
NETWORK FLOWS

Theory, Algorithms,
and Applications

BA VINDRA K. AHUJA
Department of Industrial & Management Engineering
Indian Institute of Technology, Kanpur

THOMAS L. MAGNANT!
Sloan School of Management
Massachusetts Institute of Technology, Cambridge

JAMES B. ORLIN
Sloan School of Management
Massachusetts Institute of Technology, Cambridge

PRENTICE HALL, Upper Saddle River, New Iersey 07458

Library of Congress Cataloging-in-Publication Data

Ahuja, Ravindra K. (date)
Network flows: theory, algorithms, and applications I Ravindra K.

Ahuja, Thomas L. Magnantl. James B. Orlin.
p. cm.

Includes bibliographical references and index.
ISBN 0-13-6J7S49-X
I. Network analysis (Planning) 2. Mathematical optimization.

I. Magnanti, Thomas L. II. Orlin. James B .. (datel. III. Title.
TS7.SS.A37 1993
6SS.4'032-dc20

Acquisitions editor: Pete Janzow
Production editor: Merrill Peterson
Cover designer: Design Source
Prepress buyer: Linda Behrens
Manufacturing buyer: David Dickey
Editorial assistant: Phyllis Morgan

92-26702
CIP

The author and publisher of this book have used their best efforts in preparing this book. These effort!
include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shaH
not be liable in any event for incidental or consequential damages in connection with, or arising out of
the furnishing, performance, or use of these Drograms.

C 1993 by Prentice-Hall, Inc.
Upper Saddle River. New Jeney 074S8

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

16 17 18 19

ISBN 0-13-617S49-X

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PrY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Ravi dedicates this book to his spiritual master,
Revered Sri Ranaji Saheb.

Tom dedicates this book to his favorite network,
Beverly and Randy.

Jim dedicates this book to Donna,
who inspired him in so many ways.

Collectively, we offer this book as a tribute
to Lester Ford and Ray Fulkerson, whose pioneering research

and seminal text in network flows have been an enduring
inspiration to us and to a generation

of researchers and practitioners.

CONTENTS

PREFACE, xl

1 INTRODUCTION, 1

1.1 Introduction, 1
1.2 Network Flow Problems, 4
1.3 Applications, 9
1.4 Summary, 18

Reference Notes, 19
Exercises, 20

2 PATHS, TREES, AND CYCLES, 23
2.1 Introduction, 23
2.2 Notation and Definitions, 24
2.3 Network Representations, 31
2.4 Network Transformations, 38
2.5 Summary, 46

Reference Notes, 47
Exercises, 47

3 ALGOlUTHM DESIGN AND ANALYSIS, ~3
3.1 Introduction, 53
3.2 Complexity Analysis, 56
3.3 Developing Polynomial-Time Algorithms, 66
3.4 Search Algorithms, 73
3.5 Flow Decomposition Algorithms, 79
3.6 Summary, 84

Reference Notes, 85
Exercises, 86

4 SHORTEST PA THS: LABEL-SETTING ALGOBITHMS, 93
4.1 Introduction, 93
4.2 Applications, 97
4.3 Tree of Shortest Paths, 106
4.4 Shortest Path Problems in Acyclic Networks, 107
4.5 Dijkstra's Algorithm, 108
4.6 Dial's Implementation, 113
4.7 Heap Implementations, 115
4.8 Radix Heap Implementation, 116

v

4.9 Summary, 121
Reference Notes, 122
Exercises, 124

15 SHORTEST PATHS: LABEL-COBBECTING ALGOBITHMS, 133
5.1 Introduction, 133
5.2 Optimality Conditions, 135
5.3 Generic Label-Correcting Algorithms, 136
5.4 Special Implementations of the Modified Label-Correcting Algorithm, 141
5.5 Detecting Negative Cycles, 143
5.6 All-Pairs Shortest Path Problem, 144
5.7 Minimum Cost-to-Time Ratio Cycle Problem, 150
5.8 Summary, 154

Reference Notes, 156
Exercises, 157

8 MAXIMUM FLOWS: BABIC IDEAS, 188
6.1 Introduction, 166
6.2 Applications, 169
6.3 Flows and Cuts, 177
6.4 Generic Augmenting Path Algorithm, 180
6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem, 184
6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem, 188
6.7 Flows with Lower Bounds, 191
6.8 Summary, 196

Reference Notes, 197
Exercises, 198

7 MAXIMUM FLOWS: POLYNOMIAL ALGOBITHMB, 207
7.1 Introduction, 207
7.2 Distance Labels, 209
7.3 Capacity Scaling Algorithm, 210
7.4 Shortest Augmenting Path Algorithm, 213
7.5 Distance Labels and Layered Networks, 221
7.6 Generic Preflow-Push Algorithm, 223
7.7 FIFO Preflow-Push Algorithm, 231
7.8 Highest-Label Preflow-Push Algorithm, 233
7.9 Excess Scaling Algorithm, 237
7.10 Summary, 241

Reference Notes, 241
Exercises, 243

8 MAXIMUM FLOWS: ADDITIONAL TOPICS, 2lJO

8.1 Introduction, 250
8.2 Flows in Unit Capacity Networks, 252
8.3 Flows in Bipartite Networks, 255
8.4 Flows in Planar Undirected Networks, 260
8.5 Dynamic Tree Implementations, 265

vi Contents

8.6 Network Connectivity, 273
8.7 All-Pairs Minimum Value Cut Problem, 277
8.8 Summary, 285

Reference Notes, 287
Exercises, 288

9 MINIMUM COST FLOWS: BABIC ALGOBITHMS, 294
9.1 Introducti"on, 294
9.2 Applications, 298
9.3 Optimality Conditions, 306
9.4 Minimum Cost Flow Duality, 310
9.5 Relating Optimal Flows to Optimal Node Potentials, 315
9.6 Cycle-Canceling Algorithm and the Integrality Property, 317
9.7 Successive Shortest Path Algorithm, 320
9.8 Primal-Dual Algorithm, 324
9.9 Out-of-Kilter Algorithm, 326
9.10 Relaxation Algorithm, 332
9.11 Sensitivity Analysis, 337
9.12 Summary, 339

Reference Notes, 341
Exercises, 344

10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS, 8lJ7
10.1 Introduction, 357
10.2 Capacity Scaling Algorithm, 360
10.3 Cost Scaling Algorithm, 362
10.4 Double Scaling Algorithm, 373
10.5 Minimum Mean Cycle-Canceling Algorithm, 376
10.6 Repeated Capacity Scaling Algorithm, 382
10.7 Enhanced Capacity Scaling Algorithm, 387
10.8 Summary, 395

Reference Notes, 396
Exercises, 397

11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGO.RlTHMS, 402
11.1 Introduction, 402
11.2 Cycle Free and Spanning Tree Solutions, 405
11.3 Maintaining a Spanning Tree Structure, 409
11.4 Computing Node Potentials and Flows, 411
11. 5 Network Simplex Algorithm, 415
11.6 Strongly Feasible Spanning Trees, 421
11.7 Network Simplex Algorithm for the Shortest Path Problem, 425
11.8 Network Simplex Algorithm for the Maximum Flow Problem, 430
11.9 Related Network Simplex Algorithms, 433
11.10 Sensitivity Analysis, 439
11.11 Relationship to Simplex Method, 441
11.12 U nimodularity Property, 447
11.13 Summary, 450

Reference Notes, 451
Exercises, 453

Contents vii

12 ABSIGNMENTSANDMATCHINGS, 481
12.1 Introduction, 461
12.2 Applications, 463
12.3 Bipartite Cardinality Matching Problem, 469
12.4 Bipartite Weighted Matching Problem, 470
12.S Stable Marriage Problem, 473
12.6 Nonbipartite Cardinality Matching Problem, 475
12.7 Matchings and Paths, 494
12.8 Summary, 498

Reference Notes, 499
Exercises, 501

13 MINIMUM SPANNING TREES, 1510
13.1 Introduction, 510
13.2 Applications, 512
13.3 Optimality Conditions, 516
13.4 Kruskal's Algorithm, 520
13.S Prim's Algorithm, 523
13.6 Sollin's Algorithm, 526
13.7 Minimum Spanning Trees and Matroids, 528
13.8 Minimum Spanning Trees and Linear Programming, 530
13.9 Summary, 533

Reference Notes, 535
Exercises, 536

14 CONVEX COST FLOWS, 1543
14.1 Introduction, 543
14.2 Applications, 546
14.3 Transformation to a Minimum Cost Flow Problem, 551
14.4 Pseudopolynomial-Time Algorithms, 554
14.S Polynomial-Time Algorithm, 556
14.6 Summary, 560

Reference Notes, 561
Exercises, 562

15 GENEBALIZED FLOWS, 1588
IS.1 Introduction, 566
IS.2 Applications, 568
15.3 Augmented Forest Structures, 572
IS.4 Determining Potentials and Flows for an Augmented Forest Structure, 577
IS.S Good Augmented Forests and Linear Programming Bases, 582
IS.6 Generalized Network Simplex Algorithm, 583
IS.7 Summary, 591

Reference Notes, 591
Exercises, 593

viii Contents

16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION, 698
16.1 Introduction, 598
16.2 Problem Relaxations and Branch and Bound, 602
16.3 Lagrangian Relaxation Technique, 605
16.4 Lagrangian Relaxation and Linear Programming, 615
16.5 Applications of Lagrangian Relaxation, 620
16.6 Summary, 635

Reference Notes, 637
Exercises, 638

17 MULTICOMMODITY FLOWS, 849
17.1 Introduction, 649
17.2 Applications, 653
17.3 Optimality Conditions, 657
17.4 Lagrangian Relaxation, 660
17.5 Column Generation Approach, 665
17.6 Dantzig-Wolfe Decomposition, 671
17.7 Resource-Directive Decomposition, 674
17.8 Basis Partitioning, 678
17.9 Summary, 682

Reference Notes, 684
Exercises, 686

18 COMPUTATIONAL TESTING OF ALGOlUTHMS, 896
18.1 Introduction, 695
18.2 Representative Operation Counts, 698
18.3 Application to Network Simplex Algorithm, 702
18.4 Summary, 713

Reference Notes, 713
Exercises, 715

19 ADDITIONAL APPLICATIONS, 717

19.1 Introduction, 717
19.2 Maximum Weight Closure of a Graph, 719
19.3 Data Scaling, 725
19.4 Science Applications, 728
19.5 Project Management, 732
19.6 Dynamic Flows, 737
19.7 Arc Routing Problems, 740
19.8 Facility Layout and Location, 744
19.9 Production and Inventory Planning, 748
19.10 Summary, 755

Reference Notes, 759
Exercises, 760

Contents Ix

APPENDIX A DATA STBUCTUBES, 78~

A.I Introduction, 765
A.2 Elementary Data Structures, 766
A.3 d-Heaps, 773
A.4 Fibonacci Heaps, 779

Reference Notes, 787

APPENDIX B Nf/I-COMPLETENESS, 788
B.I Introduction, 788
B.2 Problem Reductions and Transformations, 790
B.3 Problem Classes r;p, ,Nr;p, ,Nr;p-Complete, and ,Nr;p-Hard, 792
B.4 Proving ,Nr;p-Completeness Results, 796
B.5 Concluding Remarks, 800

Reference Notes, 801

APPENDIX C LINEAR PROGRAMMING, 802
C.I Introduction, 802
C.2 Graphical Solution Procedure, 804
C.3 Basic Feasible Solutions, 805
C.4 Simplex Method, 810
C.S Bounded Variable Simplex Method, 814
C.6 Linear Programming Duality, 816

Reference Notes, 820

BEFEBENCES, 821

INDEX, 840

x Contents

1

INTRODUCTION

ClJapter Outline

1.1 Introduction

Begin at the beginning ... and go on till you come to the end:
then stop.

-Lewis Carroll

1.2 Network Flow Problems
1.3 Applications
1.4 Summary

1.1 INTRODUCTION

Everywhere we look in our daily lives, networks are apparent. Electrical and power
networks bring lighting and entertainment into our homes. Telephone networks per­
mit us to communicate with each other almost effortlessly within our local com­
munities and across regional and international borders. National highway systems,
rail networks, and airline service networks provide us with the means to cross great
geographical distances to accomplish our work, to see our loved ones, and to visit
new places and enjoy new experiences. Manufacturing and distribution networks
give us access to life's essential foodstock and to consumer products. And computer
networks, such as airline reservation systems, have changed the way we share in­
formation and conduct our business and personal lives.

In all of these problem domains, and in many more, we wish to move some
entity (electricity, a consumer product, a person or a vehicle, a message) from one
point to another in an underlying network, and to do so as efficiently as possible,
both to provide good service to the users of the network and to use the underlying
(and typically expensive) transmission facilities effectively. In the most general
sense, this objective is what this book is all about. We want to learn how to model
application settings as mathematical objects known as network flow problems and
to study various ways (algorithms) to solve the resulting models.

Network flows is a problem domain that lies at the cusp between several fields
of inquiry, including applied mathematics, computer science, engineering, manage­
ment, and operations research. The field has a rich and long tradition, tracing its
roots back to the work of Gustav Kirchhof and other early pioneers of electrical
engineering and mechanics who first systematically analyzed electrical circuits. This
early work set the foundations of many of the key ideas of network flow theory and
established networks (graphs) as useful mathematical objects for representing many

1

physical systems. Much of this early work was descriptive in nature, answering such
questions as: If we apply a set of voltages to a given network, what will be the
resulting current flow? The set of questions that we address in this book are a bit
different: If we have alternative ways to use a network (i.e., send flow), which
alternative will be most cost-effective? Our intellectual heritage for answering such
questions is much more recent and can be traced to the late 1940s and early 1950s
when the research and practitioner communities simultaneously developed optimi­
zation as an independent field of inquiry and launched the computer revolution,
leading to the powerful instruments we know today for performing scientific and
managerial computations.

For the most part, in this book we wish to address the following basic questions:

1. Shortest path problem. What is the best way to traverse a network to get from
one point to another as cheaply as possible?

2. Maximum flow problem. If a network has capacities on arc flows, how can we
send as much flow as possible between two points in the network while honoring
the arc flow capacities?

3. Minimum cost flow problem. If we incur a cost per unit flow on a network with
arc capacities and we need to send units of a good that reside at one or more
points in the network to one or more other points, how can we send the material
at minimum possible cost?

In the sense of traditional applied and pure mathematics, each of these problems
is trivial to solve. It is not very difficult (but not at all obvious for the later two
problems) to see that we need only consider a finite number of alternatives for each
problem. So a traditional mathematician might say that the problems are well solved:
Simply enumerate the set of possible solutions and choose the one that is best.
Unfortunately, this approach is far from pragmatic, since the number of possible
alternatives can be very large-more than the number of atoms in the universe for
many practical problems! So instead, we would like to devise algorithms that are in
a sense "good," that is, whose computation time is small, or at least reasonable,
for problems met in practice. One way to ensure this objective is to devise algorithms
whose running time is guaranteed not to grow very fast as the underlying network
becomes larger (the computer science, operations research, and applied mathematics
communities refer to the development of algorithms with such performance guar­
antees as worst-case analysis). Developing algorithms that are good in this sense is
another major theme throughout this book, and our development builds heavily on
the theory of computational complexity that began to develop within computer sci­
ence, applied mathematics, and operations research circles in the 1970s, and has
flourished ever since.

The field of computational complexity theory combines both craftsmanship and
theory; it builds on a confluence of mathematical insight, creative algorithm design,
and the careful, and often very clever use of data structures to devise solution meth­
ods that are provably good in the sense that we have just mentioned. In the field of
network flows, researchers devised the first, seminal contributions of this nature in
the 1950s before the field of computational complexity theory even existed as a
separate discipline as we know it today. And throughout the last three decades,

2 Introduction Chap. 1

researchers have made a steady stream of innovations that have resulted in new
solution methods and in improvements to known methods. In the past few years,
however, researchers have made contributions to the design and analysis of network
flow algorithms with improved worst-case performance guarantees at an explosive,
almost dizzying pace; moreover, these contributions were very surprising: Through­
out the 1950s, 1960s, and 1970s, network flows had evolved into a rather mature
field, so much so that most of the research and practitioner communities believed
that the core models that we study in this book were so very well understood that
further innovations would be hard to come by and would be few and far between.
As it turns out, nothing could have been further from the truth.

Our presentation is intended to reflect these new developments; accordingly,
we place a heavy emphasis on designing and analyzing good algorithms for solving
the core optimization models that arise in the context of network flows. Our intention
is to bring together and synthesize the many new contributions concerning efficient
network flow algorithms with traditional material that has evolved over the past four
decades. We have attempted to distill and highlight some of the essential core ideas
(e.g., scaling and potential function arguments) that underlie many of the recent
innovations and in doing so to give a unified account of the many algorithms that
are now available. We hope that this treatment will provide our readers not only
with an accessible entree to these exciting new developments, but also with an
understanding of the most recent and advanced contributions from the literature.
Although we are bringing together ideas and methodologies from applied mathe­
matics, computer science, and operations research, our approach has a decidedly
computer science orientation as applied to certain types of models that have tra­
ditionally arisen in the context of managing a variety of operational systems (the
foodstuff of operations research).

We feel that a full understanding of network flow algorithms and a full appre­
ciation for their use requires more than an in-depth knowledge of good algorithms
for core models. Consequently, even though this topic is our central thrust, we also
devote considerable attention to describing applications of network flow problems.
Indeed, we feel that our discussion of applications throughout the text, in the ex­
ercises, and in a concluding chapter is one of the major distinguishing features of
our coverage.

We have not adopted a linear programming perspective throughout the book,
however, because we feel there is much to be gained from a more direct approach,
and because we would like the material we cover to be readily accessible to readers
who are not optimization specialists. Moreover, we feel that an understanding of
network flow problems from first principles provides a useful concrete setting from
which to draw considerable insight about more general linear programs.

Similarly, since several important variations of the basic network flow problems
are important in practice, or in placing network flows in the broader context of the
field of combinatorial optimization, we have also included several chapters on ad­
ditional topics: assignments and matchings, minimum spanning trees, models with
convex (instead of linear) costs, networks with losses and gains, and multicommodity
flows. In each of these chapters we have not attempted to be comprehensive, but
rather, have tried to provide an introduction to the essential ideas of the topics.

The Lagrangian relaxation chapter permits us to show how the core network

Sec. 1.1 I nlroduc lion 3

models arise in broader problem contexts and how the algorithms that we have
developed for the core models can be used in conjunction with other methods to
solve more complex problems that arise frequently in practice. In particular, this
discussion permits us to introduce and describe the basic ideas of decomposition
methods for several important network optimization models-constrained shortest
paths, the traveling salesman problem, vehicle routing problem, multicommodity
flows, and network design.

Since the proof of the pudding is in the eating, we have also included a chapter
on some aspects of computational testing of algorithms. We devote much of our
discussion to devising the best possible algorithms for solving network flow prob­
lems, in the theoretical sense of computational complexity theory. Although the
theoretical model of computation that we are using has proven to be a valuable guide
for modeling and predicting the performance of algorithms in practice, it is not a
perfect model, and therefore algorithms that are not theoretically superior often
perform best in practice. Although empirical testing of algorithms has traditionally
been a valuable means for investigating algorithmic ideas, the applied mathematics,
computer science, and operations research communities have not yet reached a
consensus on how to measure algorithmic performance empirically. So in this chapter
we not only report on computational experience with an algorithm we have pre­
sented, but also offer some thoughts on how to measure computational performance
and compare algorithms.

1.2 NETWORK FLOW PROBLEMS

In this section we introduce the network flow models we study in this book, and in
the next section we present several applications that illustrate the practical impor­
tance of these models. In both the text and exercises throughout the remaining
chapters, we introduce many other applications. In particular, Chapter 19 contains
a more comprehensive summary of applications with illustrations drawn from several
specialties in applied mathematics, engineering, lpgistics, manufacturing, and the
physical sciences.

Minimum Cost Flow Problem

The minimum cost flow model is the most fundamental of all network flow problems.
Indeed, we devote most of this book to the minimum cost flow problem, special
cases of it, and several of its generalizations. The problem is easy to state: We wish
to determine a least cost shipment of a commodity through a network in order to
satisfy demands at certain nodes from available supplies at other nodes. This model
has a number of familiar applications: the distribution of a product from manufac­
turing plants to warehouses, or from warehouses to retailers; the flow of raw material
and intermediate goods through the various machining stations in a production line;
the routing of automobiles through an urban street network; and the routing of calls
through the telephone system. As we will see later in this chapter and in Chapters
9 and 19, the minimum cost flow model also has many less transparent applications.

In this section we present a mathematical programming formulation of the
minimum cost flow problem and then describe several of its specializations and

4 Introduction Chap. 1

variants as well as other basic models that we consider in later chapters. We assume
our readers are familiar with the basic notation and definitions of graph theory; those
readers without this background might consult Section 2.2 for a brief account of this
material.

Let G = (N, A) be a directed network defined by a set N of n nodes and a
set A of m directed arcs. Each arc (i, j) E A has an associated cost Cij that denotes
the cost per unit flow on that arc. We assume that the flow cost varies linearly with
the amount of flow. We also associate with each arc (i, j) E A a capacity Uij that
denotes the maximum amount that can flow on the arc and a lower bound lij that
denotes the minimum amount that must flow on the arc. We associate with each
node i E N an integer number b(i) representing its supply/demand. If b(i) > 0, node
i is a supply node; if b(i) < 0, node i is a demand node with a demand of - b(i); and
if b(i) = 0, node i is a transshipment node. The decision variables in the minimum
cost flow problem are arc flows and we represent the flow on an arc (i,}) E A by
Xij. The minimum cost flow problem is an optimization model formulated as follows:

Minimize 2 CijXij
(i,j)EA

subject to

2 Xij - 2 Xj; = b(i)
{j:(i,j)EA} {j:(j,i)EA}

for all (i,}) E A,

(l.la)

for all i E N, (l.Ib)

(l.Ic)

where 27= 1 b(i) = O. In matrix form, we represent the minimum cost flow problem

as follows:

Minimize cx

subject to
Xx = b,

I :5 X :5 U.

(l.2a)

(l.2b)

(l.2c)

In this formulation, X is an n x m matrix, called the node-arc incidence matrix
of the minimum cost flow problem. Each column X ij in the matrix corresponds to
the variable Xij. The column X ij has a + 1 in the ith row, a -1 in the jth row; the
rest of its entries are zero.

We refer to the constraints in (l.Ib) as mass balance constraints. The first
term in this constraint for a node represents the total outflow of the node (i.e., the
flow emanating from the node) and the second term represents the total inflow of
the node (i.e., the flow entering the node). The mass balance constraint states that
the outflow minus inflow must equal the supply/demand of the node. If the node is
a supply node, its outflow exceeds its innow; if the node is a demand node, its inflow
exceeds its outflow; and if the node is a transshipment node, its outflow equals its
inflow. The flow must also satisfy the lower bound and capacity constraints (1.1 c),
which we refer to asflow bound constraints. The flow bounds typically model phys­
ical capacities or restrictions imposed on the flows' operating ranges. In most ap­
plications, the lower bounds on arc flows are zero; therefore, if we do not state
lower bounds for any problem, we assume that they have value zero.

Sec. 1.2 Network Flow Problems 5

In most parts of the book we assume that the data are integral (i.e., all arc
capacities, arc costs, and supplies/demands of nodes are integral). We refer to this
assumption as the integrality assumption. The integrality assumption is not restric­
tive for most applications because we can always transform rational data to integer
data by mUltiplying them by a suitably large number. Moreover, we necessarily need
to convert irrational numbers to rational numbers to represent them on a computer.

The following special versions of the minimum cost flow problem playa central
role in the theory and applications of network flows.

Shortest path problem. The shortest path problem is perhaps the simplest
of all network flow problems. For this problem we wish to find a path of minimum
cost (or length) from a specified source node s to another specified sink node t,
assuming that each arc (i, j) E A has an associated cost (or length) Cij' Some of the
simplest applications of the shortest path problem are to determine a path between
two specified nodes of a network that has minimum length, or a path that takes least
time to traverse, or a path that has the maximum reliability. As we will see in our
later discussions, this basic model has applications in many different problem do­
mains, such as equipment replacement, project scheduling, cash flow management,
message routing in communication systems, and traffic flow through congested cities.
If we set b(s) = 1, b(t) = - 1, and b(i) = 0 for all other nodes in the minimum
cost flow problem, the solution to the problem will send 1 unit of flow from node s
to node t along the shortest path. The shortest path problem also models situations
in which we wish to send flow from a single-source node to a single-sink node in an
uncapacitated network. That is, if we wish to send v units of flow from node s to
node t and the capacity of each arc of the network is at least v, we would send the
flow along a shortest path from node s to node t. If we want to determine shortest
paths from the source node s to every other node in the network, then in the minimum
cost flow problem we set b(s) = (n - 1) and b(i) = - 1 for all other nodes. [We
can set each arc capacity Uij to any number larger than (n - 1).] The minimum cost
flow solution would then send unit flow from node s to every other node i along a
shortest path.

Maximum flow problem. The maximum flow problem is in a sense a com­
plementary model to the shortest path problem. The shortest path problem models
situations in which flow incurs a cost but is not restricted by any capacities; in
contrast, in the maximum flow problem flow incurs no costs but is restricted by flow
bounds. The maximum flow problem seeks a feasible solution that sends the max­
imum amount of flow from a specified source node s to another specified sink node
t. If we interpret uijas the maximum flow rate of arc (i,j), the maximum flow problem
identifies the maximum steady-state flow that the network can send from node s to
node t per unit time. Examples of the maximum flow problem include determining
the maximum steady-state flow of (1) petroleum products in a pipeline network, (2)
cars in a road network, (3) messages in a telecommunication network, and (4) elec­
tricity in an electrical network. We can formulate this problem as a minimum cost
flow problem in the following manner. We set b(i) = 0 for all i E N, Cij = 0 for all
(i, j) E A, and introduce an additional arc (t, s) with cost C ts = - 1 and flow bound
U ts = 00. Then the minimum cost flow solution maximizes the flow on arc (t, s); but

6 Introduction Chap. J

since any flow on arc (t, s) must travel from node s to node t through the arcs in A
[since each b(i) = 0], the solution to the minimum cost flow problem will maximize
the flow from node s to node t in the original network.

Assignment problem. The data of the assignment problem consist of two
equally sized sets Nt and N z (i.e., / Nt / = / N z /), a collection of pairs A ~ Nt x
N z representing possible assignments, and a cost cij associated with each element
(i, j) E A. In the assignment problem we wish to pair, at minimum possible cost,
each object in Nt with exactly one object in N z. Examples of the assignment problem
include assigning people to projects, jobs to machines, tenants to apartments, swim­
mers to events in a swimming meet, and medical school graduates to available in­
ternships. The assignment problem is a minimum cost flow problem in a network
G = (Nt U N 2 , A) with b(i) = 1 for all i E N l , b(i) = -1 for all i E N 2 , and
uij = 1 for all (i, j) E A.

Transportation problem. The transportation problem is a special case of
the minimum cost flow problem with the property that the node set N is partitioned
into two subsets NJ and N z (of possibly unequal cardinality) so that (1) each node
in Nl is a supply node, (2) each node N z is a demand node, and (3) for each arc
(i,j) inA, i E Nt andj E N z. The classical example of this problem is the distribution
of goods from warehouses to customers. In this context the nodes in N 1 represent
the warehouses, the nodes in N2 represent customers (or, more typically, customer
zones), and an arc (i, j) in A represents a distribution channel from warehouse i to
customer j.

Circulation problem. The circulation problem is a minimum cost flow prob­
lem with only transshipment nodes; that is, b(i) = 0 for all i E N. In this instance
we wish to find a feasible flow that honors the lower and upper bounds lij and Uij

imposed on the arc flows Xij' Since we never introduce any exogenous flow into the
network or extract any flow from it, all the flow circulates around the network. We
wish to find the circulation that has the minimum cost. The design of a routing
schedule of a commercial airline provides one example of a circulation problem. In
this setting, any airplane circulates among the airports of various cities; the lower
bound lij imposed on an arc (i, j) is 1 if the airline needs to provide service between
cities i and j, and so must dispatch an airplane on this arc (actually, the nodes will
represent a combination of both a physical location and a time of day so that an arc
connects, for example, New York City at 8 A.M. with Boston at 9 A.M.).

In this book, we also study the following generalizations of the minimum cost
flow problem.

Convex cost flow problems. In the minimum cost flow problem, we assume
that the cost of the flow on any arc varies linearly with the amount of flow. Convex
cost flow problems have a more general cost structure: The cost is a convex function
of the amount of flow. Flow costs vary in a convex manner in numerous problem
settings, including (1) power losses in an electrical network due to resistance, (2)
congestion costs in a city transportation network, and (3) expansion costs of a com­
munication network.

Sec. J.2 Network Flow Problems 7

Generalized flow problems. In the minimum cost flow problem, arcs con­
serve flows (Le., the flow entering an arc equals the flow leaving the arc). In gen­
eralized flow problems, arcs might "consume" or "generate" flow. If Xij units of
flow enter an arc (i, j), then jJ.ijXij units arrive at node j; jJ.ij is a positive multiplier
associated with the arc. If 0 < jJ.ij < I, the arc is lossy, and if I < jJ.ij < 00, the arc
is gainy. Generalized network flow problems arise in several application contexts:
for example, (I) power transmission through electric lines, with power lost with
distance traveled, (2) flow of water through pipelines or canals that lose water due
to seepage or evaporation, (3) transportation of a perishable commodity, and (4)
cash management scenarios in which arcs represent investment opportunities and
multipliers represent appreciation or depreciation of an investment's value.

Multicommodity flow problems. The minimum cost flow problem models
the flow of a single commodity over a network. Multicommodity flow problems arise
when several commodities use the same underlying network. The commodities may
either be differentiated by their physical characteristics or simply by their origin­
destination pairs. Different commodities have different origins and destinations, and
commodities have separate mass balance constraints at each node. However, the
sharing of the common arc capacities binds the different commodities together. In
fact, the essential issue addressed by the multicommodity flow problem is the al­
location of the capacity of each arc to the individual commodities in a way that
minimizes overall flow costs. Multicommodity flow problems arise in many practical
situations, including (I) the transportation of passengers from different origins to
different destinations within a city; (2) the routing of nonhomogeneous tankers (non­
homogeneous- in terms of speed, carrying capability, and operating costs); (3) the
worldwide shipment. of different varieties of grains (such as corn, wheat, rice, and
soybeans) from countries that produce grains to those that consume it; and (4) the
transmission of messages in a communication network between different origin­
destination pairs.

Other Models

In this book we also study two other important network models: the minimum span­
ning tree problem and the matching problem. Although these two models are not
flow problems per se, because of their practical and mathematical significance and
because of their close connection with several flow problems, we have included
them as part of our treatment of network flows.

Minimum spanning tree problem. A spanning tree is a tree (i.e., a con­
nected acyclic graph) that spans (touches) all the nodes of an undirected network.
The cost of a spanning tree is the sum of the costs (or lengths) of its arcs. In the
minimum spanning tree problem, we wish to identify a spanning tree of minimum
cost (or length). The applications of the minimum spanning tree problem are varied
and include (1) constructing highways or railroads spanning several cities; (2) laying
pipelines connecting offshore drilling sites, refineries, and consumer markets; (3)
designing local access networks; and (4) making electric wire connections on a con­
trol panel.

8 Introduction Chap. 1

Matching problems. A matching in a graph G = (N, A) is a set of arcs
with the property that every node is incident to at most one arc in the set; thus a
matching induces a pairing of (some 00 the nodes in the graph using the arcs in A.
In a matching, each node is matched with at most one other node, and some nodes
might not be matched with any other node. The matching problem seeks a matching
that optimizes some criteria. Matching problems on a bipartite graphs (i.e., those
with two sets of nodes and with arcs that join only nodes between the two sets, as
in the assignment and transportation problems) are called bipartite matching prob­
lems, and those on nonbipartite graphs are called nonbipartite matching problems.
There are two additional ways of categorizing matching problems: cardinality match­
ing problems, which maximize the number of pairs of nodes matched, and weighted
matching problems, which maximize or minimize the weight of the matching. The
weighted matching problem on a bipartite graph is also known as the assignment
problem. Applications of matching problems arise in matching roommates to hostels,
matching pilots to compatible airplanes, scheduling airline crews for available flight
legs, and assigning duties to bus drivers.

1.3 APPLICATIONS

Networks are pervasive. They arise in numerous application settings and in many
forms. Physical networks are perhaps the most common and the most readily iden­
tifiable classes of networks; and among physical networks, transportation networks
are perhaps the most visible in our everyday lives. Often, these networks model
homogeneous facilities such as railbeds or highways. But on other occasions, they
correspond to composite entities that model, for example, complex distribution and
logistics decisions. The traditional operations research "transportation problem" is
illustrative. In the transportation problem, a shipper with inventory of goods at its
warehouses must ship these goods to geographically dispersed retail centers, each
with a given customer demand, and the shipper would like to meet these demands
incurring the minimum possible transportation costs. In this setting, a transportation
link in the underlying network might correspond to a complex distribution channel
with, for example, a trucking shipment from the warehouse to a railhead, a rail
shipment, and another trucking leg from the destination rail yard to the customer's
site.

Physical networks are not limited to transportation settings; they also arise in
several other disciplines of applied science and engineering, such as mathematics,
chemistry, and electrical, communications, mechanical, and civil engineering. When
physical networks occur in these different disciplines, their nodes, arcs, and flows
model many different types of physical entities. For example, in a typical commu­
nication network, nodes will represe'nt telephone exchanges and'transmission facil­
ities, arcs will denote copper cables or fiber optic links, and flow would signify the
transmission of voi~e messages or of data. Figure 1",1 shows some typical associations
for the nodes, arcs, and flows in a variety of physical networks.

Network flow problems also arise in surprising ways for problems that on the
surface might not appear to involve networks at all. Sometimes these applications
are linked to a physical entity, and at other times they are not. Sometimes the nodes
and arcs have a temporal dimension that models activities that take place over time.

Sec. 1.3 Applications 9

Physical analog of
Applications nodes Physical analog of arcs Flow

Communication Telephone exchanges, Cables, fiber optic Voice messages, data,
systems computers, links, microwave video transmissions

transmission relay links
facilities, satellites

Hydraulic systems Pumping stations, Pipelines Water, gas, oil,
reservoirs, lakes hydraulic fluids

Integrated computer Gates, registers, Wires Electrical current
circuits processors

Mechanical systems Joints Rods, beams, springs Heat, energy

Transportation Intersections, airports, Highways, railbeds, Passengers, freight,
systems rail yards airline routes vehicles, operators

Figure 1.1 Ingredients of some common physical networks.

Many scheduling applications have this flavor. In any event, networks model a va­
riety of problems in project, machine, and crew scheduling; location and layout
theory; warehousing and distribution; production planning and control; and social,
medical, and defense contexts. Indeed, these various applications of network flow
problems seem to be more widespread than are the applications of physical networks.
We present many such applications throughout the text and in the exercises; Chapter
19, in particular, brings together and summarizes many applications. In the following
discussion, to set a backdrop for the next few chapters, we describe several sample
applications that are intended to illustrate a range of problem contexts and to be
suggestive of how network flow problems arise in practice. This set of applications
provides at least one example of each of the network models that we introduced in
the preceding section.

Application 1.1 Reallocation of Housing

A housing authority has a number of houses at its disposal that it lets to tenants.
Each house has its own particular attributes. For example, a house might or might
not have a garage, it has a certain number of bedrooms, and its rent falls within a
particular range. These variable attributes permit us to group the house into several
categories, which we index by i = 1, 2, ... , n.

Over a period of time a number of tenants will surrender their tenancies as
they move or choose to live in alternative accommodations. Furthermore, the re­
quirements of the tenants will change with time (because new families arrive, children
leave home, incomes and jobs change, and other considerations). As these changes
occur, the housing authority would like to relocate each tenant to a house of his or
her choice category. While the authority can often accomplish this objective by
simple exchanges, it will sometimes encounter situations requiring multiple moves:
moving one tenant would replace another tenant from a house in a different category,
who, in turn, would replace a tenant from a house in another category, and so on,
thus creating a cycle of changes. We call such a change a cyclic change. The decision

10 Introduction Chap. J

problem is to identify a cyclic change, if it exists, or to show that no such change
exists.

To solve this problem as a network problem, we first create a relocation graph
G whose nodes represent various categories of houses. We include arc (i, j) in the
graph whenever a person living in a house of category i wishes to move to a house
of category j. A directed cycle in G specifies a cycle of changes that will satisfy the
requirements of one person in each of the categories contained in the cycle. Applying
this method iteratively, we can satisfy the requirements of an increasing number of
persons.

This application requires a method for identifying directed cycles in a network,
if they exist. A well-known method, known as topological sorting, will identify such
cycles. We discuss topological sorting in Section 3.4. In general, many tenant reas­
signments might be possible, so the relocation graph G might contain several cycles.
In that case the authority's management would typically want to find a cycle con­
taining as few arcs as possible, since fewer moves are easier to handle administra­
tively. We can solve this problem using a shortest path algorithm (see Exercise 5.38).

Applioation 1.2 Assortment of Struotural Steel Beams

In its various construction projects, a construction company needs structural steel
beams of a uniform cross section but of varying lengths. For each i = 1, ... , n,
let D; > 0 denote the demand of the steel beam of length L;, and assume that LJ <
L2 < '" < Ln. The company could meet its needs by maintaining and drawing upon
an inventory of stock containing exactly Di units of the steel beam of length L;. It
might not be economical to carry an the demanded lengths in inventory, however,
because of the high cost of setting up the inventory facility to store and handle each
length. In that case, if the company needs a beam oflength L; not carried in inventory,
it can cut a beam of longer length down to the desired length. The cutting operation
will typically produce unusable steel as scrap. Let K; denote the cost for setting up
the inventory facility to handle beams of length L j , and let C; denote the cost of a
beam of length L;. The company wants to determine the lengths of beams to be
carried in inventory so that it will minimize the total cost of (1) setting up the in­
ventory facility, and (2) discarding usable steel lost as scrap.

We formulate this problem as a shortest path problem as follows. We construct
a directed network G on (n + 1) nodes numbered 0, 1, 2, ... , n; the nodes in this
network correspond to various beam lengths. Node 0 corresponds to a beam of length
zero and node n corresponds to the longest beam. For each node i, the network
contains a directed arc to every node j = i + 1, i + 2, ... , n. We interpret the
arc (i, j) as representing a storage strategy in which we hold beams of length Lj in
inventory and use them to satisfy the demand of all the beams of lengths L; + J ,

Li+2' .•• , Lj • The cost Cij of the arc (i, j) is
j

Cij = Kj + Cj L. D k·
k=i+ J

The cost of arc (i, j) has two components: (1) the fixed cost Kj of setting up
the inventory facility to handle beams of length Lj , and (2) the cost of using beams
oflength L j to meet the demands of beams of lengths L;+ 1, ••• ,Lj • A directed path

Sec. 1.3 Applications 11

from node 0 to node n specifies an assortment of beams to carry in inventory and
the cost of the path equals the cost associated with this inventory scheme. For
example, the path 0-4-6-9 corresponds to the situation in which we set up the
inventory facility for handling beams of lengths L4 , L6 , and L9. Consequently, the
shortest path from node 0 to node n would prescribe the least cost assortment of
structural steel beams.

Application 1.8 Tournament Problem

Consider a round-robin tournament between n teams, assuming that each team plays
against every other team c times. Assume that no game ends in a draw. A person
claims that ai for 1 :s i :s n denotes the number of victories accrued by the ith team
at the end of the tournament. How can we determine whether the given set of non­
negative integers at, 0.2, ..• , an represents a possible winning record for the n
teams?

Define a directed network G = (N, A) with node set N = {I, 2, ... , n} and
arc set A = {(i, j) E N x N: i < j}. Therefore, each node i is connected to the nodes
i + 1, i + 2, ... , n. Let Xij for i < j represent the number of times team i defeats
teamj. Observe that the total number of times team i beats teams i + 1, i + 2, ... ,
n is ~{j:(i,j)EA} Xij. Also observe that the number of times that team i beats a team
j < i is c - Xji. Consequently, the total number of times that team i beats teams 1,
2, ... , i-I is (i - l)c - ~{j:(j,i)EA} Xji' The total number of wins of team i must
equal the total number of times it beats the teams 1, 2, ... , n. The preceding
observations show that

L Xij­
{j:(i,j)EA}

L Xji = (X; - (i - l)c
{j:(j,i)EA}

for all i E N. (1.3)

In addition, a possible winning record must also satisfy the following lower
and upper bound conditions:

for all (i, j) E A. (1.4)

This discussion shows that the record a; is a possible winning record if
the constraints defined by (1.3) and (1.4) have a feasible solution x. Let b(i) =
(X; - (i - l)c. Observe that the expressions LiEN(Xi and LiEN(i - l)c are both
equal to cn(n - 1)/2, which is the total number of games played. Consequently,
LiE~(i) = O. The problem of finding a feasible solution of a network flow system

like (1.3) and (1.4) is called a feasible flow problem and can be solved by solving a
maximum flow problem (see Section 6.2).

Application 1.4 Leveling Mountainous Terrain

This application was inspired by a common problem facing civil engineers when they
are building road networks through hilly or mountainous terrain. The problem con­
cerns the distribution of earth from high points to low points of the terrain to produce
a leveled roadbed. The engineer must determine a plan for leveling the route by

12 Introduction Chap. 1

specifying the number of truckloads of earth to move between various locations
along the proposed road network.

We first construct a terrain graph: it is an undirected graph whose nodes rep­
resent locations with a demand for earth (low points) or locations with a supply of
earth (high points). An arc of this graph represents an available route for distributing
the earth, and the cost of this arc represents the cost per truckload of moving earth
between the two points. (A truckload is the basic unit for redistributing the earth.)
Figure 1.2 shows a portion of the terrain graph.

5 Figure 1.2 Portion of the terrain graph.

A leveling plan for a terrain graph is a flow (set of truckloads) that meets the
demands at nodes (levels the low points) by the available supplies (by earth obtained
from high points) at the minimum cost (for the truck movements). This model is
clearly a minimum cost flow problem in the terrain graph.

Application 1. IS Rewiring of Typewriters

For several years, a company had been using special electric typewriters to prepare
punched paper tapes to enter data into a digital computer. Because the typewriter
is used to punch a six-hole paper tape, it can prepare 26 = 64 binary hole/no-hole
patterns. The typewriters have 46 characters, and each punches one of the 64 pat­
terns. The company acquired a new digital computer that uses a different coding
hole/no-hole patterns to represent characters. For example, using 1 to represent a
hole and 0 to represent a no-hole, the letter A is 111100 in the code for the old
computer and 011010 in the code for the new computer. The typewriter presently
punches the former and must be modified to punch the latter.

Each key in the typewriter is connected to a steel code bar, so changing the
code of that key requires mechanical changes in the steel bar system. The extent of
the changes depends on how close the new and old characters are to each other.
For the letter A, the second, third, and sixth bits are identical in the old and new
codes and no changes need be made for these bits; however, the first, fourth, and
fifth bits are different, so we would need to make three changes in the steel code
bar connected to the A-key. Each change involves removing metal at one place and

Sec. 1.3 Applications 13

adding metal at another place. When a key is pressed, its steel code bar activates
six cross-bars (which are used by all the keys) that are connected electrically to six
hole punches. If we interchange the fourth and fifth wires of the cross-bars to the
hole punches (which is essentially equivalent to interchanging the fourth and fifth
bits of all characters in the old code), we would reduce the number of mechanical
changes needed for the A-key from three to one. However, this change of wires
might increase the number of changes for some of the other 45 keys. The problem,
then, is how to optimally connect the wires from the six cross-bars to the six punches
so that we can minimize the number of mechanical changes on the steel code bars.

We formulate this problem as an assignment problem as follows. Define a
network G = (NJ U N 2, A) with node sets NJ = {I, 2, ... , 6} and N2 = {I',
2', ... , 6'}, and an arc set A = NJ x N 2; the cost of the arc (i, j') E A is the
number of keys (out of 46) for which the ith bit in the old code differs from the jth
bit in the new code. Thus if we assign cross-bar i to the punch j, the number of
mechanical changes needed to print the ith bit of each symbol correctly is Cij' Con­
sequently, the minimum cost assignment will minimize the number of mechanical
changes.

Application 1.6 Pairing Stereo Speakers

As a part of its manufacturing process, a manufacturer of stereo speakers must pair
individual speakers before it can sell them as a set. The performance of the two
speakers depends on their frequency response. To measure the quality of the pairs,
the company generates matching coefficients for each possible pair. It calculates
these coefficients by summing the absolute differences between the responses of the
two speakers at 20 discrete frequencies, thus giving a matching coefficient value
between 0 and 30,000. Bad matches yield a large coefficient, and a good pairing
produces a low coefficient.

The manufacturer typically uses two different objectives in pairing the speak­
ers: (1) finding as many pairs as possible whose matching coefficients do not exceed
a specification limit, or (2) pairing speakers within specification limits to minimize
the total sum of the matching coefficients. The first objective minimizes the number
of pairs outside specification, and so the number of speakers that the firm must sell
at a reduced price. This model is an application of the nonbipartite cardinality match­
ing problem on an undirected graph: the nodes of this graph represent speakers and
arcs join two nodes if the matching coefficients of the corresponding speakers are
within the specification limit. The second model is an application of the nonbipartite
weighted matching problem.

Application 1.7 Measuring Homogeneity of Bimetallio
Objects

This application shows how a minimum spanning tree problem can be used to de­
termine the degree to which a bimetallic object is homogeneous in composition. To
use this approach, we measure the composition of the bimetallic object at a set of
sample points. We then construct a network with nodes corresponding to the sample

14 Introduction Chap. 1

points and with an arc connecting physically adjacent sample points. We assign a
cost with each arc (i, j) equal to the product of the physical (Euclidean) distance
between the sample points i and j and a homogeneity factor between 0 and 1. This
homogeneity factor is 0 if the composition of the corresponding samples is exactly
alike, and is 1 if the composition is very different; otherwise, it is a number between
o and 1. Note that this measure gives greater weight to two points if they are different
and are far apart. The cost of the minimum spanning tree is a measure of the ho­
mogeneity of the bimetallic object. The cost of the tree is 0 if all the sample points
are exactly alike, and high cost values imply that the material is quite nonhomo­
geneous.

Application 1.8 Electrical Networks

The electrical network shown in Figure 1.3 has eight resistors, two current sources
(at nodes 1 and 6), and one current sink (at node 7). In this network we wish to
determine the equilibrium current flows through the resistors. A popular method for
solving this problem is to introduce a variable Xi} representing the current flow on
the arc (i, j) of the electrical network and write a set of equilibrium relationships
for these flows; that is, the voltage-current relationship equations (using Ohm's law)
and the current balance equations (using Kirchhofs law). The solution of these
equations gives the arc currents Xi}. An alternative, and possibly more efficient ap­
proach is to formulate this problem as a convex cost flow problem. This formulation
uses the well-known result that the equilibrium currents on resistors are those flows
for which the resistors dissipate the least amount of the total power supplied by the
voltage sources (i.e., the electric current follows the path of least resistance). Ohm's
law shows that a resistor of resistance 'i; dissipates ,;;xri watts of power. Therefore,
we can obtain the optimal currents by solving the following convex cost flow prob­
lem:

Minimize ~ rijxt
(i,j)EA

subject to

~ Xi)- ~ Xji = b(i)
{j: (i,j)EA} {j:(j,i)EA}

for each node i EN,

for each arc (i,j) E A.

In this model b(i) represents the supply/demand of a current source or sink.

Figure 1.3 Electrical network.

Sec. 1.3 Applications IS

The formulation of a set of equilibrium conditions as an equivalent optimization
model is a poweIful idea in the physical sciences, dating from the last century, which
has become known as so-called variational principles. The term "variational" arises
because the equilibrium conditions are the "optimality conditions" for the equivalent
optimization model that tell us that we cannot improve the optimal solution by vary­
ing (hence the term "variational") the optimal solution to this optimization model.

Application 1.9 Determining an Optimal Energy Policy

As part of their national planning effort, most countries need to decide on an energy
policy (i.e., how to utilize the available raw materials to satisfy their energy needs).
Assume, for simplicity, that a particular country has four basic raw materials: crude
oil, coal, uranium, and hydropower; and it has four basic energy needs: electricity,
domestic oil, petroleum, and gas. The country has the technological base and in­
frastructure to convert each raw material into one or more energy forms. For ex­
ample, it can convert crude oil into domestic oil or petrol, coal into electricity, and
so on. The available technology base specifies the efficiency and the cost of each
conversion. The objective is to satisfy, at the least possible cost of energy conversion,
a certain annual consumption level of various energy needs from a given annual
production of raw materials.

Figure 1.4 shows the formulation of this problem as a generalized network flow
problem. The network has three types of arcs: (1) source arcs (s, i) emanating from
the source node s, (2) sink arcs (j, t) entering the sink node t, and (3) conversion
arcs (i, j). The source arc (s, i) has a capacity equal to the availability a(i) of the
raw material i and a flow multiplier of value 1. The sink arc (j, t) has capacity equal
to the demand ~(j) of type j energy need and flow mUltiplier of value 1. Each con­
version arc (i, j) represents the conversion of raw material i into the energy form j;
the mUltiplier of this arc is the efficiency of the conversion (i.e., units of energy j
obtained from 1 unit of raw material i); and the cost of the arc (i, j) is the cost of
this conversion. In this model, since a(i) is an upper bound on the use of raw material

Crude oil Electricity

4

~a(i) --.
;=1

Hydropower Gas

Figure 1.4 Energy problem as a generalized network flow problem.

16 Introduction Chap. J

i, ~:= I <x(i) is an upper bound on the flow out of node s. Similarly, :L: = I J3(i) is a
lower bound on the flow into node t. In Exercise 15.29, we show how to convert
this problem into a standard form without bounds on supplies and demands.

Application 1.10 Racial Balancing of Schools

In 1968, the U.S. Supreme Court ruled that all school systems in the country should
begin admitting students to schools on a nondiscriminatory basis and should employ
faster techniques to promote desegregated schools across the nation. This decision
made it necessary for many school systems to develop radically different procedures
for assigning students to schools. Since the Supreme Court did not specify what
constitutes an acceptable racial balance, the individual school boards used their own
best judgments to arrive at acceptable criteria on which to base their desegregation
plans. This application describes a multicommodity flow model for determining an
optimal assignment of students to schools that minimizes the total distance traveled
by the students, given a specification of lower and upper limits on the required racial
balance in each school.

Suppose that a school district has S schools and school j has capacity Uj. For
the purpose of this formulation, we divide the school district into L popUlation cen­
ters. These locations might, for example, be census tracts, bus stops, or city blocks.
The only restriction on the population centers is that they be finite in number and
that a single distance measure reasonably approximates the distance any student at
center i must travel if he or she is assigned to school j. Let Sik denote the available
number of students of the kth ethnic group at the ith population center. The objective
is to assign students to schools in a way that achieves the desired ethnic composition
for each school and minimizes the total distance traveled by the students. Each
school j has the ethnic requirement that it must enroll at least ljk and no more than
Ujk students from the kth ethnic group.

We can model this problem as a multi commodity flow problem on an appro­
priately defined network. Figure 1.5 shows this network representation for a problem
with three population centers and three schools. This network has one node for each
popUlation center and for each school as well as a "source" and a "sink" node for
each ethnic group. The flow commodities represent the students of different ethnic
groups. The students of the kth ethnic group flow from source ak to sink ek via
population center and school nodes. We set the upper bound on arc (ak, bi) con­
necting the kth ethnic group source node and the ith population center equal to Sik

and the cost of the arc (b i , Cj) connecting the ith popUlation center and jth school
equal to f ij, the distance between that population center and that school. By setting
the capacity of the arc (Cj, dj) equal to Uj, we ensure that the total number of students
(of all ethnic groups) allocated to thejth school does not exceed the maximum student
population for this school. The students of all ethnic groups must share the capacity
of each school. Finally, we incorporate constraints on the ethnic compositions of
the schools by setting the lower and upper bounds on the arc (dj , ek) equal to ljk and
Ujk. It is fairly easy to verify that the multicommodity flow problem models the racial
balancing problem, so a minimum multicommodity flow will specify an optimal as­
signment of students to the schools.

Sec. 1.3 Applications 17

Ethnic
groups
(sources)

Population
centers

Schools
(input)

Schools
(output)

Ethnic
groups
(sinks)

Figure I.S Formulating the racial balancing problem as a multicommodity flow prob­
lem.

1.4 SUMMABY

In this chapter we introduced the network flow problems that we study in this book
and described a few scenarios in which these problems arise. We began by giving
a linear programming formulation of the minimum cost flow problem and identifying
several special cases: the shortest path problem, the maximum flow problem, the
assignment problem, the transportation problem, and the circulation problem. We
next described several generalizations of the minimum cost flow problem: the convex
cost flow problem, the generalized network flow problem, and the multicommodity
flow problem. Finally, we described two other important network models: the min­
imum spanning tree problem and the matching problem. Although these two prob­
lems are not network flow problems per se, we have included them in this book
because they are closely related to several network flow problems and because they
arise often in the context of network optimization.

Networks are pervasive and arise in numerous application settings. Physical
networks, which are the most readily identifiable classes of networks, arise in many
applications in many different types of systems: communications, hydraulic, me­
chanical, electronic, and transportation. Network flow problems also arise in sur­
prising ways in optimization problems that on the surface might not appear to involve
networks at all. We described several of these "indirect" applications of network
flow problems, in such problem settings as urban housing, production planning,
electrical networks, racial balancing, leveling mountainous terrain, evaluating tour­
naments, matching stereo speakers, wiring typewriters, assessing the homogeneity
of physical materials, and energy planning. The applications we have considered
offer only a brief glimpse of the wide-ranging practical importance of network flows;
although our discussion of applications in this chapter is limited, it does provide at
least one example of each of the network models that we have introduced in this
chapter.

18 Introduction Chap. J

REFERENCE NOTES

The study of network flow models predates the development of linear programming.
The first studies in this problem domain, conducted by Kantorovich [1939], Hitch­
cock [1941], and Koopmans [1947], considered the transportation problem, a special
case of the minimum cost flow problem. These studies provided insight into the
problem structure and yielded algorithmic approaches. Interest in the network flow
problems grew with the advent of the simplex method by Oantzig in 1947, who also
specialized this algorithm for the transportation problem (see Oantzig [1951]).

During the 1950s, researchers began to exhibit increasing interest in the min­
imum cost flow problem and its specializations-the shortest path problem, the
maximum flow problem, and the assignment problem-mainly because of the im­
portance of these models in real-world applications. Soon researchers developed
special algorithms for solving these problems. Dantzig, Ford, and Fulkerson pi­
oneered these efforts. Whereas Oantzig focused on the simplex-based methods, Ford
and Fulkerson developed primal-dual combinatorial algorithms. The landmark
books by Oantzig [1962] and Ford and Fulkerson [1962] present thorough discussions
of these early contributions.

In the years following this groundbreaking work, network flow problems and
their generalizations emerged as major research topics in thousands of papers and
numerous text and reference books. The following books summarize developments
in the field and serve as a guide to the literature:

1. Flows in Networks (Ford and Fulkerson [1962])
2. Programming, Games and Transportation Networks (Berge and Ghouila-Houri

[1962])
3. Finite Graphs and Networks (Busacker and Saaty [1965])
4. Network Flow, Transportation and Scheduling (Iri [1969])
5. Integer Programming and Network Flows (Hu [1969])
6. Communication, Transmission, and Transportation Networks (Frank and

Frisch [1971])
7. Flows in Transportation Networks (Potts and Oliver [1972])
8. Graph Theory: An Algorithmic Approach (Christophides [1975])
9. Flow Algorithms (Adel'son-Vel'ski, Oinics, and Karzanov [1975])

10. Graph Theory with Applications (Bondy and Murty [1976])
11. Combinatorial Optimization: Networks and Matroids (Lawler [1976])
12. Optimization Algorithms for Networks and Graphs (Minieka [1978])
13. Graph Algorithms (Even [1979])
14. Algorithms for Network Programming (Kennington and Helgason [1980])
15. Network Flow Programming (Jensen and Barnes [1980])
16. Fundamentals of Network Analysis (Phillips and Garcia-Oiaz [1981])
17. Combinatorial Optimization: Algorithms and Complexity (Papadimitriou and

Steiglitz [1982])
18. Discrete Optimization Algorithms (Syslo, Oeo, and Kowalik [1983])
19. Data Structures and Network Algorithms (TaIjan [1983])

Chap. 1 Reference Notes 19

20. Graphs and Algorithms (Gondran and Minoux [1984])
21. Network Flows and Monotropic Optimization (Rockafellar [1984])
22. Linear Programming and Network Models (Gupta [1985])
23. Programming in Networks and Graphs (Derigs [1988])
24. Linear Programming and Network Flows, 2nd ed. (Bazaraa, Jarvis, and Sherali

[1990])

As an additional source of references, the reader might consult the bibliogra­
phies on network optimization prepared by Golden and Magnanti [1977], Ahuja,
Magnanti, and Orlin [1989, 1991], Bazaraa, Jarvis, and Sherali [1990], and the ex­
tensive set of references on integer programming compiled by researchers at the
University of Bonn (Kastning [1976], Hausman [1978], and Von Randow [1982,
1985]).

Since the applications of network flow models are so pervasive, no single source
provides a comprehensive account of network flow models and their impact on
practice. Several researchers have prepared general surveys of selected application
areas. Notable among these are the papers by Bennington [1974], Glover and Kling­
man [1976], Bodin, Golden, Assad, and Ball [1983], Aronson [1989], and Glover,
Klingman, and Phillips [1990]. The book by Gondran and Minoux [1984] also de­
scribes a variety of applications of network flow problems. In this book we describe
or cite over 150 selected applications of network flow problems. We provide the
references for these problems in the reference notes given at the end of Chapters
4,6,9, 12, 13, 14, 15, 16, 17, and 19. We have adapted many of these applications
from the paper of Ahuja, Magnanti, Orlin, and Reddy [1992].

The applications we present in Section 1.3 are adapted from the following
references:

1. Reallocation of housing (Wright [1975])
2. Assortment of structural steel beams (Frank [1965])
3. Tournament problem (Ford and Johnson [1959])
4. Leveling mountainous terrain (Farley [1980])
5. Rewiring of typewriters (Machol [1961])
6. Pairing stereo speakers (Mason and Philpott [1988])
7. Measuring homogeneity of bimetallic objects (Shier [1982])
8. Electrical networks (Hu [1966])
9. Determining an optimal energy policy (Gondran and Minoux [1984])

10. Racial balancing of schools (Clarke and Surkis [1968])

EXERCISES

1.1. Formulate the following problems as circulation problems: (1) the shortest path prob­
lem; (2) the assignment problem; and (3) the transportation problem.

1.2. Consider a variant of the transportation problem for which (1) the sum of demands
exceeds the sum of supplies, and (2) we incur a penalty Pi for every unit of unfulfilled
demand at demand nodej. Formulate this problem as a standard transportation problem
with total supply equal to total demand.

20 Introduction Chap. 1

1.3. In this exercise we examine a generalization of Application 1.2, concerning assortment
of structural steel beams. In the discussion of that application, we assumed that if we
must cut a beam of length 5 units to a length of 2 units, we obtain a single beam of
length 2 units; the remaining 3 units have no value. However, in practice, from a beam
of length 5 we can cut two beams of length 2; the remaining length of 1 unit will have
some scrap value. Explain how we might incorporate the possibility of cutting mUltiple
beam lengths (of the same length) from a single piece and assigning some salvage value
to the scrap. Assume that the scrap has a value of r3 per unit length.

1.4. Large-scale personnel assignment. A recurring problem in the U.S. armed forces is ef­
ficient distribution and utilization of skilled personnel. Each month thousands of in­
dividuals in the U.S. military vacate jobs, and thousands of personnel become available
for assignment. Each job has particular characteristics and skill requirements, while
each person from the pool of available personnel has specific skills and preferences.
Suppose that we use this information to compute the utility (or desirability) dij of each
possible assignment of a person to a job. The decision problem is to assign personnel
to the vacancies in a way that maximizes the total utility of all the assignments. Explain
how to formulate this problem as a network flow problem.

1.5. Dating problem. A dating service receives data from p men and p women. These data
determine what pairs of men and women are mutually compatible. Since the dating
service's commission is proportional to the number of dates it arranges, it would like
to determine the maximum number of compatible couples that can be formed. Formulate
this problem as a matching problem.

1.6. Pruned chessboard problem. A chessboard consists of 64 squares arranged in eight rows
and eight columns. A domino is a wooden or plastic piece consisting of two squares
joined on a side. Show that it is possible to fully cover the chessboard using 32 dominos
(i.e., each domino covers two squares of the board, no two dominos overlap, and some
domino covers each square). A pruned board is a chessboard with some squares re­
moved.
(a) Suppose that we want to know whether it is possible to fully cover a pruned board,

and if not, to find the maximum number of dominos we can place on the pruned
board so that each domino covers two squares and no two dominos overlap. For­
mulate this problem as a bipartite cardinality matching problem.

(b) Suppose that we prune only two diagonally opposite corners of the chessboard.
Show that we cannot cover the resulting board with 31 dominos.

1.7. Paragraph problem. The well-known document processing program TeX uses an op­
timization procedure to decompose a paragraph into several lines so that when lines
are left- and right-adjusted, the appearance of the paragraph wiH be the most attractive.
Suppose that a paragraph consists of n words and that each word is assigned a sequence
number. Let Cij denote the attractiveness of a line if it begins with the word i and ends
with the word} - 1. The program TeX uses formulas to compute the value of each Cij.

Given the cu,'s, show how to formulate the problem of decomposing the paragraph into
several lines of text in order to maximize the total attractiveness (of all lines) as a
shortest path problem.

1.8. Seat-sharing problem. Several families are planning a shared car trip on scenic drives
in the White Mountains, New Hampshire. To minimize the possibility of any quarrels,
they want to assign individuals to cars so that no two members of a family are in the
same car. Formulate this problem as a network flow problem.

1.9. Police patrol problem (Khan [1979]). A police department in a small city consists of
three precincts denoted PI, Pz, and P3. Each precinct is assigned a number of patrol
cars equipped with two-way radios and first-aid equipment. The department operates
with three shifts. Figure 1.6(a) and (b) shows the minimum and maximum number of
patrol cars needed in each shift. Administrative constraints require that (1) shifts 1, 2,
and 3 have, respectively, at least cars 10, 20, and 18 cars available; and (2) precincts
Ph P2, and P3 are, respectively, allocated at least 10, 14, and 13 cars. The police de­
partment wants to determine an allocation of patrol units that will meet all the require-

Chap. J Exercises 21

Shift Shift Shift Shift Shift Shift
I 2 3 1 2 3

PI 2 4 3 PI 3 7 5

P2 3 6 5 P2 5 7 10

P3 5 7 6 P3 8 12 10

(a) (b)

Figure 1.6 Patrol car requirements: (a) minimum required per shift; (b) maximum
required per shift.

ments with the fewest possible units committed to the field. Formulate this problem
as a circulation problem.

1.10. Forest scheduling problem. Paper and wood products companies need to define cutting
schedules that will maximize the total wood yield of their forests over some planning
period. Suppose that a company with control of p forest units wants to identify the
best cutting schedule over a planning horizon of k years. Forest unit i has a total acreage
of aj units, and studies that the company has undertaken predict that this unit will have
wij tons of woods available for harvesting in the jth year. Based on its prediction of
economic conditions, the company believes that it should harvest at least Ij tons of
wood in year j. Due to the availability of equipment and personnel, the company can
harvest at most Uj tons of wood in year j. Formulate the problem of determining a
schedule with maximum wood yield as a network flow problem.

11 Introduction Chap. 1

2

PATHS, TREES, AND CYCLES

Cbapter Outline

2.1 Introduction
2.2 Notation and Definitions
2.3 Network Representations
2.4 Network Transformations
2.5 Summary

S.l INTRODUCTION

I hate definitions.
-Benjamin Disraeli

Because graphs and networks arise everywhere and in a variety of alternative forms,
several professional disciplines have contributed important ideas to the evolution of
network flows. This diversity has yielded numerous benefits, including the infusion
of many rich and varied perspectives. It has also, however, imposed costs: For
example, the literature on networks and graph theory lacks unity and authors have
adopted a wide variety of conventions, customs, and notation. If we so desired, we
could formulate network flow problems in several different standard forms and could
use many alternative sets of definitions and terminology. We have chosen to adopt
a set of common, but not uniformly accepted, definitions: for example, arcs and
nodes instead of edges and vertices (or points). We have also chosen to use models
with capacitated arcs and with exogenous supplies and demands at the nodes. The
circulation problem we introduced in Chapter 1, without exogenous supplies and
demands, is an alternative model and so is the capacitated transportation problem.
Another special case is the uncapacitated network flow problem. In Chapter 1 we
viewed each of these models as special cases of the minimum cost network flow
problem. Perhaps somewhat surprisingly, we could have started with any of these
models and shown that all the others were special cases. In this sense, each of these
models offers another way to capture the mathematical essence of network flows.

In this chapter we have three objectives. First, we bring together many basic
definitions of network flows and graph theory, and in doing so, we set the notation
that we will be using throughout this book. Second, we introduce several different
data structures used to represent networks within a computer and discuss the relative
advantages and disadvantages of each of these structures. In a very real sense, data
structures are the life blood of most network flow algorithms, and choosing among
alternative data structures can greatly influence the efficiency of an algorithm, both

23

in practice and in theory. Consequently, it is important to have a good understanding
of the various available data structures and an idea of how and when to use them.
Third, we discuss a number of different ways to transform a network flow problem
and obtain an equivalent model. For example, we show how to eliminate flow bounds
and formulate any model as an uncapacitated problem. As another example, we
show how to formulate the minimum cost flow problem as a transportation problem
(i.e., how to define it over a bipartite graph). This discussion is of theoretical interest,
because it establishes the equivalence between several alternative models and there­
fore shows that by developing algorithms and theory for any particular model, we
will have at hand algorithms and theory for several other models. That is, our results
enjoy a certain universality. This development is also of practical value since on
various occasions throughout our discussion in this book we will find it more con­
venient to work with one modeling assumption rather than another-our discussion
of network transformations shows that there is no loss in generality in doing so.
Moreover, since algorithms developed for one set of modeling assumptions also
apply to models formulated in other ways, this discussion provides us with one very
reassuring fact: We need not develop separate computer implementations for every
alternative formulation, since by using the transformations, we can use an algorithm
developed for anyone model to solve any problem formulated as one of the alter­
native models.

We might note that many of the definitions we introduce in this chapter are
quite intuitive, and much of our subsequent discussion does not require a complete
understanding of all the material in this chapter. Therefore, the reader might simply
wish to skim this chapter on first reading to develop a general overview of its content
and then return to the chapter on an "as needed" basis later as we draw on the
concepts introduced at this point.

2.2 NOTATION AND DEFINITIONS

In this section we give several basic definitions from graph theory and present some
basic notation. We also state some elementary properties of graphs. We begin by
defining directed and undirected graphs.

Directed Graphs and Networks: A directed graph G = (N, A) consists of a set N of nodes
and a set A of arcs whose elements are ordered pairs of distinct nodes. Figure 2.1 gives
an example of a directed graph. For this graph, N= {t, 2, 3,4,5,6, 7} and A = {(l,
2), (l, 3), (2, 3), (2,4), (3, 6), (4, 5), (4, 7), (5, 2), (5, 3), (5, 7), (6, 7)}. A directed network
is a directed graph whose nodes and/or arcs have associated numerical values (typically,

Figure 2.1 Directed graph.

24 Paths, Trees, and Cycles Chap. 2

costs, capacities, and/or supplies and demands). In this book we often make no dis­
tinction between graphs and networks, so we use the terms "graph" and "network"
synonymously. As before, we let n denote the number of nodes and m denote the number
of arcs in G.

Undirected Graphs and Networks: We define an undirected graph in the same manner as we
define a directed graph except that arcs are unordered pairs of distinct nodes. Figure
2.2 gives an example of an undirected graph. In an undirected graph, we can refer to
an arc joining the node pair i and j as either (i, j) or (j, i). An undirected arc (i, j) can
be regarded as a two-way street with flow permitted in both directions: either from
node ito nodej or from nodej to node i. On the other hand, a directed arc (i,j) behaves
like a one-way street and permits flow only from node i to node j.

Figure 2.2 Undirected graph.

In most of the material in this book, we assume that the underlying network
is directed. Therefore, we present our subsequent notation and definitions for di­
rected networks. The corresponding definitions for undirected networks should be
transparent to the reader; nevertheless, we comment briefly on some definitions for
undirected networks at the end of this section.

Tails and Heads: A directed arc (i, j) has two endpoints i andj. We refer to node i as the tail
of arc (i, j) and node j as its head. We say that the arc (i, j) emanates from node i and
terminates at nodej. An arc (i,j) is incident to nodes i andj. The arc (i,j) is an outgoing
arc of node i and an incoming arc of node j. Whenever an arc (i, j) E A, we say that
node j is adjacent to node i.

Degrees: The indegree of a node is the number of incoming arcs of that node and its outdegree
is the number of its outgoing arcs. The degree of a node is the sum of its indegree and
outdegree. For example, in Figure 2.1, node 3 has an indegree of 3, an outdegree of 1,
and a degree of 4. It is easy to see that the sum of indegrees of all nodes equals the
sum of outdegrees of all nodes and both are equal to the number of arcs m in the network.

Adjacency List: The arc adjacency list AU) of a node i is the set of arcs emanating from that
node, that is, A(i) = {(i,j) E A: j EN}. The node adjacency list AU) is the set of nodes
adjacent to that node; in this case, A(i) = {j E N: (i,j) E A}. Often, we shall omit the
terms "arc" and "node" and simply refer to the adjacency list; in all cases it will be
clear from context whether we mean arc adjacency list or node adjacency list. We
assume that arcs in the adjacency list A(i) are arranged so that the head nodes of arcs
are in increasing order. Notice that I A(i) I equals the outdegree of node i. Since the
sum of all node outdegrees equals m, we immediately obtain the following property:

Property 2.1. LiEN I A(i) I = m.

Multiarcs and Loops: Multiarcs are two or more arcs with the same tail and head nodes. A
loop is an arc whose tail node is the same as its head node. In most of the chapters in
this book, we assume that graphs contain no multiarcs or loops.

Sec. 2.2 Notation and Definitions 2S

Subgraph: A graph G' = (N', A') is a subgraph of G = (N, A) if N' ~ N and A 1 ~ A. We
say that G' = (N', A ') is the subgraph of G induced by N' if A 1 contains each arc of
A with both endpoints in N'. A graph G ' = (N', A') is a spanning subgraph of G =
(N, A) if N' = N and A 1 ~ A.

Walk: A walk in a directed graph G = (N, A) is a subgraph of G consisting of a sequence
of nodes and arcs i. - al - i2 - a2 - ... - ir- I - ar-I - ir satisfying the property
that for aliI ::s; k ::s; r - 1, either ak = (h, h+ d E A or ak = (ik+ I, h) E A. Alternatively,
we shall sometimes refer to a walk as a set of (sequence of) arcs (or of nodes) without
any explicit mention of the nodes (without explicit mention of arcs). We illustrate this
definition using the graph shown in Figure 2.1. Figure 2.3(a) and (b) illustrates two
walks in this graph: 1-2-5-7 and 1-2-4-5-2-3.

I 3

(a) (b)

Figure 2.3 Examples of walks.

Directed Walk: A directed walk is an "oriented" version of a walk in the sense that for any
two consecutive nodes hand h+ Ion the walk, (h, h+ dE A. The walk shown in Figure
2.3(a) is not directed; the walk shown in Figure 2.3(b) is directed.

Path: A path is a walk without any repetition of nodes. The walk shown in Figure 2.3(a) is
also a path, but the walk shown in Figure 2.3(b) is not because it repeats node 2 twice.
We can partition the arcs of a path into two groups: forward arcs and backward arcs.
An arc (i, j) in the path is aforward arc if the path visits node i prior to visiting node
j, and is a backward arc otherwise. For example, in the path shown in Figure 2.3(a),
the arcs (1, 2) and (5, 7) are forward arcs and the arc (5, 2) is a backward arc.

Directed Path: A directed path is a directed walk without any repetition of nodes. In other
words, a directed path has no backward arcs. We can store a path (or a directed path)
easily within a computer by defining a predecessor index pred(j) for every node
j in the path. If i and j are two consecutive nodes on the path (along its orientation),
predU) = i. For the path 1-2-5-7 shown in Figure 2.3(a), pred(7) = 5, pred(5) = 2,
pred(2) = 1, and pred(1) = O. (Frequently, we shall use the convention of setting the
predecessor index of the initial node of a path equal to zero to indicate the beginning
of the path.) Notice that we cannot use predecessor indices to store a walk since a
walk may visit a node more than once, and a single predecessor index of a node cannot
store the multiple predecessors of any node that a walk visits more than once.

Cycle: A cycle is a path;, - i2 - ... - ir together with the arc (in id or (i" ir)' We shall
often refer to a cycle using the notation i l - ;2 - ... - ir - it. Just as we did for paths,
we can define forward and backward arcs in a cycle. In Figure 2.4(a) the arcs (5, 3)
and (3, 2) are forward arcs and the arc (5, 2) is a backward arc of the cycle 2-5-3.

26 Paths, Trees, and Cycles Chap. 2

Directed Cycle: A directed cycle is a directed path i l - i2 - ... - ir together with the arc
(ir, it>. The graph shown in Figure 2.4(a) is a cycle, but not a directed cycle; the graph
shown in Figure 2.4(b) is a directed cycle.

~ .

.......•.•. ':.: •... I ... ' •. ' ... : •.•.. '.'.' ..• : .•..••. '...... ~(i: ... : .•. : .•..•• ,1 ...••. : •....... : .•. '•• ' •...• '. ~ .. ,... ~

:1: .. !~

<a) <b) Figure 1.4 Examples of cycles.

Acyclic Graph: A graph is a acyclic if it contains no directed cycle.

Connectivity: We will say that two nodes i and j are connected if the graph contains at least
one path from node i to node j. A graph is connected if every pair of its nodes is
connected~ otherwise, the graph is disconnected. We refer to the maximal connected
subgraphs of a disconnected network as its components. For instance, the graph shown
in Figure 2.5(a) is connected, and the graph shown in Figure 2.5(b) is disconnected.
The latter graph has two components consisting of the node sets {I, 2, 3, 4} and {5, 6}.
In Section 3.4 we describe a method for determining whether a graph is connected or
not, and in Exercise 3.41 we discuss a method for identifying all components of a graph.

<a) (b)

Figure 1.S (a) Connected and (b) disconnected graphs.

Strong Connectivity: A connected graph is strongly connected if it contains at least one directed
path from every node to every other node. In Figure 2.5(a) the component [see Figure
2.5(b») defined on the node set {l, 2, 3, 4} is strongly connected; the component defined
by the node set {5, 6} is not strongly connected because it contains no directed path
from node 5 to node 6. In Section 3.4 we describe a method for determining whether
or not a graph is strongly connected.

Cut: A cut is a partition of the node set N into two parts, Sand 5 = N - S. Each cut defines
a set of arcs consisting of those arcs that have one endpoint in S and another endpoint
in 5. Therefore, we refer to this set of arcs as a cut and represent it by the notation
[S, 51. Figure 2.6 illustrates a cut with S = {l, 2, 3} and 5 = {4, 5, 6, 7}. The set of
arcs in this cut are {(2, 4), (5, 2), (5, 3), (3, 6)}.

Sec. 2.2 Notation and Definitions 27

Figure 2.6 Cut.

s-t Cut: ~n s-t cut is defined with respect to two disti~uished nodes sand t, and is a cut
[S, S] satisfying the property that s E Sand t E S. For instance, if s = 1 and t = 6,
the cut depicted in Figure 2.6 is an s-t cut; but if s = 1 and t = 3, this cut is not an
s-t cut.

Figure 2.7 Example of two trees.

Tree. A tree is a connected graph that contains no cycle. Figure 2.7 shows two examples of
trees.

A tree is a very important graph theoretic concept that arises in a variety of
network flow algorithms studied in this book. In our subsequent discussion in later
chapters, we use some of the following elementary properties of trees.

Property 2.2
(a) A tree on n nodes contains exactly n - 1 arcs.
(b) A tree has at least two leaf nodes (i.e., nodes with degree O.
(c) Every two nodes of a tree are connected by a unique path.

Proof. See Exercise 2.13.

Forest: A graph that contains no cycle is a forest. Alternatively, a forest is a collection of
trees. Figure 2.8 gives an example of a forest.

28 Paths, Trees, and Cycles Chap. 2

Figure 2.8 Forest.

Subtree: A connected subgraph of a tree is a subtree.
Rooted Tree: A rooted tree is a tree with a specially designated node, called its root; we

regard a rooted tree as though it were hanging from its root. Figure 2.9 gives an instance
of a rooted tree; in this instance, node 1 is the root node.

Figure 2.9 Rooted tree.

We often view the arcs in a rooted tree as defining predecessor-successor (or
parent-child) relationships. For example, in Figure 2.9, node 5 is the predecessor
of nodes 6 and 7, and node 1 is the predecessor of nodes 2, 4, and 5. Each node i
(except the root node) has a unique predecessor, which is the next node on the
unique path in the tree from that node to the root; we store the predecessor of node
i using a predecessor index pred(i). If j = pred(i), we say that node j is the pred­
ecessor of node i and node i is a successor of node j. These predecessor indices
uniquely define a rooted tree and also allow us to trace out the unique path from
any node back to the root. The descendants of a node i consist of the node itself,
its successors, successors of its successors, and so on. For example, in Figure 2.9
the node set {5, 6, 7, 8} is the set of descendants of node 5. We say that a node is
an ancestor of all of its descendants. For example, in the same figure, node 2 is an
ancestor of itself and node 3.

In this book we occasionally use two special type of rooted trees, called a
directed in-tree and a directed out-tree.

Directed·Out· Tree: A tree is a directed out-tree routed at node s if the unique path in the tree
from node s to every other node is a directed path. Figure 2.1O(a) shows an instance
of a directed out-tree rooted at node 1. Observe that every node in the directed out­
tree (except node 1) has indegree 1.

Sec. 2.2 Notation and Definitions 29

<a) (b)

Figure 2.10 Instances of directed out-tree and directed in-tree.

Directed-In-Tree: A tree is a directed in-tree routed at node s if the unique path in the tree
from any node to node s is a directed path. Figure 2.1O(b) shows an instance of a directed
in-tree rooted at node 1. Observe that every node in the directed in-tree (except node
1) has outdegree 1.

Spanning Tree: A tree T is a spanning tree of G if T is a spanning subgraph of G. Figure 2.11
shows two spanning trees of the graph shown in Figure 2.1. Every spanning tree of a
connected n-node graph G has (n - 1) arcs. We refer to the arcs belonging to a spanning
tree T as tree arcs and arcs not belonging to T as nontree arcs.

2

<a) (b)

Figure 2.11 Two spanning trees of the network in Figure 2.1.

Fundamental Cycles: Let T be a spanning tree of the graph G. The addition of any nontree
arc to the spanning tree T creates exactly one cycle. We refer to any such cycle as a
fundamental cycle of G with respect to the tree T. Since the network contains m -
n + 1 nontree arcs, it has m - n + 1 fundamental cycles. Observe that if we delete
any arc in a fundamental cycle, we again obtain a spanning tree.

Fundamental Cuts: Let T be a spanning tree of the graph G. The deletion of any tree arc of
the spanning tree T produces a disconnected graph containing two subtrees Tl and T2 •

Arcs whose endpoints belong to the different subtrees constitute a cut. We refer to any
such cut as a fundamental cut of G with respect to the tree T. Since a spanning tree
contains n - 1 arcs, the network has n - 1 fundamental cuts with respect to any tree.
Observe that when we add any arc in the fundamental cut to the two subtrees Tl and
T2 , we again obtain a spanning tree.

30 Paths, Trees, and Cycles Chap. 2

Bipartite Graph: A graph G = (N, A) is a bipartite graph if we can partition its node set into
two subsets NJ and N2 so that for each arc (i,}) in A either (i) i E NJ and} E N 2, or
(ii) i E N2 and} EN]. Figure 2.12 gives two examples of bipartite graphs. Although it
might not be immediately evident whether or not the graph in Figure 2.12(b) is bipartite,
if we define NJ = {l, 2, 3, 4} and N2 = {5, 6, 7, 8}, we see that it is.

11---------~

~--------------~ 2

(8) (b)
Figure 2.12 Examples of bipartite
graphs.

Frequently, we wish to discover whether or not a given graph is bipartite.
Fortunately, there is a very simple method for resolving this issue. We discuss this
method in Exercise 3.42, which is based on the following well-known characteri­
zation of bipartite graphs.

Property 2.3. A graph G is a bipartite graph if and only if every cycle in G
contains an even number of arcs.

Proof See Exercise 2.21.

Definitions for undirected networks. The definitions for directed net­
works easily translate into those for undirected networks. An undirected arc (i, j)
has two endpoints, i and j, but its tail and head nodes are undefined. If the network
contains the arc (i, j), node i is adjacent to node j, and node j is adjacent to node i.
The arc adjacency list (as well as the node adjacency list) is defined similarly except
that arc (i, j) appears in A (i) as well as A(j). Consequently, LiEN I AU) I = 2m.

The degree of a node is the number of nodes adjacent to node i. Each of the graph
theoretic concepts we have defined so far-walks, paths, cycles, cuts and trees­
has essentially the same definition for undirected networks except that we do not
distinguish between a path and a directed path, a cycle and a directed cycle, and so
on.

'.8 NETWORK REPRESENTATIONS

The performance of a network algorithm depends not only on the algorithm, but also
on the manner used to represent the network within a computer and the storage
scheme used for maintaining and updating the intermediate results. By representing

Sec. 2.3 Network Representations 31

a network more cleverly and by using improved data structures, we can often im­
prove the running time of an algorithm. In this section we discuss some popular
ways of representing a network. In representing a network, we typically need to
store two types of information: (1) the network topology, that is, the network's node
and arc structure; and (2) data such as costs, capacities, and supplies/demands as­
sociated with the network's nodes and arcs. As we will see, usually the scheme we
use to store the network's topology will suggest a natural way for storing the as­
sociated node and arc information. In this section we describe in detail represen­
tations for directed graphs. The corresponding representations for undirected net­
works should be apparent to the reader. At the end of the section, however, we
briefly discuss representations for undirected networks.

Node-Arc Incidence Matrix

The node-arc incidence matrix representation, or simply the incidence matrix rep­
resentation, represents a network as the constraint matrix of the minimum cost flow
problem that we discussed in Section 1.2. This representation stores the network as
an n x m matrix .N which contains one row for each node of the network and one
column for each arc. The column corresponding to arc (i,}) has only two nonzero
elements: It has a + 1 in the row corresponding to node i and a-I in the row
corresponding to node}. Figure 2.14 gives this representation for the network shown
in Figure 2.13.

0) (ell' u) ·0
(15,40)

2

(25,30)

(45, 10)
(35,50)

(35,50)

3
(25,20) Figure 2.13 Network example.

(I, 2) (I, 3) (2, 4) (3, 2) (4, 3) (4, 5) (5, 3) (5, 4)

0 0 0 0 0 0

2 -I 0 -I 0 0 0 0

3 0 -1 0 -1 0 -1 0

4 0 0 -I 0 0 -1

5 0 0 0 0 0 -1

Figure 2.14 Node-arc incidence matrix of the network example.

32 Paths, Trees, and Cycles Chap. 2

The node-arc incidence matrix has a very special structure: Only 2m out of
its nm entries are nonzero, all of its nonzero entries are + 1 or - 1, and each column
has exactly one + 1 and one -1. Furthermore, the number of + 1 's in a row equals
the outdegree of the corresponding node and the number of - 1 's in the row equals
the indegree of the node.

Because the node-arc incidence matrix .N' contains so few nonzero coefficients,
the incidence matrix representation of a network is not space efficient. More efficient
schemes, such as those that we consider later in this section would merely keep
track of the nonzero entries in the matrix. Because of its inefficiency in storing the
underlying network topology, use of the node-arc incidence matrix rarely produces
efficient algorithms. This representation is important, however, because it represents
the constraint matrix of the minimum cost flow problem and because the node-arc
incidence matrix possesses several interesting theoretical properties. We study some
of these properties in Sections 11.11 and 11.12.

Node-Node Adjacenoy Matrix

The node-node adjacency matrix representation, or simply the adjacency matrix
representation, stores the network as an n x n matrix 71f. = {hu}. The matrix has a
row and a column corresponding to every node, and its ijth entry hu equals 1 if
(i, j) E A and equals 0 otherwise. Figure 2.15 specifies this representation for the
network shown in Figure 2.13. If we wish to store arc costs and capacities as well
as the network topology, we can store this information in two additional n x n
matrices, <f6 and OU.

The adjacency matrix has n 2 elements, only m of which are nonzero. Conse­
quently, this representation is space efficient only if the network is sufficiently dense;
for sparse networks this representation wastes considerable space. Nevertheless,
the simplicity of the adjacency representation permits us to use it to implement most
network algorithms rather easily. We can determine the cost or capacity of any arc
(i, j) simply by looking up the ijth element in the matrix <f6 or OU. We can obtain the
arcs emanating from node i by scanning row i: If the jth element in this row has a
nonzero entry, (i, j) is an arc of the network. Similarly, we can obtain the arcs
entering node j by scanning columnj: If the ith element of this column has a nonzero
entry, (i,j) is an arc of the network. These steps permit us to identify all the outgoing
or incoming arcs of a node in time proportional to n. For dense networks we can
usually afford to spend this time to identify the incoming or outgoing arcs, but for

2 3 4 ,
0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0
Figure 2.1S Node-node adjacency

5 0 0 0 matrix of the network example.

Sec. 2.3 Network Representations 33

sparse networks these steps might be the bottleneck operations for an algorithm.
The two representations we discuss next permit us to identify the set of outgoing
arcs A(i) of any node in time proportional to 1 A(i) I.

Adjacency Lists

Earlier we defined the arc adjacency list A(i) of a node i as the set of arcs emanating
from that node, that is, the set of arcs (i, j) E A obtained as j ranges over the nodes
of the network. Similarly, we defined the node adjacency list of a node i as the set
of nodes j for which (i, j) E A. The adjacency list representation stores the node
adjacency list of each node as a singly linked list (we refer the reader to Appendix
A for a description of singly linked lists). A linked list is a collection of cells each
containing one or more fields. The node adjacency list for node i will be a linked
list having 1 A (i) 1 cells and each cell will correspond to an arc (i, j) EA. The cell
corresponding to the arc (i, j) will have as many fields as the amount of information
we wish to store. One data field will store nodej. We might use two other data fields
to store the arc cost Cij and the arc capacity Uij. Each cell will contain one additional
field, called the link, which stores a pointer to the next cell in the adjacency list. If
a cell happens to be the last cell in the adjacency list, by convention we set its link
to value zero.

Since we need to be able to store and access n linked lists, one for each node,
we also need an array of pointers that point to the first cell in each linked list. We
accomplish this objective by defining an n-dimensional array, first, whose element
first(i) stores a pointer to the first cell in the adjacency list of node i. If the adjacency
list of node i is empty, we set first(i) = O. Figure 2.16 specifies the adjacency list
representation of the network shown in Figure 2. 13.

In this book we sometimes assume that whenever arc (i,j) belongs to a network,
so does the reverse arc (j, i). In these situations, while updating some information
about arc (i, j), we typically will also need to update information about arc (j, i).
Since we will store arc (i, j) in the adjacency list of node i and arc (j, i) in the
adjacency list of node j, we can carry out any operation on both arcs efficiently if
we know where to find the reversal (j, i) of each arc (i,j). We can access both arcs

2

3

4

5

34

-+---.13[151301 :f-.I 5 1451601 0 l

-+--+1'31251201 I .14 (35150(0 1 Figure 2.16 Adjacency list
representation of the network example.

Paths, Trees, and Cycles Chap. 2

easily if we define an additional field, mate, that contains a pointer to the cell con­
taining data for the reversal of each arc. The mate of arc (i, j) points to the cell of
arc (j, i) and the mate of arc (j, i) points to the cell of arc (i, j).

Forward and Reverse Star Representations

The forward star representation of a network is similar to the adjacency list rep­
resentation in the sense that it also stores the node adjacency list of each node. But
instead of maintaining these lists as linked lists, it stores them in a single array. To
develop this representation, we first associate a unique sequence number with each
arc, thus defining an ordering of the arc list. We number the arcs in a specific order:
first those emanating from node 1, then those emanating from node 2, and so on.
We number the arcs emanating from the same node in an arbitrary fashion. We then
sequentially store information about each arc in the arc list. We store the tails, heads,
costs, and capacities of the arcs in four arrays: tail, head, cost, and capacity. So if
arc (i, j) is arc number 20, we store the tail, head, cost, and capacity data for this
arc in the array positions tail(20), head(20), cost(20), and capacity(20). We also main­
tain a pointer with each node i, denoted by point(i), that indicates the smallest­
numbered arc in the arc list that emanates from node i. [If node i has no outgoing
arcs, we set point(i) equal to point(i + 1).] Therefore, the forward star representation
will store the outgoing arcs of node i at positions point(i) to (point(i + 1) - 1) in
the arc list. Ifpoint(i) > point(i + 1) - 1, node i has no outgoing arc. For consistency,
we set point(l) = 1 and point(n + 1) = m + 1. Figure 2. 17(a) specifies the forward
star representation of the network given in Figure 2.13.

The forward star representation provides us with an efficient means for de­
termining the set of outgoing arcs of any node. To determine, simultaneously, the
set of incoming arcs of any node efficiently, we need an additional data structure
known as the reverse star representation. Starting from a forward star representa­
tion, we can create a reverse star representation as follows. We examine the nodes
i = 1 to n in order and sequentially store the heads, tails, costs, and capacities of
the incoming arcs at node i. We also maintain a reverse pointer with each node i,
denoted by rpoint(i), which denotes the first position in these arrays that contains
information about an incoming arc at node i. [If node i has no incoming arc, we set
rpoint(i) equal to rpoint(i + 1).] For sake of consistency, we set rpoint(l) = 1
and rpoint(n +.1) = m + 1. As before, we store the incoming arcs at node i at posi­
tions rpoint(i) to (rpoint(i + 1) - 1). This data structure gives us the representation
shown in Figure 2.17(b).

Observe that by storing both the forward and reverse star representations, we
will maintain a significant amount of duplicate information. We can avoid this du­
plication by storing arc numbers in the reverse star instead of the tails, heads, costs,
and capacities of the arcs. As an illustration, for our example, arc (3, 2) has arc
number 4 in the forward star representation and arc (1, 2) has an arc number 1. So
instead of storing the tails, cos~s, and capacities of the arcs, we simply store arc
numbers; and once we know the arc numbers, we can always retrieve the associated
information from the forward star representation. We store arc Qumbers in an array
trace of size m. Figure 2.18 gives the complete trace array of our example.

In our discussion of the adjacency list representation, we noted that sometimes

Sec. 2.3 Network Representations 3S

point tail

I I

2 3 2 I

3 4 3 2

4 5 4 3

5 7 5 4

6 9 6 4

7 5

8 5

(a)

cost capacity tail

45 10 3

25 30 I

35 50 I

15 30 4

25 20 5

35 50 5

15 40 2

45 60 4

(b)

head

2

3

4

2

3

5

3

4

head

2

2 2

3 3

3 4

3 5

4 6

4 7

5 8

cost capacity

25 30

35 50

15 40

45 10

15 30

45 60

25 20

35 50

rpoint

I

I 2

3 3

6 4

8 5

9 6

Figure 2.17 (a) Forward star and (b) re­
verse star representations of the network
example.

while updating data for an arc (i, j), we also need to update data for its reversal
(j, i). Just as we did in the adjacency list representation, we can accomplish this
task by defining an array mate of size m, which stores the arc number of the reversal
of an arc. For example, the forward star representation shown in Figure 2.17(a)
assigns the arc number 6 to arc (4, 5) and assigns the arc number 8 to arc (5, 4).

36 Paths. Trees. and Cycles Chap. 2

2

3

4

5

6

point tail head cost capacity trace rpoint

1 1 2 25 30 4 1

3 2 1 3 35 50 1 2 1

4 3 2 4 15 40 2 3 3

5 4 3 2 45 10 5 4 6

7 5 4 3 15 30 7 5 8

9 6 4 5 45 60 8 6 9

7 5 3 25 20 3 7

8 5 4 35 50 6 8

Fll1lre 2.18 Compact forward and reverse star representation of the network ex­
ample.

2

3

4

5

6

Therefore, if we were using the mate array, we would set mate(6) = 8 and mate(8)
= 6.

Comparison of Forward Star and Adjacenoy List
Bepresentations

The major advantage of the forward star representation is its space efficiency. It
requires less storage than does the adjacency list representation. In addition, it is
much easier to implement in languages such as FORTRAN that have no natural
provisions for using linked lists. The major advantage of adjacency list representation
is its ease of implementation in languages such as Pascal or C that are able to ma­
nipulate linked lists efficiently. Further, using an adjacency list representation, we
can add or delete arcs (as well as nodes) in constant time. On the other hand, in the
forward star representation these steps require time proportional to m, which can
be too time consuming.

Storing Parallel Arcs

In this book we assume that the network does not contain parallel arcs; that is, no
two arcs have the same tail and head nodes. By allowing parallel arcs, we encounter
some notational difficulties, since (i, j) will not specify the arc uniquely. For networks
with parallel arcs, we need more complex notation to specify arcs, arc costs, and
capacities. This difficulty is merely notational, however, and poses no problems
computationally: both the adjacency list representation and the forward star rep­
resentation data structures are capable of handling parallel arcs. If a node i has two

Sec. 2.3 Network Representations 37

outgoing arcs with the same head node but (possibly) different costs and capacities,
the linked list of node i will contain two cells corresponding to these two arcs.
Similarly, the forward star representation allows several entries with the same tail
and head nodes but different costs and capacities.

Representing Undirected Networks

We can represent undirected networks using the same representations we have just
described for directed networks. However, we must remember one fact: Whenever
arc (i, j) belongs to an undirected network, we need to include both of the pairs
(i,j) and (j, i) in the representations we have discussed. Consequently, we will store
each arc (i, j) of an undirected network twice in the adjacency lists, once in the list
for node i and once in the list for node j. Some other obvious modifications are
needed. For example, in the node-arc incidence matrix representation, the column
corresponding to arc (i, j) will have + 1 in both rows i and j. The node-node ad­
jacency matrix will have + 1 in position hij and h j ; for every arc (i, j) E A. Since
this matrix will be symmetric, we might as well store half of the matrix. In the
adjacency list representation, the arc (i, j) will be present in the linked lists of both
nodes i and j. Consequently, whenever we update information for one arc, we must
update it for the other arc as well. We can accomplish this task by storing for each
arc the address of its other occurrence in an additional mate array. The forward star
representation requires this additional storage as well. Finally, observe that undi­
rected networks do not require the reverse star representation.

2.4 NETWORK TRANSFORMATIONS

Frequently, we require network transformations to simplify a network, to show
equivalences between different network problems, or to state a network problem in
a standard form required by a computer code. In this section, we describe some of
these important transformations. In describing these transformations, we assume
that the network problem is a minimum cost flow problem as formulated in Section
1.2. Needless to say, these transformations also apply to special cases of the min­
imum cost flow problem, such as the shortest path, maximum flow, and assignment
problems, wherever the transformations are appropriate. We first recall the for­
mulation of the minimum cost flow problem for convenience in discussing the net­
work transformations.

Minimize L CijXij
(i,j)EA

subject to

L xij-
{j: (i.j)EA}

38

(2.1a)

L Xji = b(i) for all i E N, (2.1b)
{j:(J.;)EA}

for all (i, j) E A. (2.1c)

Paths, Trees, and Cycles Chap. 2

Undirected Aros to Directed Aros

Sometimes minimum cost flow problems contain undirected arcs. An undirected arc
(i, j) with cost Cij 2: 0 and capacity Uij permits flow from node i to node j and also
from node j to node i; a unit of flow in either direction costs C ij, and the total flow
(i.e., from node ito nodej plus from nodej to node i) has an upper bound Uij. That
is, the undirected model has the constraint Xij + Xji :s Uij and the term CijXij + CijXji

in the objective function. Since the cost Cij 2: 0, in some optimal solution one of Xu

and Xji will be zero. We refer to any such solution as non-overlapping.
For notational convenience, in this discussion we refer to the undirected arc

(i, j) as {i, j}. We assume (with some loss of generality) that the arc flow in either
direction on arc {i, j} has a lower bound of value 0; our transformation is not valid if
the arc flow has a nonzero lower bound or the arc cost Cij is negative (why?). To
transform the undirected case to the directed case, we replace each undirected arc
{"~ j} by two directed arcs, (i, j) and (j, i), both with cost Cij and capacity Uij. To
establish the correctness of this transformation, we show that every non-overlapping
flow in the original network has an associated flow in the transformed network with
the same cost, and vice versa. If the undirected arc {i, j} carries ex units of flow from
node i to node j, in the transformed network Xij :::; ex and Xji :::; O. If the undirected
arc {i, j} carries ex units of flow from node j to node i, in the transformed network
Xij :::; 0 and Xji :::; ex. Conversely, if Xij and Xji are the flows on arcs (i, j) and (j, i)
in the directed network, Xij - Xji or Xji - Xij is the associated flow on arc {i, j} in
the undirected network, whichever is positive. If Xij - Xji is positive, the flow from
node i to node j on arc {i, j} equals this amount. If Xji - Xij is positive, the flow from
nodej to node i on arc {i,j} equals Xj; - Xij. In either case, the flow in the opposite
direction is zero. If Xji - Xij is zero, the flow on arc {i, j} is O.

Removing Nonzero Lower Bounds

If an arc (i, j) has a nonzero lower bound lij on the arc flow Xij, we replace Xij by
xij + lij in the problem formulation. The flow bound constraint then becomes lij :s
xi.; + lij :S Uij, or 0 :S x~· :S (uij - lij). Making this substitution in the mass balance
constraints decreases b(i) by lij units and increases b(j) by lij units [recall from
Section 1.2 that the flow variable Xij appears in the mass balance constraint (2.1b)
of only nodes i and j]. This substitution changes the objective function value by a
constant that we can record separately and then ignore when solving the problem.
Figure 2.19 illustrates this transformation graphically. We can view this transfor­
mation as a two-step flow process: We begin by sending lij units of flow on
arc (i, j), which decreases b(i) by lij units and increases b(j) by lij units, and
then we measure (by the variable xI;) the incremental flow on the arc beyond the
flow value lij.

bU) b(J,) b(i) -I'j (I) b(i) +, lij
Ci)1---("';C'}-' u....,;.'i_) _.~(j) -+ Q)_ Cij, u:j- ij Cl) Figure 2.t9 Removing nonzero lower

" Xi} xij bounds.

Sec. 2.4 Network Transformations 39

Arc Reversal

The arc reversal transformation is typically used to remove arcs with negative costs.
Let Uu denote the capacity of the arc (i, j) or an upper bound on the arc's flow if
the arc is uncapacitated. In this transformation we replace the variable Xu by Uu -
Xji. Doing so replaces the arc (i, j), which has an associated cost cu, by the arc
(j, i) with an associated cost - Cu. As shown in Figure 2.20, the transformation has
the following network interpretation. We first send Uu units of flow on the arc (which
decreases b(i) by Uu units and increases b(j) by Uu units) and then we replace arc
(i, j) by arc (j, i) with cost - Cu. The new flow Xji measures the amount of flow we
"remove" from the "full capacity" flow of uu.

Removing Arc Capacities

Figure 1.10 Arc reversal
transformation.

If an arc (i, j) has a positive capacity Ui.h we can remove the capacity, making the
arc uncapacitated, by using the following idea: We introduce an additional node so
that the capacity constraint on arc (i, j) becomes the mass balance constraint of the
new node. Suppose that we introduce a slack variable Sij 2! 0, and write the capacity
constraint Xu s Uu in an equality form as Xu + Su = uu. Multiplying both sides of
the equality by - 1, we obtain

-Xu - Su = -uu (2.2)

We now treat constraint (2.2) as the mass balance constraint of an additional
node k. Observe that the flow variable Xij now appears in three mass balance con­
straints and Sij in only one. By subtracting (2.2) from the mass balance constraint
of node j (which contains the flow variable Xu with a negative sign), we assure that
each of Xu and Su appears in exactly two constraints-in one with a positive sign
and in the other with a negative sign. These algebraic manipulations correspond to
the network transformation shown in Figure 2.21.

b(i)
(cjj• U jj)

b{j) b(i)
(clj.oo)

-Ujj (0. 00)
b(j)+u ij

-+
X;j Xij S;J

Figure 1.21 Transformation for removing an arc capacity.

To see the relationships between the flows in the original and transformed
networks, we make the following observations. If Xij is the flow on arc (i, j) in the
original network, the corresponding flow in the transformed network is Xlk = Xu and
XJk = Uu - Xu. Notice that both the flows X and x' have the same cost. Similarly,
a flow Xik, XJk in the transformed network yields a flow Xu = Xik of the same cost in
the original network. Furthermore, since Xlk + X}k = Uu and xlk and X}k are both
nonnegative, Xu = Xlk S Uu. Therefore, the flow Xu satisfies the arc capacity, and
the transformation does correctly model arc capacities.

40 Paths, Trees, and Cycles Chap. 2

Suppose that every arc in a given network G = (N, A) is capacitated. If we
apply the preceding transformation to every arc, we obtain a bipartite uncapacitated
network G' (see Figure 2.22 for an illustration). In this network (1) each node ion
the left corresponds to a node i E N of the original network and has a supply equal
to b(i) + L{k:(k.i)EA}Uki' and (2) each node i-j on the right corresponds to an arc
(i,j) E A in the original network and has a demand equal to Uij; this node has exactly
two incoming arcs, originating at nodes i and j from the left. Consequently, the
transformed network has (n + m) nodes and 2m arcs.

b(i) b(j)

(lr--_(_c'J_' u_ij_> _~. (j)

o
(8)

-20

b(i) b(j)

(D_----=ciJ_. ~.(f)

(b)

Figure 2.22 Transformation for
removing arc capacities: (a) original
network; (b) transformed network with
uncapacitated arcs.

At first glance we might be tempted to believe that this technique for removing
arc capacities would be unattractive computationally since the transformation sub­
stantially increases the number of nodes in the network. However, on most occasions
the original and transformed networks have algorithms with the same complexity,
because the transformed network possesses a special structure that permits us to
design more efficient algorithms.

Node Splitting

The node splitting transformation splits each node i into two nodes i' and i" cor­
responding to the node's output and input functions. This transformation replaces
each original arc (i, j) by an arc (i', j") of the same cost and capacity. It also adds
an arc (i", i') of zero cost and with infinite capacity for each i. The input side of

Sec. 2.4 Network Transformations 41

node i (i.e., node i") receives all the node's inflow, the output side (i.e., node i')
sends all the node's outflow, and the additional arc (i", i') carries flow from the input
side to the output side. Figure 2.23 illustrates the resulting network when we carry
out the node splitting transformation for all the nodes of a network. We define the
supplies/demands of nodes in the transformed network in accordance with the fol­
lowing three cases:

1. If b(i) > 0, then b(i") = b(i) and b(i') = O.
2. If b(i) < 0, then bU") = 0 and b(i') = b(i).

3. If b(i) = 0, then b(i') = b(i") = o.

It is easy to show a one-to-one correspondence between a flow in the original
network and the corresponding flow in the transformed network; moreover, the flows
in both networks have the same cost.

The node splitting transformation permits us to model numerous applications
in a variety of practical problem domains, yet maintain the form of the network flow
model that we introduced in Section 1.2. For example, we can use the transformation
to handle situations in which nodes as well as arcs have associated capacities and
costs. In these situatior ,each flow unit passing through a node i incurs a cost Cj

and the maximum flow that can pass through the node is Uj. We can reduce this
problem to the standard' 'arc flow" form of the network flow problem by performing
the node splitting transformation and letting Ci and Uj be the cost and capacity of arc

42

6 1

3

b(i) b(j)

(0 e
'j ·0

0
4

4

5

3 r-----~~(5

o -8
(a)

3

o 0 6

(b)

Figure 2.23 Node splitting transformation: (a) original network; (b) transformed net­
work.

Paths, Trees, and Cycles Chap. 2

(i", i'). We shall study more applications of the node splitting transformation in
Sections 6.6 and 12.7 and in several exercises.

Working with Reduoed Costs

In many of the network flow algorithms discussed in this book, we measure the cost
of an arc relative to "imputed" costs associated with its incident nodes. These
imputed costs typically are intermediate data that we compute within the context
of an algorithm. Suppose that we associate with each node i E N a number 7f(i),
which we refer to as the potential of that node. With respect to the node potentials
1T = (1T(1), 1T(2), ... , 1T(n», we define the reduced cost cij of an arc (i, j) as

cij = Cij - 1T(i) + 7f(j). (2.3)

In many algorithms discussed later, we often work with reduced costs cij
instead of the actual costs Cij' Consequently, it is important to understand the
relationship between the objective functions z(7f) = ~(i.j)EA cijXij and z(O) =

LU.})EA CijXij. Suppose, initially, that 7f = 0 and we then increase the node potential
of node k to 7f(k). The definition (2.3) of reduced costs implies that this change
reduces the reduced cost of each unit of flow leaving node k by 7f(k) and increases
the reduced cost of each flow unit entering node k by 7f(k). Thus the total decrease
in the objective function equals 7f(k) times the outflow of node k minus the inflow
of node k. By definition (see Section 1.2), the outflow minus inflow equals the supply/
demand of the node. Consequently, increasing the potential of node k by 7f(k) de­
creases the objective function value by 7f(k)b(k) units. Repeating this argument
iteratively for each node establishes that

z(O) - z(7f) = ~ 7f(i)b(i) = 7fb.
iEN

For a given node potential 7f, 7fb is a constant. Therefore, a flow that minimizes
z(7f) also minimizes z(O). We formalize this result for easy future reference.

Property 2.4. Minimum cost flow problems with arc costs Cij or cij have the
same optimal solutions. Moreover, z(7f) = z(O) - 7fb.

We next study the effect of working with reduced costs on the cost of cycles
and paths. Let W be a directed cycle in G. Then

~ cij = ~ (Cij - 7f(i) + 7f(j»,
(i.}}E W (i.})E W

~ Cij + ~ (7f(j) - 7f(i»,
(i,})E W (i,})E W

::: ~ Cij'
(i,}}E W

The last equality follows from the fact that for any directed cycle W, the expres­
sion L(i,}}EW (7f(j) - 7f(i» sums to zero because for each node i in the cycle W,

1T(i) occurs once with a positive sign and once with a negative sign. Similarly, if P

Sec. 2.4 Network Transformations 43

is a directed path from node k to node I, then

L cll = L (cij - 7T(i) + 7T(j»,
(i,})EP (i,})EP

L Cij - L (7T(i) - 7T(j»,
(i,})EP (i,J)EP

L Cij - 7T(k) + 7T(l),
(i,})EP

because all 7T(') corresponding to the nodes in the path, other than the terminal nodes
k and I, cancel each other in the expression L(i,J)EP (7T(i) - 7T(j». We record these
results for future reference.

Property 2.5
(a) For any directed cycle W and for any node potentials 7T, L(i.j)EW cll =

LU,j)E W Cij.

(b) For any directed path P from node k to node I and for any node potentials 7T,

L(i.})EP cll = L(i,)EP cij - 7T(k) + 7T(l).

Working with Residual Networks

In designing, developing, and implementing network flow algorithms, it is often
convenient to measure flow not in absolute terms, but rather in terms of incremental
flow about some given feasible solution-typically, the solution at some intermediate
point in an algorithm. Doing so leads us to define a new, ancillary network, known
as the residual network, that functions as a "remaining flow network" for carrying
the incremental flow. We show that formulations of the problem in the original
network and in the residual network are equivalent in the sense that they give a one­
to-one correspondence between feasible solutions to the two problems that preserves
the value of the cost of solutions.

The concept of residual network is based on the following intuitive idea. Sup­
pose that arc (i, j) carries Xu units of flow. Then we can send an additional U;j -
Xu units of flow from node i to node j along arc (i, j). Also notice that we can send
up to Xu units of flow from node j to node i over the arc (i, j), which amounts to
canceling the existing flow on the arc. Whereas sending a unit flow from node i to
node j on arc (i, j) increases the flow cost by Cij units, sending flow from node j to
node i on the same arc decreases the flow cost by Cij units (since we are saving the
cost that we used to incur in sending the flow from node i to node j).

Using these ideas, we define the residual network with respect to a given flow
XO as follows. We replace each arc (i, j) in the original network by two arcs, (i, j)
and (j, 0: the arc (i, j) has cost Cij and residual capacity rij = Uij - xij, and the arc
(j, t) has cost - Cij and residual capacity rJi :: Xu (see Figure 2.24). The residual
network consists of only the arcs with a positive residual capacity. We use the
notation G(XO) to represent the residual network corresponding to the flow xO.

In general, the concept of residual network poses some notational difficulties.
If for some pair i and j of nodes, the network G contains both the arcs (t, j) and

44 Paths, Trees, and Cycles Chap. 2

Figure 2.24 Constructing the residual
network G(xo).

(j, 0, the residual network may contain two (parallel) arcs from node i to node j
with different costs and residual capacities, and/or two (parallel) arcs from node j
to node i with different costs and residual capacities. In these instances, any ref­
erence to arc (i, j) will be ambiguous and will not define a unique arc cost and
residual capacity. We can overcome this difficulty by assuming that for any pair of
nodes i and j, the graph G does not contain both arc (i, j) and arc (j, i); then the
residual network will contain no parallel arcs. We might note that this assumption
is merely a notational convenience; it does not impose any loss of generality, because
by suitable transformations we can always define a network that is equivalent to
any given network and that will satisfy this assumption (see Exercise 2.47). However,
we need not actually make this transformation in practice, since the network rep­
resentations described in Section 2.3 are capable of handling parallel arcs.

We note further that although the construction and use of the residual network
poses some notational difficulties for the general minimum cost flow problem, the
difficulties might not arise for some special cases. In particular, for the maximum
flow problem, the parallel arcs have the same cost (of zero), so we can merge both
of the parallel arcs into a single arc and set its residual capacity equal to the sum
of the residual capacities of the two arcs. For this reason, in our discussion of the
maximum flow problem, we will permit the underlying network to contain arcs join­
ing any two nodes in both directions.

We now show that every flow x in the network G corresponds to a flow x' in
the residual network G(XO). We define the flow x' ~ 0 as follows:

xij - xi; = Xi} - xij, (2.4)

and

xijxi; = o. (2.5)

The condition (2.5) implies that xij and xi; cannot both be positive at the same
time. If Xi} ~ xij, we set xij = (xi) - xij) and xi; = O. Notice that if Xi} :5 Uij, then
xij :5 Uij - xij = 'ij. Therefore, the flow xij satisfies the flow bound constraints.
Similarly, if Xv' < xij, we set xb' = 0 and Xl; = xi;· - Xi}. Observe that 0 :5 Xl; :5 xij
= 'j;, so the flow xi; also satisfies the flow bound constraints. These observations
show that if x is a feasible flow in G, its corresponding flow x I is a feasible flow in
G(XO).

We next establish a relationship between the cost of a flow x in G and the cost
of the corresponding flow x' in G(XO). Let c' denote the arc costs in the residual
network. Then for every arc (i, j) E A, cij = cij and ci; = - Cij' For a flow Xi} on
arc (i, j) in the original network G, the cost of flow on the pair of arcs (i, j) and
(j, 0 in the residual network G(XO) is cijxij + ci;Xl; = cij(xij - xi;) = Ci}Xij -
Ci}xij; the last equality follows from (2.4). We have thus shown that

c'x' = cx - cxo.

Sec. 2.4 Network Transformations 45

Similarly, we can show the converse result that if x' is a feasible flow in the
residual network G(XO), the solution given by Xij = (xu - xJ;) + xij is a feasible flow
in G. Moreover, the costs of these two flows is related by the equality cx =
c' x' + cxo. We ask the reader to prove these results in Exercise 2.48. We summarize
the preceding discussion as the following property.

Property 2.6. A flow x is a feasible flow in the network G if and only if its
corresponding flow x', defined by Xu - xi; = Xij - xij and xuxi; = 0, is feasible in
the residual network G(XO). Furthermore, cx = c ' x' + CXO.

One important consequence of Property 2.6 is the flexibility it provides us.
Instead of working with the original network G, we can work with the residual
network G(XO) for some XC: Once we have determined an optimal solution in the
residual network, we can immediately convert it into an optimal solution in the
original network. Many of the maximum flow and minimum cost flow algorithms
discussed in the subsequent chapters use this result.

2.1S SUMMARY

In this chapter we brought together many basic definitions of network flows and
graph theory and presented basic notation that we will use throughout this book.
We defined several common graph theoretic terms, including adjacency lists, Walks,
paths, cycles, cuts, and trees. We also defined acyclic and bipartite networks.

Although networks are often geometric entities, optimization algorithms re­
quire computer representations of them. The following four representations are the
most common: (1) the node-arc incidence matrix, (2) the node-node adjacency
matrix, (3) adjacency lists, and (4) forward and reverse star representations. Figure
2.25 summarizes the basic features of these representations.

Network
representations Storage space Features

N ode-arc incidence nm I. Space inefficient
matrix 2. Too expensive to manipulate

3. Important because it represents the constraint
matrix of the minimum cost flow problem

Node-node kn2 for some constant k I. Suited for dense networks
adjacency matrix 2. Easy to implement

Adjacency list kJn + k2m for some I. Space efficient
constants kJ and kl 2. Efficient to manipulate

3. Suited for dense as well as sparse networks

Forward and k3n + k4m for some I. Space efficient
reverse star constants k3 and k4 2. Efficient to manipulate

3. Suited for dense as well as sparse networks

Figure 1.lS Comparison of various network representations.

46 Paths, Trees, and Cycles Chap. 2

The field of network flows is replete with transformations that allow us to
transform one problem to another, often transforming a problem that appears to
include new complexities into a simplified "standard" format. In this chapter we
described some of the most common transformations: (1) transforming undirected
networks to directed networks, (2) removing nonzero lower flow bounds (which
permits us to assume, without any loss of generality, that flow problems have zero
lower bounds on arc flows), (3) performing arc reversals (which often permits us to
assume, without any loss of generality, that arcs have nonnegative arc costs), (4)
removing arc capacities (which allows us to transform capacitated networks to un­
capacitated networks), (5) splitting nodes (which permits us to transform networks
with constraints and/or cost associated with' 'node flows" into our formulation with
all data and constraints imposed upon arc flows), and (6) replacing costs with reduced
costs (which permits us to alter the cost coefficients, yet retain the same optimal
solutions).

The last transformation we studied in this chapter permits us to work with
residual networks, which is a concept of critical importance in the development of
maximum flow and minimum cost flow algorithms. With respect to an existing flow
x, the residual network G(x) represents the capacity and cost information in the
network for carrying incremental flows on the arcs. As our discussion has shown,
working with residual networks is equivalent to working with the original network.

REFERENCE NOTES

The applied mathematics, computer science, engineering, and operations research
communities have developed no standard notation of graph concepts; different re­
searchers and authors use different names to denote the same object (e.g., some
authors refer to nodes as vertices or points). The notation and definitions we have
discussed in Section 2.2 and adopted throughout this book are among the most
popular in the literature. The network representations and transformation that we
described in Sections 2.3 and 2.4 are part of the folklore; it is difficult to pinpoint
their origins. The books by Aho, Hopcroft, and Ullman [1974], Gondran and Minoux
[1984], and Cormen, Leiserson, and Rivest [1990] contain additional information on
network representations. The classic book by Ford and Fulkerson [1962] discusses
many transformations of network flow problems.

EXERCISES

Note: If any of the following exercises does not state whether a graph is undirected
or directed, assume either option, whichever is more convenient.

2.1 Consider the two graphs shown in Figure 2.26.
(8) List the indegree and outdegree of every node.
(b) Give the node adjacency list of each node. (Arrange each list in the increasing order

of node numbers.)
(c) Specify a directed walk containing six arcs. Also, specify a walk containing eight

arcs.
(d) Specify a cycle containing nine arcs and a directed cycle containing seven arcs.

Chap. 2 Exercises 47

·~--------------~~2

" .14-----------(3

(a) (b)

Figure 2.26 Example networks for Exercises 2.1 to 2.4.

2.2. Specify a spanning tree of the graph in Figure 2.26(a) with six leaves. Specify a cut of
the graph in Figure 2.26(a) containing six arcs.

2.3. For the graphs shown in Figure 2.26, answer the following questions.
(a) Are the graphs acyclic?
(b) Are the graphs bipartite?
(c) Are the graphs strongly connected?

2.4. Consider the graphs shown in Figure 2.26.
(a) Do the graphs contain a directed in-tree for some root node?
(b) Do the graphs contain a directed out-tree for some root node?
(c) In Figure 2.26(a), list all fundamental cycles with respect to the following spanning

tree T = {(I, 5), (I, 3), (2, 5), (4, 7), (7, 5), (7, 9), (5, 8), (6, 8)}.
(d) For the spanning tree given in part (c), list all fundamental cuts. Which of these

are the s-t cuts when s = 1 and t = 9?
2.S. (a) Construct a directed strongly connected graph with five nodes and five arcs.

(b) Construct a directed bipartite graph with six nodes and nine arcs.
(c) Construct an acyclic directed graph with five nodes and ten arcs.

2.6. Bridges of Konigsberg. The first paper on graph theory was written by Leonhard Euler
in 1736. In this paper, he started with the following mathematical puzzle: The city of
Konigsburg has seven bridges, arranged as shown in Figure 2.27. Is it possible to start
at some place in the city, cross every bridge exactly once, and return to the starting
place? Either specify such a tour or prove that it is impossible to do so.

Figure 2.27 Bridges of Konigsberg.

48 Paths, Trees, and Cycles Chap. 2

2.7. At the beginning of a dinner party, several participants shake hands with each other.
Show that the participants that shook hands an odd number of times must be even in
number.

2.S. Show that in a directed strongly connected graph containing more than one node, no
node can have a zero indegree or a zero outdegree.

2.9. Suppose that every node in a directed graph has a positive indegree. Show that the
graph must contain a directed cycle.

2.10. Show that a graph G remains connected even after deleting an arc (i, j) if and only if
arc (i, j) belongs to some cycle in G.

2.11. Show that an undirected graph G = (N, A) is connected ifand only if for every partition
of N into subsets NJ and N 2 , some arc has one endpoint in NJ and the other endpoint
in N 2 •

2.12. Let dmin denote the minimum degree of a node in an undirected graph. Show that the
graph contains a path containing at least dmin arcs.

2.13. Prove the following properties of trees.
(a) A tree on n nodes contains exactly (n - 1) arcs.
(b) A tree has at least two leaf nodes (Le., nodes with degree 1).
(e) Every two nodes of a tree are connected by a unique path.

2.14. Show that every tree is a bipartite graph.
2.15. Show that a forest consisting of k components has m = n - k arcs.
2.16. Let dmax denote the maximum degree of a node in a tree. Show that the tree contains

at least dmax nodes of degree 1. (Hint: Use the fact that the sum of the degrees of all
nodes in a tree is 2m = 2n - 2.)

2.17. Let Q be any cut of a connected graph and T be any spanning tree. Show that Q n T
is nonempty.

2.1S. Show that a closed directed walk containing an odd number of arcs contains a directed
cycle having an odd number of arcs. Is it true that a closed directed walk containing
an even number of arcs also contains a directed cycle having an even number of arcs?

2.19. Show that any cycle of a graph G contains an even number of arcs (possibly zero) in
common with any cut of G.

2.20. Let dmin denote the minimum degree of a node in an undirected graph G. Show that if
dmin ~ 2, then G must contain a cycle.

2.21. (a) Show that in a bipartite graph every cycle contains an even number of arcs.
(b) Show that a (connected) graph, in which every cycle contains an even number of

arcs, must be bipartite. Conclude that a graph is bipartite if and only if every cycle
has an even number of arcs.

2.22. The k-color problem on an undirected graph G = (N, A) is defined as follows: Color
all the nodes in N using at most k colors so that for every arc (i, j) E A, nodes i and
j have a different color.
(a) Given a world map, we want to color countries using at most k colors so that the

countries having common boundaries have a different color. Show how to formulate
this problem as a k-color problem.

(b) Show that a graph is bipartite if and only if it is 2-colorable (i.e., can be colored
using at most two colors).

2.23. Two undirected graphs G = (N, A) and G' = (N', A') are said to be isomorphic if we
can number the nodes of the graph G so that G becomes identical to G'. Equivalently,
G is isomorphic to G' if some one-to-one function f maps N onto N' so that (i, j) is
an arc in A if and only if (f(O, f(j» is an arc in A'. Give several necessary conditions
for two undirected graphs to be isomorphic. (Hint: For example, they must have the
same number of nodes and arcs.)

2.24. (a) List all nonisomorphic trees having four nodes.
(b) List all nonisomorphic trees having five nodes. (Hint: There are three such trees.)

Chap. 2 Exercises 49

2.25. For any undirected graph G = (N, A), we define its complement GC = (N, A C) as
follows: If (i, j) E A, then (i, j) e A c, and if (i, j) e A, then (i, j) E A c. Show that if
the graph G is disconnected, its complement G C is connected.

2.26. Let G = (N, A) be an undirected graph. We refer to a subset N, ~ N as independent
if no two nodes in NJ are adjacent. Let J3(G) denote the maximum cardinality of any
independent set of G. We refer to a subset N2 ~ N as a node cover if each arc in A
has at least one of its endpoints in N 2 • Let TJ(G) denote the minimum cardinality of
any node cover G. Show that J3(G) + TJ(G) = n. (Hint: Show that the complement of
an independent set is a node cover.)

2.27. Problem of queens. Consider the problem of determining the maximum number of queens
that can be placed on a chessboard so that none of the queens can be taken by another.
Show how to transform this problem into an independent set problem defined in Ex­
ercise 2.26.

2.28. Consider a directed graph G = (N, A). For any subset S ~ N, let neighbor(S) denote
the set of neighbors of S [i.e., neighbor(S) = {j E N:for some i E S, U,j) E A andj
e S}]. Show that G is strongly connected if and only if for every proper nonempty
subset SeN, neighbor(S) # 0.

2.29. A subset N, ~ N of nodes in an undirected graph G = (N, A) is said to be a clique if
every pair of nodes in N, is connected by an arc. Show that the set N) is a clique in
G if and only if NJ is independent in its complement G C

•

2.30. Specify the node-arc incidence matrix and the node-node adjacency matrix for the
graph shown in Figure 2.28.

b(;)
(c,l, u,)

b(j)

CD ·0
-15

(-2, 10)
-10

4
(5, (0)

20 (-1,20) (2, (0)

(3, (0)

3 5
5

(10, (0)
0 Figure 2.28 Network example.

2.31. (a) Specify the forward star representation of the graph shown in Figure 2.28.
(b) Specify the forward and reverse star representations of the graph shown in Figure

2.28.
2.32. Let N denote the node-arc incidence matrix of an undirected graph and let NT denote

its transpose. Let "." denote the operation of taking a product of two matrices. Show
how to interpret the diagonal elements of N . NT?

2.33. Let 'M denote the node-node adjacency matrix of a directed network, and let N denote
the node-arc incidence matrix of this network. Can 'M = N . NT?

2.34. Let 'M be the node-node adjacency matrix of a directed graph G = (N, A). Let 'MT be
the transpose of'M, and let GT be the graph corresponding to 'MT. How is the graph
GT related to G?

50 Paths, Trees, and Cycles Chap. 2

2.35. Let G be a bipartite graph. Show that we can always renumber the nodes of G so that
the node-node adjacency matrix 'M of G has the following form:

o F

E 0

2.36. Show that a directed graph G is acyclic if and only if we can renumber its nodes so
that its node-node adjacency matrix is a lower triangular matrix.

2.37. Let 'M denote the node-node adjacency matrix of a network G. Define 'Mk = 'M . 'M k- I

for each k = 2, 3, ... , n. Show that the {ith entry of th~ matrix 'M2 is the number of
directed paths consisting of two arcs from node ito nodej. Then using induction, show
that the {ith entry of matrix 'Mk is the number of distinct walks from node i to node j
containing exactly k arcs. In making this assessment, assume that two walks are distinct
if their sequences of arcs are different (even if the unordered set of arcs are the same).

2.38. Let 'M denote the node-node adjacency matrix of a network G. Show that G is strongly
connected if and only if the matrix ffi defined by ffi = 'M + 'M2 + 'M3 + ... + 'M" has
no zero entry.

2.39. Write a pseudocode that takes as an input the node-node adjacency matrix represen­
tation of a network and produces as an output the forward and reverse star represen­
tations of the network. Your pseudocode should run in O(n 2

) time.
2.40. Write a pseudocode that accepts as an input the forward star representation ofa network

and produces as an output the network's node-node adjacency matrix representation.
2.41. Write a pseudocode that takes as an input the forward star representation of a network

and produces the reverse star representation. Your pseudocode should run in O(m)
time.

2.42. Consider the minimum cost flow problem shown in Figure 2.28. Suppose that arcs
(1, 2) and (3, 5) have lower bounds equal to 112 = 135 = 5. Transform this problem to
one where all arcs have zero lower bounds.

2.43. In the network shown in Figure 2.28, some arcs have finite capacities. Transform this
problem to one where all arcs are uncapacitated.

2.44. Consider the minimum cost flow problem shown in Figure 2.28 (note that some arcs
have negative arc costs). Modify the problem so that all arcs have nonnegative arc
costs.

2.45. Construct the residual network for the minimum cost flow problem shown in Figure
2.28 with respect to the following flow: XI2 = XI3 = X32 = 10 and X24 = X35 = X54 =
5.

2.46. For the minimum cost flow problem shown in Figure 2.28, specify a vector 11' of node
potentials so that eli ~ 0 for every arc (i,j) EA. Compute ex, cll'x, and 11'b for the flow
given in Exercise 2.45 and verify that ex = cll'x + 11'b.

2.47. Suppose that a minimum cost flow problem contains both arcs U,j) and (j, i) for some
pair of nodes. Transform this problem to one in which the network contains either arc
(i, j) or arc (j, i), but not both.

2.48. Show that if x' is a feasible flow in the residual network G(XO), the solution given by
xi} = (xij - xi;) + xij is a feasible flow in G and satisfies ex = c ' x' + cxo.

2.49. Suppose that you are given a minimum cost flow code that requires that its input data
be specified so that lij = Uij for no arc (i, j). How would you eliminate such arcs?

Chap. 2 Exercises 51

2.50. Show how to transform a minimum cost flow problem stated in (2.1) into a circulation
problem. Establish a one-to-one correspondence between the feasible solutions of these
two problems. (Hint: Introduce two new nodes and some arcs.)

2.51. Show that by adding an extra node and appropriate arcs, we can formulate any minimum
cost flow problem with one or more inequalities for supplies and demands (Le., the
mass balance constraints are stated as "~b(i)" for a supply node i, and/or "';?b(j)"
for a demand node j) into an equivalent problem with all equality constriants (Le.,
" = b(k)" for all nodes k).

52 Paths, Trees, and Cycles Chap. 2

3

ALGORITHM DESIGN AND ANALYSIS

Numerical precision is the very soul of science.
-Sir D'Arcy Wentworth Thompson

CJJapter OutJbJe

3.1 Introduction
3.2 Complexity Analysis
3.3 Developing Polynomial-Time Algorithms
3.4 Search Algorithms
3.5 Flow Decomposition Algorithms
3.6 Summary

8.1 INTBODUCTION

Scientific computation is a unifying theme that cuts across many disciplines, in­
cluding computer science, operations research, and many fields within applied math­
ematics and engineering. Within the realm of computational problem solving, we
almost always combine three essential building blocks: (1) a recipe, or algorithm,
for solving a particular class of problems; (2) a means for encoding this procedure
in a computational device (e.g., a calculator, a computer, or even our own minds);
and (3) the application of the method to the data of a specific problem. For example,
to divide one number by another, we might use the iterative algorithm of long di­
vision, which is a systematic procedure for dividing any two numbers. To solve a
specific problem, we could use a calculator that has this algorithm already built into
its circuitry. As a first step, we would enter the data into storage locations on the
calculator; then we would instruct the calculator to apply the algorithm to our data.

Although dividing two numbers is an easy task, the essential steps required to
solve this very simple problem-designing, encoding, and applying an algorithm­
are similar to those that we need to address when solving complex network flow
problems. We need to deveiop an algorithm, or a mathematical prescription, for
solving a class of network flow problems that contains our problem-for example,
to solve a particular shortest path problem, we might use an algorithm that is known
to solve any shortest path problem with nonnegative arc lengths. Since solving a
network flow problem typically requires the solution of an optimization model with
hundreds or thousands of variables, equations, and inequalities, we will invariably
solve the problem on a computer. Doing so requires that we not only express the
mathematical steps of the algorithm as a computer program, but that we also develop
data structures for manipUlating the large amounts of information required to rep-

S3

resent the problem. We also need a method for entering the data into the computer
and for performing the necessary operations on it during the course of the solution
procedure.

In Chapter 2 we considered the lower-level steps of the computational problem­
solving hierarchy; that is, we saw how to represent network data and therefore how
to encode and manipulate the data within a computer. In this chapter we consider
the highest level of the solution hierarchy: How do we design algorithms, and how
do we measure their effectiveness? Although the idea of an algorithm is an old one­
Chinese mathematicians in the third century B.C. had already devised algorithms for
solving small systems of simultaneous equations-researchers did not begin to ex­
plore the notion of algorithmic efficiency as discussed in this book in any systematic
and theoretical sense until the early 1970s. This particular subject matter, known as
computational complexity theory, provides a framework and a set of analysis tools
for gauging the work performed by an algorithm as measured by the elementary
operations (e.g., addition, multiplication) it performs. One major stream of research
in computational complexity theory has focused on developing performance guar­
antees or worst-case analyses that address the following basic question: When we
apply an algorithm to a class of problems, can we specify an upper bound on the
amount of computations that the algorithm will require? Typically, the performance
guarantee is measured with respect to the size of the underlying problem: for ex­
ample, for network flow problems, the number n of nodes and the number m of arcs
in the underlying graph. For example, we might state that the complexity of an
algorithm for solving shortest path problems with nonnegative arc lengths is 2n2,
meaning that the number of computations grow no faster than twice the square of
the number of nodes. In this case we say that the algorithm is "good" because its
computations are bounded by a polynomial in the problem size (as measured by the
number of nodes). In contrast, the computational time for a "bad" algorithm would
grow exponentially when applied to a certain class of problems. With the theoretical
worst-case bound in hand, we can now assess the amount of work required to solve
(nonnegative length) shortest path problems as a function of their size. We also have
a tool for comparing any two algorithms: the one with the smaller complexity bound
is preferred from the viewpoint of a worst-case analysis.

Network optimization problems have been the core and influential subject mat­
ter in the evolution of computational complexity theory. Researchers and analysts
have developed many creative ideas for designing efficient network flow algorithms
based on the concepts and results emerging in the study of complexity theory; at
the same time, many ideas originating in the study of network flow problems have
proven to be useful in developing and analyzing a wide variety of algorithms in many
other problem domains. Although network optimization has been a constant subject
of study throughout the years, researchers have developed many new results con­
cerning complexity bounds for network flow algorithms at a remarkable pace in
recent years. Many of these recent innovations draw on a small set of common ideas,
which are simultaneously simple and powerful.

Our intention in this chapter is to bring together some of the most important
of these ideas. We begin by reviewing the essential ingredients of computational
complexity theory, including the definition and computational implications of good

S4 Algorithm Design and Analysis Chap. 3

algorithms. We then describe several key ideas that appear to be mainstays in the
development and analysis of good network flow algorithms. One idea is an approx­
imation strategy, known as scaling, that solves a sequence of" simple" approximate
versions of a given problem (determined by scaling the problem data) in such a way
that the problems gradually become better approximations of the original problem.
A second idea is a geometric improvement argument that is quite useful in analyzing
algorithms; it shows that whenever we make sufficient (i.e., fixed percentage) im­
provements in the objective function at every iteration, an algorithm is good.

We also describe some important tools that can be used in analyzing or stream­
lining algorithms: (1) a potential function method that provides us with a scalar
integer-valued function that summarizes the progress of an algorithm in such a way
that we can use it to bound the number of steps that the algorithm takes, and (2) a
parameter balancing technique that permits us to devise an algorithm based on some
underlying parameter and then to s.et the parameter so that we minimize the number
of steps required by the algorithm. Next, we introduce the idea of dynamic pro­
gramming, which is a useful algorithmic strategy for developing good algorithms.
The dynamic programming technique decomposes the problem into stages and uses
a recursive relationship to go from one stage to another. Finally, we introduce the
binary search technique, another well-known technique for obtaining efficient al­
gorithms. Binary search performs a search over the feasible values of the objective
function and solves an easier problem at each search point.

In this chapter we also describe important and efficient (i.e., good) algorithms
that we use often within the context of network optimization: search algorithms that
permit us to find all the nodes in a network that satisfy a particular property. Often
in the middle of a network flow algorithm, we need to discover all nodes that share
a particular attribute; for example, in solving a maximum flow problem, we might
want to find all nodes that are reachable from the designated source node along a
directed path in the residual network. Search algorithms provide us with a mechanism
to perform these important computations efficiently. As such, they are essential,
core algorithms used to design other more complex algorithms.

Finally, we study network decomposition algorithms that permit us to decom­
pose a solution to a network flow problem, formulated in terms of arc flows, into a
set of flows on paths and cycles. In our treatment of network flow problems, we
have chosen to use a model with flows defined on arcs. An alternative modeling
approach is to view all flows as being carried along paths and cycles in the network.
In this model, the variables are the amount of flow that we send on any path or
cycle. Although the arc flow formulation suffices for most of the topics that we
consider in this book, on a few occasions such as our discussion of multicommodity
flows in Chapter 17, we will find it more convenient to work with a path and cycle
flow model. Moreover, even if we do not use the path and cycle flow formulation
per se, understanding this model provides additional insight about the nature of
network flow problems. The network decomposition algorithms show that the arc
flow model and the path and cycle flow model are equivalent, so we could use any
of these models for formulating network flow problems; in addition, these algorithms
provide us with an efficient computational procedure for finding a set of path and
cycle flows that is equivalent to any given set of arc flows.

Sec. 3.1 Introduction ss

3.2 COMPLEXITY ANALYSIS

An algorithm is a step-by-step procedure for solving a problem. By a problem we
mean a generic model such as the shortest path problem or the minimum cost flow
problem. Problems can be subsets of one another: For example, not only does the
set of all shortest path problems define a problem, but so does the class of all shortest
path problems with nonnegative arc costs. An instance is a special case of a problem
with data specified for all the problem parameters. For example, to define an instance
of the shortest path problem we would need to specify the network topology G =
(N, A), the source and destination nodes, and the values of the arc costs. An al­
gorithm is said to solve a problem P if when applied to any instance of P, the algorithm
is guaranteed to produce a solution. Generally, we are interested in finding the most
"efficient" algorithm for solving a problem. In the broadest sense, the notion of
efficiency involves all the various computing resources needed for executing an
algorithm. However, in this book since time is often a dominant computing resource,
we use the time taken by an algorithm as our metric for measuring the "most effi­
cient" algorithm.

Different Complexity Measures

As already stated, an algorithm is a step-by-step procedure for solving a problem.
The different steps an algorithm typically performs are (1) assignment steps (such
as assigning some value to a variable), (2) arithmetic steps (such as addition, sub­
traction, mUltiplication, and division), and (3) logical steps (such as comparison of
two numbers). The number of steps performed (or taken) by the algorithm is said
to be the sum total of all steps it performs. The number of steps taken by an algorithm,
which to a large extent determines the time it requires, will differ from one instance
of the problem to another. Although an algorithm might solve some "good" instances
of the problem quickly, it might take a long time to solve some "bad" instances.
This range of possible outcomes raises the question of how we should measure the
performance of an algorithm so that we can select the "best" algorithm from among
several competing algorithms for solving a problem. The literature has widely
adopted three basic approaches for measuring the performance of an algorithm:

56

1. Empirical analysis. The objective of empirical analysis is to estimate how al­
gorithms behave in practice. In this analysis we write a computer program for
the algorithm and test the performance of the program on some classes of
problem instances.

2. A verage-case analysis. The objective of average-case analysis is to estimate
the expected number of steps an algorithm takes. In this analysis we choose
a probability distribution for the problem instances and using statistical analysis
derive asymptotic expected running times for the algorithm.

3. Worst-case analysis. Worst-case analysis provides upper bounds on the number
of steps that a given algorithm can take on any problem instance. In this analysis
we count the largest possible number of steps; consequently, this analysis pro­
vides a "guarantee" on the number of steps an algorithm will take to solve
any problem instance.

Algorithm Design and Analysis Chap. 3

Each of these three performance measures has its relative merits and draw­
backs. Empirical analysis has several major drawbacks: (1) an algorithm's perfor­
mance depends on the programming language, compiler, and computer used for the
computational experiments, as well as the skills of the programmer who wrote the
program; (2) often this analysis is too time consuming and expensive to perform;
and (3) the comparison of algorithms is often inconclusive in the sense that different
algorithms perform better on different classes of problem instances and different
empirical studies report contradictory results.

Average-case analysis has major drawbacks as well: (1) the analysis depends
crucially on the probability distribution chosen to represent the problem instances,
and different choices might lead to different assessments as to the relative merits of
the algorithms under consideration; (2) it is often difficult to determine appropriate
probability distributions for problems met in practice; and (3) the analysis often
requires quite intricate mathematics even for assessing the simplest type of algo­
rithm-the analysis typically is extremely difficult to carry out for more complex
algorithms. Furthermore, the prediction of an algorithm's performance, based on its
average-case analysis, is tailored for situations in which the analyst needs to solve
a large number of problem instances; it does not provide information about the
distribution of outcomes. In particular, although the average-case performance of
an algorithm might be good, we might encounter exceptions with little statistical
significance on which the algorithm performs very badly.

Worst-case analysis avoids many of these drawbacks. The analysis is inde­
pendent of the computing environment, is relatively easier to perform, provides a
guarantee on the steps (and time) taken by an algorithm, and is definitive in the
sense that it provides conclusive proof that an algorithm is superior to another for
the worst possible problem instances that an analyst might encounter. Worst-case
analysis is not perfect, though: One major drawback of worst-case analysis is that
it permits "pathological" instances to determine the performance of an algorithm,
even though they might be exceedingly rare in practice. However, the advantages
of the worst-case analysis have traditionally outweighed its shortcomings, and this
analysis has become the most popular method for measuring algorithmic perfor­
mance in the scientific literature. The emergence of the worst-case analysis as a tool
for assessing algorithms has also had a great impact on the field of network flows,
stimulating considerable research and fostering many algorithmic innovations. In
this book, too, we focus primarily on worst-case analysis. We also try to provide
insight about the empirical performance, particularly in Chapter 18, since we believe
that the empirical behavior of algorithms provides important information for guiding
the use of algorithms in practice.

Problem Size

To express the time requirement of an algorithm, we would like to define some
measure of the "complexity" of the problem instances we encounter. Having a single
performance measure for all problem instances rarely makes sense since as the
problem instances become larger, they typically become more difficult to solve (i.e.,
take more time); often the effort required to solve problem instances varies roughly

Sec. 3.2 Complexity Analysis 57

with their size. Hence to measure the complexity of problem instances, we must
consider the "size" of the problem instance. But what is the size of a problem?

Before we address this question, let us discuss what is the size of a data item
whose value is x. We can make one of the two plausible assumptions: (1) assume
that the size of the data item is x, or (2) assume that the size of the data item is log
x. Of these, for several reasons the second assumption is more common. The primary
reason is that log x reflects the way that computers work. Most modern computers
represent numbers in binary form (i.e., in bits) and store them in memory locations
of fixed bit size. The binary representation of item x requires log x bits, and hence
the space required to store x is proportional to log x.

The size of a network problem is a function of how the problem is stated. For
a network problem, the input might be in the form of one of the representations
discussed in Section 2.3. Suppose that we specify the network in the adjacency list
representation, which is the most space-efficient representation we could use. Then
the size of the problem is the number of bits needed to store its adjacency list
representation. Since the adjacency list representation stores one pointer for each
node and arc, and one data element for each arc cost coefficient and each arc ca­
pacity, it requires approximately n log n + m log m + m log C + m log U bits to
store all of the problem data for a minimum cost network flow problem (recall that
C represents the largest arc cost and U represents the largest arc capacity). Since
m ::; n2

, log m :5 log n2 = 2 log n. For this reason, when citing the size of problems
using a "big 0" complexity notation that ignores constants (see the subsection en­
titled "big 0" to follow), we can (and usually do) replace each occurrence of log m
by the term log n.

In principle, we could express the running time of an algorithm as a function
of the problem size; however, that would be unnecessarily awkward. Typically, we
will express the running time more simply and more directly as a function of the
network parameters n, m, log C, and log U.

Worst-Case Complexity

The time taken by an algorithm, which is also called the running time of the algorithm,
depends on both the nature and size of the input. Larger problems require more
solution time, and different problems of the same size typically require different
solution times due to differences in the data. A time complexity function for an
algorithm is a function of the problem size and specifies the largest amount of time
needed by the algorithm to solve any problem instance of a given size. In other
wor4s, the time complexity function measures the rate of growth in solution time
as the problem size increases. For example, if the time complexity function of a
network algorithm is cnm for some constant c ~ 0, the running time needed to solve
any network problem with n nodes and m arcs is at most cnm. Notice that the time
complexity function accounts for the dependence of the running time on the problem
size by measuring the largest time needed to solve any problem instance of a given
size; at this level of detail in measuring algorithmic performance, the complexity
function provides a performance guarantee that depends on the appropriate measure
of the problem's input data. Accordingly, we also refer to the time complexity func­
tion as the worst-case complexity (or, simply, the complexity) of the algorithm. We

S8 Algorithm Design and Analysis Chap. 3

also refer to the worst-case complexity of an algorithm as its worst-case bound, for
it states an upper bound on the time taken by the algorithm.

Big 0 Notation

To define the complexity of an algorithm completely, we need to specify the values
for one or more constants. In most cases the determination of these constants is a
nontrivial task; moreover, the determination might depend heavily on the computer,
and other factors. Consider, for example, the following segment of an algorithm,
which adds two p x q arrays:

for i: = 1 to P do
for j: = 1 to q do

elj: = ail + bij ;

At first glance, this program segment seems to perform exactly pq additions
and the same number of assignments of values to the computer locations storing the
values of the variables Cij' This accounting, however, ignores many computations
that the computer would actually perform. A computer generally stores a two­
dimensional array of size p x q as a single array of length pq and so would typically
store the element aij at the location (i - l)q + j of the array a. Thus each time we
retrieve the value of aij and bij we would need to perform one subtraction, one
multiplication, and one addition. Further, whenever, the computer would increment
the index i (or j), it would perform a comparison to determine whether i > p (or
j> q). Needless to say, such a detailed analysis of an algorithm is very time con­
suming and not particularly illuminating.

The dependence of the complexity function on the constants poses yet another
problem: How do we compare an algorithm that performs 5n additions and 3n com­
parisons with an algorithm that performs n multiplications and 2n subtractions? Dif­
ferent computers perform mathematical and logical operations at different speeds,
so neither of these algorithms might be universally better.

We can overcome these difficulties by ignoring the constants in the complexity
analysis. We do so by using "big 0" notation, which has become commonplace in
computational mathematics, and replace the lengthy and somewhat awkward expres­
sion "the algorithm required cnm time for some constant c" by the equivalent
expression "the algorithm requires O{nm) time." We formalize this definition as
follows:

An algorithm is said to run in O{f(n» time if for some numbers c and no, the
time taken by the algorithm is at most cf{n) for all n 2: no.

Although we have stated this definition in terms of a single measure n of a
problem-size parameter, we can easily incorporate other size parameters m, C, and
U in the definition.

The big 0 notation has several implications. The complexity of an algorithm
is an upper bound on the running time of the algorithm for sufficiently large values
of n. Therefore, this complexity measure states the asymptotic growth rate of the
running time. We can justify this feature of the complexity measure from practical

Sec. 3.2 Complexity Analysis S9

considerations since we are more interested about the behavior of the algorithm on
very large inputs, as these inputs determine the limits of applicability of the algo­
rithm. Furthermore, the big 0 notation indicates only the most dominant term in
the running time, because for sufficiently large n, terms with a smaller growth rate
become insignificant as compared to terms with a higher growth rate. For example,
if the running time of an algorithm is lOOn + n2 + 0.OOOln3

, then for all n ~ 100,
the second term dominates the first term, and for all n ~ 10,000, the third term
dominates the second term. Therefore, the complexity of the algorithm is O(n3

).

Another important implication of ignoring constants in the complexity analysis
is that we can assume that each elementary mathematical operation, such as addition,
subtraction, mUltiplication, division, assignment, and logical operations, requires an
equal amount of time. A computer typically performs these operations at different
speeds, but the variation in speeds can typically be bounded by a constant (provided
the numbers are not too large), which is insignificant in big 0 notation. For example,
a computer typically multiplies two numbers by repeated additions and the number
of such additions are equal to number of bits in the smaller number. Assuming that
the largest number can have 32 bits, the multiplication can be at most 32 times more
expensive than addition. These observations imply that we can summarize the run­
ning time of an algorithm by recording the number of elementary mathematical op­
erations it performs, viewing every operation as requiring an equivalent amount of
time.

Similarity Assumption

The assumption that each arithmetic operation takes one step might lead us to un­
derestimate the asymptotic running time of arithmetic operations involving very large
numbers on real computers since, in practice, a computer must store such numbers
in several words of its memory. Therefore, to perform each operation on very large
numbers, a computer must access a number of words of data and thus take more
than a constant number of steps. Thus the reader should be forewarned that the
running times are misleading if the numbers are exponentially large. To avoid this
systematic underestimation of the running time, in comparing two running times,
we will sometimes assume that both C (i.e., the largest arc cost) and U (i.e., the
largest arc capacity) are polynomially bounded in n [i.e., C = O(nk) and U = O(nk),
for some constant k]. We refer to this assumption as the similarity assumption.

Polynomial- and Exponential-Time Algorithms

We now consider the question of whether or not an algorithm is "good." Ideally,
we would like to say that an algorithm is good if it is sufficiently efficient to be
usable in practice, but this definition is imprecise and has no theoretical grounding.
An idea that has gained wide acceptance in recent years is to consider a network
algorithm "good" if its worst-case complexity is bounded by a polynomial function
of the problem's parameters (Le., it is a polynomial function of n, m, log C, and
log U). Any such algorithm is said to be a polynomial-time algorithm. Some ex­
amples of polynomial-time bounds are O(n 2

), O(nm), O(m + n log C), O(nm
log(n 21m», and O(nm + n 2 log U). (Note that log n is polynomially bounded because

60 Algorithm Design and Analysis Chap. 3

"
10

100
1000

10,000

its growth rate is slower than n.) A polynomial-time algorithm is said to be a strongly
polynomial-time algorithm if its running time is bounded by a polynomial function
in only nand m, and does not involve log C or log U, and is a weakly polynomial­
time algorithm otherwise. Some strongly polynomial time bounds are 0(n 2 m) and
O(n log n). In principle, strongly polynomial-time algorithms are preferred to weakly
polynomial-time algorithms because they can solve problems with arbitrary large
values for the cost and capacity data.

Note that in this discussion we have said that an algorithm is polynomial time
if its running time is bounded by a polynomial in the network parameters n, m, log C,
and log U. Typically, in computational complexity we say that an algorithm is
polynomial time if its running time is bounded by a polynomial in the problem size,
in this case n log n + m log m + n log C + m log U; however, it is easy to see that
the running time of a network problem is bounded by a polynomial in its problem
size if and only if it is also bounded by a polynomial in the problem parameters. For
example, if the running time is bounded by n 100, it is strictly less than the problem
size to the lOOth power. Similarly, if the running time is bounded by the problem
size to the l00th power, it is less than (n log n + m log m + n log C + m log U)IOO,
which in turn is bounded by (n2 + m 2 + n log C + m log U)I00, which is a poly­
nomial in n, m, log C, and log U.

An algorithm is said to be an exponential-time algorithm if its worst-case run­
ning time grows as a function that cannot be polynomially bounded by the input
length. Some examples of exponential time bounds are O(nC), 0(2"), O(n !), and
O(nlog II). (Observe that nC cannot be bounded by a polynomial function of nand
log C.) We say that an algorithm is a pseudopolynomial-time algorithm if its running
time is polynomially bounded in n, m, C, and U. The class of pseudopolynomial­
time algorithms is an important subclass of exponential-time algorithms. Some ex­
amples of pseudo polynomial-time bounds are O(m + nC) and O(mC). For problems
that satisfy the similarity assumption, pseudopolynomial-time algorithms become
polynomial-time algorithms, but the algorithms will not be attractive if C and U are
high-degree polynomials in n.

There are several reasons for preferring polynomial-time algorithms to expo­
nential-time algorithms. Any polynomial-time algorithm is asymptotically superior
to any exponential-time algorithm, even in extreme cases. For example, n4000 is
smaller than nO. I log II if n is sufficiently large (i.e., n ~ 2100,(00). Figure 3.1 illustrates
the growth rates of several typical complexity functions. The exponential complexity
functions have an explosive growth rate and, in general, they are able to solve only
small problems. Further, much practical experience has shown that the polynomials
encountered in practice typically have a small degree, and generally, polynomial­
time algorithms perform better than exponential-time algorithms.

log n nO.5 n2 n3 2n n!

3.32 3.16 102 103 103 3.6 x 1(f>
6.64 10.00 ur tW 1.27 x 1030 9.33 x 10m

9.97 31.62 1(f> 109 1.07 x 10301 4.02 X 102•
567

13.29 100.00 lOS 10'2 0.99 X 103,010 2.85 X 1035•659

Figure 3.1 Growth rates of some polynomial and exponential functions.

Sec. 3.2 Complexity Analysis 61

A brief examination of the effects of improved computer technology on algo­
rithms is even more revealing in understanding the impact of various complexity
functions. Consider a polynomial-time algorithm whose complexity is 0(n2). Sup­
pose that the algorithm is able to solve a problem of size n) in 1 hour on a computer
with speed of s) instructions per second. If we increase the speed of the computer
to S2, then (n2/n.)2 = S2/S) specifies the size n2 of the problem that the algorithm
can solve in the same time. Consequently, a lOO-fold increase in computer speed
would allow us to solve problems that are 10 times larger. Now consider an expo­
nential-time algorithm with a complexity of 0(2"). As before, let n) and n2 denote
the problem sizes solved on a computer with speeds S1 and S2 in 1 hour of computation
time. Then S2/S) = 2"2/2"1. Alternatively, n2 = n) + log(s2/s.). In this case, a 100-
fold increase in computer speed would allow us to solve problems that are only about
7 units larger. This discussion shows that a substantial increase in computer speed
allows us to solve problems by polynomial-time algorithms that are larger by a mul­
tiplicative factor; for exponential-time algorithms we obtain only additive improve­
ments. Consequently, improved hardware capabilities of computers can have only
a marginal impact on the problem-solving ability of exponential-time algorithms.

Let us pause to summarize our discussion of polynomial and exponential-time
algorithms. In the realm of complexity theory, our objective is to obtain polynomial­
time algorithms, and within this domain our objective is to obtain an algorithm with
the smallest possible growth rate, because an algorithm with smaller growth rate is
likely to permit us to solve larger problems in the same amount of computer time
(depending on the associated constants). For example, we prefer O(log n) to O(nk)
for any k > 0, and we prefer 0(n2) to 0(n3). However, running times involving
more than one parameter, such as O(n m log n) and 0(n 3), might not be comparable.
If m < n2/log n, then O(n m log n) is superior; otherwise, 0(n3) is superior.

Can we say that a polynomial-time algorithm with a smaller growth rate would
run faster in practice, or even that a polynomial-time algorithm would empirically
outperform an exponential-time algorithm? Although this statement is generally true,
there are many exceptions to the rule. A classical exception is provided by the
simplex method and Khachian's "ellipsoid" algorithm for solving linear program­
ming problems. The simplex algorithm is known to be an exponential-time algorithm,
but in practice it runs much faster than Khachian's polynomial-time algorithm. Many
of these exceptions can be explained by the fact that the worst-case complexity is
greatly inferior to the average complexity of some algorithms, while for other al­
gorithms the worst-case complexity and the average complexity might be compa­
rable. As a consequence, considering worst-case complexity as synonymous with
average complexity can lead to incorrect conclusions.

Sometimes, we might not succeed in developing a polynomial-time algorithm
for a problem. Indeed, despite their best efforts spanning several decades, research­
ers have been unable to develop polynomial-time alogorithms for a huge collectin of
important combinatorial problems; all known algorithms for these problems are
exponential-time algorithms. However, the research community has been able to
show that most of these problems belong to a class of problems, called ,NCfP-complete
problems, that are equivalent in the sense that if there exists a polynomial-time
algorithm for one problem, there exists a polynomial-time algorithm for every other
,NCfP-complete problem. Needless to say, developing a polynomial-time algorithm

62 Algorithm Design and Analysis Chap. 3

for some .N'~-complete problem is one of the most challenging and intriguing is­
sues facing the research community; the available evidence suggests that no such
algorithm exists. We discuss the theory of .N'~-completeness in greater detail in
Appendix B.

Big n and Big e Notation

The big 0 notation that we introduced earlier in this section is but one of several
convenient notational devices that researchers use in the analysis of algorithms. In
this subsection we introduce two related notational constructs: the big!l (big omega)
notation and the big e (big theta) notation.

Just as the big 0 notation specifies an upper bound on an algorithm's perfor­
mance, the big !l notation specifies a lower bound on the running time.

An algorithm is said to be !l(f(n» if for some numbers e / and no and all n ~
no, the algorithm takes at least e'f(n) time on some problem instance.

The reader should carefully note that the big 0 notation and the big !l notation
are defined in somewhat different ways. If an algorithm runs in O(f(n» time, every
instance of the problem of size n takes at most ef(n) time for a constant e. On the
other hand, if an algorithm runs in !l(f(n» time, some instance of size n takes at
least e'f(n) time for a constant e'.

The big e (big theta) notation provides both a lower and an upper bound on
an algorithm's performance.

An algorithm is said to be e(f(n» if the algorithm is both O(f(n» and !l(f(n».

We generally prove an algorithm to be an O(f(n» algorithm and then try to
see whether it is also an !l(f(n» algorithm. Notice that the proof that the algorithm
requires O(f(n» time does not imply that it would actually take ef(n) time to solve
all classes of problems of the type we are studying. The upper bound of ef(n) could
be "too loose" and might never be achieved. There is always a distinct possibility
that by conducting a more clever analysis of the algorithm we might be able to
improve the upper bound of ef(n), replacing it by a "tighter" bound. However, if
we prove that the algorithm is also !l(f(n», we know that the upper bound of ef(n)
is "tight" and cannot be improved by more than a constant factor. This result would
imply that the algorithm can actually achieve its upper bound and no tighter bound
on the algorithm's running time is possible.

Potential Functions and Amortized Complexity

An algorithm typically performs some basic operations repetitively with each op­
eration performing a sequence of steps. To bound the running time of the algorithm
we must bound the running time of each of its basic operations. We typically bound
the total number of steps associated with an operation using the following approach:
We obtain a bound on the number of steps per operation, obtain a bound on the
number of operations, and then take a product of the two bounds. In some of the

Sec. 3.2 Complexity Analysis 63

algorithms that we study in this book, the time required for a certain operation might
vary depending on the problem data and/or the stage the algorithm is in while solving
a problem. Although the operation might be easy to perform most of the time, oc­
casionally it might be quite expensive. When this happens and we consider the time
for the operation corresponding to the worst-case situation, we could greatly
overestimate the running time of the algorithm. In this situation, a more global anal­
ysis is required to obtain a "tighter" bound on the running time of the operation.
Rather than bounding the number of steps per operation and the number of operations
executed in the algorithm, we should try to bound the total number of steps over
all executions of these operations. We often carry out this type of worst-case analysis
using a potential function technique.

We illustrate this concept on a problem of inserting and removing data from a
data structure known as a stack (see Appendix A for a discussion of this data struc­
ture). On a stack S, we perform two operations:

push(x, S). Add element x to the top of the stack S.

popall(S). Pop (i.e., take out) every element of S.

The operation push(x, S) requires 0(1) time and the operation popall(S) re­
quires 0(1 S I) time. Now assume that starting with an empty stack, we perform a
sequence of n operations in which push and popall operations occur in a random
order. What is the worst-case complexity of performing this sequence of n opera­
tions?

A naive worst-case analysis of this problem might proceed as follows. Since
we require at most n push operations, and each push takes 0(1) time, the push
operations require a total of O(n) time. A popall requires 0(1 S I> time and since
1 S 1 ~ n, the complexity of this operation is O(n). Since our algorithm can invoke
at most n popall operations, these operations take a total of 0(n2) time. Conse­
quently, a random sequence of n push and popall operations has a worst-case com­
plexity of 0(n2).

However, if we look closely at the arguments we will find that the bound of
0(n2) is a substantial overestimate of the algorithm's computational requirements.
A popall operation pops 1 S 1 items from the stack, one by one until the stack becomes
empty. Now notice that any element that is popped from the stack must have been
pushed into the stack at some point, and since the number of push operations is at
most n, the total number of elements popped out of the stack must be at most n.
Consequently, the total time taken by all popall operations is O(n). We can therefore
conclude that a random sequence of n push and popall operations has a worst-case
complexity of O(n).

Let us provide a formal framework, using potential functions, for conducting
the preceding arguments. Potential function techniques are general-purpose tech­
niques for establishing the complexity of an algorithm by analyzing the effects of
different operations on an appropriately defined function. The use of potential func­
tions enables us to define an "accounting" relationship between the occurrences of
various operations of an algorithm so that we can obtain a bound on the operations
that might be difficult to obtain using other arguments.

Let <t>(k) = 1 S 1 denote the number of items in the stack at the end of the kth

64 Algorithm Design and Analysis Chap. 3

step; for the purpose of this argument we define a step as either a push or a popall
operation. We assume that we perform the popall step on a nonempty stack; for
otherwise, it requires 0(1) time. Initially, 4>(0) = O. Each push operation increases
q,(k) by 1 unit and takes 1 unit of time. Each popall step decreases 4>(k) by at least
1 unit and requires time proportional to 4>(k). Since the total increase in <f> is at
most n (because we invoke at most n push steps), the total decrease in 4> is also at
most n. Consequently, the total time taken by all push and popall steps is O(n).

This argument is fairly representative of the potential function arguments. Our
objective was to bound the time for the popalls. We did so by defining a potential
function that decreases whenever we perform a popall. The potential increases only
when we perform a push. Thus we can bound the total decrease by the total increase
in 4>. In general, we bound the number of steps of one type by using known bounds
on the number of steps of other types.

The analysis we have just discussed is related to the concept known as am­
ortized complexity. An operation is said to be of amortized complexity O(f(n» if
the time to perform a sequence of k operations is O(kf(n» for sufficiently large k.
In our preceding example, the worst-case complexity of performing k popalls for
k ~ n is O(k); hence the amortized complexity of the popall operation is 0(1).
Roughly speaking, the amortized complexity of an operation is the "average" worst­
case complexity of the operation so that the total obtained using this average will
indeed be an upper bound on the number of steps performed by the algorithm.

Parameter Balancing

We frequently use the parameter balancing technique in situations when the running
time of an algorithm is a function of a parameter k and we wish to determine the
value of k that gives the smallest running time. To be more specific, suppose that
the running time of an algorithm is O(f(n, m, k) + g(n, m, k» and we wish to
determine an optimal value of k. We shall assume that f(n, m, k) ~ 0 and g(n, m,
k) 2: 0 for all feasible values of k. The optimization problem is easy to solve if the
functions f(n, m, k) and g(n, m, k) are both either monotonically increasing or
monotonically decreasing in k. In the former case, we set k to the smallest possible
value, and in the latter case, we set k to the largest possible value. Finding the
optimal value of k is more complex if one function is monotonically decreasing and
the other function is monotonically increasing. So let us assume that f(n, m, k) is
monotonically decreasing in k and g(n, m, k) is monotonically increasing in k.

One method for selecting the optimal value of k is to use differential calculus.
That is, we differentiate f(n, m, k) + g(n, m, k) with respect to k, set the resulting
expression equal to zero, and solve for k. A major drawback of this approach is that
finding a value of k that will set the expression to value zero, and so determine the
optimal value of k, is often a difficult task. Consider, for example, a shortest path
algorithm (which we discuss in Section 4.7) that runs in time O(m lo~n + nk logkn).
In this case, choosing the optimal value of k is not trivial. We can restate the al­
gorithm's time bound as O«m log n + nk log n)l1og k). The derivative of this expres­
sion with respect to k is

(nk log n log k - m log n - nk log n)/kOog k)2.

Sec. 3.2 Complexity Analysis 6S

Setting this expression to zero, we obtain

m + nk - nk log k = o.
Unfortunately, we cannot solve this equation in closed form.

The parameter balancing technique is an alternative method for determining
the "optimal value" of k and is based on the idea that it is not necessary to select
a value of k that minimizes f(n, m, k) + g(n, m, k). Since we are evaluating the
performance of algorithms in terms of their worst-case complexity, it is sufficient
to select a value of k for which f(n, m, k) + g(n, m, k) is within a constant factor
of the optimal value. The parameter balancing technique determines a value of k so
that f(n, m, k) + g(n, m, k) is at most twice the minimum value.

In the parameter balancing technique, we select k* so that f(n, m, k*) =
g(n, m, k*). Before giving a justification of this approach, we illustrate it on two
examples. We first consider the O(m logkn + nk logkn) time shortest path algorithm
that we mentioned earlier. We first note that m logkn is a decreasing function of k
and nk logkn is an increasing function of k. Therefore, the parameter balancing tech­
nique is appropriate. We set m logk*n = nk* logk*n, which gives k* = min. Con­
sequently, we achieve the best running time of the algorithm, O(m logmlnn), by
setting k = min.

Our second example concerns a maximum flow algorithm whose running time
is O«n 3Ik)(log k) + nm(log k». We set

n3

-log k* = nm log k*,
k*

which gives k* = n2lm. Therefore, the best running time of this maximum flow
algorithm is O(nm log(n 2Im». In Exercise 3.13 we discuss more examples of the
parameter balancing technique.

We now justify the parameter balancing technique. Suppose we select k* so
that f(n, m, k*) = g(n, m, k*). Let A. * = f(n, m, k*) + g(n, m, k*). Then for any
k < k*,

f(n, m, k) + g(n, m, k) ~ f(n, m, k) 2: f(n, m, k*) = A. */2. (3.1)

The second inequality follows from the fact that the function f(n, m, k) is mono­
tonically decreasing in k. Similarly, for any k > k*,

f(n, m, k) + g(n, m, k) 2: g(n, m, k) 2: g(n, m, k*) = A. */2. (3.2)

The expressions (3.1) and (3.2) imply that for any k,

f(n, m, k) + g(n, m, k) 2: A. */2.

This result establishes the fact that A. * = f(n, m, k*) + g(n, m, k*) is within
a factor of 2 of the minimum value of f(n, m, k) + g(n, m, k).

3.3 DEVELOPING POLYNOMIAL-TIME ALGOBITHMS

Researchers frequently employ four important approaches for obtaining polynomial­
time algorithms for network flow problems: (1) a geometric improvement approach,
(2) a scaling approach, (3) a dynamic programming approach, and (4) a binary search

66 Algorithm Design and Analysis Chap. 3

approach. In this section we briefly outline the basic ideas underlying these four
approaches.

Geometrio Improvement Approach

The geometric improvement approach permits us to show that an algorithm runs in
polynomial time if at every iteration it makes an improvement in the objective func­
tion value proportional to the difference between the objective values of the current
and optimal solutions. Let H be the difference between the maximum and minimum
objective function values of an optimization problem. For most network problems,
H is a function of n, m, C, and V. For example, in the maximum flow problem
H = mV, and in the minimum cost flow problem H = mCV. We also assume that
the optimal objective function value is integer.

Theorem 3.1. Suppose that Zk is the objective function value of some solution
of a minimization problem at the kth iteration of an algorithm and z* is the minimum
objective function value. Furthermore, suppose that the algorithm guarantees that
for every iteration k,

(3.3)

(i.e., the improvement at iteration k + 1 is at least a times the total possible im­
provement) for some constant a with 0 < a < 1 (which is independent of the problem
data). Then the algorithm terminates in O«(log H)/a) iterations.

Proof. The quantity (Zk - z*) represents the total possible improvement in
the objective function value after the kth iteration. Consider a consecutive sequence
of 2/a iterations starting from iteration k. If each iteration of the algorithm improves
the objective function value by at least a(zk - z*)/2 units, the algorithm would
determine an optimal solution within these 2/a iterations. Suppose, instead, that at
some iteration q + 1, the algorithm improves the objective function value by less
than a(zk - z*)/2 units. In other words,

zq - zq + 1 ~ a(zk - z*)/2. (3.4)

The inequality (3.3) implies that

a(zq - z*) ~ zq - zq+l. (3.5)

The inequalities (3.4) and (3.5) imply that

(zq - z*) ~ (Zk - z*)/2,

so the algorithm has reduced the total possible improvement (Zk - z*) by a factor
at least 2. We have thus shown that within 2/a consecutive iterations, the algorithm
either obtains an optimal solution or reduces the total possible improvement
by a factor of at least 2. Since H is the maximum possible improvement and
every objective function value is an integer, the algorithm must terminate within
O«log H)/a) iterations. •

We have stated this result for the minimization version of optimization prob­
lems. A similar result applies to the maximization problems.

Sec. 3.3 Developing Polynomial-Time Algorithms 67

The geometric improvement approach might be summarized by the statement
"network algorithms that have a geometric convergence rate are polynomial-time
algorithms." To develop polynomial-time algorithms using this approach, we look
for local improvement techniques that lead to large (i.e., fixed percentage) improve­
ments in the objective function at every iteration. The maximum augmenting path
algorithm for the maximum flow problem discussed in Section 7.3 and the maximum
improvement algorithm for the minimum cost flow problem discussed in Section 9.6
provide two examples of this approach.

Scaling Approach

Researchers have used scaling methods extensively to derive polynomial-time al­
gorithms for a wide variety of network and combinatorial optimization problems.
Indeed, for problems that satisfy the similarity assumption, the scaling-based al­
gorithms achieve the best worst-case running time for most of the network opti­
mization problems we consider in this book.

We shall describe the simplest form of scaling, which we call bit-scaling. In
the bit-scaling technique, we represent the data as binary numbers and solve a prob­
lem P parametrically as a sequence of problems PI, P2 , P3 , ••• , PK : The problem
PI approximates data to the first most significant bit, the problem P2 approximates
data to the first two most significant bits, and each successive problem is a better
approximation, until PK = P. Moreover, for each k = 2, ... ,K, the optimal solution
of problem P k - I serves as the starting solution for problem P k • The scaling technique
is useful whenever reoptimization from a good starting solution is more efficient
than solving the problem from scratch.

For example, consider a network flow problem whose largest arc capacity has
value U. Let K = rlog Ul and suppose that we represent each arc capacity as a
K-bit binary number, adding leading zeros if necessary to make each capacity K
bits long. Then the problem Pk would consider the capacity of each arc as the k
leading bits in its binary representation. Figure 3.2 illustrates an example of this type
of scaling.

The manner of defining arc capacities easily implies the following property.

Property 3.2. The capacity of an arc in Pk is twice that in Pk - 1 plus 0 or 1.

The algorithm shown in Figure 3.3 encodes a generic version of the bit-scaling
technique.

This approach is very robust, and variants of it have led to improved algorithms
for both the maximum flow and minimum cost flow problems. This approach works
well for these applications, in part, for the following reasons:

68

1. The problem PI is generally easy to solve.
2. The optimal solution of problem Pk - I is an excellent starting solution for prob­

lem Pk since Pk - I and Pk are quite similar. Therefore, we can easily reoptimize
the problem starting from the optimal solution of Pk - 1 to obtain an optimal
solution of P k •

Algorithm Design and Analysis Chap. 3

7

5

(a) (b) (c)

(d) (e)

Figure 3.2 Examples of a bit-scaling technique: (a) network with arc capacities; (b) network
with binary expansions of arc capacities; (c)-(e) problems PI, P2 , and P3 •

3. The number of reoptimization problems we solve is O(log C) or O(log U). Thus
for this approach to work, reoptimization needs to be only a little more efficient
(i.e., by a factor of log C or log U) than optimization.

Consider, for example, the maximum flow problem. Let Vk denote the maximum
flow value for problem Pk and let Xk denote an arc flow corresponding to Vk. In the
problem Pk, the capacity of an arc is twice its capacity in Pk - I plus 0 or 1. If we
multiply the optimal flow Xk - 1 of P k - I by 2, we obtain a feasible flow for P k. More­
over, Vk - 2Vk-1 :$ m because multiplying the flow Xk-I by 2 takes care of the
doubling of the capacities and the additional 1 's can increase the maximum flow
value by at most m units (if we add 1 to the capacity of any arc, we increase the

algorithm bit-scaling;
begin

obtain an optimal solution of P1 ;

for Ie = 2 to K do
begin

reoptimize using the optimal solution of Pk.-1 to obtain an optimal solution of Pk.;
end;

end;

Figure 3.3 Typical bit-scaling algorithm.

Sec. 3.3 Developing Polynomial-Time Algorithms 69

maximum flow from the source to the sink by at most 1). In general, it is easier to
reoptimize such a maximum flow problem than to solve a general problem from
scratch. For example, the classical labeling algorithm as discussed in Section 6.5
would perform the reoptimization in at most m augmentations, requiring O(m 2

) time.
Therefore, the scaling version of the labeling algorithm runs in O(m2 log U) time,
improving on the running time O(nmU) of the nonscaling version. The former time
bound is polynomial and the latter bound is only pseudopolynomial. Thus this simple
bit-scaling algorithm improves the running time dramatically.

An alternative approach to scaling considers a sequence of problems PO),
P(2), ... , P(K), each involving the original data, but in this case we do not solve
the problem P(k) optimally, but solve it approximately, with an error of ~k' Initially,
~l is quite large, and it subsequently converges geometrically to O. Usually, we can
interpret an error of ~k as follows. From the current nearly optimal solution Xk, there
is a way of modifying some or all of the data by at most ~k units so that the resulting
solution is optimal. Our discussion of the capacity scaling algorithm for the maximum
flow problem in Section 7.3 illustrates this type of scaling.

Dynamic Programming

Researchers originally conceived of dynamic programming as a stagewise optimi­
zation technique. However, for our purposes in this book, we prefer to view it as
a "table-filling" approach in which we complete the entries of a two-dimensional
tableau using a recursive relationship. Perhaps the best way to explain this approach
is through several illustrations.

Computing Binomial Coefficients

In many application of combinatorics, for example in elementary probability, we
frequently wish to determine the number PCq of different combinations of p objects
taken q at a time for some given values of p and q (p 2: q). As is well known, PCq =
p!/«p - q)!q!). Suppose that we wish to make this computation using only the
mathematical operation of addition and using the fact that the combination function
PCq satisfies the following recursive relationship:

(3.6)

To solve this problem, we define a lower triangular table D = {d(i, j)} with p
rows and q columns: Its entries, which we would like to compute, will be d(i, j) =
iCj for i 2: j. We will fill in the entries in the table by scanning the rows in the order
1 through p; when scanning each row i, we scan its columns in the order 1 through
i. Note that we can start the computations by setting the ith entry d(i, 1) = iC I in
the first column to value i since there are exactly i ways to select one object from
a collection of i objects. Observe that whenever we scan the element (i, j) in the
table, we have already computed the entries i-ICj and i-ICj _ l , and their sum yields
d(i, j). So we always have the available information to compute the entries in the
table as we reach them. When we have filled the entire table, the entry d(p, q) gives
us the desired answer to our problem.

70 Algorithm Design and Analysis Chap. 3

Knapsack Problem

We can also illustrate the dynamic programming approach on another problem,
known as the knapsack problem, which is a classical model in the operations research
literature. A hiker must decide which goods to include in her knapsack on a forth­
coming trip. She must choose from among p objects: Object i has weight Wi (in
pounds) and a utility Uj to the hiker. The objective is to maximize the utility of the
hiker's trip subject to the weight limitation that she can carry no more than W pounds.
This knapsack problem has the following formulation as an integer program:

p

Maximize L UiXi
i=1

subject to
p

L WiXi:5 W,
i=)

Xi == {O, I}

(3.7a)

(3.7b)

for all i. (3.7c)

To solve the knapsack problem, we construct a p x W table D whose elements
d(i, j) are defined as follows:

d(i, j): The maximum utility of the selected items if we restrict our selection
to the items 1 through i and impose a weight restriction of j.

Clearly, our objective is to determine d(p, W). We determine this value by
computing d(i, j) for increasing values of i and, for a fixed value of i, for increasing
values ofj. We now develop the recursive relationship that would allow us to compute
d(i,j) from those elements of the tableau that we have already computed. Note that
any solution restricted to the items 1 through i, either (1) does not use item i, or (2)
uses this item. In case (1), d(i, j) = d(i - 1, j). In case (2), d(i, j) = Ui + d(i -
1, j - Wi) for the following reason. The first term in this expression represents the
value of including item i in the knapsack and the second term denotes the optimal
value obtained by allocating the remaining capacity of j - Wi among the items 1
through i-I. W e have thus shown that

d(i, j) = max{d(i - 1, j), Ui + d(i - 1, j - Wi)}.

When carrying out these computations, we also record the decision corre­
sponding to each d(i, j) (i.e., whether Xi = 0 or Xi == 1). These decisions allow us
to construct the solution for any d(i, j), including the desired solution for d(p, W).

In both these illustrations of dynamic programming, we scanned rows of the
table in ascending order and for each fixed row, we scanned columns in ascending
order. In general, we could scan the rows and columns of the table in either ascending
or descending order as long as the recursive relationship permits us to determine
the entries needed in the recursion from those we have already computed.

To conclude this brief discussion, we might note that much of the traditional
literature in dynamic programming views the problem as being composed of' 'stages"
and "states" (or possible outcomes within each state). Frequently, the stages cor-

Sec. 3.3 Developing Polynomial-Time Algorithms 71

respond to points in time (this is the reason that this topic has become known as
dynamic programming). To reconceptualize our tabular approach in this stage and
state framework, we would view each row as a stage and each column within each
row as a possible state at that stage. For both the binomial coefficient and knapsack
applications that we have considered, each stage corresponds to a restricted set of
objects (items): In each case stage i corresponds to a restricted problem containing
only the first i objects. In the binomial coefficient problem, the states are the number
of elements in a subset of the i objects; in the knapsack problem, the states are the
possible weights that we could hold in a knapsack containing only the first i items.

Binary Search

Binary search is another popular technique for obtaining polynomial-time algorithms
for a variety of network problems. Analysts use this search technique to find, from
among a set of feasible solutions, a solution satisfying "desired properties." At every
iteration, binary search eliminates a fixed percentage (as the name binary implies,
typically, 50 percent) of the solution set, until the solution set becomes so small that
each of its feasible solutions is guaranteed to be a solution with the desired properties.

Perhaps the best way to describe the binary search technique is through ex­
amples. We describe two examples. In the first example, we wish to find the tele­
phone number of a person, say James Morris, in a phone book. Suppose that the
phone book contains p pages and we wish to find the page containing James Morris's
phone number. The following "divide and conquer" search strategy is a natural
approach. We open the phone book to the middle page, which we suppose is page
x. By viewing the first and last names on this page, we reach one of the following
three conclusions: (1) page x contains James Morris's telephone number, (2) the
desired page is one of pages 1 through x-I, or (3) the desired page is one of pages
x + 1 to p. In the second case, we would next turn to the middle of the pages 1
through x-I, and in the third case, we would next turn to the middle of the pages
x + 1 through p. In general, at every iteration, we maintain an interval [a, b] of
pages that are guaranteed to contain the desired phone number. Our next trial page
is the middle page of this interval, and based on the information contained on this
page, we eliminate half of the pages from further consideration. Clearly, after
O(log p) iterations, we will be left withjust one page and our search would terminate.
If we are fortunate, the search would terminate even earlier.

As another example, suppose that we are given a continuous function f(x)
satisfying the properties that f(O) < 0 and f(1) > O. We want to determine an interval
of size at most E > 0 that contains a zero of the function, that is, a value of x for
which f(x) = 0 (to within the accuracy of the computer we are using). In the first
iteration, the interval [0, 1] contains a zero of the function f(x), and we evaluate
the function at the midpoint of this interval, that is, at the point 0.5. Three outcomes
are possible: (1) f(0.5) = 0, (2) f(0.5) < 0, and (3) f(0.5) > O. In the first case, we
have found a zero x and we terminate the search. In the second case, the continuity
property of the function f(x) implies that the interval [0.5, 1] contains a zero of the
function, and in the third case the interval [0, 0.5] contains a zero. In the second
and third cases, our next trial point is the midpoint of the resulting interval. We
repeat this process, and eventually, when the interval size is less than E, we dis-

72 Algorithm Design and Analysis Chap. 3

continue the search. As the reader can verify, this method will terminate within
o (log(1/ e» iterations.

In general, we use the binary search technique to identify a desired value of
a parameter among an interval of possible values. The interval [I, u] is defined by
a lower limit I and an upper limit u. In the phone book example, we wanted to
identify a page that contains a specific name, and in the zero value problem we
wanted to identify a value of x in the range [0, 1] for which f(x) is zero. At every
iteration we perform a test at the midpoint (l + u)/2 of the interval, and determine
whether the desired parameter lies in the range [I, (l + u)/2] or in the range [(I +
u)/2, u]. In the former case, we reset the upper limit to (l + u)/2, and in the latter
case, we reset the lower limit to (l + u)/2. We might note that eliminating one-half
of the interval requires that the problem satisfy certain properties. For instance, in
the phone book example, we used the fact that the names in the book are arranged
alphabetically, and in the zero-value problem we used the fact that the function f(x)
is continuous. We repeat this process with the reduced interval and keep reapplying
the procedure until the interval becomes so small that it contains only points that
are desired solutions. If W max denotes the maximum (i.e., starting) width of the
interval (i.e., u - l) and Wmin denotes the minimum width of the interval, the binary
search technique required o (log(wmax/Wmin» iterations.

In most applications of the binary search technique, we perform a single test
and eliminate half of the feasible interval. The worst-case complexity of the technique
remains the same, however, even if we perform several, but a constant number, of
tests at each step and eliminate a constant portion (not necessarily 50 percent) of
the feasible interval (in Exercise 3.23 we discuss one such application). Although
we typically use the binary search technique to perform a search over a single pa­
rameter, a generalized version of the method would permit us to search over multiple
parameters.

8.4 SEARCH ALGORITHMS

Search algorithms are fundamental graph techniques that attempt to find all the nodes
in a network satisfying a particular property. Different variants of search algorithms
lie at the heart of many maximum flow and minimum cost flow algorithms. The
applications of search algorithms include (1) finding all nodes in a network that are
reachable by directed paths from a specific node, (2) finding all the nodes in a network
that can reach a specific node t along directed paths, (3) identifying all connected
components of a network, and (4) determining whether a given network is bipartite.
To illustrate some of the basic ideas of search algorithms, in this section we discuss
only the first two of these applications; Exercises 3.41 and 3.42 consider the other
two applications.

Another important application of search algorithms is to identify a directed
cycle in a network, and if the network is acyclic, to reorder the nodes 1, 2, ... , n
so that for each arc (i, j) E A, i < j. We refer to any such order as a topological
ordering. Topological orderings prove to be essential constructs in several appli­
cations, such as project scheduling (see Chapter 19). They are also useful in the
design of certain algorithms (see Section 10.5). We discuss topological ordering later
in this section.

Sec. 3.4 Search Algorithms 73

To illustrate the basic ideas of search algorithms, suppose that we wish to find
all the nodes in a network G = (N, A) that are reachable along directed paths from
a distinguished node s, called the source. A search algorithm fans out from the source
and identifies an increasing number of nodes that are reachable from the source. At
every intermediate point in its execution, the search algorithm designates all the
nodes in the network as being in one of the two states: marked or unmarked. The
marked nodes are known to be reachable from the source, and the status of unmarked
nodes has yet to be determined. Note that if node i is marked, node j is unmarked,
and the network contains the arc (i, j), we can mark node j; it is reachable from
source via a directed path to node i plus arc (i,j). Let us refer to arc (i,j) as admissible
if node i is marked and node j is unmarked, and refer to it as inadmissible otherwise.
Initially, we mark only the source node. Subsequently, by examining admissible
arcs, the search algorithm will mark additional nodes. Whenever the procedure
marks a new node j by examining an admissible arc (i, j), we say that node i is a
predecessor of nodej [i.e., pred(j) = iJ. The algorithm terminates when the network
contains no admissible arcs.

The search algorithm traverses the marked nodes in a certain order. We recorci
this traversal order in an array order: the entry order(i) is the order of node i in the traversal.
Figure 3.4 gives a formal description of the search algorithm. In the algorithmic
description, LIST represents the set of marked nodes that the algorithm has yet to
examine in the sense that some admissible arcs might emanate from them. When
the algorithm terminates, it has marked all the nodes in G that are reachable from
s via a directed path. The predecessor indices define a tree consisting of marked
nodes. We call this tree a search tree. Figure 3.5(b) and (c), respectively, depict two
search trees for the network shown in Figure 3.5(a).

To identify admissible arcs, we need to be able to access the arcs of the network
and determine whether or not they connect a marked and unmarked node. To do
so we must design a data structure for storing the arcs and assessing the status of

74

algorithm search;
begin

unmark all nodes in N;
mark node s;
pred(s): = 0;
next: = 1;
order(s): = s;
LIST: = {s}
while LIST :F 0do
begin

select a node; in LIST;
If node i is incident to an admissible arc (i, j) then
begin

end

mark node j;
pred(j): = i;
next: = next + 1;
order(j): = next;
add node j to LIST;

el.e delete node i from LIST;
end;

end; Figure 3.4 Search algorithm.

Algorithm Design and Analysis Chap. 3

order(i) order(j)

(j)--.(j)
4

6 6

(a) 3 (b) 5

1 1

3 (c) 4

Figure 3.5 Two search trees of a network.

their incident nodes. In later chapters, too, we need the same data structure to
implement maximum flow and minimum cost flow algorithms. We use the current­
arc data structure, defined as follows, for this purpose. We maintain with each node
i the adjacency list A (i) of arcs emanating from it (see Section 2.2 for the definition
of adjacency list). For each node i, we define a current arc (i, j), which is the next
candidate arc that we wish to examine. Initially, the current arc of node i is the first
arc in A(i). The search algorithm examines the list A (i) sequentially: At any stage,
if the current arc is inadmissible, the algorithm designates the next arc in the arc
list as the current arc. When the algorithm reaches the end of the arc list, it declares
that the node has no admissible arc. Note that the order in which the algorithm
examines the nodes depends on how we have arranged the arcs in the arc adjacency
lists A(i). We assume here, as well as elsewhere in this book, that we have ordered
the arcs in AU) in the increasing order of their head nodes [i.e., if (i, j) and (i, k)
are two consecutive arcs in AU), thenj < k].

It is easy to show that the search algorithm runs in O(m + n) = O(m) time.
Each iteration of the while loop either finds an admissible arc or does not. In the
former case, the algorithm marks a new node and adds it to LIST, and in the latter
case it deletes a marked node from LIST. Since the algorithm marks any node at
most once, it executes the while loop at most 2n times. Now consider the effort
spent in identifying the admissible arcs. For each node i, we scan the arcs in A(i)
at most once. Therefore, the search algorithm examines a total of ~jEN I A(i) I
m arcs, and thus terminates in O(m) time.

Sec. 3.4 Search Algorithms 7S

The algorithm, as described, does not specify the manner for examining the
nodes or for adding the nodes to LIST. Different rules give rise to different search
techniques. Two data structures have proven to be the most popular for maintaining
LIST -a queue and a stack (see Appendix A for a discussion of these data struc­
tures)-and they give rise to two fundamental search strategies: breadth-first search
and depth-first search.

Breadth-First Search

If we maintain the set LIST as a queue, we always select nodes from the front of
LIST and add them to the rear. In this case the search algorithm selects the marked
nodes in a first-in, first-out order. Ifwe define the distance of a node i as the minimum
number of arcs in a directed path from node s to node i, this kind of search first
marks nodes with distance 1, then those with distance 2, and so on. Therefore, this
version of search is called a breadth-first search and the resulting search tree is a
breadth-first search tree. Figure 3.5(b) specifies the breadth-first search tree for the
network shown in Figure 3.5(a). In subsequent chapters we use the following prop­
erty of the breadth-first search tree whose proof is left as an exercise (see Exercise
3.30).

Property 3.3. In the breadth-first search tree, the tree path from the source
node s to any node i is a shortest path (i.e., contains the fewest number of arcs
among all paths joining these two nodes).

Depth-First Search

If we maintain the set LIST as a stack, we always select the nodes from the front
of LIST and also add them to the front. In this case the search algorithm selects the
marked node in a last-in, first-out order.- This algorithm performs a deep probe,
creating a path as long as possible, and backs up one node to initiate a new probe
when it can mark no new node from the tip of the path. Consequently, we call this
version of search a depth-j'irst search and the resulting tree a depth-first search tree.
The depth-first traversal of a network is also called its preorder traversal. Figure
3.5(c) gives the depth-first search tree for the network shown in Figure 3.5(a).

In subsequent chapters we use the following property of the depth-first search
tree, which can be easily proved using induction arguments (see Exercise 3.32).

Property 3.4
(a) If node j is a descendant C!f node i and j =1= i, then order(j) > orderU).
(b) All the descendants of any node are ordered consecutively in sequence.

Reverse Search Algorithm

The search algorithm described in Figure 3.4 allows us to identify all the nodes in
a network that are reachable from a given node s by directed paths. Suppose that
we wish to identify all the nodes in a network from which we can reach a given node
t along directed paths. We can solve this problem by using the algorithm we have

76 Algorithm Design and Analysis Chap. 3

just described with three slight changes: (1) we initialize LIST as LIST = {t}; (2)
while examining a node, we scan the incoming arcs of the node instead of its outgoing
arcs; and (3) we designate an arc (i,j) as admissible if i is unmarked andj is marked.
We subsequently refer to this algorithm as a reverse search algorithm. Whereas the
(forward) search algorithm gives us a directed out-tree rooted at node s, the reverse
search algorithm gives us a directed in-tree rooted at node t.

Deter.mining Strong Connectivity

Recall from Section 2.2 that a network is strongly connected if for every pair of
nodes i and j, the network contains a directed path from node i to node j. This
definition implies that a network is strongly connected if and only if for any arbitrary
node s, every node in G is reachable from s along a directed path and, conversely,
node s is reachable from every other node in G along a directed path. Clearly, we
can determine the strong connectivity of a network by two applications of the search
algorithm, once applying the (forward) search algorithm and then the reverse search
algorithm.

We next consider the problem of finding a topological ordering of the nodes
of an acyclic network. We will show how to solve this problem by using a minor
modification of the search algorithm.

Topological Ordering

Let us label the nodes of a network G = (N, A) by distinct numbers from 1 through
n and represent the labeling by an array order [i.e., order(i) gives the label of node
i]. We say that this labeling is a topological ordering of nodes if every arc joins
a lower-labeled node to a higher-labeled node. That is, for every arc (i, j) E A,
order(i) < order(j). For example, for the network shown in Figure 3.6(a), the labeling
shown in Figure 3.6(b) is not a topological ordering because (5, 4) is an arc and
order(5) > order(4). However, the labelings shown in Figure 3.6(c) and (d) are to­
pological orderings. As shown in this example, a network might have several to­
pological orderings.

Some networks cannot be topologically ordered. For example, the network
shown in Figure 3.7 has no such ordering. This network is cyclic because it contains
a directed cycle and for any directed cycle W we can never satisfy the condition
order(i) < order(j) for each (i, j) E W. Indeed, acyclic networks and topological
ordering are closely related. A network that contains a directed cycle has no to­
pological ordering, and conversely, we shall show next that a network that does not
contain any negative cycle can be topologically ordered. This observation shows
that a network is acyclic if an only if it possesses a topological ordering of its nodes.

By using a search algorithm, we can either detect the presence of a directed
cycle or produce a topological ordering of the nodes. The algorithm is fairly easy
to describe. In the network G, select any node of zero indegree. Give it a label of
1, and then delete it and all the arcs emanating from it. In the remaining subnetwork
select any node of zero indegree, give it a label of 2, and then delete it and all arcs
emanating from it. Repeat this process until no node has a zero indegree. At this
point, if the remaining subnetwork contains some nodes and arcs, the network G

Sec. 3.4 Search Algorithms 77

(8)

2

(c)

order(;) order(})

~
4

2 3

(b)

3 2

4 3 4

(d)

Figure 3.6 Topological ordering of nodes.

Figure 3.7 Network without a
topological ordering of the nodes.

contains a directed cycle (see Exercise 3.38). Otherwise, the network is acyclic and
we have assigned labels to all the nodes. Now notice that whenever we assign a
label to a node at an iteration, the node has only outgoing arcs and they all must
necessarily point to nodes that will be assigned higher labels in subsequent iterations.
Consequently, this labeling gives a topological ordering of nodes.

We now describe an efficient implementation of this algorithm that runs in
O(m) time. Figure 3.8 specifies this implementation. This algorithm first computes
the indegrees of all nodes and forms a set LIST consisting of all nodes with zero
indegrees. At every iteration we select a node i from LIST, for every arc (i, j) E
A(i) we reduce the indegree of node j by 1 unit, and if indegree of node j becomes
zero, we add node j to the set LIST. [Observe that deleting the arc (i, j) from the

78 Algorithm Design and Analysis Chap. 3

algorithm topological ordering;
begin

for all i E N do indegree(I): = 0;
for all (i, j) E A do indegree(j): = indegree(j) + 1;
LIST: = 0;
next: = 0;
for all i E N do

If indegree(l) = 0 then LIST: = LIST u {I};
while LIST ~ 0do
begin

select a node i from LIST and delete it;
next: = next+ 1;
order(l): = next;
for all (i, j) E A(I) do
begin

indegree(j): = indegree(j) - 1;
If indegree(j) = 0 then LIST: = LIST U {j};

end;
end;
If next < n then the network contains a directed cycle
else the network is acyclic and the array order gives a topological order of nodes;

end;

Figure 3.8 Topological ordering algorithm.

network is equivalent to decreasing the indegree of node j by 1 unit.] Since the
algorithm examines each node and each arc of the network DO) times, it runs in
O(m) time.

'.IS FLOW DECOMPOSITION ALGORITHMS

In formulating network flow problems, we can adopt either of two equivalent mod­
eling approaches: We can define flows on arcs (as discussed in Section 1.2) or define
flows on paths and cycles. For example, the arc flow shown in Figure 3.9(a) sends
7 units of flow from node 1 to node 6. Figure 3.9(b) shows a path and cycle flow

4 units

~
6

3 units
(b)

Figure 3.9 Two ways to express flows in a network: (a) using arc flows; (b) using path and
cycle flows.

Sec. 3.5 Flow Decomposition Algorithms 79

corresponding to this arc flow: In the path and cycle flow, we send 4 units along
the path 1-2-4-6, 3 units along the path 1-3-5-6, and 2 units along the cycle 2-
4-5-2. Throughout most of this book, we use the arc flow formulation; on a few
occasions, however, we need to use the path and cycle flow formulation or results
that stem from this modeling perspective. In this section we develop several con­
nections between these two alternative formulations.

In this discussion, by an "arc flow" we mean a vector x = {xu} that satisfies
the following constraints:

~ Xij- ~ Xji = -e(i) for all i E N, (3.Sa)
{j:(i.j)EA} {j:(j.i)EA}

for all (i, j) E A. (3.Sb)

where ~7= 1 e(i) = O. Notice that in this model we have replaced the supply/demand
b(i) of node i by another term, - e(i); we refer to e(i) as the node's imbalance. We
have chosen this alternative modeling format purposely because some of the max­
imum flow and minimum cost flow algorithms described in this book maintain a
solution that satisfies the flow bound constraints, but not necessarily the supply/
demand constraints. The term e(i) represents the inflow minus outflow of node i. If
the inflow is more than outflow, e(i) > 0 and we say that node i is an excess node.
If inflow is less than the outflow, e(i) < 0 and we say that node i is a deficit node.
If the inflow equals outflow, we say that node i is a balanced node. Observe that if
e = - b, the flow x is feasible for the minimum cost flow problem.

In the arc flow formulation discussed in Section 1.2, the basic decision variables
are flows Xij on the arcs (i, j) EA. The path and cycle flow formulation starts with
an enumeration of all directed paths P between any pair of nodes and all directed
cycles W of the network. We let r;p denote the collection of all paths and OW the
collection of all cycles. The decision variables in the path and cycle flow formulation
are f(P), the flow on path p, and f(W), the flow on cycle W; we define these variables
for every directed path P in r;p and every directed cycle W in OW.

Notice that every set of path and cycle fows uniquely determines arc flows in
a natural way: The flow Xij on arc (i, j) equals the sum of the flows f(P) and f(W)
for all paths P and cycles W that contain this arc. We formalize this observation by
defining some new notation: 8ij(P) equals 1 if arc (i, j) is contained in the path P,
and is 0 otherwise. Similarly, 8ij(W) equals 1 if arc (i, j) is contained in the cycle
W, and is 0 otherwise. Then

Xu = ~ 8ij(P)f(P) + ~ 8ij(W)f(W).
PE'!i> WEW

Thus each path and cycle flow determines arc flows uniquely. Can we reverse
this process? That is, can we decompose any arc flow into (i.e., represent it as) path
and cycle flow? The following theorem provides an affirmative answer to this ques­
tion.

Theorem 3.5 (Flow Decomposition Theorem). Every path and cycle flow has a
unique representation as nonnegative arc flows. Conversely, every nonnegative arc
flow x can be represented as a path and cycle flow (though not necessarily uniquely)
with the following two properties:

80 Algorithm Design and Analysis Chap. 3

(a) Every directed path with positive flow connects a deficit node to an excess node.
(b) At most n + m paths and cycles have nonzero flow; out of these, at most m

cycles have nonzero flow.

Proof In the light of our previous observations, we need to establish only the
converse assertions. We give an algorithmic proof to show how to decompose any
arc flow x into a path and cycle flow. Suppose that io is a deficit node. Then some
arc (io, it> carries a positive flow. If il is an excess node, we stop; otherwise, the
mass balance constraint (3.8a) of node il implies that some other arc (it, i2) carries
positive flow. We repeat this argument until we encounter an excess node or we
revisit a previously examined node. Note that one of these two cases will occur
within n steps. In the former case we obtain a directed path P from the deficit node
io to some excess node ik , and in the latter case we obtai a a directed cycle W. In
either case the path or the cycle consists solely of arcs with positive flow. If we
obtain a directed path, we let f(P) = min{ - e(io), e(ik), min{xij: (i, j) E P}} and
redefine e(io) = e(io) + f(P), e(ik) = e(ik) - f(P), and Xij = Xij - f(P) for each
arc (i, j) in P. If we obtain a directed cycle W, we let f(W) = min{xij: (i, j) E W}
and redefine xij = Xij - f(W) for each (i, j) in W.

We repeat this process with the redefined problem until all node imbalances
are zero. Then we select any node with at least one outgoing arc with a positive
flow as the starting node, and repeat the procedure, which in this case must find a
directed cycle. We terminate when x = 0 for the redefined problem. Clearly, the
original flow is the sum of flows on the paths and cycles identified by this method.
Now observe that each time we identify a directed path, we reduce the excess/deficit
of some node to zero or the flow on some arc to zero; and each time we identify a
directed cycle, we reduce the flow on some arc to zero. Consequently, the path and
cycle representation of the given flow x contains at most n + m directed paths and
cycles, and at most m of these are directed cycles. •

Let us consider a flow x for which e(i) = 0 for all i E N. Recall from Section
1.2 that we call any such flow a circulation. When we apply the flow decomposition
algorithm to a circulation, each iteration discovers a directed cycle consisting solely
of arcs with positive flow, and subsequently reduces the flow on at least one arc to
zero. Consequently, a circulation decomposes into flows along at most m directed
cycles.

Property 3.6. A circulation x can be represented as cycle flow along at most
m directed cycles.

We illustrate the flow decomposition algorithm on the example shown in Figure
3.1O(a). Initially, nodes 1 and 5 are deficit nodes. Suppose that the algorithm selects
node 5. We would then obtain the directed path 5-3-2-4-6 and the flow on this
path is 3 units. Removing this path flow gives the flow given in Figure 3.IO(b). The
algorithm selects node 1 as the starting node and obtains the path flow of 2 units
along the directed path 1-2-4-5-6. In the third iteration, the algorithm identifies a
cycle flow of 4 units along the directed cycle 5-3-4-5. Now the flow becomes zero
and the algorithm terminates.

Sec. 3.5 Flow Decomposition Algorithms 81

eU) e(j)

(J)-4(j)

o

6 0

o

Figure 3.10 Illustrating the flow decomposition theorem.

What is the time required for the flow decomposition algorithm described in
the proof of Theorem 3.5? In the algorithm, we first construct a set LIST of deficit
nodes. We maintain LIST as a doubly linked list (see Appendix A for a description
of this data structure) so that selection of an element as well as addition and deletion
of an element require 0(1) time. As the algorithm proceeds, it removes nodes from
LIST. When LIST eventually becomes empty, we initialize it as the set of arcs with
positive flow. Consider now another basic operation in the flow decomposition al­
gorithm: identifying an arc with positive flow emanating from a node. We refer to
such arcs as admissible arcs. We use the current-arc data structure (described in
Section 3.4) to identify an admissible arc emanating from a node. Notice that in any
iteration, the flow decomposition algorithm requires O(n) time plus the time spent
in scanning arcs to identify admissible arcs. Also notice that since arc flows are
nonincreasing, an arc found to be inadmissible in one iteration remains inadmissible
in subsequent iterations. Consequently, we preserve the current arcs of the nodes
in the current-arc data structure when we proceed from one iteration to the next.
Since the current-arc data structure requires a total of Oem) time in arc scanning to
identify admissible arcs and the algorithm performs at most (n + m) iterations, the
flow decomposition algorithm runs in Oem + (n + m)n) = O(nm) time.

The flow decomposition theorem has a number of important consequences. As
one example, it enables us to compare any two solutions of a network flow problem
in a particularly convenient way and to show how we can build one solution from

82 Algorithm Design and Analysis Chap. 3

another by a sequence of simple operations. The augmenting cycle theorem, to be
discussed next, highlights these ideas.

We begin by introducing the concept of augmenting cycles with respect to a
flow x. A cycle W (not necessarily directed) in G is called an augmenting cycle with
respect to the flow x if by augmenting a positive amount of flow f(W) around the
cycle, the flow remains feasible. The augmentation increases the flow on forward
arcs in the cycle Wand decreases the flow on backward arcs in the cycle. Therefore,
a cycle W is an augmenting cycle in G if Xu < Uu for every forward arc (i, j) and
xu> 0 for every backward arc (i,j). We next extend the notation of 8u(W) for cycles
that are not necessarily directed. We define 8u(W) equal to 1 if arc (i, j) is a forward
arc in the cycle W, 8u(W) equal to -1 if arc (i,j) is a backward arc in the cycle W,
and equal to 0 otherwise.

Notice that in terms of residual networks (defined in Section 2.4), each aug­
menting cycle W with respect to a flow x corresponds to a directed cycle Win G(x),
and vice versa. We define the cost of an augmenting cycle Was c(W) = ~(i.j)EW
cu8u(W). The cost of an augmenting cycle represents the change in the cost of a
feasible solution if we augment 1 unit of flow along the cycle. The change in flow
cost for augmenting f(W) units along the cycle W is c(W)f(W).

We next use the flow decomposition theorem to prove an augmenting cycle
theorem formulated in terms of residual networks. Suppose that x and XO are any
two feasible solutions of the minimum cost flow problem. We have seen earlier that
some feasible circulation Xl in G(XO) satisfies the property that x = XO + Xl.

Property 3.6 implies that we can represent the circulation Xl as cycle flows f(W1),

!(W2), ••• , !(Wr), with r :5 m. Notice that each of the cycles WI, W2 , ••• , Wr
is an augmenting cycle in G(XO). Furthermore, we see that

~ CuXu = ~ cuxij + ~ CUX &
(i.j)EA (i.j)EA (i.j)EG(xO)

r

~ cuxij + ~ c(Wk)f(Wk).
(i.j)EA k= I

We have thus established the following result:

Theorem 3.7 (Augmenting Cycle Theorem). Let x and XO be any two feasible
solutions of a network flow problem. Then x equals XO plus the flow on at most m
directed cycles in G(XO). Furthermore, the cost of x equals the cost of XO plus the
cost of flow on these augmenting cycles. •

In Section 9.3 we see that the augmenting cycle theorem permits us to obtain
the following novel characterization of the optimal solutions of the minimum cost
flow problem.

Theorem 3.8 (Negative Cycle Optimality Theorem). A feasible solution x* of the
minimum cost flow problem is an optimal solution if and only if the residual network
G(x*) contains no negative cost directed cycle.

Sec. 3.5 Flow Decomposition Algorithms 83

8.6 SUMMARY

The design and analysis of algorithms is an expansive topic that has grown in im­
portance over the past 30 years as computers have become more central to scientific
and administrative computing. In this chapter we described several fundamental
techniques that are widely used for this purpose. Having some way to measure the
performance of algorithms is critical for comparing algorithms and for determining
how well they perform. The research community has adopted three basic approaches
for measuring the performance of an algorithm: empirical analysis, average-case
analysis, and worst-case analysis. Each of these three performance measures has
its own merits and drawbacks. Worst-case analysis has become a widely used ap­
proach, due in large part to the simplicity and theoretical appeal of this type of
analysis. A worst-case analysis typically assumes that each arithmetic and logical
operation requires unit time, and it provides an upper bound on the time taken by
an algorithm (correct to within a constant factor) for solving any instance of a prob­
lem. We refer to this bound, which we state in big 0 notation as a function of the
problem's size parameters n, m, log C, and log U, as the worst-case complexity of
the algorithm. This bound gives the growth rate (in the worst case) that the algorithm
requires for solving successively larger problems. If the worst-case complexity of
an algorithm is a polynomial function of n, m, log C, and log U, we say that the
algorithm is a polynomial-time algorithm; otherwise, we say that it is an exponential­
time algorithm. Polynomial-time algorithms are preferred to exponential-time al­
gorithms because polynomial-time algorithms are asymptotically (i.e., for sufficiently
large networks) faster than exponential-time algorithms. Among several polynomial­
time algorithms for the same problem, we prefer an algorithm with the least order
polynomial running time because this algorithm will be asymptotically fastest.

A commonly used approach for obtaining the worst-case complexity of an
iterative algorithm is to obtain a bound on the number of iterations, a bound on the
number of steps per iteration, and take the product of these two bounds. Sometimes
this method overestimates the actual number of steps, especially when an iteration
might be easy most of the time, but expensive occasionally. In these situations,
arguments based on potential functions (see Section 3.3) often allow us to obtain a
tighter bound on an algorithm's required computations.

In this chapter we described four important approaches that researchers fre­
quently use to obtain polynomial-time algorithms for network flow problems: (1)
geometric improvement, (2) scaling, (3) dynamic programming, and (4) binary search.
Researchers have recently found the scaling approach to be particularly useful for
solving network flow problems efficiently, and currently many of the fastest network
flow algorithms use scaling as an algorithmic strategy.

Search algorithms lie at the core of many network flow algorithms. We de­
scribed search algorithms for performing the following tasks: (1) identifying all nodes
that are reachable from a specified source node via directed paths, (2) identifying
all nodes that can reach a specified sink node via directed paths, and (3) identifying
whether a network is strongly connected. Another important application of search
algorithms is to determine whether a given directed network is acyclic and, if so,
to number the nodes in a topological order [i.e., so that i < j for every arc (i, j) E
A]. This algorithm is a core subroutine in methods for project planning (so called

84 Algorithm Design and Analysis Chap. 3

CPM/PERT models) that practitioners use extensively in many industrial settings.
All of these search algorithms run in O(m) time. Other O(m) search algorithms are
able (1) to identify whether a network is disconnected and if so to identify all of its
components, and (2) to identify whether a network is bipartite. We discuss these
algorithms in the exercises for this chapter.

We concluded this chapter by studying flow decomposition theory. This theory
shows that we can formulate flows in a network in two alternative ways: (1) flows
on arcs, or (2) flows along directed paths and directed cycles. Although we use the
arc flow formulation throughout most of this book, sometimes we need to rely on
the path and cycle flow formulation. Given a path and cycle flow, we can obtain the
corresponding arc flow in a straightforward manner (to obtain the flow on any arc,
add the flow on this arc in each path and cycle); finding path and cycle flows that
corresponds to a set of given arc flows is more difficult. We described an O(nm)
algorithm that permits us to find these path and cycle flows. One important con­
sequence of flow decomposition theory is the fact that we can transform any feasible
flow of the minimum cost flow problem into any other feasible flow by sending flows
along at most m augmenting cycles. We used this result to derive a negative cycle
optimality condition for characterizing optimal solutions for the minimum cost flow
problem. These conditions state that a flow x is optimal if and only if the residual
network G(x) contains no negative cost augmenting cycle.

REFERENCE NOTES

Over the past two decades, worst-case complexity (see Section 3.2) has become a
very popular approach for analyzing algorithms. A number of books provide ex­
cellent treatments of this topic. The book by Garey and Johnson [1979] is an es­
pecially good source of information concerning the topics we have considered. Books
by Aho, Hopcroft, and Ullman [1974], Papadimitriou and Steiglitz [1982], Tarjan
[1983], and Cormen, Leiserson, and Rivest [1990] provide other valuable treatments
of this subject matter.

The techniques used to develop polynomial-time algorithms (see Section 3.3)
fall within the broad domain of algorithm design. Books on algorithms and data
structures offer extensive coverage of this topic. Edmonds and Karp [1972] and Dinic
[1973] independently discovered the scaling technique and its use for obtaining
polynomial-time algorithms for the minimum cost flow problem. Gabow [1985] pop­
ularized the scaling technique by developing scaling-based algorithms for the shortest
path, maximum flow, assignment, and matching problems. This book is the first that
emphasizes scaling as a generic algorithmic tool. The geometric improvement tech­
nique is a combinatorial analog of linear convergence in the domain of nonlinear
programming. For a study of linear convergence, we refer the reader to any book
in nonlinear programming. Dynamic programming, which was first developed by
Richard Bellman, has proven to be a very successful algorithmic tool. Some im­
portant sources of information on dynamic programming are books by Bellman
[1957], Bertsekas [1976], and Denardo [1982]. Binary search is a standard technique
in searching and sorting; Knuth [1973b] and many other books on data structures
and algorithms develop this subject.

Search algorithms are important subroutines for network optimization algo-

Chap. 3 Reference Notes 85

rithms. The books by Aho, Hopcroft, and Ullman [1974], Even [1979], TaIjan [1983],
and Cormen, Leiserson, and Rivest [1990] present insightful treatments of search
algorithms. Ford and Fulkerson [1962] developed flow decomposition theory; their
book contains additional material on this topic.

EXERCISES

3.1. Write a pseudocode that, for any integer n, computes n" by performing at most 2 log
n multiplications. Assume that multiplying two numbers, no matter how large, requires
one operation.

3.2. Compare the following functions for various values of n and determine the approximate
values of n when the second function becomes larger than the first.
(a) l000n 2 and 2"/100.
(b) (log n)3 and no.OOJ •

(c) 1O,OOOn and 0.ln 2
.

3.3. Rank the following functions in increasing order of their growth rates.
(a) 2108 log", n 1, n2 , 2", (1.5)(lOg ,,)2.

(b) l000(log n)2, 0.005no.oool , log log n, (log n)(log log n).

3.4. Rank the following functions in increasing order of their growth rates for two cases:
(1) when a network containing n nodes and m arcs is connected and very sparse [i.e.,
m = O(n)]; and (2) when the network is very dense [i.e., m = O(n2)].
(a) n2m 1/2, nm + n2 log n, nm log n, nm log(n2Im).
(b) n2, m log n, m + n log n, m log log n.
(c) n 3 log n, (m log n)(m + n log n), nm(log log n)log n.

3.S. We say that a function f(n) is O(g(n» if for some numbers c and no, f(n) :5 cg(n) for
all n ~ no. Similarly, we say that a function is O(g(n» if for some numbers c' and no,
f(n) ~ c' g(n) for infinitely many n ~ no. Finally, we say that a function f(n) is 8(g(n»
if f(n) = O(g(n» and f(n) = O(g(n». For each of the functions f(n) and g(n) specified
below, indicate whether f(n) is O(g(n», O(g(n», 8(g(n», or none of these.

In if n is odd I n if n is even
(a) f(n) = n2 if n is even; g(n) = n2 if n is odd

b) f() - n if n is odd. () _ n if n is prim~
(n - n2 if n is even' g n - n2 if n is not prime
(c) f(n) = 3 + lI(log n); g(n) = (n + 4)/(n + 3)

3.6. Are the following statements true or false?
(a) (log n)l00 = O(nE) for any E > O.
(b) 2"+ 1 = 0(2").
(c) f(n) + g(n) = O(max(f(n), g(n»).
(d) If f(n) = O(g(n», then g(n) = O(f(n».

3.7. Let g(n, m) = m logdn, where d = r mIn + 21. Show that for any E > 0, g(n, m) =
O(m l + tE

).

3.8. Show that if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n». Is it true that
if f(n) = O(g(n» and g(n) = O(h(n», then f(n) = O(h(n»? Prove or disprove this
statement.

3.9. Bubble sort. The bubble sort algorithm is a popular method for sorting n numbers in
nondecreasing order of their magnitudes. The algorithm maintains an ordered set of the
numbers {ai, a2, ... , an} that it rearranges through a sequence of several passes over
the set. In each pass, the algorithm examines every pair of elements (ak' ak + I) for each
k = 1, ... ,(n.I), and if the pair is out of order (i.e., ak > ak + 1)' it swaps the positions
of these elements. The algorithm terminates when it makes no swap during one entire
pass. Show that the algorithm performs at most n passes and runs in 0(n2) time. For
every n, construct a sorting problem (Le., the initial ordered set of numbers {a.,

86 Algorithm Design and Analysis Chap. 3

a2, ... ,an} SO that the algorithm performs O(n2) operations. Conclude that the bubble
sort is a 8(n 2

) algorithm.
3.10. Bin packing problem. The bin packing problem requires that we pack n items of lengths

ai, a2, ... , an (assume that each ai :5 1) into bins of unit length using the minimum
possible number of bins. Several approximate methods, called heuristics, are available
for solving the bin packing problem. The first-fit heuristic is one of the more popular
of these heuristics. It works as follows. Arrange items in an arbitrary order and examine
them one by one in this order. For an item being examined, scan the bins one by one
and put the item in the bin where it fits first. If an items fits in none of the bins that
currently contain an item, we introduce a new bin and place the item in it. Write a
pseudocode for the first-fit heuristic and show that it runs in O(n2) time. For every n,
construct an instance of the bin packing problem for which your first-fit heuristic runs
in O(n2) time. Conclude that the first-fit heuristic runs in 8(n 2) time.

3.11. Consider a queue of elements on which we perform two operations: (1) ;nsert(i), which
adds an element i to the rear of the queue; and (2) delete(k), which deletes the k frontmost
elements from the queue. Show that an arbitrary sequence of n insert and delete op­
erations, starting with an empty queue, requires a total of O(n) time.

3.12. An algorithm performs three different operations. The first and second operations are
executed O(nm) and O(n 2) times respectively and the number of executions of the third
operation is yet to be determined. These operations have the following impact on an
appropriately defined potential function <1>: Each execution of operation J increases <I>

by at most n units, each execution of operation 2 increases <I> by 1 unit, and each
execution of operation 3 decreases cf> by at least 1 unit. Suppose we know that 1 :5 cf>
:5 n 2

• Obtain a bound on the number of executions of the third operation.
3.13. Parameter balancing. For each of the time bounds stated below as a function of the

parameter k, use the parameter balancing technique to determine the value of k that
yields the minimum time bound. Also try to determine the optimal value of k using
differential calculus.

(a) o(n; + knm)

(b) o(nk + T)
(c) 0 (m log n + n k log n)

log k log k
3.14. Generalized parameter balancing. In Section 3.3 we discussed the parameter balancing

technique for situations when the time bound contains two expressions. In this exercise
we generalize the technique to bounds containing three expressions. Suppose that the
running time of an algorithm is O(j(n, k) + g(n, k) + h(n, k» and we wish to determine
the optimal value of k-that is, the value of k producing the smallest possible overall
time. Assume that for all k, f(n, k), g(n, k), and h(n, k) are all nonnegative, f(n, k)
is monotonically increasing, and both g(n, k) and h(n, k) are monotonically decreasing.
Show how to obtain the optimal value of k and prove that your method is valid. Illus­
trate your technique on the following time bounds: (I) kn 2 + n 3/k + n 4/k 2; (2) nm/k +
kn 2 + n 2 logk U.

3.15. In each of the algorithms described below, use Theorem 3.1 to obtain an upper bound
on the total number of iterations the algorithm performs.
(a) Let v* denote the maximum flow value and v the flow value of the current solution
in a maximum flow algorithm. This algorithm increases the flow value by an amount
(v* - v)/m at each iteration. How many iterations will this algorithm perform?
(b) Let z * and z represent the optimal objective function value and objective function
value of the current solution in an application of the some algorithm for solving the
shortest path problem. Suppose that this algorithm ensures that each iteration decreases
the objective function value by at least (z - z*)/2n2. How many iterations will the
algorithm perform?

Chap. 3 Exercises 87

3.16. Consider a function fen, m), defined inductively as follows:

fen, 0) = n, f(O, m) = 2m, and

fen, m) = fen - 1, m) + fen, m - 1) - fen - 1, m - 1).

Derive the values of fen, m) for all values of n, m :s; 4. Simplify the definition of
fen, m) and prove your result using inductive arguments.

3.17. In Section 3.3 we described a dynamic programming algorithm for the 0-1 knapsack
problem. Generalize this approach so that it can be used to solve a knapsack problem
in which we can place more than one item of the same type in the knapsack.

3.18. Shortest paths in layered networks. We say that a directed network G = (N, A) with
a specified source node s and a specified sink node t is layered if we can partition its
node set N into k layers N .. N 2 , ••• , Nk so that N, = {s}, Nk = {t}, and for every
arc (i, j) E A, nodes i and j belong to adjacent layers (i.e., i E NI and j E N 1+, for
some 1 :s; I:s; k - 1). Suggest a dynamic programming algorithm for solving the shortest
path problem in a layered network. What is the running time of your algorithm? (Hint:
Examine nodes in the layers N" N 2 , ••• , Nk. in order and compute shortest path
distances.)

3.19. Let G = (N, A) be a directed network. We want to determine whether G contains an
odd-length directed cycle passing through node i. Show how to solve this problem using
dynamic programming. [Hint: Define dk(j) as equal to 1 if the network contains a walk
from node i to node j with exactly k arcs, and as 0 otherwise. Use recursion on k.]

3.20. Now consider the problem of determining whether a network contains an even-length
directed cycle passing through node i. Explain why the approach described in Exercise
3.19 does not work in this case.

3.21. Consider a network with a length cij associated with each arc (i, j). Give a dynamic
programming algorithm for finding a shortest walk (Le., of minimum total length) con­
taining exactly k arcs from a specified node s to every other node j in a network. Does
this algorithm work in the presence of negative cycles? [Hint: Define dk(j) as the length
of the shortest walk from node s to nodej containing exactly k arcs and write a recursive
relationship for dk(j) in terms of dk-'(j) and Cij's.]

3.22. Professor May B. Wright suggests the following sorting method utilizing a binary search
technique. Consider a list of n numbers and suppose that we have already sorted the
first k numbers in the list (i.e., arranged them in the nondecreasing order). At the
(k + 1)th iteration, select the (k + l)th number in the list, perform binary search over
the first k numbers to identify the position of this number, and then insert it to produce
the sorted list of the first k + 1 elements. Professor Wright claims that this method
runs in O(n log n) time because it performs n iterations and each binary search requires
O(log n) time. Unfortunately, Professor Wright's claim is false and it is not possible
to implement the algorithm in O(n log n) time. Explain why. (Hint: Work out the details
of this implementation including the required data structures.)

3.23. Given a convex function f(x) of the form shown in Figure 3.11, suppose that we want
to find a value of x that minimizes f(x). Since locating the exact minima is a difficult
task, we allow some approximation and wish to determine a value x so that the interval
(x - E, X + E) contains a value that minimizes f(x). Suppose that we know that f(x)

i
f(x)

Figure 3.11 Convex function.

88 Algorithm Design and Analysis Chap. 3

attains its minimum value in the interval [0, V]. Develop a binary search algorithm for
solving this problem that runs in o (log(Vie)) time. (Hint: At any iteration when [a, b]
is the feasible interval, evaluate f(x) at the points (a + b)/4 and 3(a + b)/4, and exclude
the region [a, (a + b)/4] or [3(a + b)/4, b].)

3.24. (a) Determine the breadth-first and depth-first search trees with s = 1 as the source
node for the graph shown in Figure 3.12.

~------------~ 4 ~------------~.

3 r-----------~~

Figure 3.12 Example for Exercise 3.24.

(b) Is the graph shown in Figure 3.12 acyclic? If not, what is the minimum number of
arcs whose deletion will produce an acyclic graph? Determine a topological ordering
of the nodes in the resulting graph. Is the topological ordering unique?

3.25. Knight's tour problem. Consider the chessboard shown in Figure 3.13. Note that some
squares are shaded. We wish to determine a knight's tour, if one exists, that starts at
the square designated by s and, after visiting the minimum number of squares~ ends at
the square designated by t. The tour must not visit any shaded square. Formulate this
problem as a reachability problem on an appropriately defined graph.

Figure 3.13 Chessboard.

3.26. Maze problem. Show how to formulate a maze problem as a reachability problem in a
directed network. Illustrate your method on the maze problem shown in Figure 3.14.
(Hint: Define rectangular segments in the maze as cords and represent cords by nodes.)

Start

l..-______ ..L-_____________ End Figure 3.14 Maze.

Chap. 3 Exercises 89

3.27. Wine division problem. Two men have an 8-gallon jug full of wine and two empty jugs
with a capacity of 5 and 3 gallons. They want to divide the wine into two equal parts.
Suppose that when shifting the wine from one jug to another, in order to know how
much they have transferred, the men must always empty out the first jug or fill the
second, or both. Formulate this problem as a reachability problem in an appropriately
defined graph. (Hint: Let a, b, and c. respectively, denote a partitioning of the 8 gallons
of wine into the jugs of 8. 5, and 3 gallons capacity. Refer to any such partitioning as
a feasible state of the jugs. Since at least one of the jugs is always empty or full, we
can define 16 possible feasible states. Suppose that we represent these states by nodes
and connect two nodes by an arc when we can permissibly move wine from one jug
to another to move from one state to the other.)

3.28. Give a five-node network for which a breadth-first traversal examines the nodes in the
same order as a depth-first traversal.

3.29. Let T be a depth-first search tree of an undirected graph G. Show that for every nontree
arc (k, /) in G, either node k is an ancestor of node I in T or node I is an ancestor of
node k in T. Show by a counterexample that a breadth-first search tree need not satisfy
this property.

3.30. Show that in a breadth-first search tree. the tree path from the source node to any node
i is a shortest path (i.e., contains the fewest number of arcs among all paths joining
these two nodes). (Hint: Use induction on the number of labeled nodes.)

3.31. In an undirected graph G = (N. A), a set of nodes 5 C; N defines a clique if for every
pair of nodes i,} in 5, (i,}) EA. Show that in the depth-first tree of G, all nodes in
any clique 5 appear on one path. Do all the nodes in a clique 5 appear consecutively
on the path?

3.32. Show that a depth-first order of a network satisfies the following properties.
(a) If node} is a descendant of node i, order(j) > order(i).
(b) All the descendants of any node are ordered consecutively in the order sequence.

3.33. Show that a directed network G is either strongly connected or contains a cut [5, 51
having no arc U.}) with i E 5 and} E S.

3.34. We define the diameter of a graph as a longest path (i.e., one containing the largest
number of arcs) in the graph: The path can start and end at any node. Construct a graph
whose diameter equals the longest path in a depth-first search tree (you can select any
node as the source node). Construct another graph whose diameter is strictly less than
the longest path in some depth-first search tree.

3.35. Transitive closure. A transitive closure of a graph G = (N, A) is a matrix T = {Ti)
defined as follows:

if the graph G contains a directed path from node i to node}
otherwise.

Give an O(nm) algorithm for constructing the transitive closure of a (possibly cyclic)
graph G.

3.36. Let 'Je = {hij} denote the node-node adjacency matrix of a graph G. Consider the
following set of statements:

90

for I: = 1 to n - 1 do
for k: = 1 to n do

for j: = 1 to n do
for i: = 1 to n do

h,,: = max{h". h,k. hk,};

Show that at the end of these computations. the matrix 'Je represents the transitive
closure of G.

Algorithm Design and Analysis Chap. 3

3.37. Given the transitive closure of a graph G, describe an O(n2) algorithm for determining
all strongly connected components of the graph.

3.38. Show that in a directed network, if each node has indegree at least one, the network
contains a directed cycle.

3.39. Show through an example that a network might have several topological orderings of
its nodes. Show that the topological ordering of a network is unique if and only if the
network contains a simple directed path passing through all of its nodes.

3.40. Given two n-vectors (0:(1), 0:(2), ... , o:(n» and (f3(l), f3(2), ... , f3(n», we say that
0: is lexicographically smaller than ~ (i.e., 0: s; ~) if for the first index k for which
o:(k) :I: ~(k), o:(k) is less than f3(k). [For example, (2, 4, 8) is lexicographically smaller
than (2, 5, 1).] Modify the algorithm given in Figure 3.8 so that it gives the lexico­
minimum topological ordering of its nodes (i.e., a topological ordering that is lexico­
graphically smaller than every other topological ordering).

3.41. Suggest an O(m) algorithm for identifying all components of a (possibly) disconnected
graph. Design the algorithm so that it will assign a label 1 to all nodes in the first
component, a label 2 to all nodes in the second component, and so on. (Hint: Maintain
a doubly linked list of all unlabeled node.)

3.42. Consider an (arbitrary) spanning tree T of a graph G. Show how to label each node in
Tas 0 or 1 so that whenever arc (i,j) is contained in the tree, nodes i and} have different
labels. Using this result, prove that G is bipartite if and only if for every nontree arc
(k, I), nodes k and I have different labels. Using this characterization, describe an O(m)
algorithm for determining whether a graph is bipartite or not.

3.43. In an acyclic network G = (N, A) with a specified source node s, let o:(i) denote the
number of distinct paths from node s to node i. Give an O(m) algorithm that determines
aU) for all i E N. (Hint: Examine nodes in a topological order.)

3.44. For an acyclic network G with a specified source node s, outline an algorithm that
enumerates all distinct directed paths from the source node to every other node in the
network. The running time of your algorithm should be proportional to the total length
of all the paths enumerated (i.e., linear in terms of the output length.) (Hint: Extend
your method developed in Exercise 3.43.)

3.45. In an undirected connected graph G = (N, A), an Euler tour is a walk that starts at
some node, visits each arc exactly once, and returns to the starting node. A graph is
Eulerian if it contains an Euler tour. S~ow that in an Eulerian graph, the degree of
every node is even. Next, show that if every node in a connected graph has an even
degree, the graph is Eulerian. Establish the second result by describing an O(m) al­
gorithm for determining whether a graph is Eulerian and, if so, will construct an Euler
tour. (Hint: Describe an algorithm that decomposes any graph with only even-degree
nodes into a collection of arc-disjoint cycles, and then converts the cycles into an Euler
tour.)

3.46. Let T be a depth-first search tree of a graph. Let DU) denote an ordered set of de­
scendants of the node i E T, arranged in the same order in which the depth-first search
method labeled them. Define last(i) as the last element in the set DU). Modify the depth­
first search algorithm so that while computing the depth-first traversal of the network
G, it also computes the last index of every node. Your algorithm should run in O(m)
time.

3.47. Longest path-in a tree (Handler, 1973). A longest path in an undirected tree T is a path
containing the maximum number of arcs. The longest path can start and end anywhere.
Show that we can determine a longest path in T as follows: Select any node i and use
a search algorithm to find a node k farthest from node i. Then use a search algorithm
to find a node I farthest from node k. Show that the tree path from node k to node I is
a longest path in T. (Hint: Consider the midmost node or arc on any longest path in
the tree depending on whether the path contains an even or odd number or arcs. Need
the longest path starting from any node j pass through this node or arc?)

Chap. 3 Exercises 91

3.48. Consider the flow given in Figure 3.1S(a). Compute the imbalance eO) for each node
i E N and decompose the flow into a path and cycle flow. Is this decomposition unique?

(8)

(4, 17,20)

(b)

Figure 3.1S Examples for Exercises 3.48 and 3.49.

3.49. Consider the circulation given in Figure 3.1S(b). Decompose this circulation into flows
along directed cycles. Draw the residual network and use Theorem 3.8 to check whether
the flow is an optimal solution of the minimum cost flow problem.

3.50. Consider the circulation shown in Figure 3.16. Show that there are k! distinct flow
decompositions of this circulation.

Figure 3.16 Example for Exercise 3.50.

3.51. Show that a unit flow along directed walk from node i to nodej(i =1= J) containing any arc at most
once can be decomposed into a directed path from node i to node j plus some arc-disjoint direct­
ed cycles. Next, show that a unit flow along a closed directed walk can be decomposed into unit
flows along arc-disjoint directed cycles.

3.52. Show that if an undirected connec.ted graph G = (N, A) contains exactly 2k odd-degree
nodes, the graph contains k arc-disjoint walks PI, P2 , ••• , Pk satisfying the property
that A = PI U P2 U ... U Pk •.

3.53. Let G = (N, A) be a connected network in which every arc (i, j) E A has positive
lower bound IQ > 0 and an infinite upper bound UQ = 00. Show that G contains a feasible
circulation (Le., a flow in which the inflow equals the outflow for every node) if and
only if G is strongly connected.

3.54. Show that a solution x satisfying the flow bound constraints is a circulation if and only
if the net flow across any cut is zero.

92 Algorithm Design and Analysis Chap. 3

Simplex method,
for bounded variables, 814-15
for generalized flows, 583-89
for linear programming, 810-19
for maximum flows, 430-33
for minimum cost flows, 415-21
for shortest paths, 425-30
generalized upper bounding,

666-67
revised, 813-14

Simplex multipliers
for linear programs, 808
for minimum cost flows, 445-46

Ski instructor's problem, 501
Small-capacity networks, 289
SoUin's algorithm, 526-28, 534
Solving systems of equations, 199
Sorting, 86, 521, 774, 778
Spanning subgraph, 26
Spanning tree, 30
Spanning tree solutions, 405-09
Spanning tree structures, 408-09
Stable marriage problem, 473-75
Stable matchings, 475
Stable university admissions, 507
Stacks

applications, 64-65
Statistical security of data, 199,

283-85
Steiner tree problem, 642
Stick percolation problem, 550-51
Storage policy for libraries,

344-45
Strong connectivity

algorithm, 77
definition, 27

Strong duality theorem
for linear programs, 818-19
for minimum cost flows, 312-13

Strongly feasible solutions,
421-25, 432, 457, 590

and perturbation, 457
Subgradient optimization

application to multicommodity
flows, 663-65

technique, 611-15
Subgraph, 26
Subset systems, 528-30
Subtour breaking constraints, 626

846

Successive shortest path
algorithm

applications, 360, 437, 471, 556,
639,701

basic approach, 320-24, 340
Succint certificate, 794
Symmetric difference, 477
System of difference constraints,

103-05, 127,726-28

Tail nodes, 25
Tanker scheduling problems,

176-77,347,656
Telephone operator scheduling,

105-06, 127
Teleprocessing design problem,

632
Temporarily labeled nodes, 109
Terminal assignment problem, 346
Thread index, 410-14, 443-46
Threshold algorithm, 161
Time complexity function, 58
Time-cost trade-off problem,

735-37
Time-expanded networks, 737-40
Topological ordering

algorithm, 77-79
applications, 11, 107-08,

371-72
Totally unimodular matrices,

,448-49
Tournament problem, 12
Traffic flows, 547
Tramp steamer problem, 103, 150
Transfers in communication

networks, 547-48
Transformations

for removing arc capacities, 40
for removing nonzero lower

bounds, 39
for removing undirected arcs,

39
node splitting, 41-43

Transitive closure, 90, 91
Transportation problem, 7, 9, 20,

294
Travelling salesman problem. See

TSP

Tree arcs, 30
Tree indices, 410-14, 419, 576
Tree of shortest paths, 106, 139
Trees, 28-30
Triangularity property, 443-47
Triple operation, 147
Truck scheduling problem, 763
TSP, 623-25, 643-44, 790-91,

794,797

Uncapacitated networks, 40-41
Undirected networks

definitions, 25, 31
representations, 38
transformation, 39

Unimodular matrices, 447-49
Unimodularity property, 447-49
Union-find operation, 522
Unique label property, 481-82
U nit capacity networks

and bipartite matchings, 469-70
and minimum cost flows, 399
and network connectivity,

188-91, 274
maximum flows in, 252-55,

285, 289
Unstable roommates, 507

Validity conditions, 209
Variable splitting, 630
Variational principle, 16, 547
Vehicle fleet planning, 344
Vehicle routing, 625-27, 645-47
Virtual running times, 707-09
Vital arcs, 128-29, 244

Walk,26
Warehousing problem, 570, 655
Wave algorithm, 246
Weak duality theorem

for Lagrangian relaxation, 606
for linear programs, 817-18
for minimum cost flow, 312

Wine division problem, 90
Worst-case complexity, 56-66

Zero length cycle, 151, 160
Zoned warehousing, 345

Index

	Cover
	NETWORK FLOWS: Theory, Algorithms, and Applications
	Copyright
	CONTENTS
	PREFACE
	1 INTRODUCTION,����������������������
	1.1 Introduction,������������������������
	1.2 Network Flow Problems,���������������������������������
	1.3 Applications,������������������������
	1.4 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	2 PATHS, TREES, AND CYCLES,����������������������������������
	2.1 Introduction,������������������������
	2.2 Notation and Definitions,������������������������������������
	2.3 Network Representations,�����������������������������������
	2.4 Network Transformations,�����������������������������������
	2.5 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	3 ALGORITHM DESIGN AND ANALYSIS,
	3.1 Introduction,������������������������
	3.2 Complexity Analysis,�������������������������������
	3.3 Developing Polynomial-Time Algorithms,���
	3.4 Search Algorithms,�����������������������������
	3.5 Flow Decomposition Algorithms,���
	3.6 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	4 SHORTEST PATHS: LABEL-SETTING ALGORITHMS,
	4.1 Introduction,������������������������
	4.2 Applications,������������������������
	4.3 Tree of Shortest Paths,����������������������������������
	4.4 Shortest Path Problems in Acyclic Networks,��
	4.5 Dijkstra's Algorithm,��������������������������������
	4.6 Dial's Implementation,���������������������������������
	4.7 Heap Implementations,��������������������������������
	4.8 Radix Heap Implementation,�������������������������������������
	4.9 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	5 SHORTEST PATHS: LABEL-CORRECTING ALGORITHMS,
	5.1 Introduction,������������������������
	5.2 Optimality Conditions,���������������������������������
	5.3 Generic Label-Correcting Algorithms,���
	5.4 Special Implementations of the Modified Label-Correcting Algorithm,��
	5.5 Detecting Negative Cycles,�������������������������������������
	5.6 All-Pairs Shortest Path Problem,���
	5.7 Minimum Cost-to-Time Ratio Cycle Problem,��
	5.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	6 MAXIMUM FLOWS: BASIC IDEAS,
	6.1 Introduction,������������������������
	6.2 Applications,������������������������
	6.3 Flows and Cuts,��������������������������
	6.4 Generic Augmenting Path Algorithm,���
	6.5 Labeling Algorithm and the Max-Flow Min-Cut Theorem,���
	6.6 Combinatorial Implications of the Max-Flow Min-Cut Theorem,��
	6.7 Flows with Lower Bounds,�����������������������������������
	6.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	7 MAXIMUM FLOWS: POLYNOMIAL ALGORITHM
	7.1 Introduction,������������������������
	7.2 Distance Labels,���������������������������
	7.3 Capacity Scaling Algorithm,��������������������������������������
	7.4 Shortest Augmenting Path Algorithm,��
	7.5 Distance Labels and Layered Networks,��
	7.6 Generic Preflow-Push Algorithm,��
	7.7 FIFO Preflow-Push Algorithm,���������������������������������������
	7.8 Highest-Label Preflow-Push Algorithm,��
	7.9 Excess Scaling Algorithm,������������������������������������
	7.10 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	8 MAXIMUM FLOWS: ADDITIONAL TOPICS,
	8.1 Introduction,������������������������
	8.2 Flows in Unit Capacity Networks,���
	8.3 Flows in Bipartite Networks,���������������������������������������
	8.4 Flows in Planar Undirected Networks,���
	8.5 Dynamic Tree Implementations,��
	8.6 Network Connectivity,��������������������������������
	8.7 All-Pairs Minimum Value Cut Problem,���
	8.8 Summary,�������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	9 MINIMUM COST FLOWS: BASIC ALGORITHMS,
	9.1 Introduction,
	9.2 Applications,������������������������
	9.3 Optimality Conditions,���������������������������������
	9.4 Minimum Cost Flow Duality,�������������������������������������
	9.5 Relating Optimal Flows to Optimal Node Potentials,���
	9.6 Cycle-Canceling Algorithm and the Integrality Property,��
	9.7 Successive Shortest Path Algorithm,��
	9.8 Primal-Dual Algorithm,���������������������������������
	9.9 Out-of-Kilter Algorithm,�����������������������������������
	9.10 Relaxation Algorithm,���������������������������������
	9.11 Sensitivity Analysis,���������������������������������
	9.12 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	10 MINIMUM COST FLOWS: POLYNOMIAL ALGORITHMS,
	10.1 Introduction,�������������������������
	10.2 Capacity Scaling Algorithm,���������������������������������������
	10.3 Cost Scaling Algorithm,�����������������������������������
	10.4 Double Scaling Algorithm,�������������������������������������
	10.5 Minimum Mean Cycle-Canceling Algorithm,���
	10.6 Repeated Capacity Scaling Algorithm,��
	10.7 Enhanced Capacity Scaling Algorithm,��
	10.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	11 MINIMUM COST FLOWS: NETWORK SIMPLEX ALGORITHMS,
	11.1 Introduction,�������������������������
	11.2 Cycle Free and Spanning Tree Solutions,���
	11.3 Maintaining a Spanning Tree Structure,��
	11.4 Computing Node Potentials and Flows,��
	11.5 Network Simplex Algorithm,
	11.6 Strongly Feasible Spanning Trees,���
	11.7 Network Simplex Algorithm for the Shortest Path Problem,��
	11.8 Network Simplex Algorithm for the Maximum Flow Problem,���
	11.9 Related Network Simplex Algorithms,���
	11.10 Sensitivity Analysis,����������������������������������
	11.11 Relationship to Simplex Method,��
	11.12 Unimodularity Property,
	11.13 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	12 ASSIGNMENTS AND MATCHINGS,
	12.1 Introduction,�������������������������
	12.2 Applications,�������������������������
	12.3 Bipartite Cardinality Matching Problem,���
	12.4 Bipartite Weighted Matching Problem,��
	12.S Stable Marriage Problem,������������������������������������
	12.6 Nonbipartite Cardinality Matching Problem,��
	12.7 Matchings and Paths,��������������������������������
	12.8 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	13 MINIMUM SPANNING TREES,
	13.1 Introduction,�������������������������
	13.2 Applications,�������������������������
	13.3 Optimality Conditions,����������������������������������
	13.4 Kruskal's Algorithm,��������������������������������
	13.S Prim's Algorithm,�����������������������������
	13.6 Sollin's Algorithm,�������������������������������
	13.7 Minimum Spanning Trees and Matroids,��
	13.8 Minimum Spanning Trees and Linear Programming,��
	13.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	14 CONVEX COST FLOWS,
	14.1 Introduction,�������������������������
	14.2 Applications,�������������������������
	14.3 Transformation to a Minimum Cost Flow Problem,��
	14.4 Pseudopolynomial-Time Algorithms,���
	14.5 Polynomial-Time Algorithm,
	14.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	15 GENERALIZED FLOWS,
	15.1 Introduction,
	15.2 Applications,
	15.3 Augmented Forest Structures,��
	15.4 Determining Potentials and Flows for an Augmented Forest Structure,
	15.5 Good Augmented Forests and Linear Programming Bases,
	15.6 Generalized Network Simplex Algorithm,
	15.7 Summary,
	Reference Notes,�����������������������
	Exercises,�����������������

	16 LAGRANGIAN RELAXATION AND NETWORK OPTIMIZATION,
	16.1 Introduction,�������������������������
	16.2 Problem Relaxations and Branch and Bound,���
	16.3 Lagrangian Relaxation Technique,��
	16.4 Lagrangian Relaxation and Linear Programming,���
	16.5 Applications of Lagrangian Relaxation,��
	16.6 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	17 MULTICOMMODITY FLOWS,
	17.1 Introduction,�������������������������
	17.2 Applications,�������������������������
	17.3 Optimality Conditions,����������������������������������
	17.4 Lagrangian Relaxation,����������������������������������
	17.5 Column Generation Approach,���������������������������������������
	17.6 Dantzig-Wolfe Decomposition,��
	17.7 Resource-Directive Decomposition,���
	17.8 Basis Partitioning,�������������������������������
	17.9 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	18 COMPUTATIONAL TESTING OF ALGORITHMS,
	18.1 Introduction,�������������������������
	18.2 Representative Operation Counts,��
	18.3 Application to Network Simplex Algorithm,���
	18.4 Summary,��������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	19 ADDITIONAL APPLICATIONS,����������������������������������
	19.1 Introduction,�������������������������
	19.2 Maximum Weight Closure of a Graph,��
	19.3 Data Scaling,�������������������������
	19.4 Science Applications,���������������������������������
	19.5 Project Management,�������������������������������
	19.6 Dynamic Flows,��������������������������
	19.7 Arc Routing Problems,���������������������������������
	19.8 Facility Layout and Location,���
	19.9 Production and Inventory Planning,��
	19.10 Summary,���������������������
	Reference Notes,�����������������������
	Exercises,�����������������

	APPENDIX A: DATA STRUCTURES,
	A.1 Introduction,
	A.2 Elementary Data Structures,��������������������������������������
	A.3 d-Heaps,�������������������
	A.4 Fibonacci Heaps,���������������������������
	Reference Notes,�����������������������

	APPENDIX B: NP-COMPLETENESS,
	B.1 Introduction,
	B.2 Problem Reductions and Transformations,��
	B.3 Problem Classes P, NP, NP-Complete, and NP-Hard,
	B.4 Proving NP-Completeness Results,
	B.5 Concluding Remarks,������������������������������
	Reference Notes,�����������������������

	APPENDIX C: LINEAR PROGRAMMING,
	C.1 Introduction,
	C.2 Graphical Solution Procedure,��
	C.3 Basic Feasible Solutions,������������������������������������
	C.4 Simplex Method,��������������������������
	C.5 Bounded Variable Simplex Method,
	C.6 Linear Programming Duality,��������������������������������������
	Reference Notes,�����������������������

	REFERENCES,
	INDEX,�������������

