Primaveria 2011 Auxiliar: Sebastián Vergara

1. Sea $(I, (S_i)_{i \in I}, (u_i)_{i \in I})$ un juego en formal normal tal que para todo $i \in I$ y para todo $s_i \in S_i$ existe $s_{-i} \in S_{-i}$ tal que $s_i \in \arg\max_{s' \in S_i} u_i(s', s_{-i})$. Aplique el proceso de eliminación iterativa de estrategias dominadas al juego en forma normal.

2. Considere el siguiente juego

$$\begin{array}{c|cc} & L & R \\ U & a,b & c,d \\ D & e,f & 0,0 \end{array}$$

Encuentre condiciones necesarias y suficientes para las siguientes propiedades del juego:

- a. U es estricamente dominada.
- b. (U, L) es una solución de EIEED.
- c. (U, L) es un equilibrio de Nash.
- 3. Dos candidato compiten en una elección escogiendo posiciones políticas $s_i \in \{-K, \dots -1, 0, 1, \dots, K\}$, donde K > 1. En cada una de las 2K + 1 posibles posturas políticas hay una fracción $\frac{1}{2K+1}$ de votantes. Cada votante vota por el candidato con una postura más cercana a la propia. En caso de indiferencia, los votantes se reparten en partes iguales entre los dos candidatos. La utilidad de cada candidato está dada por la fracción de votos obtenida en la elección.
 - a. Encuentre las estrategias estrictamente dominadas del juego.
 - b. Tiene el juego solución por eliminación iterada de estrategias dominadas?
 - c. Encuentre todos los equilibrios de Nash del juego.
- 4. Considere una economía de intercambio de dos agentes descrita por $(u^i, e^i)_{i=1,2}$, con $e^i \in \mathbb{R}^L_{++}$ y u^i fuertemente monotóna. En esta economía el protocolo de intercambio difiere del modelo Walrasiano estudiado en clases y se describe de la siguiente manera. Los agentes simultáneamente hacen peticiones $x^i \in \mathbb{R}^L_+$, i=1,2. Si (x^1,x^2) es factible, entonces a cada uno se le otorga su petición. De lo contrario, cada uno conserva su dotación inicial e^i .
 - a. Modele la situación como un juego en forma normal describiendo las conjuntos de acciones y los pagos.
 - b. Diremos que un EN $\bar{x}=(\bar{x}^1,\bar{x}^2)$ es de peticiones factibles si (\bar{x}^1,\bar{x}^2) es factible, es decir, si $\bar{x}^1+\bar{x}^2\leq e^1+e^2$. Muestre que el conjunto de todos los EN $x\in\mathbb{R}^{2L}$ de peticiones factibles coincide con

$$\{x \in \mathbb{R}^{2L} \mid x^1 + x^2 = e^1 + e^2, \ u^i(x^i) \ge u^i(e^i) \text{ para todo } i = 1, 2\}$$

Ilustre el conjunto de todos los EN de peticiones factibles usando una caja de Edgeworth.

- c. Suponga que (e^1, e^2) es una asignación Pareto óptima para la economía de intercambio. Suponga además que las preferencias son estrictamente convexas. Muestre que el único EN de peticiones factibles es $\bar{x} = (e^1, e^2)$. Puede argumentar gráficamente usando una caja de Edgeworth si lo desea.
- d. (Opcional) Explique las implicancias que tiene el teorema de Brown-Matzkin sobre la posibilidad de refutar el protocolo de intercambio estudiado en la economía de intercambio
- 5. Considere $n \geq 2$ firmas que compiten como en el modelo de Bertrand con productos homogéneos discutido en clases, pero ahora suponga que la función de demanda es Q(p) = a bp y la funcion de costos son idénticas y cuadráticas: $c_i(q) = \frac{c}{2}q^2$, con c > 0, para todo i.
 - a. Calcule y grafique $\pi_n(p)$, para $p \in \mathbb{R}_+$, la utilidad de cada firma si todas las firmas en el mercado fijan precio igual a p. Calcule y grafique $\pi_1(p)$, la utilidad que obtiene la firma i si es la única firma en el mercado vendiendo a precio p.
 - b. Use a. para encontrar precios $\underline{p}_n < \bar{p}_n$ tales que para todo $p \in [\underline{p}_n, \bar{p}_n]$ existe un EN (p_1, \ldots, p_n) tal que $p_i = p$ para todo i.
 - c. Encuentre el equilibrio competitivo del modelo (esto es, derive la curva de oferta y encuentre el punto de intersección con la demanda). Muestre que el equilibrio competitivo se puede sostener como un equilibrio de Nash del juego de Bertrand.
 - d. Explique por qué existen multiples equilibrios de Nash simétricos cuando los costos marginales son crecientes.