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A journey of a thousand miles starts with a single step and if 
that step is the right step. it becomes the last step. 

-Lao Tzu 
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4.1 INTRODUCTION 

Shortest path problems lie at the heart of network flows. They are alluring to both 
researchers and to practitioners for several reasons: (1) they arise frequently in 
practice since in a wide variety of application settings we wish to send some material 
(e.g., a computer data packet, a telephone call, a vehicle) between two specified 
points in a network as quickly, as cheaply, or as reliably as possible; (2) they are 
easy to solve efficiently; (3) as the simplest network models, they capture many of 
the most salient core ingredients of network flows and so they provide both a bench­
mark and a point of departure for studying more complex network models; and (4) 
they arise frequently as subproblems when solving many combinatorial and network 
optimization problems. Even though shortest path problems are relatively easy to 
solve, the design and analysis of most efficient algorithms for solving them requires 
considerable ingenuity. Consequently, the study of shortest path problems is a nat­
ural starting point for introducing many key ideas from network flows, including the 
use of clever data structures and ideas such as data scaling to improve the worst­
case algorithmic performance. Therefore, in this and the next chapter, we begin our 
discussion of network flow algorithms by studying shortest path problems. 

We first set our notation and describe several assumptions that we will invoke 
throughout our discussion. 
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Notation and Assumptions 

We consider a directed network G = (N, A) with an arc length (or arc cost) Cij 
associated with each arc (i, j) EA. The network has a distinguished node s, called 
the source. Let A(i) represent the arc adjacency list of node i and let C = max{cij: 
(i, j) E A}. We define the length of a directed path as the sum of the lengths of 
arcs in the path. The shortest path problem is to determine for every nonsource 
node i E N a shortest length directed path from node s to node i. Alternatively, we 
might view the problem as sending 1 unit of flow as cheaply as possible (with arc 
flow costs as cij) from node s to each of the nodes in N - {s} in an uncapacitated 
network. This viewpoint gives rise to the following linear programming formulation 
of the shortest path problem. 

Minimize ~ c ijXij 
U,j)EA 

subject to 

~ Xi) - ~ Xji = { n - 1 
{j:(i,j)EA} {j:(j,i)EA} - 1 

for i = s 
for all i E N - {s} 

for all (i, j) E A. 

(4.1a) 

(4.1b) 

(4.1c) 

In our study of the shortest path problem, we will impose several assumptions. 

Assumption 4.1. All arc lengths are integers. 

The integrality assumption imposed on arc lengths is necessary for some al­
gorithms and unnecessary for others. That is, for some algorithms we can relax it 
and still perform the same analysis. Algorithms whose complexity bound depends 
on C assume integrality of the data. Note that we can always transform rational arc 
capacities to integer arc capacities by multiplying them by a suitably large number. 
Moreover, we necessarily need to convert irrational numbers to rational numbers 
to represent them on a computer. Therefore, the integrality assumption is really not 
a restrictive assumption in practice. 

Assumption 4.2. The network contains a directed path from node s to every 
other node in the network. 

We can always satisfy this assumption by adding a "fictitious" arc (s, i) of 
suitably large cost for each node i that is not connected to node s by a directed path. 

Assumption 4.3. The network does not contain a negative cycle (i.e., a di­
rected cycle of negative length). 

Observe that for any network containing a negative cycle W, the linear pro­
gramming formulation (4.1) has an unbounded solution because we can send an 
infinite amount of flow along W. The shortest path problem with a negative cycle 
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is substantially harder to solve than is the shortest path problem without a negative 
cycle. Indeed, because the shortest path problem with a negative cycle is an .NI!P­
complete problem, no polynomial-time algorithm for this problem is likely to exist 
(see Appendix B for the definition of .NI!P-complete problems). Negative cycles com­
plicate matters, in part, for the following reason. All algorithms that are capable of 
solving shortest path problems with negative length arcs essentially determine short­
est length directed walks from the source to other nodes. If the network contains 
no negative cycle, then some shortest length directed walk is a path (Le., does not 
repeat nodes), since we can eliminate directed cycles from this walk without in­
creasing its length. The situation for networks with negative cycles is quite different; 
in these situations, the shortest length directed walk might traverse a negative cycle 
an infinite number of times since each such repetition reduces the length of the walk. 
In these cases we need to prohibit walks that revisit nodes; the addition of this 
apparently mild stipulation has significant computational implications: With it, the 
shortest path problem becomes substantially more difficult to solve. 

Assumption 4.4. The network is directed. 

If the network were undirected and all arc lengths were nonnegative, we could 
transform this shortest path problem to one on a directed network. We described 
this transformation in Section 2.4. If we wish to solve the shortest path problem on 
an undirected network and some arc lengths are negative, the transformation de­
scribed in Section 2.4 does not work because each arc with negative length would 
produce a negative cycle. We need a more complex transformation to handle this 
situation, which we describe in Section 12.7. 

Various Types of Shortest Path Problems 

Researchers have studied several different types of (directed) shortest path problems: 

1. Finding shortest paths from one node to all other nodes when arc lengths are 
nonnegative 

2. Finding shortest paths from one node to all other nodes for networks with 
arbitrary arc lengths 

3. Finding shortest paths from every node to every other node 
4. Various generalizations of the shortest path problem 

In this and the following chapter we discuss the first three of these problem 
types. We refer to problem types (1) and (2) as the single-source shortest path prob­
lem (or, simply, the shortest path problem), and the problem type (3) as the all-pairs 
shortest path problem. In the exercises of this chapter we consider the following 
variations of the shortest path problem: (1) the maximum capacity path problem, 
(2) the maximum reliability path problem, (3) shortest paths with turn penalties, (4) 
shortest paths with an additional constraint, and (5) the resource-constrained shortest 
path problem. 
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Analog Solution of the Shortest Path Problem 

The shortest path problem has a particularly simple structure that has allowed re­
searchers to develop several intuitively appealing algorithms for solving it. The fol­
lowing analog model for the shortest path problem (with nonnegative arc lengths) 
provides valuable insight that helps in understanding some of the essential features 
of the shortest path problem. Consider a shortest path problem between a specified 
pair of nodes sand t (this discussion extends easily for the general shortest path 
model with multiple destination nodes and with nonnegative arc lengths). We con­
struct a string model with nodes represented by knots, and for any arc (i, j) in A, 
a string with length equal to c(doining the two knots i and j. We assume that none 
of the strings can be stretched. After constructing the model, we hold the knot 
representing node s in one hand, the knot representing node t in the other hand, and 
pull our hands apart. One or more paths will be held tight; these are the shortest 
paths from node s to node t. 

We can extract several insights about the shortest path problem from this simple 
string model: 

1. For any arc on a shortest path, the string will be taut. Therefore, the shortest 
path distance between any two successive nodes i andj on this path will equal 
the length Cij of the arc (i, j) between these nodes. 

2. For any two nodes i and j on the shortest path (which need not be successive 
nodes on the path) that are connected by an arc (i, j) in A, the shortest path 
distance from the source to node i plus Cij (a composite distance) is always as 
large as the shortest path distance from the source to node j. The composite 
distance might be larger because the string between nodes i and j might not be 
taut. 

3. To solve the shortest path problem, we have solved an associated maximization 
problem (by pulling the string apart). As we will see in our later discussions, 
in general, all network flow problems modeled as minimization problems have 
an associated "dual" maximization problem; by solving one problem, we gen­
erally solve the other as well. 

Label-Setting and Label-Correcting Algorithms 

The network flow literature typically classifies algorithmic approaches for solving 
shortest path problems into two groups: label setting and label correcting. Both 
approaches are iterative. They assign tentative distance labels to nodes at each step; 
the distance labels are estimates of (i.e., upper bounds on) the shortest path dis­
tances. The approaches vary in how they update the distance labels from step to 
step and how they "converge" toward the shortest path distances. Label-setting 
algorithms designate one label as permanent (optimal) at each iteration. In contrast, 
label-correcting algorithms consider all labels as temporary until the final step, when 
they all become permanent. One distinguishing feature of these approaches is the 
class of problems that they solve. Label-setting algorithms are applicable only to (1) 
shortest path problems defined on acyclic networks with arbitrary arc lengths, and 
to (2) shortest path problems with nonnegative arc lengths. The label-correcting 
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algorithms are more general and apply to all classes of problems, including those 
with negative arc lengths. The label-setting algorithms are much more efficient, that 
is, have much better worst-case complexity bounds; on the other hand, the label­
correcting algorithms not only apply to more general classes of problems, but as we 
will see, they also offer more algorithmic flexibility. In fact, we can view the label­
setting algorithms as special cases of the label-correcting algorithms. 

In this chapter we study label-setting algorithms; in Chapter 5 we study label­
correcting algorithms. We have divided our discussion in two parts for several rea­
sons. First, we wish to emphasize the difference between these two solution ap­
proaches and the different algorithmic strategies that they employ. The two problem 
approaches also differ in the types of data structures that they employ. Moreover, 
the analysis of the two types of algorithms is quite different. The convergence proofs 
for label-setting algorithms are much simpler and rely on elementary combinatorial 
arguments. The proofs for the label-correcting algorithms tend to be much more 
subtle and require more careful analysis. 

Chapter Overview 

The basic label-setting algorithm has become known as Dijkstra' s algorithm because 
Dijkstra was one of several people to discover it independently. In this chapter we 
study several variants of Dijkstra's algorithm. We first describe a simple imple­
mentation that achieves a time bound of O(n 2

). Other implementations improve on 
this implementation either empirically or theoretically. We describe an implemen­
tation due to Dial that achieves an excellent running time in practice. We also con­
sider several versions of Dijkstra's algorithm that improve upon its worst-case com­
plexity. Each of these implementations uses a heap (or priority queue) data structure. 
We consider several such implementations, using data structures known as binary 
heaps, d-heaps, Fibonacci heaps, and the recently developed radix heap. Before 
examining these various algorithmic approaches, we first describe some applications 
of the shortest path problem. 

4.1 APPLICATIONS 

Shortest path problems arise in a wide variety of practical problem settings, both 
as stand-alone models and as subproblems in more complex problem settings. For 
example, they arise in the telecommunications and transportation industries when­
ever we want to send a message or a vehicle between two geographical locations 
as quickly or as cheaply as possible. Urban traffic planning provides another im­
portant example: The models that urban planners use for computing traffic flow 
patterns are complex nonlinear optimization problems or complex equilibrium 
models; they build, however, on the behavioral assumption that users of the trans­
portation system travel, with respect to prevailing traffic congestion, along shortest 
paths from their origins to their destinations. Consequently, most algorithmic ap­
proaches for finding urban traffic patterns solve a large number of shortest path 
problems as subproblems (one for each origin-destination pair in the network). 

In this book we consider many other applications like this with embedded 
shortest path models. These many and varied applications attest to the importance 
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of shortest path problems in practice. In Chapters 1 and 19 we discuss a number of 
stand-alone shortest path models in such problem contexts as urban housing, project 
management, inventory planning, and DNA sequencing. In this section and in the 
exercises in this chapter, we consider several other applications of shortest paths 
that are indicative of the range of applications of this core network flow model. 
These applications include generic mathematical applications-approximating func­
tions, solving certain types of difference equations, and solving the so-called knap­
sack problem-as well as direct applications in the domains of production planning, 
telephone operator scheduling, and vehicle fleet planning. 

Application 4.1 Approximating Piecewise Linear 
Functions 

Numerous applications encountered within many different scientific fields use piece­
wise linear functions. On several occasions, these functions contain a large number 
of breakpoints; hence they are expensive to store and to manipulate (e.g., even to 
evaluate). In these situations it might be advantageous to replace the piecewise linear 
function by another approximating function that uses fewer breakpoints. By ap­
proximating the function we will generally be able to save on storage space and on 
the cost of using the function; we will, however, incur a cost because of the inac­
curacy of the approximating function. In making the approximation, we would like 
to make the best possible trade-off between these conflicting costs and benefits. 

Let f.(x) be a piecewise linear function ofa scalar x. We represent the function 
in the two-dimensional plane: It passes through n points al = (XI, YI), a2 = 
(X2' Y2), ... , an = (xn, Yn). Suppose that we have ordered the points so that XI :S 

X2 :S ... :S Xn. We assume that the function varies linearly between every two consec­
utive points Xi and Xi+ I. We consider situations in which n is very large and for 
practical reasons we wish to approximate the function f I (x) by another function 
f2(X) that passes through only a subset of the points a1, a2, ... , an (including al 
and an). As an example, consider Figure 4.I(a): In this figure we have approximated 
a function fl(x) passing through 10 points by a function f2(X) drawn with dashed 
lines) passing through only five of the points. 

This approximation results in a savings in storage space and in the use of the 
function. For purposes of illustration, assume that we can measure these costs by 
a per unit cost 0: associated with any single interval used in the approximation (which 

98 

x----+­
(8) 

(b) 

Figure 4.1 Illustrating Applications 4.1: (a) approximating the function II (x) passing through 

10 points by the function h(x); (b) corresponding shortest path problem. 
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is defined by two points, aj and aj). As we have noted, the approximation also 
introduces errors that have an associated penalty. We assume that the error of an 
approximation is proportional to the sum of the squared errors between the actual 
data points and the estimated points (i.e., the penalty is ~ L7=. [I. (Xi) - I2(Xi»)2 
for some constant ~). Our decision problem is to identify the subset of points to be 
used to define the approximation function I2 (X) so that we incur the minimum total 
cost as measured by the sum of the cost of storing and using the approximating 
function and the cost of the errors imposed by the approximation. 

We will formulate this problem as a shortest path problem on a network G with 
n nodes, numbered 1 through n, as follows. The network contains an arc (i, j) for 
each pair of nodes i and j such that i < j. Figure 4.l(b) gives an example of the 
network with n = 5 nodes. The arc (i,j) in this network signifies that we approximate 
the linear segments of the function II (X) between the points aj, aj+., ... , aj by 
one linear segment joining the points aj and aj. The cost C ij of the arc (i, j) has two 
components: the storage cost a and the penalty associated with approximating all 
the points between aj and aj by the corresponding points lying on the line joining ai 
and aj. In the interval [Xi, Xj], the approximating function is I2(X) = It(Xi) + (x -
xi)[I. (Xj) - II (xj»)/(xj - Xi), so the total cost in this interval is 

cij = a + ~[~; (fl(x,) - f2(x.»2 J 
Each directed path from node 1 to node n in G corresponds to a function I2(X), 

and the cost of this path equals the total cost for storing this function and for using 
it to approximate the original function. For example, the path 1-3-5 corresponds 
to the function I2(X) passing through the points aI, a3, and as. As a consequence 
of these observations, we see that the shortest path from node 1 to node n specifies 
the optimal set of points needed to define the approximating function I2(X). 

Application 4.2 Anocating Inspection Effort on a 
Production Line 

A production line consists of an ordered sequence of n production stages, and each 
stage has a manufacturing operation followed by a potential inspection. The product 
enters stage 1 of the production line in batches of size B ;::: 1. As the items within 
a batch move through the manufacturing stages, the operations might introduce 
defects. The probability of producing a defect at stage i is ai. We assume that all of 
the defects are nonrepairable, so we must scrap any defective item. After each stage, 
we can either inspect all of the items or none of them (we do not sample the items); 
we assume that the inspection identifies every defective item. The production line 
must end with an inspection station so that we do not ship any defective units. Our 
decision problem is to find an optimal inspection plan that specifies at which stages 
we should inspect the items so that we minimize the total cost of production and 
inspection. Using fewer inspection stations might decrease the inspection costs, but 
will increase the production costs because we might perform unnecessary manu­
facturing operations on some units that are already defective. The optimal number 
of inspection stations will achieve an appropriate trade-off between these two con­
flicting cost considerations. 
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Suppose that the following cost data are available: (1) Pi, the manufacturing 
cost per unit in stage i; (2) fu, the fixed cost of inspecting a batch after stagej, given 
that we last inspected the batch after stage i; and (3) gij, the variable per unit cost 
for inspecting an item after stagej, given that we last inspected the batch after stage 
i. The inspection costs at station j depend on when the batch was inspected last, 
say at station i, because the inspector needs to look for defects incurred at any of 
the intermediate stages i + 1, i + 2, ... ,j. 

We can formulate this inspection problem as a shortest path problem on a 
network with (n + 1) nodes, numbered 0, 1, ... , n. The network contains an arc 
(i, j) for each node pair i and j for which i < j. Figure 4.2 shows the network for an 

Figure 4.2 Shortest path network 
associated with the inspection problem. 

inspection problem with four stations. Each path in the network from node 0 to node 
4 defines an inspection plan. For example, the path 0-2-4 implies that we inspect 
the batches after the second and fourth stages. Letting B(i) = B n~= 1 (1 - Uk) 

denote the expected number of nondefective units at the end of stage i, we associate 
the following cost Cij with any arc (i, j) in the network: 

j 

Cij = f ij + B(i)gij + B(i) L Pk. (4.2) 
k=i+l 

It is easy to see that Cij denotes the total cost incurred in the stages i + 1, i + 
2, ... ,j; the first two terms on the right-hand side of (4.2) are the fixed and variable 
inspection costs, and the third term is the production cost incurred in these stages. 
This shortest path formulation permits us to solve the inspection application as a 
network flow problem. 

Application 4.8 Knapsack Problem 

In Section 3.3 we introduced the knapsack problem and formulated this classical 
operations research model as an integer program. For convenience, let us recall the 
underlying motivation for this problem. A hiker must decide which goods to include 
in her knapsack on a forthcoming trip. She must choose from among P objects: 
Object i has weight Wi (in pounds) and a utility Ui to the hiker. The objective is to 
maximize the utility of the hiker's trip subject to the weight limitation that she can 
carry no more than W pounds. In Section 3.3 we described a dynamic programming 
algorithm for solving this problem. Here we formulate the knapsack problem as a 
longest path problem on an acyclic network and then show how to transform the 
longest path problem into a shortest path problem. This application illustrates an 
intimate connection between dynamic programming and shortest path problems on 
acyclic networks. By making the appropriate identification between the stages and 
"states" of any dynamic program and the nodes of a network, we can formulate 
essentially all deterministic dynamic programming problems as equivalent shortest 
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path problems. For these reasons, the range of applications of shortest path problems 
includes most applications of dynamic programming, which is a large and extensive 
field in its own right. 

We illustrate our formulation using a knapsack problem with four items that 
have the weights and utilities indicated in the accompanying table: 

j 1 2 3 4 

Uj 40 15 20 10 

Wj 4 2 3 1 

Figure 4.3 shows the longest path formulation for this sample knapsack prob­
lem, assuming that the knapsack has a capacity of W = 6. The network in the 
formulation has several layers of nodes: It has one layer corresponding to each item 
and one layer corresponding to a source node s and another corresponding to a sink 
node t. The layer corresponding to an item i has W + 1 nodes, iO, it, ... , iW. Node 

layer 0 layer I layer 2 layer 3 layer 4 layer 5 

Figure 4.3 Longest path formulation of the knapsack problem. 
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ik in the network signifies that the items 1, 2, ... , i have consumed k units of the 
knapsack's capacity. The node ik has at most two outgoing arcs, corresponding to 
two decisions: (1) do not include item (i + 1) in the knapsack, or (2) include item 
i + 1 in the knapsack. [Notice that we can choose the second of these alternatives 
only when the knapsack has sufficient spare capacity to accommodate item U + 1), 
i.e., k + Wi+! ::5 W.] The arc corresponding to the first decision is Uk, U + 1)k) with 
zero utility and the arc corresponding to the second decision (provided that k + 
Wi+! ::5 W) is Uk, U + l)k+wi+l) with utility Ui+!. The source node has two incident 
arcs, (s, 1°) and (s, lWl), corresponding to the choices of whether or not to include 
item 1 in an empty knapsack. Finally, we connect all the nodes in the layer corre­
sponding to the last item to the sink node t with arcs of zero utility. 

Every feasible solution of the knapsack problem defines a directed path from 
node s to node t; both the feasible solution and the path have the same utility. 
Conversely, every path from node s to node t defines a feasible solution to the 
knapsack problem with the same utility. For example, the path s-I°-22 -35 -45-t 
implies the solution in which we include items 2 and 3 in the knapsack and exclude 
items 1 and 4. This correspondence shows that we can find the maximum utility 
selection of items by finding a maximum utility path, that is, a longest path in the 
network. 

The longest path problem and the shortest path problem are closely related. 
We can transform the longest path problem to a shortest path problem by defining 
arc costs equal to the negative ofthe arc utilities. If the longest path problem contains 
any positive length directed cycle, the resulting shortest path problem contains a 
negative cycle and we cannot solve it using any of the techniques discussed in the 
book. However, if all directed cycles in the longest path problem have nonpositive 
lengths, then in the corresponding shortest path problem all directed cycles have 
nonnegative lengths and this problem can be solved efficiently. Notice that in the 
longest path formulation of the knapsack problem, the network is acyclic; so the 
resulting shortest path problem is efficiently solvable. 

To conclude our discussion of this application, we offer a couple of concluding 
remarks concerning the relationship between shortest paths and dynamic program­
ming. In Section 3.3 we solved the knapsack problem by using a recursive relation­
ship for computing a quantity dU, j) that we defined as the maximum utility of 
selecting items if we restrict our selection to items 1 through i and impose a weight 
restriction of j. Note that dU, j) can be interpreted as the longest path length from 
node s to node i j

• Moreover, as we will see, the recursion that we used to solve the 
dynamic programming formulation of the knapsack problem is just a special imple­
mentation of one of the standard algorithms for solving shortest path problems on 
acyclic networks (we describe this algorithm in Section 4.4). This observation pro­
vides us with a concrete illustration of the meta statement that "(deterministic) 
dynamic programming is a special case of the shortest path problem." 

Second, as we show in Section 4.4, shortest path problems on acyclic networks 
are very easy to solve-by methods that are linear in the number n of nodes and 
number m of arcs. Since the nodes of the network representation correspond to the 
"stages" and "states" of the dynamic programming formulation, the dynamic pro­
gramming model will be easy to solve if the number of states and stages is not very 
large (i.e., do not grow exponentially fast in some underlying problem parameter). 
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Application 4.4 Tramp Steamer Problem 

A tramp steamer travels from port to port carrying cargo and passengers. A voyage 
of the steamer from port i to port j earns Pij units of profit and requires Tij units of 
time. The captain of the steamer would like to know which tour W of the steamer 
(i.e., a directed cycle) achieves the largest possible mean daily profit when we define 
the daily profit for any tour W by the expression 

/-L(W) 

L pij 
(i.j)EW 

L Tij 
(i,j)EW 

We assume that Tij ;:=: 0 for every arc (i, j) E A, and that LU,j)EW Tij > 0 for every 
directed cycle W in the network. 

In Section 5.7 we study the tramp steamer problem. In this application we 
examine a more restricted version of the tramp steamer problem: The captain of the 
steamer wants to know whether some tour W will be able to achieve a mean daily 
profit greater than a specified threshold /-Lo. We will show how to formulate this 
problem as a negative cycle detection problem. In this restricted version of the tramp 
steamer problem, we wish to determine whether the underlying network G contains 
a directed cycle W satisfying the following condition: 

L Pij 
(i.j)EW 

'" > /-Lo· £.oJ Tij 
(i,j)EW 

By writing this inequality as L(i.j)EW (/-LOTij - pij) < 0, we see that G contains 
a directed cycle W in G whose mean profit exceeds /-Lo if and only if the network 
contains a negative cycle when the cost of arc (i, j) is (/-LOTij - pij). In Section 5.5 
we show that label-correcting algorithms for solving the shortest path problem are 
able to detect negative cycles, which implies that we can solve this restricted version 
of the tramp steamer problem by applying a shortest path algorithm. 

Application 4.5 System of Difference Constraints 
In some linear programming applications, with constraints of the form Six ::5 b, the 
n x m constraint matrix Si contains one + 1 and one - 1 in each row; all the other 
entries are zero. Suppose that the kth row has a + 1 entry in column jk and a -1 
entry in column ik ; the entries in the vector b have arbitrary signs. Then this linear 
program defines the following set of m difference constraints in the n variables x == 
(x(1), x(2), ... , x(n»: 

for each k = 1, ... , m. (4.3) 

We wish to determine whether the system of difference constraints given by 
(4.3) has a feasible solution, and if so, we want to identify a feasible solution. This 
model arises in a variety of applications; in Application 4.6 we describe the use of 
this model in the telephone operator scheduling, and in Application 19.6 we describe 
the use of this model in the scaling of data. 

Each system of difference constraints has an associated graph G, which we 
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call a constraint graph. The constraint graph has n nodes corresponding to the n 
variables and m arcs corresponding to the m difference constraints. We associate 
an arc Uk, A) of length b(k) in G with the constraint x(A) - XUk) :5 b(k). As an 
example, consider the following system of constraints whose corresponding graph 
is shown in Figure 4.4(a): 
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Figure 4.4 Graph corresponding to a system of difference constraints. 
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(4.4c) 
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(4.4e) 

In Section 5.2 we show that the constraints (4.4) are identical with the optimality 
conditions for the shortest path problem in- Figure 4.4(a) and that we can satisfy 
these conditions if and only if the network contains no negative (cost) cycle. The 
network shown in Figure 4.4(a) contains a negative cycle 1-2-3 of length -1, and 
the corresponding constraints [i.e., x(2) - x(1) :5 - 11, x(3) - x(2) :5 2, and 
x(1) - x(3) :5 8] are inconsistent because summing these constraints yields the invalid 
inequality 0 :5 - 1. 

As noted previously, we can detect the presence of a negative cycle in a network 
by using the label-correcting algorithms described in Chapter 5. The label-correcting 
algorithms do require that all the nodes are reachable by a directed path from some 
node, which we use as the source node for the shortest path problem. To satisfy 
this requirement, we introduce a new node s andjoin it to all the nodes in the network 
with arcs of zero cost. For our example, Figure 4.4(b) shows the modified network. 
Since all the arcs incident to node s are directed out of this node, node s is not 
contained in any directed cycle, so the modification does not create any new directed 
cycles and so does not introduce any cycles with negative costs. The label-correcting 
algorithms either indicate the presence of a negative cycle or provide the shortest 
path distances. In the former case the system of difference constraints has no so­
lution, and in the latter case the shortest path distances constitute a solution of (4.4). 
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Application 4.6 Telephone Operator Scheduling 

As an application of the system of difference constraints, consider the following 
telephone operator scheduling problem. A telephone company needs to schedule 
operators around the clock. Let b(i) for i = 0, 1,2, ... ,23, denote the minimum 
number of operators needed for the ith hour of the day [here b(O) denotes number 
of operators required between midnight and 1 A.M.]. Each telephone operator works 
in a shift of 8 consecutive hours and a shift can begin at any hour of the day. The 
telephone company wants to determine a "cyclic schedule" that repeats daily (i.e., 
the number of operators assigned to the shift starting at 6 A.M. and ending at 2 P.M. 

is the same for each day). The optimization problem requires that we identify the 
fewest operators needed to satisfy the minimum operator requirement for each hour 
of the day. Letting Yi denote the number of workers whose shift begins at the ith 
hour, we can state the telephone operator scheduling problem as the following op­
timization model: 

23 

Minimize L Yi 
i~O 

subject to 

(4.5a) 

Yi-7 + Yi-6 + + Yi 2:: b(i) for all i = 8 to 23, (4.5b) 

Y17+i + ... + Y23 + Yo + + Yi 2:: b(i) for all i = 0 to 7, (4.5c) 

Yi 2:: 0 for all i = 0 to 23. (4.5d) 

Notice that this linear program has a very special structure because the as­
sociated constraint matrix contains only 0 and 1 elements and the l' s in each row 
appear consecutively. In this application we study a restricted version of the tele­
phone operator scheduling problem: We wish to determine whether some feasible 
schedule uses p or fewer operators. We convert this restricted problem into a system 
of difference constraints by redefining the variables. Let x(O) -::: Yo, x(1) = Yo + Yl, 
x(2) = Yo + Yl + Y2, ... , and x(23) = Yo + Y2 + .. , + Y23 = p. Now notice that 
we can rewrite each constraint in (4.5b) as 

x(i) - x(i - 8) 2:: b(i) 

and each constraints in (4.5c) as 

for all i = 8 to 23, (4.6a) 

x(23) - x(16 + i) + x(i) 
= p - x(16 + i) + x(i) 2:: b(i) 

Finally, the nonnegativity constraints (4.5d) become 

x(i) - x(i - 1) 2:: O. 

for all i = 0 to 7. (4.6b) 

(4.6c) 

By virtue of this transformation, we have reduced the restricted version of the 
telephone operator scheduling problem into a problem of finding a feasible solution 
ofthe system of difference constraints. We discuss a solution method for the general 
problem in Exercise 4.12. Exercise 9.9 considers a further generalization that in­
corporates costs associated with various shifts. 

In the telephone operator scheduling problem, the rows of the underlying op-
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timization model (in the variables y) satisfy a "wraparound consecutive l' s prop­
erty"; that is, the variables in each row have only 0 and 1 coefficients and all of the 
variables with 1 coefficients are consecutive (if we consider the first and last variables 
to be consecutive). In the telephone operator scheduling problem, each row has 
exactly eight variables with coefficients of value 1. In general, as long as any op­
timization model satisfies the wraparound consecutive 1 's property, even if the rows 
have different numbers of variables with coefficients of value 1, the transformation 
we have described would permit us to model the problem as a network flow model. 

4.3 TREE OF SHORTEST PATHS 

In the shortest path problem, we wish to determine a shortest path from the source 
node to all other (n - 1) nodes. How much storage would we need to store these 
paths? One naive answer would be an upper bound of (n - 1? since each path could 
contain at most (n - 1) arcs. Fortunately, we need not use this much storage: (n 
- 1) storage locations are sufficient to represent all these paths. This result follows 
from the fact that we can always find a directed out-tree rooted from the source 
with the property that the unique path from the source to any node is a shortest path 
to that node. For obvious reasons we refer to such a tree as a shortest path tree. 
Each shortest path algorithm discussed in this book is capable of determining this 
tree as it computes the shortest path distances. The existence of the shortest path 
tree relies on the following property. 

Property 4.1. If the path s = i l i2 - ... - ih = k is a shortest path from 
node s to node k, then for every q = 2,3, ... , h - 1, the subpath s = i l - i2 -

- iq is a shortest path from the source node to node iq • 

This property is fairly easy to establish. In Figure 4.5 we assume that the 
shortest path P I -P3 from node s to node k passes through some node p, but the 
subpath PI up to node p is not a shortest path to node p; suppose instead that path 
P2 is a shorter path to node p. Notice that P2-P3 is a directed walk whose length is 
less than that of path P I -P3 • Also, notice that any directed walk from node s to 
node k decomposes into a directed path plus some directed cycles (see Exercise 
3.51), and these cycles, by our assumption, must have nonnegative length. As a 
result, some directed path from node s to node k is shorter than the path PI-P3 , 

contradicting its optimality. 

Figure 4.5 Proving Property 4.1. 

Let dO denote the shortest path distances. Property 4.1 implies that if P is a 
shortest path from the source node to some node k, then d(j) = d(i) + Cij for every 
arc (i, j) E P. The converse of this result is also true; that is, if d(j) = d(i) + cij 

106 Shortest Paths: Label-Setting Algorithms Chap. 4 



for every arc in a directed path P from the source to node k, then P must be a shortest 
path. To establish this result, let s = it - iz - ... - ih = k be the node sequence 
in P. Then 

d(k) == d(ih) = (d(ih) - d(ih-t» + (d(ih- d - d(ih-2» + ... + (d(i2) - d(id), 

where we use the fact that d(id = O. By assumption, d(j) - d(i) == Cij for every 
arc (i, j) E P. Using this equality we see that 

(i,j)EP 

,,' 
Consequently, P is a directed path from the source node to node k of length 

d(k). Since, by assumption, d(k) is the shortest path distance to node k, P must be 
a shortest path to node k. We have thus established the following result. 

Property 4.2. Let the vector d represent the shortest path distances. Then a 
directed path P from the source node to node k is a shortest path if and only if 
d(j) = d(i) + cijfor every arc (i,j) E P. 

We are now in a position to prove the existence of a shortest path tree. Since 
only a finite number of paths connect the source to every node, the network contains 
a shortest path to every node. Property 4.2 implies that we can always find a shortest 
path from the source to every other node satisfying the property that for every arc 
(i, j) on the path, d(j) = d(i) + Cij. Therefore, if we perform a breadth-first search 
of the network using the arcs satisfying the equality d(j) = d(i) + Cij, we must be 
able to reach every node. The breadth-first search tree contains a unique path from 
the source to every other node, which by Property 4.2 must be a shortest path to 
that node. 

4.4 SHORTEST PATH PROBLEMS IN ACYCLIC NETWORKS 

Recall that a network is said to be acyclic if it contains no directed cycle. In this 
section we show how to solve the shortest path problem on an acyclic network in 
Oem) time even though the arc lengths might be negative. Note that no other al­
gorithm for solving the shortest path problem on acyclic networks could be any 
faster (in terms of the worst-case complexity) become any algorithm for solving the 
problem must examine every arc, which itself would take Oem) time. 

Recall from Section 3.4 that we can always number (or order) nodes in an 
acyclic network G = (N, A) in Oem) time so that i <j for every arc (i,j) EA. This 
ordering of nodes is called a topological ordering. Conceptually, once we have de­
termined the topological ordering, the shortest path problem is quite easy to solve 
by a simple dynamic programming algorithm. Suppose that we have determined the 
shortest path distances d(i) from the source node to nodes i = 1, 2, ... , k - 1. 
Consider node k. The topological ordering implies that all the arcs directed into this 
node emanate from one of the nodes 1 through k - 1. By Property 4.1, the shortest 
path to node k is composed of a shortest path to one of the nodes i = 1, 2, ... , 
k - 1 together with the arc (i, k). Therefore, to compute the shortest path distance 
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to node k, we need only select the minimum of d(i) + Cik for all incoming arcs 
(i, k). This algorithm is a pulling algorithm in that to find the shortest path distance to 
any node, it "pulls" shortest path distances forward from lower-numbered nodes. 
Notice that to implement this algorithm, we need to access conveniently all the arcs 
directed into each node. Since we frequently store the adjacency list A(i) of each 
node i, which gives the arcs emanating out of a node, we might also like to implement 
a reaching algorithm that propagates information from each node to higher-indexed 
nodes, and so uses the usual adjacency list. We next describe one such algorithm. 

We first set des) = 0 and the remaining distance labels to a very large number. 
Then we examine nodes in the topological order and for each node i being examined, 
we scan arcs in A(i). Iffor any arc (i, j) E A(i), we find that d(j) > d(i) + Cij, then 
we set d(j) = d(i) + Cij. When the algorithm has examined all the nodes once in 
this order, the distance labels are optimal. 

We use induction to show that whenever the algorithm examines a node, its 
distance label is optimal. Suppose that the algorithm has examined nodes 1, 2, ... , 
k and their distance labels are optimal. Consider the point at which the algorithm 
examines node k + 1. Let the shortest path from the source to node k + 1 be s = 
it - iz - '" - ih - (k + 1). Observe that the path it - i2 - ... - ih must be a 
shortest path from the source to node ih (by Property 4.1). The facts that the nodes 
are topologically ordered and that the arc (ih, k + 1) E A imply that ih E {1, 2, ... , 
k} and, by the inductive hypothesis, the distance label of node ih is equal to the 
length of the path it - i2 - ... - ih • Consequently, while examining node ih , the 
algorithm must have scanned the arc (ih, k + 1) and set the distance label of node 
(k + 1) equal to the length of the path it - i2 - ••• - ih - (k + 1). Therefore, 
when the algorithm examines the node k + 1, its distance label is optimal. The 
following result is now immediate. 

Theorem 4.3. The reaching algorithm solves the shortest path problem on 
acyclic networks in Oem) time. 

In this section we have seen how we can solve the shortest path problem on 
acyclic networks very efficiently using the simplest possible algorithm. Unfortu­
nately, we cannot apply this one-pass algorithm, and examine each node and each 
arc exactly once, for networks containing cycles; nevertheless, we can utilize the 
same basic reaching strategy used in this algorithm and solve any shortest path 
problem with nonnegative arc lengths using a modest additional amount of work. 
As we will see, we incur additional work because we no longer have a set order for 
examining the nodes, so at each step we will need to investigate several nodes in 
order to determine which node to reach out from next. 

4.5 D1JKSTRA'S ALGORITHM 

As noted previously, Dijkstra's algorithm finds shortest paths from the source node 
s to all other nodes in a network with nonnegative arc lengths. Dijkstra's algorithm 
maintains a distance label d(i) with each node i, which is an upper bound on the 
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shortest path length to node i. At any intermediate step, the algorithm divides the 
nodes into two groups: those which it designates as permanently labeled (or per­
manent) and those it designates as temporarily labeled (or temporary). The distance 
label to any permanent node represents the shortest distance from the source to that 
node. For any temporary node, the distance label is an upper bound on the shortest 
path distance to that node. The basic idea of the algorithm is to fan out from node 
s and permanently label nodes in the order of their distances from node s. Initially, 
we give node s a permanent label of zero, and each other node j a temporary label 
equal to 00. At each iteration, the label of a node i is its shortest distance from the 
source node along a path whose internal nodes (i.e., nodes other than s or the node 
i itself) are all permanently labeled. The algorithm selects a node i with the minimum 
temporary label (breaking ties arbitrarily), makes it permanent, and reaches out from 
that node-that is, scans arcs inA(t) to update the distance labels of adjacent nodes. 
The algorithm terminates when it has designated all nodes as permanent. The cor­
rectness of the algorithm relies on the key observation (which we prove later) that 
we can always designate the node with the minimum temporary label as permanent. 

Dijkstra's algorithm maintains a directed out-tree T rooted at the source that 
spans the nodes with finite distance labels. The algorithm maintains this tree using 
predecessor indices [i.e., if (t, j) E T, then pred(j) = il. The algorithm maintains 
the invariant property that every tree arc (i, j) satisfies the condition d(j) = d(i) + 
Cij with respect to the current distance labels. At termination, when distance labels 
represent shortest path distances, T is a shortest path tree (from Property 4.2). 

Figure 4.6 gives a formal algorithmic description of Dijkstra's algorithm. 
In Dijkstra's algorithm, we refer to the operation of selecting a minimum tem­

porary distance label as a node selection operation. We also refer to the operation 
of checking whether the current labels for nodes i and j satisfy the condition 
d(j) > d(t) + Cij and, if so, then setting d(j) = d(i) + Cij as a distance update 
operation. 

We illustrate Dijkstra's algorithm using the numerical example given in Figure 
4.7(a). The algorithm permanently labels the nodes 3, 4, 2, and 5 in the given se­
quence: Figure 4.7(b) to (e) illustrate the operations for these iterations. Figure 4.7(f) 
shows the shortest path tree for this example. 

Sec. 4.5 

algorithm Dijkstra; 
begin 

S: = IiI; S: = N; 
d(/) : = 00 for each node i E N; 
d(s) := 0 and pred(s) : = 0; 
while lSI < n do 
begin 

let i E Sbe a node for which d(/) = min{d(j) : j E S}; 
S: = S U {J}; 
s: = S - {I}; 
for each (i, j) E A(I) do 

if d(j) > d( I) + cij then d(j) : = d( I) + Clj and pred(j) : = i; 
end; 

end; 

Figure 4.6 Dijkstra's algorithm. 
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Figure 4.7 Illustrating Dijkstra's algorithm. 

Correctness of Dijkstra.'s Algorithm 

We use inductive arguments to establish the validity of Dijkstra's algorithm. At any 
iteration, the algorithm has partitioned the nodes into two sets, Sand S. Our induction 
hypothesis are (1) that the distance label of each node in S is optimal, and (2) that 
the distance label of each node in S is the shortest path length from the source 
provided that each internal node in the path lies in S. We perform induction on the 
cardinality of the set S. 

To prove the first inductive hypothesis, recall that at each iteration the algo­
rithm transfers a node i in the set S with smallest distance label to the set S. We 
need to show that the distance label d(i) of node i is optimal. Notice that by our 
induction hypothesis, d(i) is the length of a shortest path to node i among all paths 
that do not contain any node in S as an internal node. We now show that the length 
of any path from s to i that contains some nodes in S as an internal node will be at 
least d(i). Consider any path P from the source to node i that contains at least one 
node in S as an internal node. The path P can be decomposed into two segments 
PI and P2 : the path segment PI does not contain any node in S as an internal node, 
but terminates at a node k in S (see Figure 4.8). By the induction hypothesis, the 
length of the path PI is at least d(k) and since node i is the smallest distance label 
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in S, d(k) 2:: d(i). Therefore, the path segment PI has length at least d(i). Further­
more, since all arc lengths are nonnegative, the length of the path segment P2 is 
nonnegative. Consequently, length ofthe path P is at least d(i). This result establishes 
the fact that d(i) is the shortest path length of node i from the source node. 

We next show that the algorithm preserves the second induction hypothesis. 
After the algorithm has labeled a new node i permanently, the distance labels of 
some nodes in S - {i} might decrease, because node i could become an internal 
node in the tentative shortest paths to these nodes. But recall that after permanently 
labeling node i, the algorithm examines each arc (i, j) E A(i) and if d(j) > d(i) + 
Cij, then it sets d(j) = d(i) + cij and pred(j) = i. Therefore, after the distance update 
operation, by the induction hypothesis the path from node j to the source node 
defined by the predecessor indices satisfies Property 4.2 and so the distance label 
of each node in S - {i} is the length of a shortest path subject to the restriction that 
each internal node in the path must belong to S U {i}. 

Running Time of Dijkstra's Algorithm 

We now study the worst-case complexity of Dijkstra's algorithm. We might view 
the computational time for Dijkstra's algorithm as allocated to the following two 
basic operations: 

1. Node selections. The algorithm performs this operation n times and each such 
operation requires that it scans each temporarily labeled node. Therefore, the 
total node selection time is n + (n - 1) -+ (n - 2) + ... + 1 = 0(n2). 

2. Distance updates. The algorithm performs this operation I A(i) I times for node 
i. Overall, the algorithm performs this operation LiEN I A(i) I = m times. Since 
each distance update operation requires 0(1) time, the algorithm requires Oem) 
total time for updating all distance labels. 

We have established the following result. 

Theorem 4.4. Dijkstra's algorithm solves the shortest path problem in 0(n2) 
time. 

Sec. 4.5 Dijkstra's Algorithm 111 



The O(n2) time bound for Dijkstra's algorithm is the best possible for com­
pletely dense networks [i.e., m = O(n 2

)], but can be improved for sparse networks. 
Notice that the times required by the node selections and distance updates are not 
balanced. The node selections require a total of O(n2) time, and the distance updates 
require only Oem) time. Researchers have attempted to reduce the node selection 
time without substantially increasing the time for updating the distances. Conse­
quently, they have, using clever data structures, suggested several implementations 
of the algorithm. These implementations have either dramatically reduced the run­
ning time of the algorithm in practice or improved its worst-case complexity. In 
Section 4.6 we describe Dial's algorithm, which is an excellent implementation of 
Dijkstra's algorithm in practice. Sections 4.7 and 4.8 describe several implemen­
tations of Dijkstra's algorithm with improved worst-case complexity. 

Reverse Dijkstra's Algorithm 

In the (forward) Dijkstra's algorithm, we determine a shortest path from node s to 
every other node in N - {s}. Suppose that we wish to determine a shortest path 
from every node in N - {t} to a sink node t. To solve this problem, we use a slight 
modification of Dijkstra's algorithm, which we refer to as the reverse Dijkstra's 
algorithm. The reverse Dijkstra's algorithm maintains a distance d'U) with each 
node j, which is an upper bound on the shortest path length from node j to node t. 
As before, the algorithm designates a set of nodes, say S', as permanently labeled 
and the remaining set of nodes, say 8', as temporarily labeled. At each iteration, 
the algorithm designates a node with the minimum temporary distance label, say 
d'U), as permanent. It then examines each incoming arc (i, j) and modifies the 
distance label of node i to min{d'(i), Cij + d'U)}. The algorithm terminates when 
all the nodes have become permanently labeled. 

Bidirectional Dijkstra,'s Algorithm 

In some applications of the shortest path problem, we need not determine a shortest 
path from node s to every other node in the network. Suppose, instead, that we 
want to determine a shortest path from node s to a specified node t. To solve this 
problem and eliminate some computations, we could terminate Dijkstra's algorithm 
as soon as it has selected t from 8 (even though some nodes are still temporarily 
labeled). The bidirectional Dijkstra's algorithm, which we describe next, allows us 
to solve this problem even faster in practice (though not in the worst case). 

In the bidirectional Dijkstra's algorithm, we simultaneously apply the forward 
Dijkstra's algorithm from node s and reverse Dijkstra's algorithm from node t. The 
algorithm alternatively designates a node in 8 and a node in 8' as permanent until 
both the forward and reverse algorithms have permanently labeled the same node, 
say node k (i.e., S n s' = {k}). At this point, let P(i) denote the shortest path from 
node s to node i E S found by the forward Dijkstra's algorithm, and let P'U) denote 
the shortest path from nodej E S' to node tfound by the reverse Dijkstra's algorithm. 
A straightforward argument (see Exercise 4.52) shows that the shortest path from 
node s to node t is either the path P(k) U P'(k) or a path P(i) U {(i, j)} U P'U) for 
some arc (i,j), i E S andj E S'. This algorithm is very efficient because it tends to 
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permanently label few nodes and hence never examines the arcs incident to a large 
number of nodes. 

4.6 DIAL'S IMPLEMENTATION 

The bottleneck operation in Dijkstra's algorithm is node selection. To improve the 
algorithm's performance, we need to address the following question. Instead of scan­
ning all temporarily labeled nodes at each iteration to find the one with the minimum 
distance label, can we reduce the computation time by maintaining distances in some 
sorted fashion? Dial's algorithm tries to accomplish this objective, and reduces the 
algorithm's computation time in practice, using the following fact: 

Property 4.5. The distance labels that Dijkstra' s algorithm designates as per­
manent are nondecreasing. 

This property follows from the fact that the algorithm permanently labels a 
node i with a smallest temporary label d(i), and while scanning arcs in A(i) during 
the distance update operations, never decreases the distance label of any temporarily 
labeled node below d(i) because arc lengths are nonnegative. 

Dial's algorithm stores nodes with finite temporary labels in a sorted fashion. 
It maintains nC + 1 sets, called buckets, numbered 0,1,2, ... , nC: Bucket k stores 
all nodes with temporary distance label equal to k. Recall that C represents the largest 
arc length in the network, and therefore nC is an upper bound on the distance label 
of any finitely labeled node. We need not store nodes with infinite temporary distance 
labels in any of the buckets-we can add them to a bucket when they first receive 
a finite distance label. We represent the content of bucket k by the set content(k). 

In the node selection operation, we scan buckets numbered 0, 1,2, ... , until 
we identify the first nonempty bucket. Suppose that bucket k is the first nonempty 
bucket. Then each node in content(k) has the minimum distance label. One by one, 
we delete these nodes from the bucket, designate them as permanently labeled, and 
scan their arc lists to update the distance labels of adjacent nodes. Whenever we 
update the distance label of a node i from dt to d2;~e'move node i from content( d t ) 

to content(d2). In the next node selection operation, we resume the scanning of 
buckets numbered k + 1, k + 2, ... to select the next nonempty bucket. Property 
4.5 implies that the buckets numbered 0, 1, 2, ... , k will always be empty in the 
subsequent iterations and the algorithm need not examine them again. 

As a data structure for storing the content of the buckets, we store each set 
content(k) as a doubly linked list (see Appendix A). This data structure permits us 
to perform each of the following operations in 0(1) time: (1) checking whether a 
bucket is empty or nonempty, (2) deleting an element from a bucket, and (3) adding 
an element to a bucket. With this data structure, the algorithm requires 0(1) time 
for each distance update, and thus a total of O(m) time for all distance updates. The 
bottleneck operation in this implementation is scanning nC + 1 buckets during node 
selections. Consequently, the running time of Dial's algorithm is O(m + nC). 

Since Dial's algorithm uses nC + 1 buckets, its memory requirements can be 
prohibitively large. The following fact allows us to reduce the number of buckets to 
C+l. 
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Property 4.6. If d(i) is the distance label that the algorithm designates as 
permanent at the beginning of an iteration, then at the end of that iteration, d(j) 
::5 d(i) + C for each finitely labeled node j in S. 

This fact follows by noting that (1) d(l) ::5 d(i) for each node IE S (by Property 
4.5), and (2) for each finitely labeled node j in S, d(j) = d(l) + Clj for some node 
I E S (by the property of distance updates). Therefore, d(j) = d(l) + Clj ::5 dU) + 
C. In other words, all finite temporary labels are bracketed from below by d(i) and 
from above by d(i) + C. Consequently, C + 1 buckets suffice to store nodes with 
finite temporary distance labels. 

Dial's algorithm uses C + 1 buckets numbered 0, 1,2, ... ,C, which we might 
view as arranged in a circular fashion as in Figure 4.9. We store a temporarily labeled 
node j with distance label d(j) in the bucket d(j) mod( C + 1). Consequently, during 
the entire execution of the algorithm, bucket k stores nodes with temporary distance 
labels k, k + (C + 1), k + 2(C + 1), and so on; however, because of Property 4.6, 
at any point in time, this bucket will hold only nodes with the same distance label. 
This storage scheme also implies that if bucket k contains a node with the minimum 
distance label, then buckets k + 1, k + 2, ... , C, 0, 1, 2, ... , k - 1 store nodes 
in increasing values of the distance labels. 

c 0 

k k-l 

3 

Figure 4.9 Bucket arrangement in 
Dial's algorithm. 

Dial's algorithm examines the buckets sequentially, in a wraparound fashion, 
to identify the first nonempty bucket. In the next iteration, it reexamines the buckets 
starting at the place where it left off previously. A potential disadvantage of Dial's 
algorithm compared to the original O(n2) implementation of Dijkstra's algorithm is 
that it requires a large amount of storage when C is very large. In addition, because 
the algorithm might wrap around as many as n - 1 times, the computational time 
could be large. The algorithm runs in O(m + nC) time, which is not even polynomial, 
but rather, is pseudopolynomial. For example, ifC = n4, the algorithm runs in O(n5 ) 

time, and if C ;, 2n , the algorithm requires exponential time in the worst case. 
However, the algorithm typically does not achieve the bound of O(m + nC) time. 
For most applications, C is modest in size, and the number of passes through all of 
the buckets is much less than n - 1. Consequently, the running time of Dial's 
algorithm is much better than that indicated by its worst-case complexity. 
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4.7 HEAP IMPLEMENTATIONS 

This section requires that the reader is familiar with heap data structures. We refer 
an unfamiliar reader to Appendix A, where we describe several such data structures. 

A heap (or priority queue) is a data structure that allows us to perform the 
following operations on a collection H of objects, each with an associated real num­
ber called its key. More properly, a priority queue is an abstract data type, and is 
usually implemented using one of several heap data structures. However, in this 
treatment we are using the words "heap" and "priority queue" interchangeably. 

create-heap(H). Create an empty heap. 
find-min{i, H). Find and return an object i of minimum key. 
insert{i, H). Insert a new object i with a predefined key. 
decrease-key(value, i, H). Redl!ce the key of an object i from its current value 
to value, which must be smaller than the key it is replacing. 
delete-min(i, H). Delete an object i of minimum key. 

If we implement Dijkstra's algorithm using a heap, H would be the collection 
of nodes with finite temporary distance labels and the key of a node would be its 
distance label. Using a heap, we could implement Dijkstra's algorithm as described 
in Figure 4.10. 

As is clear from this description, the heap implementation of Dijkstra's algo­
rithm performs the operations find-min, delete-min, and insert at most n times and 
the operation decrease-key at most m times. We now analyze the running times of 
Dijkstra's algorithm implemented using different types of heaps: binary heaps, d­
heaps, Fibonacci heaps, and another data structure suggested by Johnson. We de­
scribe the first three of these four data structures in Appendix A and provide a 
reference for the fourth data structure in the reference notes. 

algorithm heap-Dijkstra; 
begin 

create-heap( H); 
d(j) : = 00 for all j E N; 
d(s) : = 0 and pred(s) : = 0; 
insert(s, H); 
while H ¥0do 
begin 

find-min(i, H); 
delete-min(i, H); 
for each (i, j) E A(/) do 
begin 

value: = d(/) + Cij; 

if d(j) > value then 
if d(j) = 00 then d(j) : = value, pred(j) : = i, and insert (j, H) 
else set d(j) : = value, pred(j) : = i, and decrease-key(value, i. H); 

end; 
end; 

end; 

Figure 4.10 Dijkstra's algorithm using a heap. 
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Binary heap implementation. As discussed in Appendix A, a binary heap 
data structure requires O(log n) time to perform insert, decrease-key, and delete­
min, and it requires 0(1) time for the other heap operations. Consequently, the binary 
heap version of Dijkstra's algorithm runs in Oem log n) time. Notice that the binary 
heap implementation is slower than the original implementation of Dijkstra' s algo­
rithm for completely dense networks [i.e., m = O(n2)], but is faster when m = 
0(n2/log n). 

d-Heap implementation. For a given parameter d ;::: 2, the d-heap data 
structure requires O(lOgd n) time to perform the insert and decrease-key operations; 
it requires Oed logd n) time for delete-min, and it requires 0(1) steps for the other 
heap operations. Consequently, the running time of this version of Dijkstra's al­
gorithm is Oem logd n + nd logd n). To obtain an optimal choice of d, we equate 
the two terms (see Section 3.2), giving d = max{2, rm/nl}. The resulting running 
time is Oem logd n). Observe that for very sparse networks [i.e., m = O(n)J, the run­
ning time of the d-heap implementation is O(n log n). For nonsparse networks [i.e., 
m = O(n 1 + €) for some E > OJ, the running time of d-heap implementation is Oem 
logd n) = O«m log n)/(log d» = O«m log n)/(log n€» = O«m log n)/(E log n» = 

Oem/E) = Oem). The last equality is true since E is a constant. Thus the running 
time is Oem), which is optimal. 

Fibonacci heap implementation. The Fibonacci heap data structure per­
forms every heap operation in 0(1) amortized time except delete-min, which requires 
O(Iog n) time. Consequently the running time of this version of Dijkstra's algorithm 
is Oem + n log n). This time bound is consistently better than that of binary heap 
and d-heap implementations for all network densities. This implementation is also 
currently the best strongly polynomial-time algorithm for solving the shortest path 
problem. 

Johnson's implementation. Johnson's data structure (see the reference 
notes) is applicable only when all arc lengths are integer. This data structure requires 
O(log log C) time to perform each heap operation. Consequently, this implemen­
tation of Dijkstra's algorithm runs in Oem log log C) time. 

We next discuss one more heap implementation of Dijkstra's algorithm, known 
as the radix heap implementation. The radix heap implementation is one ofthe more 
recent implementations; its running time is Oem + n 10g(nC». 

4.8 RADIX HEAP IMPLEMENTATION 

The radix heap implementation of Dijkstra's algorithm is a hybrid of the original 
0(n2) implementation and Dial's implementation (the one that uses nC + 1 buckets). 
These two implementations represent two extremes. The original implementation 
considers all the temporarily labeled nodes together (in one large bucket, so to speak) 
and searches for a node with the smallest label. Dial's algorithm uses a large number 
of buckets and separates nodes by storing any two nodes with different labels in 
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different buckets. The radix heap implementation improves on these methods by 
adopting an intermediate approach: It stores many, but not all, labels in a bucket. 
For example, instead of storing only nodes with a temporary label k in the kth bucket, 
as in Dial's implementation, we might store temporary labels from lOOk to lOOk + 
99 in bucket k. The different temporary labels that can be stored in a bucket make 
up the range of the bucket; the cardinality of the range is called its width. For the 
preceding example, the range of bucket k is (lOOk, lOOk + 99] and its width is 100. 
Using widths of size k permits us to reduce the number of buckets needed by a 
factor of k. But to find the smallest distance label, we need to search all of the 
elements in the smallest indexed nonempty bucket. Indeed, if k is arbitrarily large, 
we need only one bucket, and the resulting algorithm reduces to Dijkstra's original 
implementation. 

Using a width of 100, say, for each bucket reduces the number of buckets, but 
still requires us to search through the lowest-numbered nonempty bucket to find the 
node with minimum temporary label. If we could devise a variable width scheme, 
with a width of 1 for the lowest-numbered bucket, we could conceivably retain the 
advantages of both the wide-bucket and narrow bucket approaches. The radix heap 
algorithm we consider next uses variable widths and changes the ranges dynamically. 
In the version of the radix heap that we present: 

1. The widths of the buckets are 1, 1, 2, 4, 8, 16, ... , so that the number of 
buckets needed is only O(log(nC». 

2. We dynamically modify the ranges of the buckets and we reallocate nodes with 
temporary distance labels in a way that stores the minimum distance label in 
a bucket whose width is 1. 

Property 1 allows us to maintain only O(log(nC» buckets and thereby over­
comes the drawback of Dial's implementation of using too many buckets. Property 
2 permits us, as in Dial's algorithm, to avoid the need to search the entire bucket 
to find a node with the minimum distance label. When implemented in this way, this 
version of the radix heap algorithm has a running time of Oem + n 10g(nC». 

To describe the radix heap in more detail, we first set some notation. For a 
given shortest path problem, the radix heap consists of 1 + pog(nC)l buckets. The 
buckets are numbered 0,1,2, ... ,K = rlog(nC)l. We represent the range of bucket 
k by range(k) which is a (possibly empty) closed interval of integers. We store a 
temporary node i in bucket k if d(i) E range(k). We do not store permanent nodes. 
The set content(k) denotes the nodes in bucket k. The algorithm will change the 
ranges of the buckets dynamically, and each time it changes the ranges, it redis­
tributes the nodes in the buckets. Initially, the buckets have the following ranges: 

Sec. 4.8 

range(O) = [0]; 
range(1) = [1]; 
range(2) = [2, 3]; 
range(3) = [4, 7]; 
range(4) = [8, 15]; 

range(K) ~ [2K- 1 , 2K - 1]. 
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These ranges change as the algorithm proceeds; however, the widths of the buckets 
never increase beyond their initial widths. 

As we have noted the fundamental difficulty associated with using bucket 
widths larger than 1, as in the radix heap algorithm, is that we have to examine 
every node in the bucket containing a node with the minimum distance label and 
this time might be "too large" from a worst-case perspective. The radix heap al­
gorithm overcomes this difficulty in the following manner. Suppose that at some 
stage the minimum indexed nonempty bucket is bucket 4, whose range is [8, 15]. 
The algorithm would examine every node in content(4) to identify a node with the 
smallest distance label. Suppose that the smallest distance label of a node in con­
tent(4) is 9. Property 4.5 implies that no temporary distance label will ever again be 
less than 9 and, consequently, we will never again need the buckets 0 to 3. Rather 
than leaving these buckets idle, the algorithm redistributes the range [9, 15] to 
the previous buckets, resulting in the ranges range(O) = [9], range(1) = [10], 
range(2) = [11, 12], range(3) = [13,15] and range(4) = 0. Since the range of bucket 
4 is now empty, the algorithm shifts (or redistributes) the nodes in content(4) into 
the appropriate buckets (0, 1, 2, and 3). Thus each of the nodes in bucket 4 moves 
to a lower-indexed bucket and all nodes with the smallest distance label move to 
bucket 0, which has width 1. 

To summarize, whenever the algorithm finds that nodes with the minimum 
distance label are in a bucket with width larger than 1, it examines all nodes in the 
bucket to identify a node with minimum distance label. Then the algorithm redis­
tributes the bucket ranges and shifts each node in the bucket to the lower-indexed 
bucket. Since the radix heap contains K buckets, a node can shift at most K times, 
and consequently, the algorithm will examine any node at most K times. Hence the 
total number of node examinations is O(nK), which is not "too large." 

We now illustrate the radix heap data structure on the shortest path example 
given in Figure 4.11 with s = 1. In the figure, the number beside each arc indicates 
its length. For this problem C = 20 and K = flog(120)l = 7. Figure 4.12 specifies 
the distance labels determined by Dijkstra's algorithm after it has examined node 
1; it also shows the corresponding radix heap. 

To select the node with the smallest distance label, we scan the buckets 0, 1, 
2, ... , K to find the first nonempty bucket. In our example, bucket 0 is nonempty. 
Since bucket 0 has width 1, every node in this bucket has the same (minimum) 
distance label. So the algorithm designates node 3 as permanent, deletes node 3 from 
the radix heap, and scans the arc (3, 5) to change the distance label of node 5 from 

13 2 

20 
o 4 

Figure 4.11 Shortest path example. 
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node i 1 2 3 4 5 6 

label d(/) 0 13 0 15 20 00 

bucket k 0 1 2 3 4 5 6 7 

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64, 127] 

content(k) {3} fJ fJ fJ {2,4} {5} fJ 

Figure 4.12 Initial radix heap. 

20 to 9. We check whether the new distance label of node 5 is contained in the range 
of its present bucket, which is bucket 5. It is not. Since its distance label has de­
creased, node 5 should move to a lower-indexed bucket. So we sequentially scan 
the buckets from right to left, starting at bucket 5, to identify the first bucket whose 
range contains the number 9, which is bucket 4. Node 5 moves from bucket 5 to 
bucket 4. Figure 4.13 shows the new radix heap. 

node i 2 4 5 6 

label d(/) 13 15 9 00 

bucket k 0 1 2 3 4 5 6 7 

range(k) [0] [1] [2,3] [4,7] [8,15] [16,31] [32,63] [64,127] 

content(k) fJ fJ fJ fJ {2, 4, 5} fJ fJ fJ 

Figure 4.13 Radix heap at the end of iteration 1. 

We again look for the node with the smallest distance label. Scanning the 
buckets sequentially, we find that bucket k = 4 is the first nonempty bucket. Since 
the range of this bucket contains more than one integer, the first node in the bucket 
need not have the minimum distance label. Since the algorithm will never use the 
ranges range(O), ... , range(k - 1) for storing temporary distance labels, we can 
redistribute the range of bucket k into the buckets 0, 1, ... , k - 1, and reinsert 
its nodes into the lower-indexed buckets. In our example, the range of bucket 4 is 
[8, 15], but the smallest distance label in this bucket is 9. We therefore redistribute 
the range [9, 15] over the lower-indexed buckets in the following manner: 
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range(O) = [9], 
range(1) = [10], 
range(2) = [11, 12], 
range(3) = [13, 15], 
range(4) = 0. 

Other ranges do not change. The range of bucket 4 is now empty, and we must 
reassign the contents of bucket 4 to buckets ° through 3. We do so by successively 
selecting nodes in bucket 4, sequentially scanning the buckets 3, 2, 1, ° and inserting 
the node in the appropriate bucket. The resulting buckets have the following con­
tents: 

content(O) = {5}, 
content(1) = 0, 
content(2) = 0, 
content(3) = {2, 4}, 
content(4) = 0. 

This redistribution necessarily empties bucket 4 and moves the node with the smallest 
distance label to bucket 0. 

We are now in a position to outline the general algorithm and analyze its com­
plexity. We first consider moving nodes between the buckets. Suppose that j E 
content(k) and that we are re-assigning nodej to a lower-numbered bucket (because 
either d(j) decreases or we are redistributing the useful range of bucket k and re­
moving the nodes from this bucket). If d(j) E range(k), we sequentially scan lower­
numbered buckets from right to left and add the node to the appropriate bucket. 
Overall, this operation requires Oem + nK) time. The term m reflects the number 
of distance updates, and the term nK arises because every time a node moves, it 
moves to a lower-indexed bucket: Since there are K + 1 buckets, a node can move 
at most K times. Therefore, O(nK) is a bound on the total number of node move­
ments. 

Next we consider the node selection operation. Node selection begins by scan­
ning the buckets from left to right to identify the first nonempty bucket, say bucket 
k. This operation requires O(K) time per iteration and O(nK) time in total. If k = ° or k = 1, any node in the selected bucket has the minimum distance label. If k ? 

2, we redistribute the "useful" range of bucket k into the buckets 0, 1, ... , k -
1 and reinsert its contents in those buckets. If the range of bucket k is [l, u] and the 
smallest distance label of a node in the bucket is dmin , the useful range of the bucket 
is [dmin, u]. 

The algorithm redistributes the useful range in the following manner: We assign 
the first integer to bucket 0, the next integer to bucket 1, the next two integers to 
bucket 2, the next four integers to bucket 3, and so on. Since bucket k has width 
less than 2k - 1, and since the widths of the first k buckets can be as large as 1, 1, 
2, ... ,2k

-
2 for a total potential width of2k

-
1

, we can redistribute the useful range 
of bucket k over the buckets 0, 1, ... , k - 1 in the manner described. This redis­
tribution of ranges and the subsequent reinsertions of nodes empties bucket k and 
moves the nodes with the smallest distance labels to bucket 0. The redistribution of 
ranges requires O(K) time per iteration and O(nK) time over all the iterations. As 
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we have already shown, the algorithm requires O(nK) time in total to move nodes 
and reinsert them in lower-indexed buckets. Consequently, the running time of the 
algorithm is O(m + nK). Since K = pog(nC)l, the algorithm runs in O(m + 
n 10g(nC» time. We summarize our discussion as follows. 

Theorem 4.7. The radix heap implementation of Dijkstra's algorithm solves 
the shortest path problem in O(m + n 10g(nC» time. 

This algorithm requires 1 + flog(nC)l buckets. As in Dial's algorithm, Property 
4.6 permits us to reduce the number of buckets to 1 + flog Cl. This refined im­
plementation of the algorithm runs in O(m + n log C) time. Using a Fibonacci heap 
data structure within the radix heap implementation, it is possible to reduce this 
bound further to O(m + n Vlog C), which gives one of the fastest polynomial-time 
algorithm to solve the shortest path problem with nonnegative arc lengths. 

4.9 SUMMARY 

The shortest path problem is a core model that lies at the heart of network opti­
mization. Mter describing several applications, we developed several algorithms for 
solving shortest path problems with nonnegative arc lengths. These algorithms, 
known as label-setting algorithms, assign tentative distance labels to the nodes and 
then iteratively identify a true shortest path distance (a permanent label) to one or 
more nodes at each step. The shortest path problem with arbitrary arc lengths re­
quires different solution approaches; we address this problem class in Chapter 5. 

The basic shortest path problem that we studied requires that we determine a 
shortest (directed) path from a source node s to each node i E N - {s}. We showed 
how to store these (n - 1) shortest paths compactly in the form of a directed out­
tree rooted at node s, called the tree of shortest paths. This result uses the fact that 
if P is a shortest path from node s to some node j, then any subpath of P from node 
s to any of its internal nodes is also a shortest path to this node. 

We began our discussion of shortest path algorithms by describing an O(m) 
algorithm for solving the shortest path problem in acyclic networks. This algorithm 
computes shortest path distances to the nodes as it examines them in a topological 
order. This discussion illustrates a fact that we will revisit many times throughout 
this book: It is often possible to develop very efficient algorithms when we restrict 
the underlying network by imposing special structure on the data or on the network's 
topological structure (as in this case). 

We next studied Dijkstra's algorithm, which is a natural and simple algorithm 
for solving shortest path problems with nonnegative arc lengths. Mter describing 
the original implementation of Dijkstra's algorithm, we examined several other im­
plementations that either improve on its running time in practice or improve on its 
worst-case complexity. We considered the following implementations: Dial's im­
plementation, ~ d-heap implementation, a Fibonacci heap implementation, and a 
radix heap implementation. Figure 4.14 summarizes the basic features of these im­
plementations. 
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Algorithm RUnning time Features 

Original O(n2) 1. Selects a node with the minimum temporary 
implementation distance label, designating it as permanent, 

and examines arcs incident to it to modify other 
distance labels. 

2. Very easy to implement. 
3. Achieves the best available running time for 

dense networks. 

Dial's implementation O(m + nC) 1. Stores the temporary labeled nodes in a sorted 
order in unit length buckets and identifies the 
minimum temporary distance label by sequen-
tially examining the buckets. 

2. Easy to implement and has excellent empirical 
behavior. 

3. The algorithm's running time is pseudopoly-
nomial and hence is theoretically unattractive. 

d-Heap implementation O(m logdn), 1. Uses the d-heap data structure to maintain tem-
where d = min porary labeled nodes. 

2. Linear running time whenever m = 0'(n1 +<) for 
any positive E > O. 

Fibonacci heap O(m + n log n) 1. Uses the Fibonacci heap data structure to 
implementation maintain temporary labeled nodes. 

2. Achieves the best available strongly polynom-
ial running time for solving shortest paths 
problems. 

3. Intricate and difficult to implement. 

Radix heap O(m + n 10g(nC)) 1. Uses a radix heap to implement Dijkstra's al-
implementation gorithm. 

2. Improves Dial's algorithm by storing tempo-
rarily labeled nodes in buckets with varied 
widths. 

3. Achieves an excellent running time for prob-
lems that satisfy the similarity assumption. 

Figure 4.14 Summary of different implementations of Dijkstra's algorithm. 

REFERENCE NOTES 

The shortest path problem and its generalizations have a voluminous research lit­
erature. As a guide to these results before 1984, we refer the reader to the extensive 
bibliography compiled by Deo and Pang [1984]. In this discussion we present some 
selected references; additional references can be found in the survey papers of Ahuja, 
Magnanti, and Orlin [1989, 1991]. 

The first label-setting algorithm was suggested by Dijkstra [1959] and, inde­
pendently, by Dantzig [1960], and Whiting and Hillier [1960]. The original imple­
mentation of Dijkstra's algorithm runs in O(n2) time, which is the optimal running 
time for fully dense networks [those with m = O(n2 )J because any algorithm must 
examine every arc. However, the use of heaps permits us to obtain improved running 
times for sparse networks. The d-heap implementation of Dijkstra's algorithm with 
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d = max{2, r min H runs in O(m logd n) time and is due to Johnson [1977a]. The 
Fibonacci heap implementation, due to Fredman and TaIjan [1984], runs in O(m + 
n log n) time. Johnson [1982] suggested the O(m log log C) implementation of Dijk­
stra's algorithm, based on earlier work by Boas, Kaas, and Zijlstra [1977]. Gabow's 
[1985] scaling algorithm, discussed in Exercise 5.51, is another efficient shortest path 
algorithm. 

Dial [1969] (and also, independently, Wagner [1976]) suggested the O(m + nC) 
implementation of Dijkstra's algorithm that we discussed in Section 4.6. Dial, Glover, 
Karney, and Klingman [1979] proposed an improved version of Dial's implemen­
tation that runs better in practice. AlthQ,ugh Dial's implementation is only pseudo­
polynomial time, it has led to algorithms with better worst-case behavior. Denardo 
and Fox [1979] suggested several such improvements. The radix heap implemen­
tation that we described in Section 4.8 is due to Ahuja, Mehlhorn, Orlin, and TaIjan 
[1990]; we can view it as an improved version of Denardo and Fox's implementations. 
Our description of the radix heap implementation runs in O(m + n 10g(nC» time. 
Ahuja et al. [1990] also suggested several improved versions of the radix heap im­
plementation that run in O(m + n log C), O(m + (n log C)/(log log C», O(m + n 
\flog C) time. 

Currently, the best time bound for solving the shortest path problem with non­
negative arc lengths is O(min{m + n log n, m log log C, m + n \flog C}); this 
expression contains three terms because different time bounds are better for different 
values of n, m, and C. We refer to the overall time bound as S(n, m, C); Fredman 
and TaIjan [1984], Johnson [1982], and Ahuja et al. [1990] have obtained the three 
bounds it contains. The best strongly polynomial-time bound for solving the shortest 
path problem with nonnegative arc lengths is O(m + n log n), which we subse­
quently refer to as S(n, m). 

Researchers have extensively tested label-setting algorithms empirically. Some 
ofthe more recent computational results can be found in Gallo and Pallottino [1988], 
Hung and Divoky [1988], and Divoky and Hung [1990]. These results suggest that 
Dial's implementation is the fastest label-setting algorithm for most classes of net­
works tested. Dial's implementation is, however, slower than some of the label­
correcting algorithms that we discuss in Chapter 5. 

The applications of the shortest path problem that we described in Section 4.2 
are adapted from the following papers: 

1. Approximating piecewise linear functions (Imai and Iri [1986]) 
2. Allocating inspection effort on a production line (White [1969]) 
3. Knapsack problem (Fulkerson [1966]) 
4. Tramp steamer problem (Lawler [1966]) 
5. System of difference constraints (Bellman [1958]) 
6. Telephone operator scheduling (Bartholdi, Orlin, and Ratliff [1980]) 

Elsewhere in this book we have described other applications of the shortest 
path problem. These applications include (1) reallocation of housing (Application 
1.1, Wright [1975]), (2) assortment of steel beams (Application 1.2, Frank [1965]), 
(3) the paragraph problem (Exercise 1.7), (4) compact book storage in libraries (Ex-
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ercise 4.3, Ravindran [1971]), (5) the money-changing problem (Exercise 4.5), (6) 
cluster analysis (Exercise 4.6), (7) concentrator location on a line (Exercises 4.7 and 
4.8, Balakrishnan, Magnanti, and Wong [1989b]), (8) the personnel planning problem 
(Exercise 4.9, Clark and Hastings [1977]), (9) single-duty crew scheduling (Exercise 
4.13, Veinott and Wagner [1962]), (10) equipment replacement (Application 9.6, 
Veinott and Wagner [1962]), (11) asymmetric data scaling with lower and upper 
bounds (Application 19.5, Orlin and Rothblum [1985]), (12) DNA sequence alignment 
(Application 19.7, Waterman [1988]), (13) determining minimum project duration 
(Application 19.9), (14) just-in-time scheduling (Application 19.10, Elmaghraby 
[1978], Levner and Nemirovsky [1991]), (15) dynamic lot sizing (Applications 19.19, 
Application 19.20, Application 19.21, Veinott and Wagner [1962], Zangwill [1969]), 
and (16) dynamic facility location (Exercise 19.22). 

The literature considers many other applications of shortest paths that we do 
not cover in this book. These applications include (1) assembly line balancing 
(Gutjahr and Nemhauser [1964]), (2) optimal improvement of transportation net­
works (Goldman and Nemhauser [1967]), (3) machining process optimization (Szad­
kowski [1970]), (4) capacity expansion (Luss [1979]), (5) routing in computer com­
munication networks (Schwartz and Stern [1980]), (6) scaling of matrices (Golitschek 
and Schneider [1984]), (7) city traffic congestion (Zawack and Thompson [1987]), 
(8) molecular confirmation (Dress and Havel [1988]), (9) order picking in an isle 
(GoetschaIckx and Ratliff [1988]), and (10) robot design (Haymond, Thornton, and 
Warner [1988]). 

Shortest path problems often arise as important subroutines within algorithms 
for solving many different types of network optimization problems. These appli­
cations are too numerous to mention. We do describe several such applications in 
subsequent chapters, however, when we show that shortest path problems are key 
subroutines in algorithms for the minimum cost flow problem (see Chapter 9), the 
assignment problem (see Section 12.4), the constrained shortest path problem (see 
Section 16.4), and the network design problem (see Application 16.4). 

EXERCISES 

4.1. Mr. Dow Jones, 50 years old, wishes to place his IRA (Individual Retirement Account) 
funds in various investment opportunities so that at the age of 65 years, when he with­
draws the funds, he has accrued maximum possible amount of money. Assume that 
Mr. Jones knows the investment alternatives for the next 15 years: their maturity (in 
years) and the appreciation they offer. How would you formulate this investment prob­
lem as a shortest path problem, assuming that at any point in time, Mr. Jones invests 
all his funds in a single investment alternative. 

4.2. Beverly owns a vacation home in Cape Cod that she wishes to rent for the period May 
1 to August 31. She has solicited a number of bids, each having the following form: 
the day the rental starts (a rental day starts at 3 P.M.), the day the rental ends (checkout 
time is noon), and the total amount of the bid (in dollars). Beverly wants to identify a 
selection of bids that would maximize her total revenue. Can you help her find the best 
bids to accept? 

4.3. Compact book storage in libraries (Ravindran [1971]). A library can store books ac­
cording to their subject or author classification, or by their size, or by any other method 
that permits an orderly retrieval of the books. This exercise concerns an optimal storage 
of books by their size to minimize the storage cost for a given collection of books. 
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Suppose that we know the heights and thicknesses of all the books in a collection 
(assuming that all widths fit on the same shelving, we consider only a two-dimensional 
problem and ignore book widths). Suppose that we have arranged the book heights in 
ascending order of their n known heights HI. H2, ... , Hn; that is, HI < H2 < ... < 
Hn. Since we know the thicknesses of the books, we can compute the required length 
of shelving for each height class. Let Li denote the length of shelving for books of height 
H;. If we order shelves of height Hi for length Xi, we incur cost equal to Fi + CiXi; Fi 
is a fixed ordering cost (and is independent of the length ordered) and C; is the cost of 
the shelf per unit length. Notice-thatin order to save the fixed cost of ordering, we 
might not order shelves of every possible height because we can use a shelf of height 
Hi to store books of smaller heights. We want to determine the length of shelving for 
each height class that would minimize the total cost of the shelving. Formulate this 
problem as a shortest path problem. 

4.4. Consider the compact book storage problem discussed in Exercise 4.3. Show that the 
storage problem is trivial if the fixed cost of ordering shelves is zero. Next, solve the 
compact book storage problem with the following data. 

i 1 2 3 4 5 6 

Hi 5 in. 6 in. 7 in. 9 in. 12 in. 14 in. 

Li 100 300 200 300 500 100 

Ei 1000 1200 1100 1600 1800 2000 

Ci 5 6 7 9 12 14 

4.5. Money-changing problem. The money-changing problem requires that we determine 
whether we can change a given number p into coins of known denominations aI, 
a2, ... , ak. For example, if k = 3, al = 3, a2 = 5, a3 = q; we can change all the 
numbers in the set {8, 12, 54}; on the other hand, we cannot change the number 4. In 
general, the money-changing problem asks whether p = L7~ I aiXi for some nonnegative 
integers XI, X2, ... , Xk. 
(a) Describe a method for identifying all numbers in a given range of numbers [I, u] 

that we can change. 
(b) Describe a method that identifies whether we can change a given number p, and 

if so, then identifies a denomination with the least number of coins. 
4.6. Cluster analysis. Consider a set of n scalar numbers a), a2, ... , an arranged in non­

decreasing order of their values. We wish to partition these numbers into clusters (or 
groups) so that (1) each cluster contains at least p numbers; (2) each cluster contains 
consecutive numbers from the list aI, a2, ... , an; and (3) the sum of the squared 
deviation of the numbers from their cluster means is as small as possible. Let a(S) = 
(LiES a;)/ISI denote the mean of a set S of numbers defining a cluster. If the number 
ak belongs to cluster S, the squared deviation of the number ak from the cluster mean 
is (ak - a(S»2. Show how to formulate this problem as a shortest path problem. Il­
lustrate your formulation using the following data: p = 2, n = 6, al = 0.5, a2 = 0.8, 
a3 = 1.1, a4 = 1.5, a5 = 1.6, and a6 = 2.0. 

4.7. Concentrator location on a line (Balakrishnan, Magnanti, and Wong [1989]). In the 
telecommunication industry, telephone companies typically connect each customer di­
rectly to a switching center, which is a device that routes calls between the users in 
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the system. Alternatively, to use fewer cables for routing the telephone calls, a company 
can combine the calls of several customers in a message compression device known 
as a concentrator and then use a single cable to route all of the calls transmitted by 
those users to the switching center. Constructing a concentrator at any node in the 
telephone network incurs a node-specific cost and assigning each customer to any con­
centrator incurs a "homing cost" that depends on the customer and the concentrator 
location. Suppose that all of the customers lie on a path and that we wish to identify 
the optimal location of concentrators to service these customers (assume that we must 
assign each customer to one of the concentrators). Suppose further that the set of 
customers allocated to any concentrator must be contiguous on the path (many tele­
phone companies use this customer grouping policy). How would you find the optimal 
location of a single concentrator that serves any contiguous set of customers? Show 
how to use the solution of these single-location subproblems (one for each interval of 
customers) to solve the concentrator location problem on the path as a shortest path 
problem. 

4.8. Modified concentrator location problem. Show how to formulate each of the following 
variants of the concentrator location problem that we consider in Exercise 4.7 as a 
shortest path problem. Assume in each case that all the customer lie on a path. 
(a) The cost of connecting each customer to a concentrator is negligible, but each 

concentrator can handle at most five customers. 
(b) Several types of concentrators are available at each node; each type of concentr~tor 

has its own cost and its own capacity (which is the maximum number of customers 
it can accommodate). 

(c) In the situations considered in Exercise 4.7 and in parts (a) and (b) of this exercise, 
no customer can be assigned to a concentrator more that 1200 meters from the 
concentrator (because of line degradation of transmitted signals). 

4.9. Personnel planning problem (Clark and Hastings [1977]). A construction company's 
work schedule on a certain site requires the following number of skilled personnel, 
called steel erectors, in the months of March through August: 
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Month Mar. Apr. May June July Aug. 

Personnel 4 6 7 4 6 2 

Personnel work at the site on the monthly basis. Suppose that three steel erectors are 
on the site in February and three steel erectors must be on site in September. The 
problem is to determine how many workers to have on site in each month in order to 
minimize costs, subject to the following conditions: 

Transfer costs. Adding a worker to this site costs $100 per worker and redeploying a 
worker to another site costs $160. 
Transfer rules. The company can transfer no more than three workers at the start of 
any month, and under a union agreement, it can redeploy no more than one-third of 
the current workers in any trade from a site at the end of any month. 
Shortage time and overtime. The company incurs a cost of $200 per worker per month 
for having a surplus of steel erectors on site and a cost of $200 per worker per month 
for having a shortage of workers at the site (which must be made up in overtime). 
Overtime cannot exceed 25 percent of the regular work time. 

Formulate this problem as a shortest path problem and solve it. (Hint: Give a dynamic 
programming-based formulation and use as many nodes for each month as the maximum 
possible number of steel erectors.) 
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4.10. Multiple-knapsack problem. In the shortest path formulation of the knapsack problem 
discussed in Application 4.3, an item is either placed in the knapsack or not. Conse­
quently, each Xj E {O, I}. Consider a situation in which the hiker can place multiple 
copies of an item in her knapsack (i.e., Xj E {O, 1,2,3, ... }). How would you formulate 
this problem as a shortest path problem? Illustrate your formulation on the example 
given in Application 4.3. 

4.11. Modified system of difference constraints. In discussing system of difference constraints 
in Application 4.5, we assumed that each constraint is of the form X(jk) - X(ik) ~ b(k). 
Suppose, instead, that some constraints are of the form X(jk) ~ b(k) or X(ik) ~ b(k). 
Describe how you would solve this modified system of constraints using a shortest path 
algorithm. . 

4.12. Telephone operator scheduling. In our discussion of the telephone operator scheduling 
problem in Application 4.6, we described a method for solving a restricted problem of 
determining whether some feasible schedule uses at most p operators. Describe a 
polynomial-time algorithm for determining a schedule with the fewest operators that 
uses the restricted problem as a subproblem. 

4.13. Single-dnty crew scheduling. The following table illustrates a number of possible duties 
for the drivers of a bus company. We wish to ensure, at the lowest possible cost, that 
at least one driver is on duty for each hour of the planning period (9 A.M. to 5 P.M.). 

Formulate and solve this scheduling problem as a shortest path problem. 

Duty hours 9-1 9-11 12-3 12-5 2-5 1-4 4-5 

Cost 30 18 21 38 20 22 9 

4.14. Solve the shortest path problems shown in Figure 4.15 using the original implementation 
of Dijkstra's algorithm. Count the number of distance updates. 

3 

2 6 

6 4 
5 

7 

8 2 
o 

(a) (b) 

Figure 4.15 Some shortest path networks. 

4.15. Solve the shortest path problem shown in Figure 4. 15(a) using Dial's implementation 
of Dijkstra's algorithm. Show all of the buckets along with their content after the al­
gorithm has examined the most recent permanently labeled node at each step. 

4.16. Solve the shortest path problem shown in Figure 4. 15(a) using the radix heap algorithm. 
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4.17. Consider the network shown in Figure 4.16. Assign integer lengths to the arcs in the 
network so that for every k E [0, 2K - 1], the network contains a directed path of 
length k from the source node to sink node. 

source sink 

Figure 4.16 Network for Exercise 4.17. 

4.18. Suppose that all the arcs in a network G have length 1. Show that Dijkstra's algorithm 
examines nodes for this network in the same order as the breadth-first search algorithm 
described in Section 3.4. Consequently, show that it is possible to solve the shortest 
path problem in this unit length network in Oem) time. 

4.19. Construct an example of the shortest path problem with some negative arc lengths, but 
no negative cycle, that Dijkstra's algorithm will solve correctly. Construct another 
example that Dijkstra's algorithm will solve incorrectly. 

4.20. (Malik, Mittal, and Gupta [1989]) Consider a network without any negative cost cycle. 
For every node j E N, let dS(j) denote the length of a shortest path from node s to 
node j and let d'(j) denote the length of a shortest path from node j to node t. 
(a) Show that an arc (i, j) is on a shortest path from node s to node t if and only if 

dS(t) = dS(i) + Cij + d'(j). 
(b) Show that dS(t) = min{ds(i) + cij + d'(j) : (i, j) E A}. 

4.21. Which of the following claims are true and which are false? Justify your answer by 
giving a proof or by constructing a counterexample. 
(a) If all arcs in a network have different costs, the network has a unique shortest path 

tree. 
(b) In a directed network with positive arc lengths, if we eliminate the direction on 

every arc (i.e., make it undirected), the shortest path distances will not change. 
(c) In a shortest path problem, if each arc length increases by k units, shortest path 

distances increase by a mUltiple of k. 
(d) In a shortest path problem, if each arc length decreases by k units, shortest path 

distances decrease by a mUltiple of k. 
(e) Among all shortest paths in a network, Dijkstra's algorithm always finds a shortest 

path with the least number of arcs. 
4.22. Suppose that you are given a shortest path problem in which all arc lengths are the 

same. How will you solve this problem in the least possible time? 
4.23. In our discussion of shortest path algorithms, we often assumed that the underlying 

network has no parallel arcs (i.e., at most one arc has the same tail and head nodes). 
How would you solve a problem with parallel arcs? (Hint: If the network contains k 
parallel arcs directed from node i to node j, show that we can eliminate all but one of 
these arcs.) 

4.24. Suppose that you want to determine a path of shortest length that can start at either 
of the nodes s) or S2 and can terminate at either of the nodes t) and t2. How would you / 
solve this problem? l/ 

4.25. Show that in the shortest path problem if the length of some arc decreases by k units, 
the shortest path distance between any pair of nodes decreases by at most k units. 

4.26. Most vital arc problem. A vital arc of a network is an arc whose removal from the 
network causes the shortest distance between two specified nodes, say node s and node 
t, to increase. A most vital arc is a vital arc whose removal yields the greatest increase 
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in the shortest distance from node s to node t. Assume that the network is directed, 
arc lengths are positive, and some arc is vital. Prove that the following statements are 
true or show through counterexamples that they are false. 
(a) A most vital arc is an arc with the maximum value of Cij. 

(b) A most vital arc is an arc with the maximum value of cij on some shortest path 
from node s to node t. 

(c) An arc that does not belong to any shortest path from node s to node t cannot be 
a most vital arc. 

(d) A network might contain several most vital arcs. 
4.27. Describe an algorithm for determining a most vital arc in a directed network. What is 

the running time of your algorithm? 
4.28. A longest path is a directed path from node s to node t with the maximum length. 

Suggest an O(m) algorithm for determining a longest path in an acyclic network with 
nonnegative arc lengths. Will your algorithm work if the network contains directed 
cycles? 

4.29. Dijkstra's algorithm, as stated in Figure 4.6, identifies a shortest directed path from 
node s to every nodej E N - {s}. Modify this algorithm so that it identifies a shortest 
directed path from each node j E N - {t} to node t. 

4.30. Show that if we add a constant ex to the length of every arc emanating from the so'urce 
node, the shortest path tree remains the same. What is the relationship between the 
shortest path distances of the modified problem and those of the original problem? 

4.31. Can adding a constant ex to the length of every arc emanating from a nonsource node 
produce a change in the shortest path tree? Justify your answer. 

4.32. Show that Dijkstra's algorithm runs correctly even when a network contains negative 
cost arcs, provided that all such arcs emanate from the source node. (Hint: Use the 
result of Exercise 4.30.) 

4.33. Improved Dial's implementation (Denardo and Fox [1979]). This problem discusses a 
practical speed-up of Dial's implementation. Let Cmin = min{cij: (i, j) E A} and w = 
max{l, Cmin}. Consider a version of Dial's implementation in which we use buckets of 
width w. Show that the algorithm will never decrease the distance label of any node 
in the least index nonempty bucket; consequently, we can permanently label any node 
in this bucket. What is the running time of this version of Dial's implementation? 

4.34. Suppose that we arrange all directed paths from node s to node t in nondecreasing order 
of their lengths, breaking ties arbitrarily. The kth shortes(path problem is to identify 
a path that can be at the kth place in this order. Describe an algorithm to find the kth 
shortest path for k = 2. (Hint: The second shortest path must differ from the first 
shortest path by at least one arc.) 

4.35. Suppose that every directed cycle in a graph G has a positive length. Show that a 
shortest directed walk from node s to node t is always a path. Construct an example 
for which the first shortest directed walk is a path, but the second shortest directed 
walk is not a path. 

4.36. Describe a method for identifying the first K shortest paths from node s to node t in 
an acyclic directed network. The running time of your algorithm should be polynomial 
in terms of n, m, and K. (Hint: For each node j, keep track of the first K shortest paths 
from node s to node j. Also, use the results in Exercise 4.34.) 

4.37. Maximum capacity path problem. Let Cij 2: 0 denote the capacity of an arc in a given 
network. Define the capacity of a directed path P as the minimum arc capacity in P. 
The maximum capacity path problem is to determine a maximum capacity path from 
a specified source node s to every other node in the network. Modify Dijkstra's al­
gorithm so that it solves the maximum capacity path problem. Justify your algorithm. 

4.38. Let (ibjd, (i2,h), ... , (im,jm) denote the arcs ofa network in nondecreasing order 
of their arc capacities. Show that the maximum capacity path from node s to any node 
j remains unchanged if ·we modify some or all of the arc capacities but maintain the 
same (capacity) order for the arcs. Use this result to show that if we already have a 

Chap. 4 Exercises 129 



sorted list of the arcs, we can solve the maximum capacity path problem in Oem) time. 
(Hint: Modify arc capacities so that they are all between 1 and m. Then use a variation 
of Dial's implementation.) 

4.39. Maximum reliability path problems. In the network G we associate a reliability 0 < 
J.1ij ~ 1 with every arc (i, j) E A; the reliability measures the probability that the arc 
will be operational. We define the reliability of a directed path P as the product of the 
reliability of arcs in the path [i.e., J.1(P) = IIu,j)EP J.1ij], The maximum reliability path 
problem is to identify a directed path of maximum reliability from the source node s 
to every other node in the network, 
(a) Show that if we are allowed to. take logarithms, we can reduce the maximum re­

liability path problem to a shortest path problem. 
(b) Suppose that you are not allowed to take logarithms because they yield irrational 

data, Specify an O(n2) algorithm for solving the maximum reliability path problem 
and prove the correctness of this algorithm, (Hint: Modify Dijkstra's algorithm,) 

(c) Will your algorithms in parts (a) and (b) work if some of the coefficients J.1ij are 
strictly greater than I? 

4.40. Shortest paths with turn penalties. Figure 4. 15(b) gives a road network in which all road 
segments are parallel to either the x-axis or the y-axis, The figure also gives the traversal 
costs of arcs. Suppose that we incur an additional cost (or penalty) of IX units every 
time we make a left turn. Describe an algorithm for solving the shortest path problem 
with these turn penalties and apply it to the shortest path example in Figure 4.15(b). 
Assume that IX = 5. [Hint: Create a new graph G* with a node i - j corresponding to 
each arc (i, j) E A and with each pair of nodes i - j andj - kin N joined by an arc. 
Assign appropriate arc lengths to the new graph.] 

4.41. Max-min result. We develop a max-min type of result for the maximum capacity path 
problem that we defined in Exercise 4.37. As in that exercise, suppose that we ~ish 
to find the maximum capacity path from node s to node t. We say that a cut [S, S] is 
an s-t cut if s E Sand t E S. Define the bottleneck value of an s-t cut as the largest 
arc capacity in the cut. Show that the capacity of the maximum capacity path from 
node s to node t equals the minimum bottleneck value of a cut. 

4.42. A farmer wishes to transport a truckload of eggs from one city to another city through 
a given road network. The truck will incur a certain amount of breakage on each road 
segment; let wij denote the fraction of the eggs broken if the truck traverses the road 
segment (i, j). How should the truck be routed to minimize the total breakage? How 
would you formulate this problem as a shortest path problem. 

4.43. A * algorithm. Suppose that we want to identify a shortest path from node s to node t, 
and not necessarily from s to any other node, in a network with nonnegative arc lengths. 
In this case we can terminate Dijkstra's algorithm whenever we permanently label node 
t. This exercise studies a modification of Dijkstra's algorithm that would speed up the 
algorithm in practice by designating node t as a permanent labeled node more quickly. 
Let h(i) be a lower bound on the length of the shortest path from node i to node 
t and suppose that the lower bounds satisfy the conditions h(i) ~ h(j) + cij for all 
(i, j) E A. For instance, if nodes are points in a two-dimensional plane with coordi­
nates (Xi, Yi) and arc lengths equal Euclidean distances betwetn points, then h(i) = 
[(Xi - X,)2 + (Yi - y,)2]1/2 (i.e., the Euclidean distance from I to t) is a valid lower 
bound on the length of the shortest path from node i to node t. 
(a) Let ct = cij + h(j) - h(i) for all (i, j) E A. Show that replacing the arc lengths 

Cij by ct does not affect the shortest paths between any pair of nodes. 
(b) If we apply Dijkstra's algorithm with ct as arc lengths, why should this modification 

improve the empirical behavior of the algorithm? [Hint: What is its impact if each 
h(i) represents actual shortest path distances from node i to node t?] 

4.44. Arc tolerances. Let T be a shortest path tree of a network. Define the tolerances of an 
arc (i, j) as the maximum increase, IXij, and the maximum decrease, !3ij, that the arc 
can tolerate without changing the tree of shortest paths. 
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(a) Show that if the arc (i, j) eo T, then (Xij = + 00 and !3ij will be a finite number. 
Describe an 0(1) method for computing !3ij. 

(b) Show that if the arc (i, j) E T, then !3ij = + 00 and (Xij will be a finite number. 
Describe an Oem) method for computing (Xij. 

4.45. (a) Describe an algorithm that will determine a shortest walk from a source node s to 
a sink node t subject to the additional condition that the walk must visit a specified 
node p. Will this walk always be a path? 

(b) Describe an algorithm for determining a shortest walk from node s to node t that 
must visit a specified arc (p, q). 

4.46. Constrained shortest path problem. Suppose that we associate two integer numbers with 
each arc in a network G: the arc's length cij and its traversal time 'Tij > 0 (we assume 
that the traversal times are integers). The constrained shortest path problem is to de­
termine a shortest length path from a source node s to every other node with the ad­
ditional constraint that the traversal time of the path does not exceed 'To. In this exercise 
we describe a dynamic programming algorithm for solving the constrained shortest path 
problem. Let dj('T) denote the length of a shortest path from node s to node j subject 
to the condition that the traversal time of the path does not exceed 'T. Suppose that we 
set di'T) = 00 for 'T < O. Justify the following equations: 

ds(O) = 0, 
dj('T) = min[dj('T - 1), minddk('T - 'T1g) + Ckj}]. 

Use these equations to design an algorithm for the constrained shortest path problem 
and analyze its running time. 

4.47. Generalized knapsack problem. In the knapsack problem discussed in Application 4.3, 
suppose that each itemj has three associated numbers: value Vj, weight Wj, and volume 
rj. We want to maximize the value of the items put in the knapsack subject to the 
condition that the total weight of the items is at most Wand the total volume is at most 
R. Formulate this problem as a shortest path problem with an additional constraint. 

4.48. Consider the generalized knapsack problem studied in Exercise 4.47. Extend the for­
mulation in Application 4.3 in order to transform this problem into a longest path prob­
lem in an acyclic network. 

4.49. Suppose that we associate two numbers with each arc (i, j) in a directed network G = 
(N, A): the arc's length Cij and its reliability rij. We define t,!e reliability of a directed 
path P as the product of the reliabilities of arcs in the path. Describe a method for 
identifying a shortest length path from node s to node t whose reliability is at least r. 

4.50. Resource-constrained shortest path problem. Suppose that the traversal time 'Tij of an 
arc (i, j) in a network is a function fu(d) of the discrete amount of a resource d that 
we consume while traversing the arc. Suppose that we want to identify the shortest 
directed path from node s to node t subject to a budget D on the amount of the resource 
we can consume. (For example, we might be able to reduce the traversal time of an 
arc by using more fuel, and we want to travel from node s to node t before we run out 
of fuel.) Show how to formulate this problem as a shortest path problem. Assume that 
d = 3. (Hint: Give a dynamic programming-based formulation.) 

4.51. Modified function approximation problem. In the function approximation problem that 
we studied in Application 4.1, we approximated a given piecewise linear function fl(x) 
by another piecewise linear function f2(X) in order to minimize a weighted function 
of the two costs: (1) the cost required to store the data needed to represent the func­
tion f2(X), and (2) the errors introduced by the approximating fl(x) by f2(X). Suppose 
that, instead, we wish to identify a subset of at most p points so that the function 
fz(x) defined by these points minimizes the errors of the approximation (i.e., Lk= I 
[ft (Xk) - f2(Xk)f). That is, instead of imposing a cost on the use of any breakpoint 
in the approximation, we impose a limit on the number of breakpoints we can use. How 
would you solve this problem? 
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4.52. Bidirectional Dijkstra's algorithm (Helgason, Kennington, and Stewart [1988]). Show 
that the bidirectional shortest path algorithm described in Section 4.5 correctly deter­
mines a shortest path from node s to node t. [Hint: At the termination of the algorithm, 
let Sand S' be the sets of nodes that the forward and reverse versions of Dijkstra's 
algorithm have designated as permanently labeled. Let k E S n S I. Let p* be some 
shortest path from node s to node t; suppose that the first q nodes of p* are in Sand 
that the (q + l)st node of p* is not in S. Show first that some shortest path from node 
s to node t has the same first q nodes as p* and has its (q + l)st node in S'. Next 
show that some shortest path has the same first q nodes as p* and each subsequent 
node in S'.] 

4.53. Shortest paths in bipartite networks (Orlin [1988]). In this exercise we discuss an im­
proved algorithm for solving shortest path problem in "unbalanced" bipartite networks 
G = (Nt U N 2, A), that is, those satisfying the condition that nt = I Nt I ~ I N2 I == 
n2. Assume that the degree of any node in N2 is at most K for some constant K, and 
that all arc costs are nonnegative. Shortest path problems with this structure arise in 
the context of solving the minimum cost flow problem (see Section 10.6). Let us define 
a graph G' = (Nt, A') whose arc set A' is defined as the following set of arcs: For 
every pair of arcs (i, j) and (j, k) in A, A I has an arc (i, k) of cost equal to cij + Cjk. 

(a) Show how to solve the shortest path problem in G by solving a shortest path problem 
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in G' . What is the resulting running time of solving the shortest path problem in 
G in terms of the parameters n, m and K? 

(b) A network G is semi-bipartite if we can partition its node set N into the subsets 
Nt and N2 so that no arc has both of its endpoints in N 2. Assume again that I Nt I 
~ I N21 and the degree of any node in N2 is at most K. Suggest an improved 
algorithm for solving shortest path problems in semi-bipartite networks. 
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SHORTEST PATHS: LABEL-CORRECTING 
ALGORITHMS 

To get to heaven, turn right and keep straight ahead. 
-Anonymous 

Chapter Outline 

5.1 Introduction 
5.2 Optimality Conditions 
5.3 Generic Label-Correcting Algorithms 
5.4 Special Implementations of the Modified Label-Correcting Algorithm 
5.5 Detecting Negative Cycles 
5.6 All-Pairs Shortest Path Problem 
5.7 Minimum Cost-to-Time Ratio Cycle Problem 
5.8 Summary 

5.1 INTRODUCTION 

In Chapter 4 we saw how to solve shortest path problems very efficiently when they 
have special structure: either a special network topology (acyclic networks) or a 
special cost structure (nonnegative arc lengths). When networks have arbitrary costs 
and arbitrary topology, the situation becomes more complicated. As we noted in 
Chapter 4, for the most general situations-that is, general networks with negative 
cycles-finding shortest paths appears to be very difficult. In the parlance of com­
putational complexity theory, these problems are NP-complete, so they are equiv­
alent to solving many of the most noted and elusive problems encountered in the 
realm of combinatorial optimization and integer programming. Consequently, we 
have little hope of devising polynomial-time algorithms for the most general problem 
setting. Instead, we consider a tractable compromise somewhere between the special 
cases we examined in Chapter 4 and the most general situations: namely, algorithms 
that either identify a negative cycle, when one exists, or if the underlying network 
contains no negative cycle, solves the shortest path problem. 

Essentially, all shortest path algorithms rely on the same important concept: 
distance labels. At any point during the execution of an algorithm, we associate a 
numerical value, or distance label, with each node. If the label of any node is infinite, 
we have yet to find a path joining the source node and that node. If the label is finite, 
it is the distance from the source node to that node along some path. The most basic 
algorithm that we consider in this chapter, the generic label-correcting algorithm, 
reduces the distance label of one node at each iteration by considering only local 
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information, namely the length of the single arc and the current distance labels of 
its incident nodes. Since we can bound the sum of the distance labels from above 
and below in terms of the problem data, then under the assumption of integral costs, 
the distance labels will be integral and so the generic algorithm will always be finite. 
As is our penchant in this book, however, we wish to discover algorithms that are 
not only finite but that require a number of computations that grow as a (small) 
polynomial in the problem's size. 

We begin the chapter by describing optimality conditions that permit us to 
assess when a set of distance labels are optimal-that is, are the shortest path dis­
tances from the source node. These conditions provide us with a termination cri­
terion, or optimality certificate, for telling when a feasible solution to our problem 
is optimal and so we need perform no further computations. The concept of opti­
mality conditions is a central theme in the field of optimization and will be a recurring 
theme throughout our treatment of network flows in this book. Typically, optimality 
conditions provide us with much more than a termination condition; they often pro­
vide considerable problem insight and also frequently suggest algorithms for solving 
optimization problems. When a tentative solution does not satisfy the optimality 
conditions, the conditions often suggest how we might modify the current solution 
so that it becomes "closer" to an optimal solution, as measured by some underlying 
metric. Our use of the shortest path optimality conditions in this chapter for de­
veloping label-correcting algorithms demonstrates the power of optimality conditions 
in guiding the design of solution algorithms. 

Although the general label-correcting algorithm is finite, it requires O(n 2 C)L 
computations to solve shortest path problems on networks with n nodes and with a 
bound of C on the maximum absolute value of any arc length. This bound is not 
very satisfactory because it depends linearly on the values of the arc costs. One of 
the advantages of the generic label-correcting algorithm is its flexibility: It offers 
considerable freedom in the tactics used for choosing arcs that will lead to improve­
ments in the shortest path distances. To develop algorithms that are better in theory 
and in practice, we consider specific strategies for examining the arcs. One "bal­
ancing" strategy that considers arcs in a sequential wraparound fashion requires 
only O(nm) computations. Another implementation that gives priority to arcs em­
anating from nodes whose labels were changed most recently, the so-called dequeue 
implementation, has performed very well in practice even though it has poor worst­
case performance. In Section 5.4 we study both of these modified versions of the 
generic label-correcting algorithm. 

We next consider networks with negative cycles and show how to make several 
types of modifications to the various label-correcting algorithms so that they can 
detect the presence of negative cycles, if the underlying network contains any. One 
nice feature of these methods is that they do not add to the worst-case computational 
complexity of any of the label-correcting algorithms. 

We conclude this chapter by considering algorithms for finding shortest paths 
between all pairs of nodes in a network. We consider two approaches to this problem. 
One approach repeatedly applies the label-setting algorithm that we considered in 
Chapter 4, with each node serving as the source node. As the first step in this 
procedure, we apply the label-correcting algorithm to find the shortest paths from 
one arbitrary node, and use the results of this shortest path computation to redefine 
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the costs so that they are all nonnegative and so that the subsequent n single-source 
problems are all in a form so that we can apply more efficient label-setting algorithms. 
The computational requirements for this algorithm is essentially the same as that 
required to solve n shortest path problems with nonnegative arc lengths and depends 
on which label-setting algorithm we adopt from those that we described in Chapter 
4. The second approach is a label-correcting algorithm that simultaneously finds the 
shortest path distances between all pairs of nodes. This algorithm is very easy to 
implement; it uses a clever dynamic programming recursion and is able to solve the 
all-pairs shortest path problem in O(n3) computations. 

5.2 OPTIMALITY CONDITIONS 

As noted previously, label-correcting algorithms maintain a distance label d(j) for 
every node j E N. At intermediate stages of computation, the distance label d(j) is 
an estimate of (an upper bound on) the shOrtest path distance from the source node 
s to node j, and at termination it is the shortest path distance. In this section we 
develop necessary and sufficient conditions for a set of distance labels to represent 
shortest path distances. Let d(j) for j oF s denote the length of a shortest path from 
the source node to the nodej [we set d(s) = 0]. If the distance labels are shortest 
path distances, they must satisfy the following necessary optimality conditions: 

d(j) :5 d(i) + cij, for all (i, j) EA. (5.1) 

These inequalities state that for every arc (i, j) in the network, the length of 
the shortest path to node j is no greater than the length of the shortest path to node 
i plus the length of the arc (i, j). For, if not, some arc U, j) E A must satisfy the 
condition d(j) > dU) + Cij; in this case, We could improve the length ofthe shortest 
path to node j by passing through node i, thereby contradicting the optimality of 
distance labels d(j). 

These conditions also are sufficient for optimality, in the _.sense that if each d(j) 
represents the length of some directed path from the source node to node j and this 
solution satisfies the conditions (5.1), then it must be optimal. To establish this result, 
consider any solution d(j) satisfying (5.1). Let s = i l - i2 - ... - ik = j be any 
directed path P from the source to node j. The conditions (5.1) imply that 

d(j) = d(h) :5 d(h-I) + Cik-lik, 

The last equality follows from the fact that dUt) = d(s) = O. Adding these in­
equalities, we find that 

d(j) = d(ik) :5 Cik_lik + Cik-2ik-1 + Cik-3ik-2 + ... + Cil;' = L cij' 
(i,j)EP 

Thus d(j) is a lower bound on the length of any directed path from the source 
to node j. Since d(j) is the length of some directed path from the source to node j, 
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it also is an upper bound on the shortest path length. Therefore, d(j) is the shortest 
path length, and we have established the following result. 

Theorem 5.1 (Shortest Path Optimality Conditions). For every node j E N, let 
d(j) denote the length of some directed path from the source node to node j. Then 
the numbers d(j) represent shortest path distances if and only if they satisfy the 
following shortest path optimality conditions: 

d(j) ::; d(i) + Cij for all (i, j) EA. (5.2) • 

Let us define the reduced arc length ct of an arc (i, j) with respect to the 
distance labels dO as ct = Cij + d(i) - d(j). The following properties about the 
reduced arc lengths will prove to be useful in our later development. 

Property 5.2 
(a) For any directed cycle W, ~(iJ)EW ct = ~(iJ)EW Cij' 

(b) For any directed path P from node k to node I, ~(iJ)EP ct = ~(iJ)EP Co + 
d(k) - d(l). 

(c) If dO represent shortest path distances, ct? ° for every arc (i, j) EA. 

The proof of the first two results is similar to the proof of Property 2.5 in 
Section 2.4. The third result follows directly from Theorem 5.1. 

We next note that if the network contains a negative cycle, then no set 
of distance labels d(·) satisfies (5.2). For suppose that W is a directed cycle in 
G. Property 5.2(c) implies that L(i,j)EW ct ? 0. Property 5.2(a) implies that 
~(i,j)EW ct = ~(i,j)EW cij ? 0, and therefore W cannot be a negative cycle. 
Thus if the network were to contain a negative cycle, no distance labels could 
satisfy (5.2). We show in the next section that if the network does not contain a 
negative cycle, some shortest path distances do satisfy (5.2). 

For those familiar with linear programming, we point out that the shortest path 
optimality conditions can also be viewed as the linear programming optimality con­
ditions. In the linear programming formulation of the shortest path problem, the 
negative of the shortest path distances [i.e., - d(j)] define the optimal dual variables, 
and the conditions (5.2) are equivalent to the fact that in the optimal solution, reduced 
costs of all primal variables are nonnegative. The presence of a negative cycle implies 
the unboundedness of the primal problem and hence the infeasibility of the dual 
problem. 

5.8 GENERIC LABEL-CORRECTING ALGORITHMS 

In this section we study the generic label-correcting algorithm. We shall study several 
special implementations of the generic algorithm in the next section. Our discussion 
in this and the next section assumes that the network does not contain any negative 
cycle; we consider the case of negative cycles in Section 5.5. 

The generic label-correcting algorithm maintains a set of distance labels d(·) 
at every stage. The label d(j) is either 00, indicating that we have yet to discover a 
directed path from the source to node j, or it is the length of some directed path 
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from the source to node j. For each node j we also maintain a predecessor index, 
pred(j), which records the node prior to nodej in the current directed path oflength 
d(j). At termination, the predecessor indices allow us to trace the shortest path from 
the source node back to node j. The generic label-correcting algorithm is a general 
procedure for successively updating the distance labels until they satisfy the shortest 
path optimality conditions (5.2). Figure 5.1 gives a formal description of the generic 
label-correcting algorithm. 

algorithm label-correcting; 
begin 

d(s) : = 0 and pred(s) : = 0; 
d(j) : = co for each j E N - {s}; 
while some arc (i, j) satisfies d(j) > d(/) + cijdo 
begin 

d(j) : = d(/) + cij; 
pred(j) : = i; 

end; 
end; 

Figure 5.1 Generic label-correcting 
algorithm. 

By definition of reduced costs, the distance labels dO satisfy the optimality 
conditions if ct ? 0 for all (i, j) EA. The generic label-correcting algorithm selects 
an arc (i, j) violating its optimality condition (i.e., ct < 0) and uses it to update the 
distance label of node j. This operation decreases the distance label of node j and 
makes the reduced arc length of arc (i, j) equal to zero. 

We illustrate the generic label correcting algorithm on the network shown in 
Figure 5.2(a). If the algorithm selects the arcs (1, 3), (1, 2), (2, 4), (4, 5), (2, 5), and 
(3,5) in this sequence, we obtain the distance labels shown in Figure 5.2(b) through 
(g). At this point, no arc violates its optimality condition and the algorithm termi­
nates. 

The algorithm maintains a predecessor index for every finitely labeled node. 
We refer to the collection of arcs (pred(j),j) for every finitely labeled nodej (except 
the source node) as the predecessor graph. The predecessor graph is a directed out­
tree T rooted at the source that spans all nodes with finite distance labels. Each 
distance update using the arc (i, j) produces a new predecessor graph by deleting 
the arc (pred(j),j) and adding the arc (i, j). Consider, for example, the graph shown 
in Figure 5.3(a): the arc (6, 5) enters, the arc (3, 5) leaves, and we obtain the graph 
shown in Figure 5.3(b). 

The label-correcting algorithm satisfies the invariant property that for every 
arc (i, j) in the predecessor graph, ct :5 O. We establish this result by performing 
induction on the number of iterations. Notice that the algorithm adds an arc (i, j) 
to the predecessor graph during a distance update, which implies that after this update 
d(j) = d(i) + cu, or Cu + d(i) - d(j) = ct = O. In subsequent iterations, d(i) 
might decrease and so ct might become negative. Next observe that if d(j) decreases 
during the algorithm, then for some arc (i, j) in the predecessor graph ct may become 
positive, thereby contradicting the invariant property. But observe that in this case, 
we immediately delete arc (i,j) from the graph and so maintain the invariant property. 
For an illustration, see Figure 5.3: in this example, adding arc (6, 5) to the graph 
decreases d(5), thereby making c'ts < O. This step increases C~5, but arc (3, 5) im­
mediately leaves the tree. 
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(a) (b) 

Figure 5.3 Showing that the predecessor graph is a directed out-tree. 

We note that the predecessor indices might not necessarily define a tree. To 
illustrate this possibility, we use the situation shown in Figure 5 A(a). Suppose that 
arc (6, 2) satisfies d(2) > d(6) + C62 (or d2 < 0) and we update the distance label 
of node 2. This operation modifies the predecessor index of node 2 from 1 to 6 and 
the graph defined by the predecessor indices is no longer a tree. Why has this hap­
pened? The predecessor indices do not define a tree because the network contained 
a negative cycle. To see that this is the case, notice from Property 5.1 that for the 
cycle 2-3-6-2, C23 + C36 + C62 = CQ3 + d6 + Ct2 < 0, because CQ3 :5 0, C~6 :5 0, 
and d2 < 0. Therefore, the cycle 2-3-6-2 is a negative cycle. This discussion shows 
that in the absence of negative cycles, we will never encounter a situation shown 
in Figure 5A(b) and the predecessor graph will always be a tree. 

The predecessor graph contains a unique directed path from the source node 
to every node k and the length of this path is at most d(k). To verify this result, let 
P be the path from the source to node k. Since every arc in the predecessor graph 
has a nonpositive reduced arc length, LU,j)EP ct :5 0. Property 5.2(b) implies that ° ;::= LU,j)EP ct = LU,j)EP Cij + d(s) - d(k) = LU,j)EP Cij - d(k). Alternatively, 
LU,j)EPCij :5 d(k). When the label-correcting algorithm terminates, each arc in the 
predecessor graph has a zero reduced arc length (why?), which implies that the length 
of the path from the source to every node k equals d(k). Consequently, when the 
algorithm terminates, the predecessor graph is a shortest path tree. Recall from 
Section 4.3 that a shortest path tree is a directed out-tree rooted at the source with 
the property that the unique path from the source to any node is a shortest path to 
that node. 

(a) (b) 

Figure 5.4 Formation of a cycle in a predecessor graph. 
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It is easy to show that the algorithm terminates in a finite number of iterations. 
We prove this result when the data are integral; Exercise 5.8 discusses situations 
when the data are nonintegral. Observe that each d(j) is bounded from above by 
nC (because a path contains at most n - 1 arcs, each of length at most C) and is 
bounded from below by - nCo Therefore, the algorithm updates any label d(j) at 
most 2nC times because each update of d(j) decreases it by at least 1 unit. Con­
sequently, the total number of distance label updates is at most 2n2 C. Each iteration 
updates a distance label, so the algorithm performs O(n2C) iterations. The algorithm 
also terminates in 0(2n) steps. (See Exercise 5.8.) 

Modified Label-Correcting Algorithm 

The generic label-correcting algorithm does not specify any method for selecting an 
arc violating the optimality condition. One obvious approach is to scan the arc list 
sequentially and identify any arc violating this condition. This procedure is very 
time consuming because it requires Oem) time per iteration. We shall now describe 
an improved approach tlli}.t reduces the workload to an average of O(m/n) time per 
iteration. 

Suppose that we maintain a list, LIST, of all arcs that might violate their op­
timality conditions. If LIST is empty, clearly we have an optimal solution. Otherwise, 
we examine this list to select an arc, say (i, j), violating its optimality condition. We 
remove arc (i, j) from LIST, and if this arc violates its optimality condition we use 
it to update the distance label of node j. Notice that any decrease in the distance 
label of node j decreases the reduced lengths of all arcs emanating from node j and 
some of these arcs might violate the optimality condition. Also notice that decreasing 
d(j) maintains the optimality condition for all incoming arcs at node j. Therefore, 
if d(j) decreases, we must add arcs in A(j) to the set LIST. Next, observe that 
whenever we add arcs to LIST, we add all arcs emanating from a single node (whose 
distance label decreases). This suggests that instead of maintaining a list of all arcs 
that might violate their optimality conditions, we may maintain a list of nodes with 
the property that if an arc (i, j) violates the optimality condition, LIST must contain 
node i. Maintaining a node list rather than the arc list requires less work and leads 
to faster algorithms in practice. This is the essential idea behind the modified label­
correcting algorithm whose formal description is given in Figure 5.5. 

We call this algorithm the modified label-correcting algorithm. The correctness 
of the algorithm follows from the property that the set LIST contains every node i 
that is incident to an arc (i, j) violating the optimality condition. By performing 
induction on the number of iterations, it is easy to establish the fact that this property 
remains valid throughout the algorithm. To analyze the complexity of the algorithm, 
we make several observations. Notice that whenever the algorithm updates d(j), it 
adds node j to LIST. The algorithm selects this node in a later iteration and scans 
its arc list A(j). Since the algorithm can update the distance label d(j) at most 2nC 
times, we obtain a bound of LiEN (2nC) I A(i) I = O(nmC) on the total number of 
arc scannings. Therefore, this version of the generic label-correcting algorithm runs 
in O(nmC) time. When C is exponentially large, the running time is 0(2n). (See 
Exercise 5.8.) 
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algorithm modified label-correcting; 
begin 

dIs) : = 0 and pred(s) : = 0; 
d(j) : = 00 for each node j E N - {s}; 
LIST: = {s}; 
while LIST ~ £1 do 
begin 

remove an element i from LIST; 
for each arc (i, j) E A(/) do 
if d(j) > d(Q + cij then 
begin 

d(j) : = d(J) + cij; 
pred( j) : = i; 
if j E LIST then add node j to LIST; 

end; 
end; 

end; 
Figure 5.5 Modified label-correcting 
algorithm. 

5.4 SPECIAL IMPLEMENTATIONS OF THE MODIFIED 
LABEL-CORRECTING ALGORITHM 

One nice feature of the generic (or the modified) label-correcting algorithm is its 
flexibility: We can select arcs that do not satisfy the optimality condition in any 
order and still assure finite convergence of the algorithm. One drawback of this 
general algorithmic strategy, however, is that without a further restriction on tlie 
choice of arcs in the generic label-correcting algorithm (or nodes in the modified 
label-correcting algorithm), the algorithm does not necessarily run in polynomial 
time. Indeed, if we apply the algorithm to a pathological set of data and make a poor 
choice at every iteration, the number of steps can grow exponentially with n. (Since 
the algorithm is a pseudopolynomial-time algorithm, these instances must have ex­
ponentially large values of C. See Exercises 5.27 and 5.28 for a family of such 
instances.) These examples show that to obtain polynomially bounded label­
correcting algorithms, we must organize the computations carefully. If we apply the 
modified label-correcting algorithm to a problem with nonnegative arc lengths and 
we always examine a node from LIST with the minimum distance label, the resulting 
algorithm is the same as Dijkstra's algorithm discussed in Section 4.5. In this case 
our selection rule guarantees that the algorithm examines at most n nodes, and the 
algorithm can be implemented to run in O(n2) time. Similarly, when applying the 
modified label-correcting algorithm to acyclic networks, if we examine nodes in LIST 
in the topological order, shortest path algorithm becomes the one that we discussed 
in Section 4.4, so it is a polynomial-time algorithm. 

In this section we study two new implementations of the modified label­
correcting algorithm. The first implementation runs in O(nm) time and is currently 
the best strongly polynomial-time implementation for solving the shortest path prob­
lem with negative arc lengths. The second implementation is not a polynomial-time 
method, but is very efficient in practice. 
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O(nm) Implementation 

We first describe this implementation for the generic label-correcting algorithm. In 
this implementation, we arrange arcs in A in some specified (possibly arbitrary) 
order. We then make passes through A. In each pass we scan arcs in A, one by one, 
and check the condition d(j) > d(i) + Cij. If the arc satisfies this condition, we 
update d(j) = d(i) + Cij. We stop when no distance label changes during an entire 
pass. 

Let us show that this algorithm performs at most n - 1 passes through the arc 
list. Since each pass requires 0(1) computations for each arc, this conclusion implies 
the O(nm) time bound for the algorithm. We claim that at the end of the kth pass, 
the algorithm will compute shortest path distances for all nodes that are connected 
to the source node by a shortest path consisting of k or fewer arcs. We prove this 
claim by performing induction on the number of passes. Our claim is surely true for 
k = 1. Now suppose that the claim is true for the kth pass. Thus d(j) is the shortest 
path length to node j provided that some shortest path to node j contains k or fewer 
arcs, and is an upper boutW on the shortest path length otherwise. 

Consider a node j that is connected to the source node by a shortest path s = 
io - i] - i2 - ... - ik - ik +] = j consisting of k + 1 arcs, but has no shortest 
path containing fewer than k + 1 arcs. Notice that the path io - it - ... - h must 
be a shortest path from the source to node ik, and by the induction hypothesis, the 
distance label of node ik at the end of the kth pass must be equal to the length of 
this path. Consequently, when we examine arc Uk, ik+]) in the (k + l)th pass, we 
set the distance label of node ik + 1 equal to the length of the path io - i1 - ••• -

ik ~ ik + 1. This observation establishes that our induction hypothesis will be true 
for the (k + l)th pass as well. 

We have shown that the label correcting algorithm requires O(nm) time as long 
as at each pass we examine all the arcs. It is not necessary to examine the arcs in 
any particular order. 

The version of the label-correcting algorithm we have discussed considers 
every arc in A during every pass. It need not do so. Suppose that we order the arcs 
in the arc list by their tail nodes so that all arcs with the same tail node appear 
consecutively on the list. Thus, while scanning arcs, we consider one node at a time, 
say node i, scan arcs in A(i), and test the optimality condition. Now suppose that 
during one pass through the arc list, the algorithm does not change the distance label 
of node i. Then during the next pass, d(j) ::5 d(i) + cij for every (i, j) E A(i) and 
the algorithm need not test these conditions. Consequently, we can store all nodes 
whose distance labels change during a pass, and consider (or examine) only those 
nodes in the next pass. One plausible way to implement this approach is to store 
the nodes in a list whose distance labels change in a pass and examine this list in 
the first-in, first-out (FIFO) order in the next pass. If we follow this strategy in every 
pass, the resulting implementation is exactly the same as the modified label­
correcting algorithm stated in Figure 5.5 provided that we maintain LIST as a queue 
(i.e., select nodes from the front of LIST and add nodes to the rear of LIST). We 
call this algorithm the FIFO label-correcting algorithm and summarize the preceding 
discussion as the following theorem. 

142 Shortest Paths: Label-Correcting Algorithms Chap. 5 



Theorem 5.3. The FIFO label-correcting algorithm solves the shortest path 
problem in O(nm) time. 

Dequeue Implementation 

The modification of the modified label-correcting algorithm we discuss next has a 
pseudopolynomial worst-case behavior but is very efficient in practice. Indeed, this 
version of the modified label-correcting algorithm has proven in practice to be one 
of the fastest algorithms for solving the shortest path problems in sparse networks. 
We refer to this implementation of the modified label-correcting algorithm as the 
dequeue implementation. 

This implementation maintains LIST as a dequeue. A dequeue is a data struc­
ture that permits us to store a list so that we can add or delete elements from the 
front as well as the rear of the list. A dequeue can easily be implemented using an 
array or a linked list (see Appendix A). The dequeue implementation always selects 
nodes from the front of the dequeue, but adds nodes either at the front or at the 
rear. If the node has been in the LIST earlier, the algorithm adds it to the front; 
otherwise, it adds the node to the rear. This heuristic rule has the following intuitive 
justification. If a node i has appeared previously in LIST, some nodes, say ii, i2 , 

... , ik , might have node i as its predecessor. Suppose further that LIST contains 
the nodes ii, i2 , ••• ,ik when the algorithm updates d(i) again. It is then advantageous 
to update the distance labels of nodes ii, i2 , ••• , ik from node i as soon as possible 
rather than first examining the nodes ii, i2 , ••• , ik and then reexamine them when 
their distance labels eventually decrease due to decrease in d(i). Adding node i to 
the front of LIST tends to correct the distance labels of nodes ii, i2 , ••• , ik quickly 
and reduces the need to reexamine nodes. Empirical studies have observed similar 
behavior and found that the dequeue implementation examines fewer nodes than do 
most other label-correcting algorithms. 

5.5 DETECTING NEGATIVE CYCLES 

So far we have assumed that the network contains no negative cycle and described 
algorithms that solve the shortest path problem. We now describe modifications 
required in these algorithms that would permit us to detect the presence of a negative 
cycle, if one exists. 

We first study the modifications required in the generic label-correcting al­
gorithm. We have observed in Section 5.2 that if the network contains a negative 
cycle, no set of distance labels will satisfy the optimality condition. Therefore, the 
label-correcting algorithm will keep decreasing distance labels indefinitely and will 
never terminate. But notice that - nC is a lower bound on any distance label when­
ever the network contains no negative cycle. Consequently, if we find that the dis­
tance label of some node k has fallen below - nC, we can terminate any further 
computation. We can obtain the negative cycle by tracing the predecessor indices 
starting at node k. 

Let us describe yet another negative cycle detection algorithm. This algorithm 
checks at repeated intervals to see whether the predecessor graph contains a directed 

Sec. 5.5 Detecting Negative Cycles 143 



cycle. Recall from the illustration shown in Figure 5.4 how the predecessor graph 
might contain a directed cycle. This algorithm works as follows. We first designate 
the source node as marked and all other nodes as unmarked. Then, one by one, We 
examine each unmarked node k and perform the following operation: We mark node 
k, trace the predecessor indices starting at node k, and mark all the nodes encoun­
tered until we reach the first already marked node, say node I. If k = I, the pre­
decessor graph contains a cycle, which must be a negative cycle (why?). The reader 
can verify that this algorithm requires O(n) time to check the presence of a directed 
cycle in the predecessor graph. Consequently, if we apply this algorithm after every 
an distance updates for some constant a, the computations it performs will not add 
to the worst-case complexity of any label-correcting algorithm. 

In general, at the time that the algorithm relabels nodej, d(j) = d(i) + Cij for 
some node i which is the predecessor ofj. We refer to the arc (i, j) as a predecessor 
arc. Subsequently, d(i) might decrease, and the labels will satisfy the condition 
d(j) 2: d(i) + cij as long as pred(j) = i. Suppose that P is a path of predecessor 
arcs from node 1 to node j. The inequalities d(k) 2: d(l) + Ckl for all arcs (k, l) on 
this path imply that J(j) is at least the length of this path. Consequently, no node 
j with d(j) ::5 - nC is connected to node 1 on a path consisting only of predecessor 
arcs . We conclude that tracing back predecessor arcs from node j must lead to a 
cycle, and by Exercise 5.56, any such cycle must be negative. 

The FIFO label-correcting algorithm is also capable of easily detecting the 
presence of a negative cycle. Recall that we can partition the node examinations in 
the FIFO algorithm into several passes and that the algorithm examines any node 
at most once within each pass. To implement this algorithm, we record the number 
of times that the algorithm examines each node. If the network contains no negative 
cycle, it examines any node at most (n - 1) times [because it makes at most (n -
1) passes]. Therefore, if it examines a node more than (n - 1) times, the network 
must contain a negative cycle. We can also use the technique described in the pre­
ceding paragraph to identify negative cycles. 

The FIFO label-correcting algorithm detects the presence of negative cycles 
or obtains shortest path distances in a network in O(nm) time, which is the fastest 
available strongly polynomial-time algorithm for networks with nonnegative arc 
lengths. However, for problems that satisfy the similarity assumption, other weakly 
polynomial-time algorithms run faster than the FIFO algorithm. These approaches 
formulate the shortest path problem as an assignment problem (as described in Sec­
tion 12.7) and then use an O(n 1l2m 10g(nC)) time assignment algorithm to solve the 
problem (Le., either finds a shortest path or detects a negative cycle). 

5.6 ALL-PAIRS SHORTEST PATH PROBLEM 

The all-pairs shortest path problem requires that we determine shortest path dis­
tances between every pair of nodes in a network. In this section we suggest two 
approaches for solving this problem. The first approach, called the repeated shortest 
path algorithm, is well suited for sparse networks. The second approach is a gen­
eralization of the label-correcting algorithm discussed in previous sections; we refer 
to this procedure as the all-pairs label-correcting algorithm. It is especially well 
suited for dense networks. In this section we describe the generic all-pairs label-
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correcting algorithm and then develop a special implementation of this generic al­
gorithm, known as the Floyd-Warshall algorithm, that runs in O(n3

) time. 
In this section we assume that the underlying network is strongly connected 

(i.e., it contains a directed path from any node to every other node). We can easily 
satisfy this assumption by selecting an arbitrary node, say node s, and adding arcs 
(s, i) and (i, s) of sufficiently large cost for all i E N - {s}, if these arcs do not 
already exist. For reasons explained earlier, we also assume that the network does 
not contain a negative cycle. All the algorithms we discuss, however, are capable 
of detecting the presence of a negative cycle. We discuss situations with negative 
cycles at the end of this section. 

Repeated Shortest Path Algorithm 

If the network has nonnegative arc lengths, we can solve the all-pairs shortest path 
problem by applying any single-source shortest path algorithm n times, considering 
each node as the source node once. If Sen, m, C) denotes the time needed to solve 
a shortest path problem with nonnegative arc lengths, this approach solves the all­
pairs shortest path problem in O(n Sen, m, C» time. 

If the network contains some negative arcs, we first transform the network to 
one with nonnegative arc lengths. We select a node s and use the FIFO label­
correcting algorithm, described in Section 5.4, to compute the shortest distances 
from node s to all other nodes. The algorithm either detects the presence of a negative 
cycle or terminates with the shortest path distances d(j). In the first case, the all­
pairs shortest path problem has no solution, and in the second case, we consider 
the shortest path problem with arc lengths equal to their reduced arc lengths with 
respect to the distance labels d(j). Recall from Section 5.2 that the reduced arc 
length of an arc (i, j) with respect to the distance labels d(j) is ct = Cij + d(i) -
d(j), and if the distance labels are shortest path distances, then ct ~ 0 for all arcs 
(i, j) in A [see Property 5.2(c)]. Since this transformation produces nonnegative 
reduced arc lengths, we can then apply the single-source shortest path algorithm for 
problems with nonnegative arc lengths n times (by considering each node as a source 
once) to determine shortest path distances between all pairs of nodes in the trans­
formed network. We obtain the shortest path distance between nodes k and I in the 
original network by adding d(l) - d(k) to the corresponding shortest path distance 
in the transformed network [see Property 5.2(b)]. This approach requires O(nm) 
time to solve the first shortest path problem, and if the network contains no negative 
cycles, it requires an extra O(n Sen, m, C» time to compute the remaining shortest 
path distances. Therefore, this approach determines all pairs shortest path distances 
in O(nm + n Sen, m, C» = O(n Sen, m, C» time. We have established the following 
result. 

Theorem 5.4. The repeated shortest path algorithm solves the all-pairs short­
est path problem in O(n Sen, m, C» time. 

In the remainder of this section we study the generic all-pairs label-correcting 
algorithm. Just as the generic label-correcting algorithm relies on shortest path op­
timality conditions, the all-pairs label-correcting algorithm relies on all-pairs shortest 
path optimality conditions, which we study next. 
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All-Pairs Shortest Path Optimality Conditions 

Let [i, j] denote a pair of nodes i andj in the network. The all-pairs label-correcting 
algorithm maintains a distance label d[i, j] for every pair of nodes; this distance 
label represents the length of some directed walk from node i to node j and hence 
will be an upper bound on the shortest path length from node i to node j. The algorithm 
updates the matri~ of distance labels until they represent shortest path distances. It 
uses the following generalization of Theorem 5.1: 

Theorem 5.5 (All-Pairs Shortest Path Optimality Conditions). For every pair of 
nodes [i, j] E N x N, let d[i, j] represent the length of some directed path from 
node i to node j. These distances represent all-pairs shortest path distances if and 
only if they satisfy the following all-pairs shortest path optimality conditions: 

d[i,j] ::; d[i, k] + d[k,j] for all nodes i,j, and k. (5.3) 

Proof We use a contradiction argument to establish that the shortest path 
distances d[i, j] must s~tisfy the conditions (5.3). Suppose that d[i, k] + d[k, j] < 
d[i, j] for nodes i, j, and k. The union of the shortest paths from node i to node k 
and node k to node j is a directed walk of length d[i, k] + d[k, j] from node i to 
nodej. This directed walk decomposes into a directed path, say P, from node ito 
node j and some directed cycles (see Exercise 3.51). Since each direCted cycle in 
the network has nonnegative length, the length of the path P is at most d[i, k] + 
d[k, j] < d[i, j], contradicting the optimality of d[i, j]. 

We now show that if the distance labels d[i, j] satisfy the conditions in (5.3), 
they represent shortest path distances. We use an argument similar to the one we 
used in proving Theorem 5.1. Let P be a directed path of length d[i, j] consisting 
of the sequence of nodes i = i 1 - i2 - i3 - ... - ik = j. The condition (5.3) implies 
that 

d[ik - 1 , ik ]::; Cik-lik' 

These inequalities, in turn, imply that 

d[i, j] ::; CiIi2 + Ci2 i3 + ... + Cik-l ik = L Cij. 
(i,j)EP 

Therefore, d[i, j] is a lower bound on the length of any directed path from node i 
to node j. By assumption, d[i, j] is also an upper bound on the shortest path length 
from node ito nodej. Consequently, d[i,j] must be the shortest path length between 
these nodes which is the derived conclusion of the theorem. • 

All-Pairs Generic Label Correcting Algorithm 

The all-pairs shortest path optimality conditions (throughout the remainder of this 
section we refer to these conditions simply as the optimality conditions) immediately 
yield the following generic all-pairs label-correcting algorithm: Start with some dis-
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tance labels d[i, j] and successively update these until they satisfy the optimality 
conditions. Figure 5.6 gives a formal statement of the algorithm. In the algorithm 
we refer to the operation of checking whether d[i, j] > d[i, k] + d[k, j], and if so, 
then setting d[i, j] = d[i, k] + d[k, j] as a triple operation. 

algorithm all-pairs label-correcting; 
begin 

set d[i, 11 : = 00 for all [i, 11 E N x N; 
set d[i, /] : = 0 for all i E N; 
for each (i, j) E A do d[i, jj : = Cij; 

while the network contains three nodes i, j, and k 
satisfying d[i,11 > d[i, kj + d[k,11 do d[i, 11 : = d[i, kj + d[k, jj; 

end; 

Figure 5.6 Generic all-pairs label-correcting algorithm. 

To establish the finiteness and correctness of the generic all-pairs label­
correcting algorithm, we assume that the data are integral and that the network 
contains no negative cycle. We first consider the correctness of the algorithm. At 
every step the algorithm maintains the invariant property that whenever d[i, j] < 
00, the network contains a directed walk of length d[i, j] from node i to node j. We 
can lise induction on the number of iterations to show that this property holds at 
every step. Now consider the directed walk of length d[i, j] from node i to node j 
at the point when the algorithm terminates. This directed walk decomposes into a 
directed path, say P, from node ito nodej, and possibly some directed cycles. None 
of these cycles could have a positive length, for otherwise we would contradict the 
optimality of d[i, j]. 

Therefore, all of these cycles must have length zero. Conseque!1tly, the path 
P must have length d[i, j]. The distance labels d[i, j] also satisfy the optimality 
conditions (5.3), for these conditions are the termination criteria of the algorithm. 
This conclusion establishes the fact that when the algorithm terminates, the distance 
labels represent shortest path distances. 

Now consider the finiteness of the algorithm. Since all arc lengths are integer 
and C is the largest magnitude of any arc length, the maximum (finite) distance label 
is bounded from above by nC and the minimum distance label is bounded from below 
by - nCo Each iteration of the generic all-pairs label-correcting algorithm decreases 
some d[i, j]. Consequently, the algorithm terminates within O(n3C) iterations. This 
bound on the algorithm's running time is pseudopolynomial and is not attractive 
from the viewpoint of worst-case complexity. We next describe a specific imple­
mentation of the generic algorithm, known as the Floyd-Warshall algorithm, that 
solves the all-pairs shortest path problem in O(n3) time. 

Floyd-Wa.rshall Algorithm 

Notice that given a matrix of distances d[i, j], we need to perform O(n3) triple 
operations in order to test the optimality of this solution. It is therefore surprising 
that the Floyd-Warshall algorithm obtains a matrix of shortest path distances within 
O(n3

) computations. The algorithm achieves this bound by applying the triple op-
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erations cleverly. The algorithm is based on inductive arguments developed by an 
application of a dynamic programming technique. 

Let dk[i, j] represent the length of a shortest path from node i to node j subject 
to the condition that this path uses only the nodes 1, 2, ... ,k - 1 as internal nodes. 
Clearly, dn + I [i, j] represents the actual shortest path distance from node i to node 
j. The Floyd-Warshall algorithm first computes dl[i, j] for all node pairs i and j. 
Using dl[i, j], it then computes d 2 [i, j] for all node pairs i and j. It repeats this 
process until it obtains dn + I [i, j] for all node pairs i andj, when it terminates. Given 
dk[i, j], the algorithm computes dk+ I [i, j] using the following property. 

This property is valid for the following reason. A shortest path that uses only 
the nodes 1,2, ... , k as internal nodes either (1) does not pass through node k, in 
which case dk+ I [i, j] = dk[i, j], or (2) does pass through node k, in which case 
dk+l[i, j] = dk[i, k] +:::ak[k, j]. Therefore, dk+l[i, j] = min{dk[i, j], dk[i, k] + 
dk[k, j]}. 

Figure 5.7 gives a formal description of the Floyd-Warshall algorithm. 

algorithm Floyd-Warshall; 
begin 

for all node pairs [i, j] E N x N do 
d[i, j] : = 00 and pred[i, j] : = 0; 

for all nodes i E N do d[i, /1 : = 0; 
for each arc (i, j) E A do d[i, j] : = cij and pred[i, j] : = i; 
for each k: = 1 to n do 

end; 

for each [i, 11 E N x N do 
if d[i, jj > d[i, kj + d[k, jj then 
begin 

d[i,11: = d[i, kj + d[k, 11; 
pred[i, j] : = pred[k,11; 

end; 
Figure 5.7 Floyd-Warshall algorithm. 

The Floyd-Warshall algorithm uses predecessor indices, pred[i, j], for each 
node pair [i, j]. The index pred[i, j] denotes the last node prior to node j in the 
tentative shortest path from node i to nodej. The algorithm maintains the invariant 
property that when d[i, j] is finite, the network contains a path from node i to node 
j of length d[i, j]. Using the predecessor indices, we can obtain this path, say 
P, from node k to node I as follows. We backtrack along the path P starting at 
node I. Let g = pred[k, 1]. Then g is the node prior to node I in P. Similarly, h = 
pred[k, g] is the node prior to node g in P, and so on. We repeat this process until 
we reach node k. 

The Floyd-Warshall algorithm clearly performs n major iterations, one for each 
k, and within each major iteration, it performs 0(1) computations for each node pair. 
Consequently, it runs in 0(n3) time. We thus have established the following result. 

Theorem 5.7. The Floyd-Warshall algorithm computes shortest path dis-
tances between all pairs of nodes in 0(n3

) time. • 
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Detection of Negative Cycles 

We now address the issue of detecting a negative cycle in the network if one exists. 
In the generic all-pairs label-correcting algorithm, we incorporate the following two 
tests whenever the algorithm updates a distance label d[i, j] during a triple iteration: 

1. If i = j, check whether d[i, i] < O. 
2. If i ¥- j, check whether d[i, j] < - nCo 

If either of these two tests is true, the network contains a negative cycle. To 
verify this claim, consider the first time during a triple iteration when dU, i] < 0 for 
some node i. At this time d[i, i] = d[i, k] + d[k, i] for some node k ¥- i. This 
condition implies that the network contains a directed walk from node i to node k, 
and a directed walk from node k to node i, and that the sum of the lengths of these 
two walks is d[i, i], which is negative. The union of these two walks is a closed 
walk, which can be decomposed into a set of directed cycles (see Exercise 3.51). 
Since d[i, i] < 0, at least one of these directed cycles must be negative. 

We next consider the situation in which d[i, j] < - nC for some node pair i 
and j. Consider the first time during a triple iteration when d[i, j] < - nCo At this 
time the network contains a directed walk from node i to node j of length - nC. As 
we observed previously, we can decompose this walk into a directed path P from 
node i to node j and some directed cycles. Since the path P must have a length of 
at least - (n - 1)C, at least one of these cycles must be a negative cycle. 

Finally, we observe that if the network contains a negative cycle, then even­
tually d[i, i] < 0 for some node i or d[i, j] < - nC for some node pair [t, j], because 
the distance labels continue to decrease by an integer amount at every iteration. 
Therefore, the generic label-correcting algorithm will always determine a negative 
cycle if one exists. 

In the Floyd-Warshall algorithm, we detect the presence of a negative cycle 
simply by checking the condition d[i, i] < 0 whenever we update d[i, i] for some 
node i. It is easy to see that whenever dU, i] < 0, we have detected the presence 
of a negative cycle. In Exercise 5.37 we show that whenever the network contains 
a negative cycle, then during the computations we will eventually satisfy the con­
dition d[i, i] < 0 for some i. 

We can also use an extension of the method described in Section 5.5, using 
the predecessor graph, to identify a negative cycle in the Floyd-Warshall algorithm. 
The Floyd-Warshall algorithm maintains a predecessor graph for each node k in the 
network, which in the absence of a negative cycle is a directed out-tree rooted at 
node k (see Section 5.3). If the network contains a negative cycle, eventually the 
predecessor graph contains a cycle. For any node k, the predecessor graph consists 
of the arcs {(pred[k, i], i) : i E N - {k}}. Using the method described in Section 
5.5, we can determine whether or not any predecessor graph contains a cycle. Check­
ing this condition for every node requires O(n2) time. Consequently, if we use this 
method after every an 2 triple operations for some constant a, the computations will 
not add to the worst-case complexity of the Floyd-Warshall algorithm. 
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Comparison of the Two Methods 

The generic all-pairs label-correcting algorithm and its specific implementation as 
the Floyd-Warshall algorithm are matrix manipulation algorithms. They maintain a 
matrix of tentative shortest path distances between all pairs of nodes and perform 
repeated updates of this matrix. The major advantages of this approach, compared 
to the repeated shortest path algorithm discussed at the beginning of this section, 
are its simplicity, intuitive appeal, and ease of implementation. The major drawbacks 
of this approach are its significant storage requirements and its poorer worst-case 
complexity for all network densities except completely dense networks. The matrix 
manipulation algorithms require fl(n 2

) intermediate storage space, which could pro­
hibit its application in some situations. Despite these disadvantages, the matrix ma­
nipulation algorithms have proven to be fairly popular computational methods for 
solving all-pairs shortest path problems. 

5.7 MINIMUM COST-TO-TIME RATIO CYCLE PROBLEM 

The minimum cost-to-time ratio cycle problem is defined on a directed graph G with 
both a cost and a travel time associated with each arc: we wish to find a directed 
cycle in the graph with the smallest ratio of its cost to its travel time. The minimum 
cost-to-time ratio cycle problem arises in an application known as the tramp steamer 
problem, which we defined in Application 4.4. A tramp steamer travels from port 
to port, carrying cargo and passengers. A voyage of the steamer from port i to port 
j earns pij units of profit and requires time Tij. The captain of the steamer wants to 
know what ports the steamer should visit, and in which order, in order to maximize 
its mean daily profit. We can solve this problem by identifying a directed cycle with 
the largest possible ratio of total profit to total travel time. The tramp steamer then 
continues to sail indefinitely around this cycle. 

In the tramp steamer problem, we wish to identify a directed cycle W of G 
with the maximum ratio (L(i,j)EW Pij)/(L(i,j)EW Tij)' We can convert this problem 
into a minimization problem by defining the cost cij of each arc (i, j) as Cij = - pij. 

We then seek a directed cycle W with the minimum value for the ratio 

fl.(W) = 

L Cij 
(i,j)EW 

L Tij 
(i,j)EW 

We assume in this section that all data are integral, that Tij 2: 0 for every arc (i, j) 
E A, and that L(i,j)EW Tij > 0 for every directed cycle Win G. 

We can solve the minimum cost-to-time ratio cycle problem (or, simply, the 
minimum ratio problem) by repeated applications of the negative cycle detection 
algorithm. Let fl. * denote the optimal objective function value of the minimum cost­
to-time ratio cycle problem. For any arbitrary value of fl., let us define the length 
of each arc as lij = Cij - fl.Tij. With respect to these arc lengths, we could encounter 
three situations: 
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Case 1. G contains a negative (length) cycle W. 

In this case, ~(i,j)EW (cij - j.LTij) < O. Alternatively, 

~ Cij 

j.L > (i,j)EW 2: j.L*. 

~ Tij 

(5.4) 

(i,j)EW 

Therefore, j.L is a strict upper bound on j.L *. 

Case 2. G contains no negative cycle, but does contain a zero-length cycle W*. 

The fact that G contains no negative 'cycle implies that ~(i,j)EW (cij - j.LTij) 2: 

o for every directed cycle W. Alternatively, 

~ Cij 

j.L:S (i,~W 
Tij 

(i,j)EW 

for every directed cycle W. 

Similarly, the fact that G contains a zero-length cycle W* implies that 

~ Cij 
(i,j)EW* 

j.L= 
~ Tij 

(i,j)EW· 

(5.5) 

(5.6) 

The conditions (5.5) and (5.6) imply that j.L = j.L *, so W* is a minimum cost­
to-time ratio cycle. 

Case 3. Every directed cycle W in G has a positive length. 

In this case ~(i,j)EW (Cij - j.LTij) > 0 for every directed cycle W. ~lternatively, 

~ cij 
< (i,j)EW 

j.L ~ Tij 
for every directed cycle W. (5.7) 

(i,j)EW 

Consequently, j.L is a strict lower bound on j.L *. 

The preceding case analysis suggests the following search procedure for solving 
the minimum cost-to-time ratio problem. We guess a value j.L for j.L *, define arc 
lengths as (Cij - j.LTij), and apply any shortest path algorithm. If the algorithm iden­
tifies a negative cycle, j.L exceeds j.L * and our next guess should be smaller. If the 
algorithm terminates with shortest path distances, we look for a zero-length cycle 
(as described in Exercise 5.19). If we do find a zero-length cycle W*, then we stop; 
otherwise, j.L is smaller than j.L *, so our next guess should be larger. To implement 
this general solution approach, we need to define what we mean by "smaller" and 
"larger." The following two search algorithms provide us with two methods for 
implementing this approach. 

Sequential search algorithm. Let j.L ° be a known upper bound on j.L *. If 
we solve the shortest path problem with (Cij - j.L°Tij) as arc lengths, we either find 
a zero-length cycle W or find a negative cycle W. In the former case, W is a minimum 
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ratio cycle and we terminate the search. In the latter case, we chose f.L I == 
(LU,j)EW Cij)/(Lu,j)EW Tij) as our next guess. Case 1 shows that f.L ° >. f.L I 2: f.L *. 
Repeating this process, we obtain a sequence of values f.L0> f.LI > ... > f.Lk = f.L*. 
In Exercise 5.48 we ask the reader to obtain a pseudopolynomial bound on the 
number of iterations performed by this search procedure. 

Binary search algorithm. In this algorithm we identify a minimum cost­
to-time ratio cycle using the binary search technique described in Section 3.3. Let 
[./!, Ii] be an interval that contains f.L*, that is, ./! ::; f.L* ::; Ii. If C = max {Cij: 
(i, j) E A}, it is easy to verify that [ - c, C] is one such interval. At every iteration 
of the binary search algorithm, we consider f.L ° = c.!! + 1i)/2, and check whether the 
network contains a negative cycle with arc lengths Cij - f.L°Tij. If it does, f.L0 > f.L* 
(from Case 1) and we reset Ii = f.L 0, otherwise, f.L ° ::; f.L * (from Case 3) and we reset 
./! = f.L 0. At every iteration, we half the length of the search interval. As shown by 
the following result, after a sufficiently large number of iterations, the search interval 
becomes so small that it h~ a unique solution. 

Let c(W) and T(W) denote the cost and travel time of any directed cycle Wof 
the network G, and let TO = max{Tij: (i, j) E A}. We claim that any interval£.!!, Ii] 
of size at most Ihij contains at most one value from the sef {c( W)h( W) : W is a 
directed cycle of the network G}. To establish this result, let WI and W2 be two 
directed cycles with distinct ratios. Then 

or 
I 

C(WI) - c(W2) I ~ 0 
T(WI ) T(W2 ) , 

I 
C(WdT(W2) - c(W2)T(Wd I ~ o. 

T(WI )T(W2) 
(5.8) 

Since the left-hand side of (5.8) is nonzero (and all data are integer), its nu­
merator must be at least 1 in absolute value. The denominator of (5.8) is at most 
Tij. Therefore, the smallest value of the left-hand side is Ihij. Consequently, when 
(Ii - ./!) has become smaller than Ihij, the interval£.!!, Ii] must contain at most one 
ratio of the form c(W)h(W). 

Since initially (Ii - ./!) = 2C, after O(lOg(2CTij)) = O(lOg(TOC)) iterations, the 
length of the interval£.!!, Ii] becomes less than Ihij, and we can terminate the binary 
search. The network then must contain a zero-length cycle with respect to the arc 
lengths (cij - IiTij); this cycle is a minimum cost-to-time ratio cycle. 

Minimum Mean Cycle Problem 

The minimum mean cycle problem is a special case of the minimum cost-to-time 
ratio problem obtained by setting the traversal time Tij = 1 for every arc (i, j) E A. 
In this case we wish to identify a directed cycle W with the smallest possible mean 
cost (LU,j)EW Cij)/I W I from among all directed cycles in G. The minimum mean 
cycle problem arises in a variety of situations, such as data scaling (see Application 
19.6 in Chapter 19) and as a subroutine in certain minimum cost flow algorithms 
(see Section 10.5), and its special structure permits us to develop algorithms that 
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are faster than those available for the general minimum cost-to-time ratio cycle 
problem. In this section we describe an O(nm)-time dynamic programming algorithm 
for solving the minimum mean cycle problem. 

In the subsequent discussion, we assume that the network is strongly connected 
(i.e., contains a directed path between every pair of nodes). We can always satisfy 
this assumption by adding arcs of sufficiently large cost; the minimum mean cycle 
will contain no such arcs unless the network is acyclic. 

Let dk(j) denote the length, with respect to the arc lengths Cij, of a shortest 
directed walk containing exactly k arcs from a specially designated node s to node 
j. We can choose any node s as the specially designated node. We emphasize that 
dk(j) is the length of a directed walk to nodej; it might contain directed cycles. We 
can compute dk(j) for every node j and for every k = 1, ... , n, by using the 
following recursive relationship: 

dk(j) = min {dk-1(i) + cu}. 
{i:(i,j)EA} 

(5.9) 

We initialize the recursion by setting d°(j) = 00 for each nodej. Given dk-1(j) 
for allj, using (5.9) we compute dk(j) for allj, which requires a total of Oem) time. 
By repeating this process for all k = 1,2, ... , n, within O(nm) computations we 
determine dk(j) for every node j and for every k. As the next result shows, we are 
able to obtain a bound on the cost f.L * of the minimum mean cycle in terms of the 
walk lengths dk(j). 

Theorem 5.8 

(5.10) 

Proof We prove this theorem for two cases: when f.L * = 0 and,f.L * =F-. O. 

Case 1. f.L * = O. In this case the network does not contain a negative cycle 
(for otherwise, f.L * < 0), but does contain a zero cost cycleW. For each node j E 
N, let d(j) denote the shortest path distance from node s to nodej. We next replace 
each arc cost Cij by its reduced cost ct = Cij + d(i) - d(j). Property 5.2 implies 
that as a result of this transformation, the network satisfies the following properties: 

1. All arc costs are nonnegative. 
2. All arc costs in Ware zero. 

3. For each nodej, every arc in the shortest path from node s to nodej has zero 
cost. 

4. For each node j, the shortest path distances dk(j), for any 1 ::5 k ::5 n, differ 
by a constant amount from their values before the transformation. 

Let dk(j) denote the length of the shortest walk from node s to node j with 
respect to the reduced costs ct. Condition 4 implies that the expression (5.10) re­
mains valid even if we replace dn(j) by dn(j) and dk(j) by dk(j). Next, notice that 
for each node j E N, 

max [(fn(j) - dk(j)] ::::: 0, (5.11) 
lS;kS;n-l 
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because for some k, (lk(j) will equal the shortest path length (l(j), and (In(j) will be 
at least as large. We now show that for some node p, the left-hand side of (5.11) 
will be zero, which will establish the theorem. We choose some node j in the cycle 
Wand construct a directed walk containing n arcs in the following manner. First, 
we traverse the shortest path from node s to node j and then we traverse the arcs 
in W from node j until the walk contains n arcs. Let node p be the node where this 
walk ends. Conditions 2 and 3 imply that this walk from node s to node p has a zero 
length. This walk must contain one or more directed cycle because it contains n 
arcs. Removing the directed cycles from this walk gives a path, say of length k ::; 
n - 1, from node s to node p of zero length. We have thus shown that (In(p) = 
(lk(p) = O. For node p the left-hand side of (5.11) is zero, so this node satisfies the 
condition 

as required by the theorem. 

Case 2. /-L * ;F- O. Suppose that .6 is a real number. We study the effect of 
decreasing each arc cost Cij by an amount .6. Clearly, this change in the arc costs 
reduces /-L* by .6, each d\j) by k.6, and therefore the ratio (dn(v) - dk(v))/ 
(n - k), and so the right-hand side of(5.1O), by an amount.6. Consequently, trans­
lating the costs by a constant affects both sides of (5.10) equally. Choosing the trans­
lation to make /-L * = 0 and then using the result of Case 1 provides a proof of the 
theorem. • 

We ask the reader to show in Exercise 5.55 that how to use the dk(j)'s to obtain 
a minimum mean cycle. 

5.B SUMMARY 

In this chapter we developed several algorithms, known as the label-correcting al­
gorithms, for solving shortest path problems with arbitrary arc lengths. The shortest 
path optimality conditions, which provide necessary and sufficient conditions for a 
set of distance labels to define shortest path lengths, playa central role in the de­
velopment of label-correcting algorithms. The label-correcting algorithms maintain 
a distance label with each node and iteratively update these labels until the distance 
labels satisfy the optimality conditions. The generic label-correcting algorithm se­
lects any arc violating its optimality condition and uses it to update the distance 
labels. Typically, identifying an arc violating its optimality condition will be a time­
consuming component of the generic label-correcting algorithm. To improve upon 
this feature of the algorithm, we modified the algorithm so that we could quickly 
select an arc violating its optimality condition. We presented two specific imple­
mentations of this modified label-correcting algorithm: A FIFO implementation im­
proves on its running time in theory and a dequeue implementation improves on its 
running time in practice. Figure 5.8 summarizes the important features of all the 
label-correcting algorithms that we have discussed. 

The label-correcting algorithms determine shortest path distances only if the 
network contains no negative cycle. These algorithms are, however, capable of de-
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Algorithm Running Time Features 

Generic label-correcting O(min{n2mC, m2n}) 1. Selects arcs violating their optimality conditions 
algorithm and updates distance labels. 

2. Requires O(m) time to identify an arc violating its 
optimality condition. 

3. Very general: most shortest path algorithms can be 
viewed as special cases of this algorithm. 

4. The running time is pseudopolynomial and so is un-
attractive. 

Modified label-correcting O(min{nmC, m2n}) 1. An improved implementation of the generic label-
algorithm correcting algorithm. 

2. The algorithm maintains a set, LIST, of nodes: 
whenever a distance label d(j) changes, we add 
node j to LIST. The algorithm removes a node i 
from LIST and examines arcs in A(i) to update dis-
tance labels. 

3. Very flexible since we can maintain LIST in a va-
riety of ways. 

4. The running time is still unattractive. 

FIFO implementation O(nm) 1. A specific implementation of the modified label-
correcting algorithm. 

2. Maintains the set LIST as a queue and hence ex-
amines nodes in LIST in first-in, first-out order. 

3. Achieves the best strongly polynomial running time 
for solving the shortest path problem with arbitrary 
arc lengths. 

4. Quite efficient in practice. 
5. In O(nm) time, can also identify the presence of 

negative cycles. 

Dequeue implementation O(min{nmC, m2n}) 1. Another specific implementation of the modified 
label-correcting algorithm. 

2. Maintains the set LIST l!sa dequeue. Adds a node 
to the front of dequeue if the algorithm has previ-
ously updated its distance label, and to the rear 
otherwise. 

3. Very efficient in practice (possibly, linear time). 
4. The worst-case running time is unattractive. 

Figure 5.S Summary of label-correcting algorithms. 

tecting the presence of a negative cycle. We described two methods for identifying 
such a situation: the more efficient method checks at repeated intervals whether the 
predecessor graphs (i.e., the graph defined by the predecessor indices) contains a 
directed cycle. This computation requires D(n) time. 

To conclude this chapter we studied algorithms for the all-pairs shortest path 
problem. We considered two basic approaches: a repeated shortest path algorithm 
and an all-pairs label-correcting algorithm. We described two versions of the latter 
approach: the generic version and a special implementation known as the Floyd­
Warshall algorithm. Figure 5.9 summarizes the basic features of the all-pairs shortest 
path algorithms that we studied. 
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Algorithm Running Time Features 

Repeated shortest path O(nS(n,m,C» 1. Preprocesses the network so that all (reduced) arc 
algorithm lengths are nonnegative. Then applies Dijkstra's al-

gorithm n times with each node i E N as the source 
node. 

2. Flexible in the sense that we can use an implemen-
tation of Dijkstra's algorithm. 

3. Achieves the best available running time for all net-
work densities. 

4. Low intermediate storage. 

Floyd-Wars hall algorithm O(n3) 1. Corrects distance labels in a systematic way until 
they represent the shortest path distances. 

2. Very easy to implement. 
3. Achieves the best available running time for dense 

networks. 
4. Requires 'o(n2

) intermediate storage. 
~ 

Figure 5.9 Summary of all pairs shortest path algorithms. [S(n, m, C) is the time 
required to solve a shortest path problem with nonnegative arc lengths.] 

REFERENCE NOTES 

Researchers, especially those within the operations research community, have ac­
tively studied label-correcting algorithms for many years; much of this development 
has focused on designing computationally efficient algorithms. Ford [1956] outlined 
the first label-correcting algorithm for the shortest path problem. Subsequently, sev­
eral researchers, including Moore [1957] and Ford and Fulkerson [1962], studied 
properties of the generic label-correcting algorithms. Bellman's [1958] dynamic pro­
gramming algorithm for the shortest path problem can also be viewed as a label­
correcting algorithm. The FIFO implementation of the generic label-correcting al­
gorithm is also due to Bellman [1958]. Although Bellman developed this algorithm 
more than three decades ago, it is still the best strongly polynomial-time algorithm 
for solving shortest path problems with arbitrary arc lengths. 

In Section 12.7 we show how to transform the shortest path problem into an 
assignment problem and then solve it using any assignment algorithm. As we note 
in the reference notes of Chapter 12, we can solve the assignment problem in 
O(n 112m 10g(nC)) time using either the algorithms reported by Gabow and Tarjan 
[1989a] or the algorithm developed by Orlin and Ahuja [1992]. These developments 
show that we can solve shortest path problems with arbitrary arc lengths in 
O(n 112m 10g(nC)) time. Thus the best available time bound for solving the shortest 
path problem with arbitrary arc lengths is O(min{nm, n ll2 m 10g(nC)}): The first bound 
is due to Bellman [1958], and the second bound is due to Gabow and Tarjan [1989a] 
and Orlin and Ahuja [1992]. 

Researchers have exploited the inherent flexibility of the generic label­
correcting algorithm to design algorithms that are very efficient in practice. Pape' s 
implementation, described in Section 5.4, is based on an idea due to D'Esopo that 
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was later refined and tested by Pape [1974]. Pape [1980] gave a FORTRAN listing 
of this algorithm. Pape's algorithm runs in pseudopolynomial time. Gallo and Pal­
lottino [1986] describe a two-queue implementation that retains the computational 
efficiency of Pape's algorithm and still runs in polynomial time. The papers by 
Glover, Klingman, and Phillips [1985] and Glover, Klingman, Phillips, and Schneider 
[1985] have described a variety of specific implementations of the generic label­
correcting algorithm and studied their theoretical and computational behavior. These 
two papers, along with those by Hung and Divoky [1988], Divoky and Hung [1990], 
and Gallo and Pallottino [1984, 1988], have presented extensive computational results 
of label-setting and label-correcting algorithms. These studies conclude that for a 
majority of shortest path problems with nonnegative or arbitrary arc lengths, the 
label-correcting algorithms, known as Thresh Xl and Thresh X2, suggested by 
Glover, Klingman, and Phillips [1985], are the fastest shortest path algorithms. The 
reference notes of Chapter 11 provide references for simplex-based approaches for 
the shortest path problem. 

The generic all-pairs label-correcting algorithm, discussed in Section 5.3, is a 
generalization of the single source shortest path problem. The Floyd-Warshall al­
gorithm, which was published in Floyd [1962], was based on Warshall's [1962] al­
gorithm for finding transitive closure of graphs. 

Lawler [1966] and Dantzig, Blattner, and Rao [1966] are early and important 
references on the minimum cost-to-time ratio cycle problem. The binary search 
algorithm described by us in Section 5.7 is due to Lawler [1966]. Dantzig, Blattner, 
and Rao [1966] presented a primal simplex approach that uses the linear programming 
formulation of the minimum ratio problems; we discuss this approach in Exercise 
5.47. Meggido [1979] describes a general approach for solving minimum ratio prob­
lems, which as a special case yields a strongly polynomial-time algorithm for the 
minimum cost-to-time ratio cycle problem. 

The O(nm)-time minimum mean cycle algorithm, described in Section 5.7, is 
due to Karp [1978]. Several other algorithms are available for solving the minimum 
mean cycle problem: (1) an O(nm log n) parametric network simplex algorithm 
proposed by Karp and Orlin [1981], (2) an O(n 112m 10g(nC)) algorithm developed 
by arlin and Ahuja [1992], and (3) an O(nm + n 2 log n) algorithm designed by 
Young, Taljan, and arlin [1990]. The best available time bound for solving the min­
imum mean cycle problem is O(min{nm, n 1l2m 10g(nC)): The two bounds contained 
in this expression are due to Karp [1978] and arlin and Ahuja [1992]. However, we 
believe that the parametric network simplex algorithm by Karp and arlin [1981] 
would prove to be the most efficient algorithm empirically. We describe an appli­
cation of the minimum mean cycle problem in Application 19.6. The minimum mean 
cycle problem also arises in solving minimum cost flow problems (see Goldberg and 
Tarjan [1987, 1988]). 

EXERCISES 

5.1. Select a directed cycle in Figure 5.1O(a) and verify that it satisfies Property 5.2(a). 
Similarly, select a directed path from node 1 to node 6 and verify that it satisfies Property 
5.2(b). Does the network contain a zero-length cycle? 
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Figure 5.10 Examples for Exercises 5.1 to 5.5. 
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5.2. Consider the shortest path problems shown in Figure 5.10. Check whether or not the 
distance label d(j) given next to each node j represents me length of some path. If your 
answer is yes for every node, list all the arcs that do not satisfy the shortest path 
optimality conditions. 

5.3. Apply the modified label-correcting algorithm to the shortest path problem shown in 
Figure 5.1O(a). Assume that the adjacency list of each node is arranged in increasing 
order of the head node numbers. Always examine a node with the minimum number 
in LIST. Specify the predecessor graph after examining each node and count the number 
of distance updates. 

5.4. Apply the FIFO label-correcting algorithm to the example shown in Figure 5.1O(b). 
Perform two passes of the arc list and specify the distance labels and the predecessor 
graph at the end of the second pass. ' 

5.5. Consider the shortest path problem given in Figure 5.10(a) with the modification that 
the length of arc (4, 5) is -15 instead of - 5. Verify that the network contains a negative 
cycle. Apply the dequeue implementation of the label-correcting algorithm; after every 
three distance updates, check whether the predecessor graph contains a directed cycle. 
How many distance updates did you perform before detecting a negative cycle? 

5.6. Construct a shortest path problem whose shortest path tree contains a largest cost arc 
in the network but does not contain the smallest cost arc. 

5.7. Bellman's equations 

158 

(a) Show that the shortest path distances dO must satisfy the following equations, 
known as Bellman's equations: 

d(j) = min{d(i) + cij:U,j) E AU)} for allj E N. 

(b) Show that if a set of\distance labels d(i)'s satisfy Bellman's equations and the 
network contains no zero-length cycle, these distance labels are shortest path dis­
tances. 

(c) Verify that for the shortest path problem shown in Figure 5.11, the distance labels 

Figure 5.11 Example for Exercise 5.7. 
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d = (0, 0, 0, 0) satisfy Bellman's equations but do not represent shortest path 
distances. This example shows that in the presence of a zero-length cycle, Bellman's 
equations are not sufficient for characterizing the optimality of distance labels. 

5.8. Our termination argument of the generic label-correcting algorithm relies on the fact 
that the data are integral. Suppose that in the shortest path problem, some arc lengths 
are irrational numbers. 
(a) Prove that for this case too, the generic label-correcting algorithm will terminate 
finitely. (Hint: Use arguments based on the predecessor graph.) 
(b) (Gallo and Pallottino [1986]). Assuming that the network has no negative cost cycles, 
show the total number of relabels is O(2n). (Hint: Show first that if the algorithms uses 
the path 1-2-3-4 to label node 4, then it never uses the path 1-3-2-4 to label node 4. 
Then generalize this observation.) 
(c) Show that the generic label correcting algorithm requires O(2 n

) iterations. 
5.9. In Dijkstra's algorithm for the shortest path problem, let S denote the set of permanently 

labeled nodes at some stage. Show that for all node pairs [i, j] for which i E S, j E N 
and (i,j) E A, d(j) :5 d(i) + cij' Use this result to give an alternative proof of correctness 
for Dijkstra's algorithm. 

5.10. We define an in-tree of shortest paths as a directed in-tree rooted at a sink node t for 
which the tree path from any node i to node t is a shortest path. State a modification 
of the generic label-correcting algorithm that produces an in-tree of shortest paths. 

5.11. Let G = (Nt U N 2, A) be a bipartite network. Suppose that nt = 1 Nt I, n2 = 1 N21 
and nt :5 n2. Show that the FIFO label-correcting algorithm solves the shortest path 
problem in this network in O(ntm) time. 

5.12. Let dk(j) denote the shortest path length from a source node s to nodej subject to the 
condition that the path contains at most k arcs. Consider the O(nm) implementation 
of the label-correcting algorithm discussed in Section 5.4; let Dk(j) denote the distance 
label of node j at the end of the kth pass. Show that Dk(j) :5 dk(j) for every node j E 
N. . 

5.13. In the shortest path problem with nonnegative arc lengths, suppose that we know that 
the shortest path distance of nodes it, i2 , ••• , in are in nondecreasing order. Can we 
use this information to help us determine shortest path distances more efficiently than 
the algorithms discussed in Chapter 4? If we allow arc lengths to be negative, can you 
solve the shortest path problem faster than O(nm) time? 

5.14. Show that in the FIFO label-correcting algorithm, if the kth pass of the arc list decreases 
the distances of at least n - k + 1 nodes, the network must contain a negative cycle. 
(Hint: Use the arguments required in the complexity proof of the FIFO algorithm.) 

5.15. Modified FIFO algorithm (Goldfarb and Hao [1988]). This exercise describes a modi­
fication of the FIFO label-correcting algorithm that is very efficient in practice. The 
generic label-correcting algorithm described in Figure 5.1 maintains a predecessor 
graph. Let f(j) denote the number of arcs in the predecessor graph from the source 
node to node j. We can easily maintain these values by using the update formula 
f(j) = f(i) + 1 whenever we make the distance label update d(j) = d(i) + cij' Suppose 
that in the algorithm we always examine a node i in LIST with the minimum value of 
f(i). Show that the algorithm examines the nodes with nondecreasing values of fO 
and that it examines no node more than n - 1 times. Use this result to specify an 
O(nm) implementation of this algorithm. 

5.16. Suppose after solving a shortest path problem, you realize that you underestimated 
each arc length by k units. Suggest an O(m) algorithm for solving the original problem 
with the correct arc lengths. The running time of your algorithm should be independent 
of the value of k(Hint: Use Dial's implementation described in Section 4.6 on a modified 
problem.) 

5.17. Suppose that after solving a shortest path problem, you realize that you underestimated 
some arc lengths. The actual arc lengths were C;j ~ cij for all (i, j) E A. Let L = 
~(i,j)EA(Cij - cij). Suggest an O(m + L) algorithm for reoptimizing the solution ob-
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tained for the shortest path problem with arc lengths cij. (Hint: See the hint for Exercise 
5.16.) 

5.18. Suppose that after solving a shortest path problem, you realize that you underestimated 
some arc lengths and overestimated some other arc lengths. The actual arc lengths are 
C;j instead of Cij for all (i, j) E A. Let L = 2,U,j)EA \ cij - C;j \. Suggest an O(mL) 
algorithm for reoptimizing the shortest path solution obtained with the arc lengths cij' 
(Hint: Apply the label-correcting algorithm on a modified problem.) 

5.19. Identifying zero-length cycles. In a directed network G with arc lengths cij, let d(j) denote 
the shortest path distance from the source node s to nodej. Define reduced arc lengths 
as ct = cij + d(i) - d(j) and define the zero-residual network GO as the subnetwork 
of G consisting only of arcs with zero reduced arc lengths. Show that there is a one­
to-one correspondence between zero-length cycles in G and directed cycles in GO. 
Explain how you can identify a directed cycle in GO in Oem) time. 

5.20. Enumerating all shortest paths. Define the zero-residual network GO as in Exercise 5.19, 
and assume that GO is acyclic. Show that a directed path from node s to node t in G 
is a shortest path if and only if it is a directed path from node s to node t in GO. Using 
this result, describe an algorithm for enumerating all shortest paths in G from node s 
to node t. (Hint: Use the algorithm in Exercise 3.44.) 

5.21. Professor May B. Wright suggests the following method for solving the shortest path 
problem with arbitrary arc lengths. Let Cmin = min{cij :;(i, j) E A}. If Cmin < 0, add 
\ Cmin I to the length each arc in the network so that they all become nonnegative. Then 
use Dijkstra's algorithm to solve the shortest path problem. Professor Wright claims 
that the optimal solution of the transformed problem is also an optimal solution of the 
original problem. Prove or disprove her claim. 

5.22. Describe algorithms for updating the shortest path distances from node s to every other 
node if we add a new node (n + 1) and some arcs incident to this node. Consider the 
following three cases: (1) all arc lengths are nonnegative and node (n + 1) has only 
incoming arcs; (2) all arc lengths are nonnegative and node (n + 1) has incoming as 
well as outgoing arcs; and (3) arc lengths are arbitrary, but node (n + 1) has only 
incoming arcs. Specify the time required for the reoptimization. 

5.23. Maximum mnltiplier path problem. The maximum multiplier path problem is an exten­
sion of the maximum reliability path problem that we discussed in Exercise 4.39, ob­
tained by permitting the constants fLij to be arbitrary positive numbers. Suppose that 
we are not allowed to use logarithms. State optimality conditions for the maximum 
multiplier path problem and show that if the network contains a positive mUltiplier 
directed cycle, no path can satisfy the optimality conditions. Specify an O(nm) algo­
rithm for solving the maximum multiplier path problem for networks that contain no 
positive mUltiplier directed cycles. 

5.24. Sharp distance labels. The generic label-correcting algorithm maintains a predecessor 
graph at every step. We say that a distance label d(i) is sharp if it equals the length of 
the unique path from node s to node i in the predecessor graph. We refer to an algorithm 
as sharp if every node examined by the algorithm has a sharp distance label. (A sharp 
algorithm might have nodes with nonsharp distances, but the algorithm never examines 
them.) 
(a) Show by an example that the FIFO implementation of the generic label-correcting 

algorithm is not a sharp algorithm. 
(b) Show that the dequeue implementation of the generic label correcting is a sharp 

algorithm. (Hint: Perform induction on the number of nodes the algorithm exam­
ines. Use the fact that the distance label of a node becomes nonsharp only when 
the distance label of one of its ancestors in the predecessor graph decreases.) 

5.25. Partitioning algorithm (Glover, Klingman, and Phillips [1985]). The partitioning al­
gorithm is a special case of the generic label-correcting algorithm which divides 
the set LIST of nodes into two subsets: NOW and NEXT. Initially, NOW = {s} and 
NEXT = 0. When examining nodes, the algorithm selects any node i in NOW and 
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adds to NEXT any node whose distance label decreases, provided that the node is not 
already in NOW or NEXT. When NOW becomes empty, the algorithm transfers all 
the nodes from NEXT to NOW. The algorithm terminates when both NOW and 
NEXT become empty. 
(a) Show that the FIFO label-correcting algorithm is a special case of the partitioning 

algorithm. (Hint: Specify rules for selecting the nodes in NOW, adding nodes to 
NEXT, and transferring nodes from NEXT to NOW.) ~ 

(b) Show that the partitioning algorithm runs in O(nm) time. (Hint: Call the steps 
between two consecutive replenishments of NOW a phase. Extend the proof of 
the FIFO label-correcting algorithm to show that at the end of the kth phase, the 
algorithm determines optimal distances for all nodes whose shortest paths have no 
more than k arcs.) 

5.26. Threshold algorithm (Glover, Klingman, and Phillips [1985]). The threshold algorithm 
is a variation of the partitioning algorithm discussed in Exercise 5.25. When NOW 
becomes empty, the threshold algorithm does not transfer all the nodes from NEXT 
to NOW; instead, it transfers only those nodes i for which d(i) ~ t for some threshold 
value t. At each iteration, the algorithm choses the threshold value t to be at least as 
large as the minimum distance label in NEXT (before the transfer), so it transfers all 
those nodes with the minimum distance label, and possibly other nodes as well, from 
NEXT to NOW. (Note that we have considerable flexibility in choosing t at each step.) 
(a) Show that if all arc lengths are nonnegative, the threshold algorithm runs in O(nm) 

time. (Hint: Use the proof of Dijkstra's algorithm.) 
(b) Show that if all arc lengths are nonnegative and the threshold algorithm transfers 

at most five nodes from NEXT to NOW at each step, including a node with the 
minimum distance label, then it runs in O(n 2

) time. 
5.27. Pathological instances of the label-correcting algorithm (Pallottino [1991]). We noted in 

Section 5.4 that the dequeue implementation of the generic label-correcting algorithm 
has excellent empirical behavior. However, for some problem instances, the algorithm 
performs an exponential number of iterations. In this exercise we describe a method 
for constructing one such pathological instance for every n. Let G = (N, A) be an 
acyclic graph with n nodes and an arc (i, j) for every node pair i and j satisfying i > 
j. Let node n be the source node. We define the cost of each arc (i, j) as Cij = 2i

-
2 -

2j
-

1 
;::: O. Assume that the adjacency list of each node i E N - {n} is arranged in 

decreasing order of the head nodes and the adjacency list of the source node n is 
arranged in the increasing order of the head nodes. 
(a) Verify that for n = 6, the method generates the instance shown in Figure 5.12. 
(b) Consider the instance shown in Figure 5.12. Show that every time the dequeue 

implementation examines any node (other than node 1), it updates the distance 
label of node 1. Show that the label of node 1 assumes all values between 15 and 
O. 

Figure 5.12 Pathological example of the label-correcting algorithm. 

5.28. Using induction arguments, show that for an instance with n nodes constructed using 
the method described in Exercise 5.27, the dequeue implementation of the label-
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correcting algorithm assigns to node 1 all labels between 2n
-

2 - 1 to 0 and therefore 
runs in exponential time. 

5.29. Apply the first three iterations (i.e., k = 1, 2, 3) of the Floyd-Warshall algorithm to 
the all-pairs shortest path problems shown in Figure 5.13(a). List four triplets (i, j, k) 
that violate the all-pairs shortest path optimality conditions at the conclusion of these 
iterations. 

4 

10 

3 

5 5 

6 
(a) (b) 

Figure 5.13 Example for Exercises 5.29 to 5.31. \" 

5.30. Solve the all-pairs shortest path problem shown in Figure 5.13(b). 
5.31. Consider the shortest path problem shown in Figure 5. 13 (b) , except with C31 equal to 

3. What is the least number of triple operations required in the Floyd-Warshall algo­
rithm before the node pair distances dk[i,j] satisfy one of the negative cycle detection 
conditions? 

5.32. Show that if a network contains a negative cycle, the generic all-pairs label-correcting 
algorithm will never terminate. 

5.33. Suppose that the Floyd-Warshall algorithm terminates after detecting the presence of 
a negative cycle. At this time, how would you detect a negative cycle using the pre­
decessor indices? 

5.34. In an all-pairs shortest path problem, suppose that several shortest paths connect node 
i and nodej. If we use the Floyd-Warshall algorithm to solve this problem, which path 
will the algorithm choose? Will this path be the one with the least number of arcs? 

5.35. Consider the maximum capacity path problem defined in Exercise 4.37. Modify the 
Floyd-Warshall algorithm so that it finds maximum capacity paths between all pairs 
of nodes. 

5.36. Modify the Floyd-Warshall all-pairs shortest path algorithm so that it determines max­
imum multiplier paths between all pairs of nodes. 

5.37. Show that if we use the Floyd-Warshall algorithm to solve the all-pairs shortest path 
problem in a network containing a negative cycle, then at some stage dk[i, i] < 0 for 
some node i. [Hint: Let i be the least indexed node satisfying the property that the 
network contains a negative cycle using only nodes 1 through i (not necessarily all of 
these nodes).] 

5.38. Suppose that a network G contains no negative cycle. Let dn + I(i, j) denote the node 
pair distances at the end of the Floyd-Warshall algorithm. Show that min{dn+l[i, i] : 
1 ::s; i::s; n} is the minimum length of a directed cycle in G. 

5.39. In this exercise we discuss another dynamic programming algorithm for solving the all­
pairs shortest path problem. Let dt denote the length of a shortest path from node i 
to nodej subject to the condition that the path contains no more than k arcs. Express 
dt in terms of dt- I and the cijs and suggest an all-pairs shortest path algorithm that 
uses this relationship. Analyze the running time of your algorithm. 
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5.40. Sensitivity analysis. Let dij denote the shortest path distances between the pair [i, j] of 
nodes in a directed network G = (N, A) with arc lengths cij' Suppose that the length 
of one arc (p, q) changes to value C~q < cpqo Show that the following set of statements 
finds the modified all-pairs shortest path distances: 

if dqp + cpq < 0, then the network has a negative cycle 
else 

for each pair [i, 11 of nodes do 
d1j : = min {dij, diP + Cpq + dqj}; 

5.41. In Exercise 5.40 we described an O(n 2
) method for updating shortest path distances 

between all-pairs of nodes when we decrease the length of one arc (p, q). Suppose that 
we increase the length of the arc (p, q). Can you modify the method so that it reoptimizes 
the shortest path distances in O(n2

) time? If your answer is yes, specify an algorithm 
for performing the reoptimization and provide a justification for it; and if your answer 
is no, outline the difficulties encountered. 

5.42. Arc addition. After solving an all-pairs shortest path problem, you realize that you 
omitted five arcs from the network G. Can you reoptimize the shortest path distances 
with the addition of these arcs in O(n2

) time? (Hint: Reduce this problem to the one 
in Exercise 5.40.) 

5.43. Consider the reallocation of housing problem that we discussed in Application 1.1. 
(a) The housing authority prefers to use short cyclic changes since they are easier to 

handle administratively. Suggest a method for identifying a cyclic change involving 
the least number of changes. (Hint: Use the result of one of the preceding exercises.) 

(b) Suppose that the person presently residing in a house of category i desperately 
wants to move to his choice category and that the chair of the housing authority 
wants to help him. Can the chair identify a cyclic change that allocates the person 
to his choice category or prove that no such change is possible? (Hint: Use the 
result of one of the preceding exercises.) 

5.44. Let G = (N, A) denote the road network of the greater Boston area. Four people living 
in the suburbs form a car pool. They drive in separate cars to a common meeting point 
and drive from there in a van to a common point in downtown Boston. Suggest a method 
for identifying the common meeting point that minimizes the total driving time of all 
the participants. Also, suggest a method for identifying the common meeting point that 
minimizes the maximum travel time of anyone person. 

5.45. Location problems. In a directed G = (N, A) with arc lengths cij, we define the distance 
between a pair of nodes i and j as the length of the shortest path from node i to node 
j. 
(a) Define the radial distance from node i as the length of the distance from node i to 

the node farthest from it. We say that a node p is a center of the graph G if node 
p has as small a radial distance as any node in the network. Suggest a straightforward 
polynomial-time algorithm for identifying a center of G. 

(b) Define the star distance of node i as the total distance from node i to all the nodes 
in the network. We refer to a node q as a median of G if node q has as small a star 
distance as any node in the network. Suggest a straightforward polynomial-time 
algorithm for identifying a median of G. 

5.46. Suppose that a network G = (N, A) contains no negative cycle. In this network, let 
fij denote the maximum amount we can decrease the length of arc (i, j) without creating 
any negative cycle, assuming that all other arc lengths remain intact. Design an efficient 
algorithm for determining fu for each arc (i, j) EA. (Hint: Use the all-pairs shortest 
path distances.) 

5.47. Consider the following linear programming formulation' of the minimum cost-to-time 
ratio cycle problem: 
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subject to 

Minimize z = 2: cijxij 
(i,j)EA 

2: Xij - 2: Xji = 0 
(j: (i,j)EA) {j: (j, i)EA) 

2: 'rijXij = 1, 
U,j)EA 

for all i E N, 

for all (i, j) E A. 

(S.12a) 

(S.12b) 

(S.12c) 

(S.12d) 

Show that each directed cycle in G defines a feasible solution of (S.12) and that each 
feasible solution of (S .12) defines a set of one or more directed cycles with the same 
ratio. Use this result to show that we can obtain an optimal solution of the minimum 
cost-to-time ratio problem from an optimal solution of the linear program (S.12). 

5.48. Obtain a worst-case bound on the number of iterations performed by the sequential 
search algorithm discussed in Section S.7 to solve the minimum cost-to-time ratio cycle 
problem. 

5.49. In Section S.7 we saw how to solve the minimum cost-to-time ratio cycle problem 
efficiently. This development might lead us to believe that we could also determine 
efficiently a minimum ratio directed path between two designate<tnodes sand t (i.e., 
a path P for which (2:(i,j)EP Cij)/(2:(i,j)EP 'rij) is minimum). This assertion is not valid. 
Outline the difficulties you would encounter in adapting the algorithm so that it would 
solve the minimum ratio path problem. 

5.50. Use the minimum mean cycle algorithm to identify the minimum mean cycle in Figure 
S.13(b). 

5.51. Bit-scaling algorithm (Gabow [198S]). The bit-scaling algorithm for solving the shortest 
path problem works as follows. Let K = rlog Cl. We represent each arc length as a 
K-bit binary number, adding leading zeros if necessary to make each arc length K bits 
long. The problem Pk considers the length of each arc as the k leading bits (see Section 
3.3). Let dt denote the shortest path distances in problem Pk • The bit-scaling algorithm 
solves a sequence of problems PI. P2 , ••• , Pk> using the solution of problem Pk - I as 
the starting solution of problem Pk • 

(a) Consider problem Pk and define reduced arc lengths with respect to the distances 
2dt-I' Show that the network contains a path from the source node to every other 
node whose reduced length is at most n. (Hint: Consider the shortest path tree of 
problem Pk - I .) 

(b) Show how to solve each problem Pk in O(m) time. Use this result to show that the 
bit-scaling algorithm runs in O(m log C) time. 

5.52. Modified bit-scaling algorithm. Consider Exercise S.S1 but using a base 13 representation 
of arc cost Cij in place of the binary representation. In problem Pk we use the k leading 
base 13 digits of the arc lengths as the lengths of the arcs. Let dt_1 denote the shortest 
path distances in Problem Pk - I • 

(a) Show that if we define reduced arc lengths in problem Pk with respect to the dis­
tances I3dt-I' the network contains a path from the source to every other node 
whose reduced length is at most 13 n. 

(b) Show how to solve each problem Pk in O(m + I3n) time and, consequently, show 
that the modified bit-scaling algorithm runs in O«m + I3n) 10g13 C) time. What value 
of 13 achieves the least running time? 

5.53. Parametric shortest path problem. In the parametric shortest path problem, the cost Cij 

of each arc (i, j) is a linear function of a parameter A. (i.e., Cij = clj + A.ct) and we 
want to obtain a tree of shortest paths for all values of A. from 0 to + 00. Let Th denote 
a tree of shortest paths for a specific value of A.. 
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(a) Consider Th for some A.. Show that if d°(j) and d*(j) are the distances in Th with 
respect to the arc lengths cij and ct, respectively, then d°(j) + A.d*(j) are the 
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distances with respect to the arc lengths cij + >..cij in T~. Use this result to describe 
a method for determining the largest value of >.., say>.., for which Th is a shortest 
path tree for all >.., 1 :5 >.. :5 };:. Show that at >.. = };:, the network contains an alternative 
shortest path tree. (Hint: Use the shortest path optimality conditions.) 

(b) Describe an algorithm for determining Th for all 0 :5 >.. :5 00. Show that 1 is shortest 
path tree with the arc lengths as cij. 

5.54. Consider a special case of the parametric shortest path problem in which each cij = 0 
or 1. Show that as we vary>.. from 0 to +00, we obtain at most n2 trees of shortest 
paths. How many trees of shortest paths do you think we can obtain for the general 
case? Is it polynomial or exponential? [Hint: Let f(j) denote the number of arcs with 
cij = 1 in the tree of shortest paths from node s to node j. Consider the effect on the 
potential function <I> = kEN f(j) of the changes in the tree of shortest paths.] 

5.55. Let dk(j) denote the length of the shortest path from node s to node j using at most k 
arcs in a network G. Suppose that dk(j) are available for all nodes j E N and all k = 
1, ... ,n. Show how to determine a minimum mean cycle in G. (Hint: Use some result 
contained in Theorem 5.8.) 

5.56. Show that if the predecessor graph at any point in the execution of the label-correcting 
algorithm contains a directed cycle, then the network contains a negative cycle. 
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