA. (5.2) •

Let us define the reduced arc length ct of an arc (i, j) with respect to the
distance labels dO as ct = Cij + d(i) - d(j). The following properties about the
reduced arc lengths will prove to be useful in our later development.

Property 5.2
(a) For any directed cycle W, ~(iJ)EW ct = ~(iJ)EW Cij'

(b) For any directed path P from node k to node I, ~(iJ)EP ct = ~(iJ)EP Co +
d(k) - d(l).

(c) If dO represent shortest path distances, ct? ° for every arc (i, j) EA.

The proof of the first two results is similar to the proof of Property 2.5 in
Section 2.4. The third result follows directly from Theorem 5.1.

We next note that if the network contains a negative cycle, then no set
of distance labels d(·) satisfies (5.2). For suppose that W is a directed cycle in
G. Property 5.2(c) implies that L(i,j)EW ct ? 0. Property 5.2(a) implies that
~(i,j)EW ct = ~(i,j)EW cij ? 0, and therefore W cannot be a negative cycle.
Thus if the network were to contain a negative cycle, no distance labels could
satisfy (5.2). We show in the next section that if the network does not contain a
negative cycle, some shortest path distances do satisfy (5.2).

For those familiar with linear programming, we point out that the shortest path
optimality conditions can also be viewed as the linear programming optimality con­
ditions. In the linear programming formulation of the shortest path problem, the
negative of the shortest path distances [i.e., - d(j)] define the optimal dual variables,
and the conditions (5.2) are equivalent to the fact that in the optimal solution, reduced
costs of all primal variables are nonnegative. The presence of a negative cycle implies
the unboundedness of the primal problem and hence the infeasibility of the dual
problem.

5.8 GENERIC LABEL-CORRECTING ALGORITHMS

In this section we study the generic label-correcting algorithm. We shall study several
special implementations of the generic algorithm in the next section. Our discussion
in this and the next section assumes that the network does not contain any negative
cycle; we consider the case of negative cycles in Section 5.5.

The generic label-correcting algorithm maintains a set of distance labels d(·)
at every stage. The label d(j) is either 00, indicating that we have yet to discover a
directed path from the source to node j, or it is the length of some directed path

136 Shortest Paths: Label-Correcting Algorithms Chap. 5

from the source to node j. For each node j we also maintain a predecessor index,
pred(j), which records the node prior to nodej in the current directed path oflength
d(j). At termination, the predecessor indices allow us to trace the shortest path from
the source node back to node j. The generic label-correcting algorithm is a general
procedure for successively updating the distance labels until they satisfy the shortest
path optimality conditions (5.2). Figure 5.1 gives a formal description of the generic
label-correcting algorithm.

algorithm label-correcting;
begin

d(s) : = 0 and pred(s) : = 0;
d(j) : = co for each j E N - {s};
while some arc (i, j) satisfies d(j) > d(/) + cijdo
begin

d(j) : = d(/) + cij;
pred(j) : = i;

end;
end;

Figure 5.1 Generic label-correcting
algorithm.

By definition of reduced costs, the distance labels dO satisfy the optimality
conditions if ct ? 0 for all (i, j) EA. The generic label-correcting algorithm selects
an arc (i, j) violating its optimality condition (i.e., ct < 0) and uses it to update the
distance label of node j. This operation decreases the distance label of node j and
makes the reduced arc length of arc (i, j) equal to zero.

We illustrate the generic label correcting algorithm on the network shown in
Figure 5.2(a). If the algorithm selects the arcs (1, 3), (1, 2), (2, 4), (4, 5), (2, 5), and
(3,5) in this sequence, we obtain the distance labels shown in Figure 5.2(b) through
(g). At this point, no arc violates its optimality condition and the algorithm termi­
nates.

The algorithm maintains a predecessor index for every finitely labeled node.
We refer to the collection of arcs (pred(j),j) for every finitely labeled nodej (except
the source node) as the predecessor graph. The predecessor graph is a directed out­
tree T rooted at the source that spans all nodes with finite distance labels. Each
distance update using the arc (i, j) produces a new predecessor graph by deleting
the arc (pred(j),j) and adding the arc (i, j). Consider, for example, the graph shown
in Figure 5.3(a): the arc (6, 5) enters, the arc (3, 5) leaves, and we obtain the graph
shown in Figure 5.3(b).

The label-correcting algorithm satisfies the invariant property that for every
arc (i, j) in the predecessor graph, ct :5 O. We establish this result by performing
induction on the number of iterations. Notice that the algorithm adds an arc (i, j)
to the predecessor graph during a distance update, which implies that after this update
d(j) = d(i) + cu, or Cu + d(i) - d(j) = ct = O. In subsequent iterations, d(i)
might decrease and so ct might become negative. Next observe that if d(j) decreases
during the algorithm, then for some arc (i, j) in the predecessor graph ct may become
positive, thereby contradicting the invariant property. But observe that in this case,
we immediately delete arc (i,j) from the graph and so maintain the invariant property.
For an illustration, see Figure 5.3: in this example, adding arc (6, 5) to the graph
decreases d(5), thereby making c'ts < O. This step increases C~5, but arc (3, 5) im­
mediately leaves the tree.

Sec. 5.3 Generic Label-Correcting Algorithms 137

(a) (b)

2

(c) (d)

(0

3 3

(g)

138 Figure 5.2 Illustrating the generic label-correcting algorithm.

(a) (b)

Figure 5.3 Showing that the predecessor graph is a directed out-tree.

We note that the predecessor indices might not necessarily define a tree. To
illustrate this possibility, we use the situation shown in Figure 5 A(a). Suppose that
arc (6, 2) satisfies d(2) > d(6) + C62 (or d2 < 0) and we update the distance label
of node 2. This operation modifies the predecessor index of node 2 from 1 to 6 and
the graph defined by the predecessor indices is no longer a tree. Why has this hap­
pened? The predecessor indices do not define a tree because the network contained
a negative cycle. To see that this is the case, notice from Property 5.1 that for the
cycle 2-3-6-2, C23 + C36 + C62 = CQ3 + d6 + Ct2 < 0, because CQ3 :5 0, C~6 :5 0,
and d2 < 0. Therefore, the cycle 2-3-6-2 is a negative cycle. This discussion shows
that in the absence of negative cycles, we will never encounter a situation shown
in Figure 5A(b) and the predecessor graph will always be a tree.

The predecessor graph contains a unique directed path from the source node
to every node k and the length of this path is at most d(k). To verify this result, let
P be the path from the source to node k. Since every arc in the predecessor graph
has a nonpositive reduced arc length, LU,j)EP ct :5 0. Property 5.2(b) implies that ° ;::= LU,j)EP ct = LU,j)EP Cij + d(s) - d(k) = LU,j)EP Cij - d(k). Alternatively,
LU,j)EPCij :5 d(k). When the label-correcting algorithm terminates, each arc in the
predecessor graph has a zero reduced arc length (why?), which implies that the length
of the path from the source to every node k equals d(k). Consequently, when the
algorithm terminates, the predecessor graph is a shortest path tree. Recall from
Section 4.3 that a shortest path tree is a directed out-tree rooted at the source with
the property that the unique path from the source to any node is a shortest path to
that node.

(a) (b)

Figure 5.4 Formation of a cycle in a predecessor graph.

Sec. 5.3 Generic Label-Correcting Algorithms 139

It is easy to show that the algorithm terminates in a finite number of iterations.
We prove this result when the data are integral; Exercise 5.8 discusses situations
when the data are nonintegral. Observe that each d(j) is bounded from above by
nC (because a path contains at most n - 1 arcs, each of length at most C) and is
bounded from below by - nCo Therefore, the algorithm updates any label d(j) at
most 2nC times because each update of d(j) decreases it by at least 1 unit. Con­
sequently, the total number of distance label updates is at most 2n2 C. Each iteration
updates a distance label, so the algorithm performs O(n2C) iterations. The algorithm
also terminates in 0(2n) steps. (See Exercise 5.8.)

Modified Label-Correcting Algorithm

The generic label-correcting algorithm does not specify any method for selecting an
arc violating the optimality condition. One obvious approach is to scan the arc list
sequentially and identify any arc violating this condition. This procedure is very
time consuming because it requires Oem) time per iteration. We shall now describe
an improved approach tlli}.t reduces the workload to an average of O(m/n) time per
iteration.

Suppose that we maintain a list, LIST, of all arcs that might violate their op­
timality conditions. If LIST is empty, clearly we have an optimal solution. Otherwise,
we examine this list to select an arc, say (i, j), violating its optimality condition. We
remove arc (i, j) from LIST, and if this arc violates its optimality condition we use
it to update the distance label of node j. Notice that any decrease in the distance
label of node j decreases the reduced lengths of all arcs emanating from node j and
some of these arcs might violate the optimality condition. Also notice that decreasing
d(j) maintains the optimality condition for all incoming arcs at node j. Therefore,
if d(j) decreases, we must add arcs in A(j) to the set LIST. Next, observe that
whenever we add arcs to LIST, we add all arcs emanating from a single node (whose
distance label decreases). This suggests that instead of maintaining a list of all arcs
that might violate their optimality conditions, we may maintain a list of nodes with
the property that if an arc (i, j) violates the optimality condition, LIST must contain
node i. Maintaining a node list rather than the arc list requires less work and leads
to faster algorithms in practice. This is the essential idea behind the modified label­
correcting algorithm whose formal description is given in Figure 5.5.

We call this algorithm the modified label-correcting algorithm. The correctness
of the algorithm follows from the property that the set LIST contains every node i
that is incident to an arc (i, j) violating the optimality condition. By performing
induction on the number of iterations, it is easy to establish the fact that this property
remains valid throughout the algorithm. To analyze the complexity of the algorithm,
we make several observations. Notice that whenever the algorithm updates d(j), it
adds node j to LIST. The algorithm selects this node in a later iteration and scans
its arc list A(j). Since the algorithm can update the distance label d(j) at most 2nC
times, we obtain a bound of LiEN (2nC) I A(i) I = O(nmC) on the total number of
arc scannings. Therefore, this version of the generic label-correcting algorithm runs
in O(nmC) time. When C is exponentially large, the running time is 0(2n). (See
Exercise 5.8.)

140 Shortest Paths: Label-Correcting Algorithms Chap. 5

algorithm modified label-correcting;
begin

dIs) : = 0 and pred(s) : = 0;
d(j) : = 00 for each node j E N - {s};
LIST: = {s};
while LIST ~ £1 do
begin

remove an element i from LIST;
for each arc (i, j) E A(/) do
if d(j) > d(Q + cij then
begin

d(j) : = d(J) + cij;
pred(j) : = i;
if j E LIST then add node j to LIST;

end;
end;

end;
Figure 5.5 Modified label-correcting
algorithm.

5.4 SPECIAL IMPLEMENTATIONS OF THE MODIFIED
LABEL-CORRECTING ALGORITHM

One nice feature of the generic (or the modified) label-correcting algorithm is its
flexibility: We can select arcs that do not satisfy the optimality condition in any
order and still assure finite convergence of the algorithm. One drawback of this
general algorithmic strategy, however, is that without a further restriction on tlie
choice of arcs in the generic label-correcting algorithm (or nodes in the modified
label-correcting algorithm), the algorithm does not necessarily run in polynomial
time. Indeed, if we apply the algorithm to a pathological set of data and make a poor
choice at every iteration, the number of steps can grow exponentially with n. (Since
the algorithm is a pseudopolynomial-time algorithm, these instances must have ex­
ponentially large values of C. See Exercises 5.27 and 5.28 for a family of such
instances.) These examples show that to obtain polynomially bounded label­
correcting algorithms, we must organize the computations carefully. If we apply the
modified label-correcting algorithm to a problem with nonnegative arc lengths and
we always examine a node from LIST with the minimum distance label, the resulting
algorithm is the same as Dijkstra's algorithm discussed in Section 4.5. In this case
our selection rule guarantees that the algorithm examines at most n nodes, and the
algorithm can be implemented to run in O(n2) time. Similarly, when applying the
modified label-correcting algorithm to acyclic networks, if we examine nodes in LIST
in the topological order, shortest path algorithm becomes the one that we discussed
in Section 4.4, so it is a polynomial-time algorithm.

In this section we study two new implementations of the modified label­
correcting algorithm. The first implementation runs in O(nm) time and is currently
the best strongly polynomial-time implementation for solving the shortest path prob­
lem with negative arc lengths. The second implementation is not a polynomial-time
method, but is very efficient in practice.

Sec. 5.4 Special Implementations of the Modified Label-Correcting Algorithm 141

O(nm) Implementation

We first describe this implementation for the generic label-correcting algorithm. In
this implementation, we arrange arcs in A in some specified (possibly arbitrary)
order. We then make passes through A. In each pass we scan arcs in A, one by one,
and check the condition d(j) > d(i) + Cij. If the arc satisfies this condition, we
update d(j) = d(i) + Cij. We stop when no distance label changes during an entire
pass.

Let us show that this algorithm performs at most n - 1 passes through the arc
list. Since each pass requires 0(1) computations for each arc, this conclusion implies
the O(nm) time bound for the algorithm. We claim that at the end of the kth pass,
the algorithm will compute shortest path distances for all nodes that are connected
to the source node by a shortest path consisting of k or fewer arcs. We prove this
claim by performing induction on the number of passes. Our claim is surely true for
k = 1. Now suppose that the claim is true for the kth pass. Thus d(j) is the shortest
path length to node j provided that some shortest path to node j contains k or fewer
arcs, and is an upper boutW on the shortest path length otherwise.

Consider a node j that is connected to the source node by a shortest path s =
io - i] - i2 - ... - ik - ik +] = j consisting of k + 1 arcs, but has no shortest
path containing fewer than k + 1 arcs. Notice that the path io - it - ... - h must
be a shortest path from the source to node ik, and by the induction hypothesis, the
distance label of node ik at the end of the kth pass must be equal to the length of
this path. Consequently, when we examine arc Uk, ik+]) in the (k + l)th pass, we
set the distance label of node ik + 1 equal to the length of the path io - i1 - ••• -

ik ~ ik + 1. This observation establishes that our induction hypothesis will be true
for the (k + l)th pass as well.

We have shown that the label correcting algorithm requires O(nm) time as long
as at each pass we examine all the arcs. It is not necessary to examine the arcs in
any particular order.

The version of the label-correcting algorithm we have discussed considers
every arc in A during every pass. It need not do so. Suppose that we order the arcs
in the arc list by their tail nodes so that all arcs with the same tail node appear
consecutively on the list. Thus, while scanning arcs, we consider one node at a time,
say node i, scan arcs in A(i), and test the optimality condition. Now suppose that
during one pass through the arc list, the algorithm does not change the distance label
of node i. Then during the next pass, d(j) ::5 d(i) + cij for every (i, j) E A(i) and
the algorithm need not test these conditions. Consequently, we can store all nodes
whose distance labels change during a pass, and consider (or examine) only those
nodes in the next pass. One plausible way to implement this approach is to store
the nodes in a list whose distance labels change in a pass and examine this list in
the first-in, first-out (FIFO) order in the next pass. If we follow this strategy in every
pass, the resulting implementation is exactly the same as the modified label­
correcting algorithm stated in Figure 5.5 provided that we maintain LIST as a queue
(i.e., select nodes from the front of LIST and add nodes to the rear of LIST). We
call this algorithm the FIFO label-correcting algorithm and summarize the preceding
discussion as the following theorem.

142 Shortest Paths: Label-Correcting Algorithms Chap. 5

Theorem 5.3. The FIFO label-correcting algorithm solves the shortest path
problem in O(nm) time.

Dequeue Implementation

The modification of the modified label-correcting algorithm we discuss next has a
pseudopolynomial worst-case behavior but is very efficient in practice. Indeed, this
version of the modified label-correcting algorithm has proven in practice to be one
of the fastest algorithms for solving the shortest path problems in sparse networks.
We refer to this implementation of the modified label-correcting algorithm as the
dequeue implementation.

This implementation maintains LIST as a dequeue. A dequeue is a data struc­
ture that permits us to store a list so that we can add or delete elements from the
front as well as the rear of the list. A dequeue can easily be implemented using an
array or a linked list (see Appendix A). The dequeue implementation always selects
nodes from the front of the dequeue, but adds nodes either at the front or at the
rear. If the node has been in the LIST earlier, the algorithm adds it to the front;
otherwise, it adds the node to the rear. This heuristic rule has the following intuitive
justification. If a node i has appeared previously in LIST, some nodes, say ii, i2 ,

... , ik , might have node i as its predecessor. Suppose further that LIST contains
the nodes ii, i2 , ••• ,ik when the algorithm updates d(i) again. It is then advantageous
to update the distance labels of nodes ii, i2 , ••• , ik from node i as soon as possible
rather than first examining the nodes ii, i2 , ••• , ik and then reexamine them when
their distance labels eventually decrease due to decrease in d(i). Adding node i to
the front of LIST tends to correct the distance labels of nodes ii, i2 , ••• , ik quickly
and reduces the need to reexamine nodes. Empirical studies have observed similar
behavior and found that the dequeue implementation examines fewer nodes than do
most other label-correcting algorithms.

5.5 DETECTING NEGATIVE CYCLES

So far we have assumed that the network contains no negative cycle and described
algorithms that solve the shortest path problem. We now describe modifications
required in these algorithms that would permit us to detect the presence of a negative
cycle, if one exists.

We first study the modifications required in the generic label-correcting al­
gorithm. We have observed in Section 5.2 that if the network contains a negative
cycle, no set of distance labels will satisfy the optimality condition. Therefore, the
label-correcting algorithm will keep decreasing distance labels indefinitely and will
never terminate. But notice that - nC is a lower bound on any distance label when­
ever the network contains no negative cycle. Consequently, if we find that the dis­
tance label of some node k has fallen below - nC, we can terminate any further
computation. We can obtain the negative cycle by tracing the predecessor indices
starting at node k.

Let us describe yet another negative cycle detection algorithm. This algorithm
checks at repeated intervals to see whether the predecessor graph contains a directed

Sec. 5.5 Detecting Negative Cycles 143

cycle. Recall from the illustration shown in Figure 5.4 how the predecessor graph
might contain a directed cycle. This algorithm works as follows. We first designate
the source node as marked and all other nodes as unmarked. Then, one by one, We
examine each unmarked node k and perform the following operation: We mark node
k, trace the predecessor indices starting at node k, and mark all the nodes encoun­
tered until we reach the first already marked node, say node I. If k = I, the pre­
decessor graph contains a cycle, which must be a negative cycle (why?). The reader
can verify that this algorithm requires O(n) time to check the presence of a directed
cycle in the predecessor graph. Consequently, if we apply this algorithm after every
an distance updates for some constant a, the computations it performs will not add
to the worst-case complexity of any label-correcting algorithm.

In general, at the time that the algorithm relabels nodej, d(j) = d(i) + Cij for
some node i which is the predecessor ofj. We refer to the arc (i, j) as a predecessor
arc. Subsequently, d(i) might decrease, and the labels will satisfy the condition
d(j) 2: d(i) + cij as long as pred(j) = i. Suppose that P is a path of predecessor
arcs from node 1 to node j. The inequalities d(k) 2: d(l) + Ckl for all arcs (k, l) on
this path imply that J(j) is at least the length of this path. Consequently, no node
j with d(j) ::5 - nC is connected to node 1 on a path consisting only of predecessor
arcs . We conclude that tracing back predecessor arcs from node j must lead to a
cycle, and by Exercise 5.56, any such cycle must be negative.

The FIFO label-correcting algorithm is also capable of easily detecting the
presence of a negative cycle. Recall that we can partition the node examinations in
the FIFO algorithm into several passes and that the algorithm examines any node
at most once within each pass. To implement this algorithm, we record the number
of times that the algorithm examines each node. If the network contains no negative
cycle, it examines any node at most (n - 1) times [because it makes at most (n -
1) passes]. Therefore, if it examines a node more than (n - 1) times, the network
must contain a negative cycle. We can also use the technique described in the pre­
ceding paragraph to identify negative cycles.

The FIFO label-correcting algorithm detects the presence of negative cycles
or obtains shortest path distances in a network in O(nm) time, which is the fastest
available strongly polynomial-time algorithm for networks with nonnegative arc
lengths. However, for problems that satisfy the similarity assumption, other weakly
polynomial-time algorithms run faster than the FIFO algorithm. These approaches
formulate the shortest path problem as an assignment problem (as described in Sec­
tion 12.7) and then use an O(n 1l2m 10g(nC)) time assignment algorithm to solve the
problem (Le., either finds a shortest path or detects a negative cycle).

5.6 ALL-PAIRS SHORTEST PATH PROBLEM

The all-pairs shortest path problem requires that we determine shortest path dis­
tances between every pair of nodes in a network. In this section we suggest two
approaches for solving this problem. The first approach, called the repeated shortest
path algorithm, is well suited for sparse networks. The second approach is a gen­
eralization of the label-correcting algorithm discussed in previous sections; we refer
to this procedure as the all-pairs label-correcting algorithm. It is especially well
suited for dense networks. In this section we describe the generic all-pairs label-

144 Shortest Paths: Label-Correcting Algorithms Chap. 5

correcting algorithm and then develop a special implementation of this generic al­
gorithm, known as the Floyd-Warshall algorithm, that runs in O(n3

) time.
In this section we assume that the underlying network is strongly connected

(i.e., it contains a directed path from any node to every other node). We can easily
satisfy this assumption by selecting an arbitrary node, say node s, and adding arcs
(s, i) and (i, s) of sufficiently large cost for all i E N - {s}, if these arcs do not
already exist. For reasons explained earlier, we also assume that the network does
not contain a negative cycle. All the algorithms we discuss, however, are capable
of detecting the presence of a negative cycle. We discuss situations with negative
cycles at the end of this section.

Repeated Shortest Path Algorithm

If the network has nonnegative arc lengths, we can solve the all-pairs shortest path
problem by applying any single-source shortest path algorithm n times, considering
each node as the source node once. If Sen, m, C) denotes the time needed to solve
a shortest path problem with nonnegative arc lengths, this approach solves the all­
pairs shortest path problem in O(n Sen, m, C» time.

If the network contains some negative arcs, we first transform the network to
one with nonnegative arc lengths. We select a node s and use the FIFO label­
correcting algorithm, described in Section 5.4, to compute the shortest distances
from node s to all other nodes. The algorithm either detects the presence of a negative
cycle or terminates with the shortest path distances d(j). In the first case, the all­
pairs shortest path problem has no solution, and in the second case, we consider
the shortest path problem with arc lengths equal to their reduced arc lengths with
respect to the distance labels d(j). Recall from Section 5.2 that the reduced arc
length of an arc (i, j) with respect to the distance labels d(j) is ct = Cij + d(i) -
d(j), and if the distance labels are shortest path distances, then ct ~ 0 for all arcs
(i, j) in A [see Property 5.2(c)]. Since this transformation produces nonnegative
reduced arc lengths, we can then apply the single-source shortest path algorithm for
problems with nonnegative arc lengths n times (by considering each node as a source
once) to determine shortest path distances between all pairs of nodes in the trans­
formed network. We obtain the shortest path distance between nodes k and I in the
original network by adding d(l) - d(k) to the corresponding shortest path distance
in the transformed network [see Property 5.2(b)]. This approach requires O(nm)
time to solve the first shortest path problem, and if the network contains no negative
cycles, it requires an extra O(n Sen, m, C» time to compute the remaining shortest
path distances. Therefore, this approach determines all pairs shortest path distances
in O(nm + n Sen, m, C» = O(n Sen, m, C» time. We have established the following
result.

Theorem 5.4. The repeated shortest path algorithm solves the all-pairs short­
est path problem in O(n Sen, m, C» time.

In the remainder of this section we study the generic all-pairs label-correcting
algorithm. Just as the generic label-correcting algorithm relies on shortest path op­
timality conditions, the all-pairs label-correcting algorithm relies on all-pairs shortest
path optimality conditions, which we study next.

Sec. 5.6 All-Pairs Shortest Path Problem 145

All-Pairs Shortest Path Optimality Conditions

Let [i, j] denote a pair of nodes i andj in the network. The all-pairs label-correcting
algorithm maintains a distance label d[i, j] for every pair of nodes; this distance
label represents the length of some directed walk from node i to node j and hence
will be an upper bound on the shortest path length from node i to node j. The algorithm
updates the matri~ of distance labels until they represent shortest path distances. It
uses the following generalization of Theorem 5.1:

Theorem 5.5 (All-Pairs Shortest Path Optimality Conditions). For every pair of
nodes [i, j] E N x N, let d[i, j] represent the length of some directed path from
node i to node j. These distances represent all-pairs shortest path distances if and
only if they satisfy the following all-pairs shortest path optimality conditions:

d[i,j] ::; d[i, k] + d[k,j] for all nodes i,j, and k. (5.3)

Proof We use a contradiction argument to establish that the shortest path
distances d[i, j] must s~tisfy the conditions (5.3). Suppose that d[i, k] + d[k, j] <
d[i, j] for nodes i, j, and k. The union of the shortest paths from node i to node k
and node k to node j is a directed walk of length d[i, k] + d[k, j] from node i to
nodej. This directed walk decomposes into a directed path, say P, from node ito
node j and some directed cycles (see Exercise 3.51). Since each direCted cycle in
the network has nonnegative length, the length of the path P is at most d[i, k] +
d[k, j] < d[i, j], contradicting the optimality of d[i, j].

We now show that if the distance labels d[i, j] satisfy the conditions in (5.3),
they represent shortest path distances. We use an argument similar to the one we
used in proving Theorem 5.1. Let P be a directed path of length d[i, j] consisting
of the sequence of nodes i = i 1 - i2 - i3 - ... - ik = j. The condition (5.3) implies
that

d[ik - 1 , ik]::; Cik-lik'

These inequalities, in turn, imply that

d[i, j] ::; CiIi2 + Ci2 i3 + ... + Cik-l ik = L Cij.
(i,j)EP

Therefore, d[i, j] is a lower bound on the length of any directed path from node i
to node j. By assumption, d[i, j] is also an upper bound on the shortest path length
from node ito nodej. Consequently, d[i,j] must be the shortest path length between
these nodes which is the derived conclusion of the theorem. •

All-Pairs Generic Label Correcting Algorithm

The all-pairs shortest path optimality conditions (throughout the remainder of this
section we refer to these conditions simply as the optimality conditions) immediately
yield the following generic all-pairs label-correcting algorithm: Start with some dis-

146 Shortest Paths: Label-Correcting Algorithms Chap. 5

tance labels d[i, j] and successively update these until they satisfy the optimality
conditions. Figure 5.6 gives a formal statement of the algorithm. In the algorithm
we refer to the operation of checking whether d[i, j] > d[i, k] + d[k, j], and if so,
then setting d[i, j] = d[i, k] + d[k, j] as a triple operation.

algorithm all-pairs label-correcting;
begin

set d[i, 11 : = 00 for all [i, 11 E N x N;
set d[i, /] : = 0 for all i E N;
for each (i, j) E A do d[i, jj : = Cij;

while the network contains three nodes i, j, and k
satisfying d[i,11 > d[i, kj + d[k,11 do d[i, 11 : = d[i, kj + d[k, jj;

end;

Figure 5.6 Generic all-pairs label-correcting algorithm.

To establish the finiteness and correctness of the generic all-pairs label­
correcting algorithm, we assume that the data are integral and that the network
contains no negative cycle. We first consider the correctness of the algorithm. At
every step the algorithm maintains the invariant property that whenever d[i, j] <
00, the network contains a directed walk of length d[i, j] from node i to node j. We
can lise induction on the number of iterations to show that this property holds at
every step. Now consider the directed walk of length d[i, j] from node i to node j
at the point when the algorithm terminates. This directed walk decomposes into a
directed path, say P, from node ito nodej, and possibly some directed cycles. None
of these cycles could have a positive length, for otherwise we would contradict the
optimality of d[i, j].

Therefore, all of these cycles must have length zero. Conseque!1tly, the path
P must have length d[i, j]. The distance labels d[i, j] also satisfy the optimality
conditions (5.3), for these conditions are the termination criteria of the algorithm.
This conclusion establishes the fact that when the algorithm terminates, the distance
labels represent shortest path distances.

Now consider the finiteness of the algorithm. Since all arc lengths are integer
and C is the largest magnitude of any arc length, the maximum (finite) distance label
is bounded from above by nC and the minimum distance label is bounded from below
by - nCo Each iteration of the generic all-pairs label-correcting algorithm decreases
some d[i, j]. Consequently, the algorithm terminates within O(n3C) iterations. This
bound on the algorithm's running time is pseudopolynomial and is not attractive
from the viewpoint of worst-case complexity. We next describe a specific imple­
mentation of the generic algorithm, known as the Floyd-Warshall algorithm, that
solves the all-pairs shortest path problem in O(n3) time.

Floyd-Wa.rshall Algorithm

Notice that given a matrix of distances d[i, j], we need to perform O(n3) triple
operations in order to test the optimality of this solution. It is therefore surprising
that the Floyd-Warshall algorithm obtains a matrix of shortest path distances within
O(n3

) computations. The algorithm achieves this bound by applying the triple op-

Sec. 5.6 All-Pairs Shortest Path Problem 147

erations cleverly. The algorithm is based on inductive arguments developed by an
application of a dynamic programming technique.

Let dk[i, j] represent the length of a shortest path from node i to node j subject
to the condition that this path uses only the nodes 1, 2, ... ,k - 1 as internal nodes.
Clearly, dn + I [i, j] represents the actual shortest path distance from node i to node
j. The Floyd-Warshall algorithm first computes dl[i, j] for all node pairs i and j.
Using dl[i, j], it then computes d 2 [i, j] for all node pairs i and j. It repeats this
process until it obtains dn + I [i, j] for all node pairs i andj, when it terminates. Given
dk[i, j], the algorithm computes dk+ I [i, j] using the following property.

This property is valid for the following reason. A shortest path that uses only
the nodes 1,2, ... , k as internal nodes either (1) does not pass through node k, in
which case dk+ I [i, j] = dk[i, j], or (2) does pass through node k, in which case
dk+l[i, j] = dk[i, k] +:::ak[k, j]. Therefore, dk+l[i, j] = min{dk[i, j], dk[i, k] +
dk[k, j]}.

Figure 5.7 gives a formal description of the Floyd-Warshall algorithm.

algorithm Floyd-Warshall;
begin

for all node pairs [i, j] E N x N do
d[i, j] : = 00 and pred[i, j] : = 0;

for all nodes i E N do d[i, /1 : = 0;
for each arc (i, j) E A do d[i, j] : = cij and pred[i, j] : = i;
for each k: = 1 to n do

end;

for each [i, 11 E N x N do
if d[i, jj > d[i, kj + d[k, jj then
begin

d[i,11: = d[i, kj + d[k, 11;
pred[i, j] : = pred[k,11;

end;
Figure 5.7 Floyd-Warshall algorithm.

The Floyd-Warshall algorithm uses predecessor indices, pred[i, j], for each
node pair [i, j]. The index pred[i, j] denotes the last node prior to node j in the
tentative shortest path from node i to nodej. The algorithm maintains the invariant
property that when d[i, j] is finite, the network contains a path from node i to node
j of length d[i, j]. Using the predecessor indices, we can obtain this path, say
P, from node k to node I as follows. We backtrack along the path P starting at
node I. Let g = pred[k, 1]. Then g is the node prior to node I in P. Similarly, h =
pred[k, g] is the node prior to node g in P, and so on. We repeat this process until
we reach node k.

The Floyd-Warshall algorithm clearly performs n major iterations, one for each
k, and within each major iteration, it performs 0(1) computations for each node pair.
Consequently, it runs in 0(n3) time. We thus have established the following result.

Theorem 5.7. The Floyd-Warshall algorithm computes shortest path dis-
tances between all pairs of nodes in 0(n3

) time. •

148 Shortest Paths: Label-Correcting Algorithms Chap. 5

Detection of Negative Cycles

We now address the issue of detecting a negative cycle in the network if one exists.
In the generic all-pairs label-correcting algorithm, we incorporate the following two
tests whenever the algorithm updates a distance label d[i, j] during a triple iteration:

1. If i = j, check whether d[i, i] < O.
2. If i ¥- j, check whether d[i, j] < - nCo

If either of these two tests is true, the network contains a negative cycle. To
verify this claim, consider the first time during a triple iteration when dU, i] < 0 for
some node i. At this time d[i, i] = d[i, k] + d[k, i] for some node k ¥- i. This
condition implies that the network contains a directed walk from node i to node k,
and a directed walk from node k to node i, and that the sum of the lengths of these
two walks is d[i, i], which is negative. The union of these two walks is a closed
walk, which can be decomposed into a set of directed cycles (see Exercise 3.51).
Since d[i, i] < 0, at least one of these directed cycles must be negative.

We next consider the situation in which d[i, j] < - nC for some node pair i
and j. Consider the first time during a triple iteration when d[i, j] < - nCo At this
time the network contains a directed walk from node i to node j of length - nC. As
we observed previously, we can decompose this walk into a directed path P from
node i to node j and some directed cycles. Since the path P must have a length of
at least - (n - 1)C, at least one of these cycles must be a negative cycle.

Finally, we observe that if the network contains a negative cycle, then even­
tually d[i, i] < 0 for some node i or d[i, j] < - nC for some node pair [t, j], because
the distance labels continue to decrease by an integer amount at every iteration.
Therefore, the generic label-correcting algorithm will always determine a negative
cycle if one exists.

In the Floyd-Warshall algorithm, we detect the presence of a negative cycle
simply by checking the condition d[i, i] < 0 whenever we update d[i, i] for some
node i. It is easy to see that whenever dU, i] < 0, we have detected the presence
of a negative cycle. In Exercise 5.37 we show that whenever the network contains
a negative cycle, then during the computations we will eventually satisfy the con­
dition d[i, i] < 0 for some i.

We can also use an extension of the method described in Section 5.5, using
the predecessor graph, to identify a negative cycle in the Floyd-Warshall algorithm.
The Floyd-Warshall algorithm maintains a predecessor graph for each node k in the
network, which in the absence of a negative cycle is a directed out-tree rooted at
node k (see Section 5.3). If the network contains a negative cycle, eventually the
predecessor graph contains a cycle. For any node k, the predecessor graph consists
of the arcs {(pred[k, i], i) : i E N - {k}}. Using the method described in Section
5.5, we can determine whether or not any predecessor graph contains a cycle. Check­
ing this condition for every node requires O(n2) time. Consequently, if we use this
method after every an 2 triple operations for some constant a, the computations will
not add to the worst-case complexity of the Floyd-Warshall algorithm.

Sec. 5.6 All-Pairs Shortest Path Problem 149

Comparison of the Two Methods

The generic all-pairs label-correcting algorithm and its specific implementation as
the Floyd-Warshall algorithm are matrix manipulation algorithms. They maintain a
matrix of tentative shortest path distances between all pairs of nodes and perform
repeated updates of this matrix. The major advantages of this approach, compared
to the repeated shortest path algorithm discussed at the beginning of this section,
are its simplicity, intuitive appeal, and ease of implementation. The major drawbacks
of this approach are its significant storage requirements and its poorer worst-case
complexity for all network densities except completely dense networks. The matrix
manipulation algorithms require fl(n 2

) intermediate storage space, which could pro­
hibit its application in some situations. Despite these disadvantages, the matrix ma­
nipulation algorithms have proven to be fairly popular computational methods for
solving all-pairs shortest path problems.

5.7 MINIMUM COST-TO-TIME RATIO CYCLE PROBLEM

The minimum cost-to-time ratio cycle problem is defined on a directed graph G with
both a cost and a travel time associated with each arc: we wish to find a directed
cycle in the graph with the smallest ratio of its cost to its travel time. The minimum
cost-to-time ratio cycle problem arises in an application known as the tramp steamer
problem, which we defined in Application 4.4. A tramp steamer travels from port
to port, carrying cargo and passengers. A voyage of the steamer from port i to port
j earns pij units of profit and requires time Tij. The captain of the steamer wants to
know what ports the steamer should visit, and in which order, in order to maximize
its mean daily profit. We can solve this problem by identifying a directed cycle with
the largest possible ratio of total profit to total travel time. The tramp steamer then
continues to sail indefinitely around this cycle.

In the tramp steamer problem, we wish to identify a directed cycle W of G
with the maximum ratio (L(i,j)EW Pij)/(L(i,j)EW Tij)' We can convert this problem
into a minimization problem by defining the cost cij of each arc (i, j) as Cij = - pij.

We then seek a directed cycle W with the minimum value for the ratio

fl.(W) =

L Cij
(i,j)EW

L Tij
(i,j)EW

We assume in this section that all data are integral, that Tij 2: 0 for every arc (i, j)
E A, and that L(i,j)EW Tij > 0 for every directed cycle Win G.

We can solve the minimum cost-to-time ratio cycle problem (or, simply, the
minimum ratio problem) by repeated applications of the negative cycle detection
algorithm. Let fl. * denote the optimal objective function value of the minimum cost­
to-time ratio cycle problem. For any arbitrary value of fl., let us define the length
of each arc as lij = Cij - fl.Tij. With respect to these arc lengths, we could encounter
three situations:

150 Shortest Paths: Label-Correcting Algorithms Chap. 5

Case 1. G contains a negative (length) cycle W.

In this case, ~(i,j)EW (cij - j.LTij) < O. Alternatively,

~ Cij

j.L > (i,j)EW 2: j.L*.

~ Tij

(5.4)

(i,j)EW

Therefore, j.L is a strict upper bound on j.L *.

Case 2. G contains no negative cycle, but does contain a zero-length cycle W*.

The fact that G contains no negative 'cycle implies that ~(i,j)EW (cij - j.LTij) 2:

o for every directed cycle W. Alternatively,

~ Cij

j.L:S (i,~W
Tij

(i,j)EW

for every directed cycle W.

Similarly, the fact that G contains a zero-length cycle W* implies that

~ Cij
(i,j)EW*

j.L=
~ Tij

(i,j)EW·

(5.5)

(5.6)

The conditions (5.5) and (5.6) imply that j.L = j.L *, so W* is a minimum cost­
to-time ratio cycle.

Case 3. Every directed cycle W in G has a positive length.

In this case ~(i,j)EW (Cij - j.LTij) > 0 for every directed cycle W. ~lternatively,

~ cij
< (i,j)EW

j.L ~ Tij
for every directed cycle W. (5.7)

(i,j)EW

Consequently, j.L is a strict lower bound on j.L *.

The preceding case analysis suggests the following search procedure for solving
the minimum cost-to-time ratio problem. We guess a value j.L for j.L *, define arc
lengths as (Cij - j.LTij), and apply any shortest path algorithm. If the algorithm iden­
tifies a negative cycle, j.L exceeds j.L * and our next guess should be smaller. If the
algorithm terminates with shortest path distances, we look for a zero-length cycle
(as described in Exercise 5.19). If we do find a zero-length cycle W*, then we stop;
otherwise, j.L is smaller than j.L *, so our next guess should be larger. To implement
this general solution approach, we need to define what we mean by "smaller" and
"larger." The following two search algorithms provide us with two methods for
implementing this approach.

Sequential search algorithm. Let j.L ° be a known upper bound on j.L *. If
we solve the shortest path problem with (Cij - j.L°Tij) as arc lengths, we either find
a zero-length cycle W or find a negative cycle W. In the former case, W is a minimum

Sec. 5.7 Minimum Cost-to-Time Ratio Cycle Problem 151

ratio cycle and we terminate the search. In the latter case, we chose f.L I ==
(LU,j)EW Cij)/(Lu,j)EW Tij) as our next guess. Case 1 shows that f.L ° >. f.L I 2: f.L *.
Repeating this process, we obtain a sequence of values f.L0> f.LI > ... > f.Lk = f.L*.
In Exercise 5.48 we ask the reader to obtain a pseudopolynomial bound on the
number of iterations performed by this search procedure.

Binary search algorithm. In this algorithm we identify a minimum cost­
to-time ratio cycle using the binary search technique described in Section 3.3. Let
[./!, Ii] be an interval that contains f.L*, that is, ./! ::; f.L* ::; Ii. If C = max {Cij:
(i, j) E A}, it is easy to verify that [- c, C] is one such interval. At every iteration
of the binary search algorithm, we consider f.L ° = c.!! + 1i)/2, and check whether the
network contains a negative cycle with arc lengths Cij - f.L°Tij. If it does, f.L0 > f.L*
(from Case 1) and we reset Ii = f.L 0, otherwise, f.L ° ::; f.L * (from Case 3) and we reset
./! = f.L 0. At every iteration, we half the length of the search interval. As shown by
the following result, after a sufficiently large number of iterations, the search interval
becomes so small that it h~ a unique solution.

Let c(W) and T(W) denote the cost and travel time of any directed cycle Wof
the network G, and let TO = max{Tij: (i, j) E A}. We claim that any interval£.!!, Ii]
of size at most Ihij contains at most one value from the sef {c(W)h(W) : W is a
directed cycle of the network G}. To establish this result, let WI and W2 be two
directed cycles with distinct ratios. Then

or
I

C(WI) - c(W2) I ~ 0
T(WI) T(W2) ,

I
C(WdT(W2) - c(W2)T(Wd I ~ o.

T(WI)T(W2)
(5.8)

Since the left-hand side of (5.8) is nonzero (and all data are integer), its nu­
merator must be at least 1 in absolute value. The denominator of (5.8) is at most
Tij. Therefore, the smallest value of the left-hand side is Ihij. Consequently, when
(Ii - ./!) has become smaller than Ihij, the interval£.!!, Ii] must contain at most one
ratio of the form c(W)h(W).

Since initially (Ii - ./!) = 2C, after O(lOg(2CTij)) = O(lOg(TOC)) iterations, the
length of the interval£.!!, Ii] becomes less than Ihij, and we can terminate the binary
search. The network then must contain a zero-length cycle with respect to the arc
lengths (cij - IiTij); this cycle is a minimum cost-to-time ratio cycle.

Minimum Mean Cycle Problem

The minimum mean cycle problem is a special case of the minimum cost-to-time
ratio problem obtained by setting the traversal time Tij = 1 for every arc (i, j) E A.
In this case we wish to identify a directed cycle W with the smallest possible mean
cost (LU,j)EW Cij)/I W I from among all directed cycles in G. The minimum mean
cycle problem arises in a variety of situations, such as data scaling (see Application
19.6 in Chapter 19) and as a subroutine in certain minimum cost flow algorithms
(see Section 10.5), and its special structure permits us to develop algorithms that

152 Shortest Paths: Label-Correcting Algorithms Chap. 5

are faster than those available for the general minimum cost-to-time ratio cycle
problem. In this section we describe an O(nm)-time dynamic programming algorithm
for solving the minimum mean cycle problem.

In the subsequent discussion, we assume that the network is strongly connected
(i.e., contains a directed path between every pair of nodes). We can always satisfy
this assumption by adding arcs of sufficiently large cost; the minimum mean cycle
will contain no such arcs unless the network is acyclic.

Let dk(j) denote the length, with respect to the arc lengths Cij, of a shortest
directed walk containing exactly k arcs from a specially designated node s to node
j. We can choose any node s as the specially designated node. We emphasize that
dk(j) is the length of a directed walk to nodej; it might contain directed cycles. We
can compute dk(j) for every node j and for every k = 1, ... , n, by using the
following recursive relationship:

dk(j) = min {dk-1(i) + cu}.
{i:(i,j)EA}

(5.9)

We initialize the recursion by setting d°(j) = 00 for each nodej. Given dk-1(j)
for allj, using (5.9) we compute dk(j) for allj, which requires a total of Oem) time.
By repeating this process for all k = 1,2, ... , n, within O(nm) computations we
determine dk(j) for every node j and for every k. As the next result shows, we are
able to obtain a bound on the cost f.L * of the minimum mean cycle in terms of the
walk lengths dk(j).

Theorem 5.8

(5.10)

Proof We prove this theorem for two cases: when f.L * = 0 and,f.L * =F-. O.

Case 1. f.L * = O. In this case the network does not contain a negative cycle
(for otherwise, f.L * < 0), but does contain a zero cost cycleW. For each node j E
N, let d(j) denote the shortest path distance from node s to nodej. We next replace
each arc cost Cij by its reduced cost ct = Cij + d(i) - d(j). Property 5.2 implies
that as a result of this transformation, the network satisfies the following properties:

1. All arc costs are nonnegative.
2. All arc costs in Ware zero.

3. For each nodej, every arc in the shortest path from node s to nodej has zero
cost.

4. For each node j, the shortest path distances dk(j), for any 1 ::5 k ::5 n, differ
by a constant amount from their values before the transformation.

Let dk(j) denote the length of the shortest walk from node s to node j with
respect to the reduced costs ct. Condition 4 implies that the expression (5.10) re­
mains valid even if we replace dn(j) by dn(j) and dk(j) by dk(j). Next, notice that
for each node j E N,

max [(fn(j) - dk(j)] ::::: 0, (5.11)
lS;kS;n-l

Sec. 5.7 Minimum Cost-to-Time Ratio Cycle Problem 153

because for some k, (lk(j) will equal the shortest path length (l(j), and (In(j) will be
at least as large. We now show that for some node p, the left-hand side of (5.11)
will be zero, which will establish the theorem. We choose some node j in the cycle
Wand construct a directed walk containing n arcs in the following manner. First,
we traverse the shortest path from node s to node j and then we traverse the arcs
in W from node j until the walk contains n arcs. Let node p be the node where this
walk ends. Conditions 2 and 3 imply that this walk from node s to node p has a zero
length. This walk must contain one or more directed cycle because it contains n
arcs. Removing the directed cycles from this walk gives a path, say of length k ::;
n - 1, from node s to node p of zero length. We have thus shown that (In(p) =
(lk(p) = O. For node p the left-hand side of (5.11) is zero, so this node satisfies the
condition

as required by the theorem.

Case 2. /-L * ;F- O. Suppose that .6 is a real number. We study the effect of
decreasing each arc cost Cij by an amount .6. Clearly, this change in the arc costs
reduces /-L* by .6, each d\j) by k.6, and therefore the ratio (dn(v) - dk(v))/
(n - k), and so the right-hand side of(5.1O), by an amount.6. Consequently, trans­
lating the costs by a constant affects both sides of (5.10) equally. Choosing the trans­
lation to make /-L * = 0 and then using the result of Case 1 provides a proof of the
theorem. •

We ask the reader to show in Exercise 5.55 that how to use the dk(j)'s to obtain
a minimum mean cycle.

5.B SUMMARY

In this chapter we developed several algorithms, known as the label-correcting al­
gorithms, for solving shortest path problems with arbitrary arc lengths. The shortest
path optimality conditions, which provide necessary and sufficient conditions for a
set of distance labels to define shortest path lengths, playa central role in the de­
velopment of label-correcting algorithms. The label-correcting algorithms maintain
a distance label with each node and iteratively update these labels until the distance
labels satisfy the optimality conditions. The generic label-correcting algorithm se­
lects any arc violating its optimality condition and uses it to update the distance
labels. Typically, identifying an arc violating its optimality condition will be a time­
consuming component of the generic label-correcting algorithm. To improve upon
this feature of the algorithm, we modified the algorithm so that we could quickly
select an arc violating its optimality condition. We presented two specific imple­
mentations of this modified label-correcting algorithm: A FIFO implementation im­
proves on its running time in theory and a dequeue implementation improves on its
running time in practice. Figure 5.8 summarizes the important features of all the
label-correcting algorithms that we have discussed.

The label-correcting algorithms determine shortest path distances only if the
network contains no negative cycle. These algorithms are, however, capable of de-

154 Shortest Paths: Label-Correcting Algorithms Chap. 5

Algorithm Running Time Features

Generic label-correcting O(min{n2mC, m2n}) 1. Selects arcs violating their optimality conditions
algorithm and updates distance labels.

2. Requires O(m) time to identify an arc violating its
optimality condition.

3. Very general: most shortest path algorithms can be
viewed as special cases of this algorithm.

4. The running time is pseudopolynomial and so is un-
attractive.

Modified label-correcting O(min{nmC, m2n}) 1. An improved implementation of the generic label-
algorithm correcting algorithm.

2. The algorithm maintains a set, LIST, of nodes:
whenever a distance label d(j) changes, we add
node j to LIST. The algorithm removes a node i
from LIST and examines arcs in A(i) to update dis-
tance labels.

3. Very flexible since we can maintain LIST in a va-
riety of ways.

4. The running time is still unattractive.

FIFO implementation O(nm) 1. A specific implementation of the modified label-
correcting algorithm.

2. Maintains the set LIST as a queue and hence ex-
amines nodes in LIST in first-in, first-out order.

3. Achieves the best strongly polynomial running time
for solving the shortest path problem with arbitrary
arc lengths.

4. Quite efficient in practice.
5. In O(nm) time, can also identify the presence of

negative cycles.

Dequeue implementation O(min{nmC, m2n}) 1. Another specific implementation of the modified
label-correcting algorithm.

2. Maintains the set LIST l!sa dequeue. Adds a node
to the front of dequeue if the algorithm has previ-
ously updated its distance label, and to the rear
otherwise.

3. Very efficient in practice (possibly, linear time).
4. The worst-case running time is unattractive.

Figure 5.S Summary of label-correcting algorithms.

tecting the presence of a negative cycle. We described two methods for identifying
such a situation: the more efficient method checks at repeated intervals whether the
predecessor graphs (i.e., the graph defined by the predecessor indices) contains a
directed cycle. This computation requires D(n) time.

To conclude this chapter we studied algorithms for the all-pairs shortest path
problem. We considered two basic approaches: a repeated shortest path algorithm
and an all-pairs label-correcting algorithm. We described two versions of the latter
approach: the generic version and a special implementation known as the Floyd­
Warshall algorithm. Figure 5.9 summarizes the basic features of the all-pairs shortest
path algorithms that we studied.

Sec. 5.8 Summary 155

Algorithm Running Time Features

Repeated shortest path O(nS(n,m,C» 1. Preprocesses the network so that all (reduced) arc
algorithm lengths are nonnegative. Then applies Dijkstra's al-

gorithm n times with each node i E N as the source
node.

2. Flexible in the sense that we can use an implemen-
tation of Dijkstra's algorithm.

3. Achieves the best available running time for all net-
work densities.

4. Low intermediate storage.

Floyd-Wars hall algorithm O(n3) 1. Corrects distance labels in a systematic way until
they represent the shortest path distances.

2. Very easy to implement.
3. Achieves the best available running time for dense

networks.
4. Requires 'o(n2

) intermediate storage.
~

Figure 5.9 Summary of all pairs shortest path algorithms. [S(n, m, C) is the time
required to solve a shortest path problem with nonnegative arc lengths.]

REFERENCE NOTES

Researchers, especially those within the operations research community, have ac­
tively studied label-correcting algorithms for many years; much of this development
has focused on designing computationally efficient algorithms. Ford [1956] outlined
the first label-correcting algorithm for the shortest path problem. Subsequently, sev­
eral researchers, including Moore [1957] and Ford and Fulkerson [1962], studied
properties of the generic label-correcting algorithms. Bellman's [1958] dynamic pro­
gramming algorithm for the shortest path problem can also be viewed as a label­
correcting algorithm. The FIFO implementation of the generic label-correcting al­
gorithm is also due to Bellman [1958]. Although Bellman developed this algorithm
more than three decades ago, it is still the best strongly polynomial-time algorithm
for solving shortest path problems with arbitrary arc lengths.

In Section 12.7 we show how to transform the shortest path problem into an
assignment problem and then solve it using any assignment algorithm. As we note
in the reference notes of Chapter 12, we can solve the assignment problem in
O(n 112m 10g(nC)) time using either the algorithms reported by Gabow and Tarjan
[1989a] or the algorithm developed by Orlin and Ahuja [1992]. These developments
show that we can solve shortest path problems with arbitrary arc lengths in
O(n 112m 10g(nC)) time. Thus the best available time bound for solving the shortest
path problem with arbitrary arc lengths is O(min{nm, n ll2 m 10g(nC)}): The first bound
is due to Bellman [1958], and the second bound is due to Gabow and Tarjan [1989a]
and Orlin and Ahuja [1992].

Researchers have exploited the inherent flexibility of the generic label­
correcting algorithm to design algorithms that are very efficient in practice. Pape' s
implementation, described in Section 5.4, is based on an idea due to D'Esopo that

156 Shortest Paths: Label-Correcting Algorithms Chap. 5

was later refined and tested by Pape [1974]. Pape [1980] gave a FORTRAN listing
of this algorithm. Pape's algorithm runs in pseudopolynomial time. Gallo and Pal­
lottino [1986] describe a two-queue implementation that retains the computational
efficiency of Pape's algorithm and still runs in polynomial time. The papers by
Glover, Klingman, and Phillips [1985] and Glover, Klingman, Phillips, and Schneider
[1985] have described a variety of specific implementations of the generic label­
correcting algorithm and studied their theoretical and computational behavior. These
two papers, along with those by Hung and Divoky [1988], Divoky and Hung [1990],
and Gallo and Pallottino [1984, 1988], have presented extensive computational results
of label-setting and label-correcting algorithms. These studies conclude that for a
majority of shortest path problems with nonnegative or arbitrary arc lengths, the
label-correcting algorithms, known as Thresh Xl and Thresh X2, suggested by
Glover, Klingman, and Phillips [1985], are the fastest shortest path algorithms. The
reference notes of Chapter 11 provide references for simplex-based approaches for
the shortest path problem.

The generic all-pairs label-correcting algorithm, discussed in Section 5.3, is a
generalization of the single source shortest path problem. The Floyd-Warshall al­
gorithm, which was published in Floyd [1962], was based on Warshall's [1962] al­
gorithm for finding transitive closure of graphs.

Lawler [1966] and Dantzig, Blattner, and Rao [1966] are early and important
references on the minimum cost-to-time ratio cycle problem. The binary search
algorithm described by us in Section 5.7 is due to Lawler [1966]. Dantzig, Blattner,
and Rao [1966] presented a primal simplex approach that uses the linear programming
formulation of the minimum ratio problems; we discuss this approach in Exercise
5.47. Meggido [1979] describes a general approach for solving minimum ratio prob­
lems, which as a special case yields a strongly polynomial-time algorithm for the
minimum cost-to-time ratio cycle problem.

The O(nm)-time minimum mean cycle algorithm, described in Section 5.7, is
due to Karp [1978]. Several other algorithms are available for solving the minimum
mean cycle problem: (1) an O(nm log n) parametric network simplex algorithm
proposed by Karp and Orlin [1981], (2) an O(n 112m 10g(nC)) algorithm developed
by arlin and Ahuja [1992], and (3) an O(nm + n 2 log n) algorithm designed by
Young, Taljan, and arlin [1990]. The best available time bound for solving the min­
imum mean cycle problem is O(min{nm, n 1l2m 10g(nC)): The two bounds contained
in this expression are due to Karp [1978] and arlin and Ahuja [1992]. However, we
believe that the parametric network simplex algorithm by Karp and arlin [1981]
would prove to be the most efficient algorithm empirically. We describe an appli­
cation of the minimum mean cycle problem in Application 19.6. The minimum mean
cycle problem also arises in solving minimum cost flow problems (see Goldberg and
Tarjan [1987, 1988]).

EXERCISES

5.1. Select a directed cycle in Figure 5.1O(a) and verify that it satisfies Property 5.2(a).
Similarly, select a directed path from node 1 to node 6 and verify that it satisfies Property
5.2(b). Does the network contain a zero-length cycle?

Chap. 5 Exercises 157

d(i) • '11m, ,: ~$. ~

-5

0

s

45

Gij

0

5

30
(a)

d{j)

(I "«iF '->''';"

25

-5
10

o

Figure 5.10 Examples for Exercises 5.1 to 5.5.

0 6

5.2. Consider the shortest path problems shown in Figure 5.10. Check whether or not the
distance label d(j) given next to each node j represents me length of some path. If your
answer is yes for every node, list all the arcs that do not satisfy the shortest path
optimality conditions.

5.3. Apply the modified label-correcting algorithm to the shortest path problem shown in
Figure 5.1O(a). Assume that the adjacency list of each node is arranged in increasing
order of the head node numbers. Always examine a node with the minimum number
in LIST. Specify the predecessor graph after examining each node and count the number
of distance updates.

5.4. Apply the FIFO label-correcting algorithm to the example shown in Figure 5.1O(b).
Perform two passes of the arc list and specify the distance labels and the predecessor
graph at the end of the second pass. '

5.5. Consider the shortest path problem given in Figure 5.10(a) with the modification that
the length of arc (4, 5) is -15 instead of - 5. Verify that the network contains a negative
cycle. Apply the dequeue implementation of the label-correcting algorithm; after every
three distance updates, check whether the predecessor graph contains a directed cycle.
How many distance updates did you perform before detecting a negative cycle?

5.6. Construct a shortest path problem whose shortest path tree contains a largest cost arc
in the network but does not contain the smallest cost arc.

5.7. Bellman's equations

158

(a) Show that the shortest path distances dO must satisfy the following equations,
known as Bellman's equations:

d(j) = min{d(i) + cij:U,j) E AU)} for allj E N.

(b) Show that if a set of\distance labels d(i)'s satisfy Bellman's equations and the
network contains no zero-length cycle, these distance labels are shortest path dis­
tances.

(c) Verify that for the shortest path problem shown in Figure 5.11, the distance labels

Figure 5.11 Example for Exercise 5.7.

Shortest Paths: Label-Correcting Algorithms Chap. 5

d = (0, 0, 0, 0) satisfy Bellman's equations but do not represent shortest path
distances. This example shows that in the presence of a zero-length cycle, Bellman's
equations are not sufficient for characterizing the optimality of distance labels.

5.8. Our termination argument of the generic label-correcting algorithm relies on the fact
that the data are integral. Suppose that in the shortest path problem, some arc lengths
are irrational numbers.
(a) Prove that for this case too, the generic label-correcting algorithm will terminate
finitely. (Hint: Use arguments based on the predecessor graph.)
(b) (Gallo and Pallottino [1986]). Assuming that the network has no negative cost cycles,
show the total number of relabels is O(2n). (Hint: Show first that if the algorithms uses
the path 1-2-3-4 to label node 4, then it never uses the path 1-3-2-4 to label node 4.
Then generalize this observation.)
(c) Show that the generic label correcting algorithm requires O(2 n

) iterations.
5.9. In Dijkstra's algorithm for the shortest path problem, let S denote the set of permanently

labeled nodes at some stage. Show that for all node pairs [i, j] for which i E S, j E N
and (i,j) E A, d(j) :5 d(i) + cij' Use this result to give an alternative proof of correctness
for Dijkstra's algorithm.

5.10. We define an in-tree of shortest paths as a directed in-tree rooted at a sink node t for
which the tree path from any node i to node t is a shortest path. State a modification
of the generic label-correcting algorithm that produces an in-tree of shortest paths.

5.11. Let G = (Nt U N 2, A) be a bipartite network. Suppose that nt = 1 Nt I, n2 = 1 N21
and nt :5 n2. Show that the FIFO label-correcting algorithm solves the shortest path
problem in this network in O(ntm) time.

5.12. Let dk(j) denote the shortest path length from a source node s to nodej subject to the
condition that the path contains at most k arcs. Consider the O(nm) implementation
of the label-correcting algorithm discussed in Section 5.4; let Dk(j) denote the distance
label of node j at the end of the kth pass. Show that Dk(j) :5 dk(j) for every node j E
N. .

5.13. In the shortest path problem with nonnegative arc lengths, suppose that we know that
the shortest path distance of nodes it, i2 , ••• , in are in nondecreasing order. Can we
use this information to help us determine shortest path distances more efficiently than
the algorithms discussed in Chapter 4? If we allow arc lengths to be negative, can you
solve the shortest path problem faster than O(nm) time?

5.14. Show that in the FIFO label-correcting algorithm, if the kth pass of the arc list decreases
the distances of at least n - k + 1 nodes, the network must contain a negative cycle.
(Hint: Use the arguments required in the complexity proof of the FIFO algorithm.)

5.15. Modified FIFO algorithm (Goldfarb and Hao [1988]). This exercise describes a modi­
fication of the FIFO label-correcting algorithm that is very efficient in practice. The
generic label-correcting algorithm described in Figure 5.1 maintains a predecessor
graph. Let f(j) denote the number of arcs in the predecessor graph from the source
node to node j. We can easily maintain these values by using the update formula
f(j) = f(i) + 1 whenever we make the distance label update d(j) = d(i) + cij' Suppose
that in the algorithm we always examine a node i in LIST with the minimum value of
f(i). Show that the algorithm examines the nodes with nondecreasing values of fO
and that it examines no node more than n - 1 times. Use this result to specify an
O(nm) implementation of this algorithm.

5.16. Suppose after solving a shortest path problem, you realize that you underestimated
each arc length by k units. Suggest an O(m) algorithm for solving the original problem
with the correct arc lengths. The running time of your algorithm should be independent
of the value of k(Hint: Use Dial's implementation described in Section 4.6 on a modified
problem.)

5.17. Suppose that after solving a shortest path problem, you realize that you underestimated
some arc lengths. The actual arc lengths were C;j ~ cij for all (i, j) E A. Let L =
~(i,j)EA(Cij - cij). Suggest an O(m + L) algorithm for reoptimizing the solution ob-

Chap. 5 Exercises 159

tained for the shortest path problem with arc lengths cij. (Hint: See the hint for Exercise
5.16.)

5.18. Suppose that after solving a shortest path problem, you realize that you underestimated
some arc lengths and overestimated some other arc lengths. The actual arc lengths are
C;j instead of Cij for all (i, j) E A. Let L = 2,U,j)EA \ cij - C;j \. Suggest an O(mL)
algorithm for reoptimizing the shortest path solution obtained with the arc lengths cij'
(Hint: Apply the label-correcting algorithm on a modified problem.)

5.19. Identifying zero-length cycles. In a directed network G with arc lengths cij, let d(j) denote
the shortest path distance from the source node s to nodej. Define reduced arc lengths
as ct = cij + d(i) - d(j) and define the zero-residual network GO as the subnetwork
of G consisting only of arcs with zero reduced arc lengths. Show that there is a one­
to-one correspondence between zero-length cycles in G and directed cycles in GO.
Explain how you can identify a directed cycle in GO in Oem) time.

5.20. Enumerating all shortest paths. Define the zero-residual network GO as in Exercise 5.19,
and assume that GO is acyclic. Show that a directed path from node s to node t in G
is a shortest path if and only if it is a directed path from node s to node t in GO. Using
this result, describe an algorithm for enumerating all shortest paths in G from node s
to node t. (Hint: Use the algorithm in Exercise 3.44.)

5.21. Professor May B. Wright suggests the following method for solving the shortest path
problem with arbitrary arc lengths. Let Cmin = min{cij :;(i, j) E A}. If Cmin < 0, add
\ Cmin I to the length each arc in the network so that they all become nonnegative. Then
use Dijkstra's algorithm to solve the shortest path problem. Professor Wright claims
that the optimal solution of the transformed problem is also an optimal solution of the
original problem. Prove or disprove her claim.

5.22. Describe algorithms for updating the shortest path distances from node s to every other
node if we add a new node (n + 1) and some arcs incident to this node. Consider the
following three cases: (1) all arc lengths are nonnegative and node (n + 1) has only
incoming arcs; (2) all arc lengths are nonnegative and node (n + 1) has incoming as
well as outgoing arcs; and (3) arc lengths are arbitrary, but node (n + 1) has only
incoming arcs. Specify the time required for the reoptimization.

5.23. Maximum mnltiplier path problem. The maximum multiplier path problem is an exten­
sion of the maximum reliability path problem that we discussed in Exercise 4.39, ob­
tained by permitting the constants fLij to be arbitrary positive numbers. Suppose that
we are not allowed to use logarithms. State optimality conditions for the maximum
multiplier path problem and show that if the network contains a positive mUltiplier
directed cycle, no path can satisfy the optimality conditions. Specify an O(nm) algo­
rithm for solving the maximum multiplier path problem for networks that contain no
positive mUltiplier directed cycles.

5.24. Sharp distance labels. The generic label-correcting algorithm maintains a predecessor
graph at every step. We say that a distance label d(i) is sharp if it equals the length of
the unique path from node s to node i in the predecessor graph. We refer to an algorithm
as sharp if every node examined by the algorithm has a sharp distance label. (A sharp
algorithm might have nodes with nonsharp distances, but the algorithm never examines
them.)
(a) Show by an example that the FIFO implementation of the generic label-correcting

algorithm is not a sharp algorithm.
(b) Show that the dequeue implementation of the generic label correcting is a sharp

algorithm. (Hint: Perform induction on the number of nodes the algorithm exam­
ines. Use the fact that the distance label of a node becomes nonsharp only when
the distance label of one of its ancestors in the predecessor graph decreases.)

5.25. Partitioning algorithm (Glover, Klingman, and Phillips [1985]). The partitioning al­
gorithm is a special case of the generic label-correcting algorithm which divides
the set LIST of nodes into two subsets: NOW and NEXT. Initially, NOW = {s} and
NEXT = 0. When examining nodes, the algorithm selects any node i in NOW and

160 Shortest Paths: Label-Correcting Algorithms Chap. 5

adds to NEXT any node whose distance label decreases, provided that the node is not
already in NOW or NEXT. When NOW becomes empty, the algorithm transfers all
the nodes from NEXT to NOW. The algorithm terminates when both NOW and
NEXT become empty.
(a) Show that the FIFO label-correcting algorithm is a special case of the partitioning

algorithm. (Hint: Specify rules for selecting the nodes in NOW, adding nodes to
NEXT, and transferring nodes from NEXT to NOW.) ~

(b) Show that the partitioning algorithm runs in O(nm) time. (Hint: Call the steps
between two consecutive replenishments of NOW a phase. Extend the proof of
the FIFO label-correcting algorithm to show that at the end of the kth phase, the
algorithm determines optimal distances for all nodes whose shortest paths have no
more than k arcs.)

5.26. Threshold algorithm (Glover, Klingman, and Phillips [1985]). The threshold algorithm
is a variation of the partitioning algorithm discussed in Exercise 5.25. When NOW
becomes empty, the threshold algorithm does not transfer all the nodes from NEXT
to NOW; instead, it transfers only those nodes i for which d(i) ~ t for some threshold
value t. At each iteration, the algorithm choses the threshold value t to be at least as
large as the minimum distance label in NEXT (before the transfer), so it transfers all
those nodes with the minimum distance label, and possibly other nodes as well, from
NEXT to NOW. (Note that we have considerable flexibility in choosing t at each step.)
(a) Show that if all arc lengths are nonnegative, the threshold algorithm runs in O(nm)

time. (Hint: Use the proof of Dijkstra's algorithm.)
(b) Show that if all arc lengths are nonnegative and the threshold algorithm transfers

at most five nodes from NEXT to NOW at each step, including a node with the
minimum distance label, then it runs in O(n 2

) time.
5.27. Pathological instances of the label-correcting algorithm (Pallottino [1991]). We noted in

Section 5.4 that the dequeue implementation of the generic label-correcting algorithm
has excellent empirical behavior. However, for some problem instances, the algorithm
performs an exponential number of iterations. In this exercise we describe a method
for constructing one such pathological instance for every n. Let G = (N, A) be an
acyclic graph with n nodes and an arc (i, j) for every node pair i and j satisfying i >
j. Let node n be the source node. We define the cost of each arc (i, j) as Cij = 2i

-
2 -

2j
-

1
;::: O. Assume that the adjacency list of each node i E N - {n} is arranged in

decreasing order of the head nodes and the adjacency list of the source node n is
arranged in the increasing order of the head nodes.
(a) Verify that for n = 6, the method generates the instance shown in Figure 5.12.
(b) Consider the instance shown in Figure 5.12. Show that every time the dequeue

implementation examines any node (other than node 1), it updates the distance
label of node 1. Show that the label of node 1 assumes all values between 15 and
O.

Figure 5.12 Pathological example of the label-correcting algorithm.

5.28. Using induction arguments, show that for an instance with n nodes constructed using
the method described in Exercise 5.27, the dequeue implementation of the label-

Chap. 5 Exercises 161

correcting algorithm assigns to node 1 all labels between 2n
-

2 - 1 to 0 and therefore
runs in exponential time.

5.29. Apply the first three iterations (i.e., k = 1, 2, 3) of the Floyd-Warshall algorithm to
the all-pairs shortest path problems shown in Figure 5.13(a). List four triplets (i, j, k)
that violate the all-pairs shortest path optimality conditions at the conclusion of these
iterations.

4

10

3

5 5

6
(a) (b)

Figure 5.13 Example for Exercises 5.29 to 5.31. \"

5.30. Solve the all-pairs shortest path problem shown in Figure 5.13(b).
5.31. Consider the shortest path problem shown in Figure 5. 13 (b) , except with C31 equal to

3. What is the least number of triple operations required in the Floyd-Warshall algo­
rithm before the node pair distances dk[i,j] satisfy one of the negative cycle detection
conditions?

5.32. Show that if a network contains a negative cycle, the generic all-pairs label-correcting
algorithm will never terminate.

5.33. Suppose that the Floyd-Warshall algorithm terminates after detecting the presence of
a negative cycle. At this time, how would you detect a negative cycle using the pre­
decessor indices?

5.34. In an all-pairs shortest path problem, suppose that several shortest paths connect node
i and nodej. If we use the Floyd-Warshall algorithm to solve this problem, which path
will the algorithm choose? Will this path be the one with the least number of arcs?

5.35. Consider the maximum capacity path problem defined in Exercise 4.37. Modify the
Floyd-Warshall algorithm so that it finds maximum capacity paths between all pairs
of nodes.

5.36. Modify the Floyd-Warshall all-pairs shortest path algorithm so that it determines max­
imum multiplier paths between all pairs of nodes.

5.37. Show that if we use the Floyd-Warshall algorithm to solve the all-pairs shortest path
problem in a network containing a negative cycle, then at some stage dk[i, i] < 0 for
some node i. [Hint: Let i be the least indexed node satisfying the property that the
network contains a negative cycle using only nodes 1 through i (not necessarily all of
these nodes).]

5.38. Suppose that a network G contains no negative cycle. Let dn + I(i, j) denote the node
pair distances at the end of the Floyd-Warshall algorithm. Show that min{dn+l[i, i] :
1 ::s; i::s; n} is the minimum length of a directed cycle in G.

5.39. In this exercise we discuss another dynamic programming algorithm for solving the all­
pairs shortest path problem. Let dt denote the length of a shortest path from node i
to nodej subject to the condition that the path contains no more than k arcs. Express
dt in terms of dt- I and the cijs and suggest an all-pairs shortest path algorithm that
uses this relationship. Analyze the running time of your algorithm.

162 Shortest Paths: Label-Correcting Algorithms Chap. 5

5.40. Sensitivity analysis. Let dij denote the shortest path distances between the pair [i, j] of
nodes in a directed network G = (N, A) with arc lengths cij' Suppose that the length
of one arc (p, q) changes to value C~q < cpqo Show that the following set of statements
finds the modified all-pairs shortest path distances:

if dqp + cpq < 0, then the network has a negative cycle
else

for each pair [i, 11 of nodes do
d1j : = min {dij, diP + Cpq + dqj};

5.41. In Exercise 5.40 we described an O(n 2
) method for updating shortest path distances

between all-pairs of nodes when we decrease the length of one arc (p, q). Suppose that
we increase the length of the arc (p, q). Can you modify the method so that it reoptimizes
the shortest path distances in O(n2

) time? If your answer is yes, specify an algorithm
for performing the reoptimization and provide a justification for it; and if your answer
is no, outline the difficulties encountered.

5.42. Arc addition. After solving an all-pairs shortest path problem, you realize that you
omitted five arcs from the network G. Can you reoptimize the shortest path distances
with the addition of these arcs in O(n2

) time? (Hint: Reduce this problem to the one
in Exercise 5.40.)

5.43. Consider the reallocation of housing problem that we discussed in Application 1.1.
(a) The housing authority prefers to use short cyclic changes since they are easier to

handle administratively. Suggest a method for identifying a cyclic change involving
the least number of changes. (Hint: Use the result of one of the preceding exercises.)

(b) Suppose that the person presently residing in a house of category i desperately
wants to move to his choice category and that the chair of the housing authority
wants to help him. Can the chair identify a cyclic change that allocates the person
to his choice category or prove that no such change is possible? (Hint: Use the
result of one of the preceding exercises.)

5.44. Let G = (N, A) denote the road network of the greater Boston area. Four people living
in the suburbs form a car pool. They drive in separate cars to a common meeting point
and drive from there in a van to a common point in downtown Boston. Suggest a method
for identifying the common meeting point that minimizes the total driving time of all
the participants. Also, suggest a method for identifying the common meeting point that
minimizes the maximum travel time of anyone person.

5.45. Location problems. In a directed G = (N, A) with arc lengths cij, we define the distance
between a pair of nodes i and j as the length of the shortest path from node i to node
j.
(a) Define the radial distance from node i as the length of the distance from node i to

the node farthest from it. We say that a node p is a center of the graph G if node
p has as small a radial distance as any node in the network. Suggest a straightforward
polynomial-time algorithm for identifying a center of G.

(b) Define the star distance of node i as the total distance from node i to all the nodes
in the network. We refer to a node q as a median of G if node q has as small a star
distance as any node in the network. Suggest a straightforward polynomial-time
algorithm for identifying a median of G.

5.46. Suppose that a network G = (N, A) contains no negative cycle. In this network, let
fij denote the maximum amount we can decrease the length of arc (i, j) without creating
any negative cycle, assuming that all other arc lengths remain intact. Design an efficient
algorithm for determining fu for each arc (i, j) EA. (Hint: Use the all-pairs shortest
path distances.)

5.47. Consider the following linear programming formulation' of the minimum cost-to-time
ratio cycle problem:

Chap. 5 Exercises 163

subject to

Minimize z = 2: cijxij
(i,j)EA

2: Xij - 2: Xji = 0
(j: (i,j)EA) {j: (j, i)EA)

2: 'rijXij = 1,
U,j)EA

for all i E N,

for all (i, j) E A.

(S.12a)

(S.12b)

(S.12c)

(S.12d)

Show that each directed cycle in G defines a feasible solution of (S.12) and that each
feasible solution of (S .12) defines a set of one or more directed cycles with the same
ratio. Use this result to show that we can obtain an optimal solution of the minimum
cost-to-time ratio problem from an optimal solution of the linear program (S.12).

5.48. Obtain a worst-case bound on the number of iterations performed by the sequential
search algorithm discussed in Section S.7 to solve the minimum cost-to-time ratio cycle
problem.

5.49. In Section S.7 we saw how to solve the minimum cost-to-time ratio cycle problem
efficiently. This development might lead us to believe that we could also determine
efficiently a minimum ratio directed path between two designate<tnodes sand t (i.e.,
a path P for which (2:(i,j)EP Cij)/(2:(i,j)EP 'rij) is minimum). This assertion is not valid.
Outline the difficulties you would encounter in adapting the algorithm so that it would
solve the minimum ratio path problem.

5.50. Use the minimum mean cycle algorithm to identify the minimum mean cycle in Figure
S.13(b).

5.51. Bit-scaling algorithm (Gabow [198S]). The bit-scaling algorithm for solving the shortest
path problem works as follows. Let K = rlog Cl. We represent each arc length as a
K-bit binary number, adding leading zeros if necessary to make each arc length K bits
long. The problem Pk considers the length of each arc as the k leading bits (see Section
3.3). Let dt denote the shortest path distances in problem Pk • The bit-scaling algorithm
solves a sequence of problems PI. P2 , ••• , Pk> using the solution of problem Pk - I as
the starting solution of problem Pk •

(a) Consider problem Pk and define reduced arc lengths with respect to the distances
2dt-I' Show that the network contains a path from the source node to every other
node whose reduced length is at most n. (Hint: Consider the shortest path tree of
problem Pk - I .)

(b) Show how to solve each problem Pk in O(m) time. Use this result to show that the
bit-scaling algorithm runs in O(m log C) time.

5.52. Modified bit-scaling algorithm. Consider Exercise S.S1 but using a base 13 representation
of arc cost Cij in place of the binary representation. In problem Pk we use the k leading
base 13 digits of the arc lengths as the lengths of the arcs. Let dt_1 denote the shortest
path distances in Problem Pk - I •

(a) Show that if we define reduced arc lengths in problem Pk with respect to the dis­
tances I3dt-I' the network contains a path from the source to every other node
whose reduced length is at most 13 n.

(b) Show how to solve each problem Pk in O(m + I3n) time and, consequently, show
that the modified bit-scaling algorithm runs in O«m + I3n) 10g13 C) time. What value
of 13 achieves the least running time?

5.53. Parametric shortest path problem. In the parametric shortest path problem, the cost Cij

of each arc (i, j) is a linear function of a parameter A. (i.e., Cij = clj + A.ct) and we
want to obtain a tree of shortest paths for all values of A. from 0 to + 00. Let Th denote
a tree of shortest paths for a specific value of A..

164

(a) Consider Th for some A.. Show that if d°(j) and d*(j) are the distances in Th with
respect to the arc lengths cij and ct, respectively, then d°(j) + A.d*(j) are the

Shortest Paths: Label-Correcting Algorithms Chap. 5

distances with respect to the arc lengths cij + >..cij in T~. Use this result to describe
a method for determining the largest value of >.., say>.., for which Th is a shortest
path tree for all >.., 1 :5 >.. :5 };:. Show that at >.. = };:, the network contains an alternative
shortest path tree. (Hint: Use the shortest path optimality conditions.)

(b) Describe an algorithm for determining Th for all 0 :5 >.. :5 00. Show that 1 is shortest
path tree with the arc lengths as cij.

5.54. Consider a special case of the parametric shortest path problem in which each cij = 0
or 1. Show that as we vary>.. from 0 to +00, we obtain at most n2 trees of shortest
paths. How many trees of shortest paths do you think we can obtain for the general
case? Is it polynomial or exponential? [Hint: Let f(j) denote the number of arcs with
cij = 1 in the tree of shortest paths from node s to node j. Consider the effect on the
potential function <I> = kEN f(j) of the changes in the tree of shortest paths.]

5.55. Let dk(j) denote the length of the shortest path from node s to node j using at most k
arcs in a network G. Suppose that dk(j) are available for all nodes j E N and all k =
1, ... ,n. Show how to determine a minimum mean cycle in G. (Hint: Use some result
contained in Theorem 5.8.)

5.56. Show that if the predecessor graph at any point in the execution of the label-correcting
algorithm contains a directed cycle, then the network contains a negative cycle.

Chap. 5 Exercises 165

	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

