CHAPTER 5
F

Computing Value at Risk

The Daily Earnings at Risk (DEaR) estimate for our combined trading
activities averaged approximately $15 million.

JL. Morgan 1994 Annual Report

Perhaps the greatest advantage of value at risk (VAR) is that it sum-
marizes in a single, easy to understand number the downside risk of an
institution due to financial market variables. No doubt this explains why
VAR is fast becoming an essential tool for conveying trading risks to sen-
ior management, directors, and shareholders. J.P. Morgan, for example,
was one of the first users of VAR. It revealed in its 1994 Annual Report
that its trading VAR was an average of $15 million at the 95 percent level
over 1 day. Shareholders can then assess whether they are comfortable
with this level of risk. Before such figures were released, shareholders
had only a vague idea of the extent of trading activities assumed by the
bank.

This chapter turns to a formal definition of value at risk (VAR). VAR
assumes that the portfolio is “frozen” over the horizon or, more generally,
that the risk profile of the institution remains constant. In addition, VAR
assumes that the current portfolio will be marked-to-market on the target
horizon. Section 5.1 shows how to derive VAR figures from probability
distributions. This can be done in two ways, either from considering the
actual empirical distribution or by approximating the distribution by a
parametric approximation, such as the normal distribution, in which case
VAR is derived from the standard deviation.

Section 5.2 then discusses the choice of the quantitative factors, the
confidence level and the horizon. Criteria for this choice should be guided
by the use of the VAR number. If VAR is simply a benchmark for risk,
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the choice is totally arbitrary. In contrast, if VAR is used to set equity cap-
ital, the choice is quite delicate. Criteria for parameter selection are alsq
explained in the context of the Basel Accord rules.

The next section turns to an important and often ignored issue, which
is the precision of the reported VAR number. Due to normal sampling
variation, there is some inherent imprecision in VAR numbers. Thus, ob.
serving changes in VAR numbers for different estimation windows is per-
fectly normal. Section 5.3 provides a framework for analyzing norma]
sampling variation in VAR and discusses methods to improve the accuy-
racy of VAR figures. Finally, Section 5.4 provides some concluding
thoughts.

5.1 COMPUTING VAR

With all the requisite tools in place, we can now formally define the value
at risk (VAR) of a portfolio. VAR summarizes the expected maximum loss
(or worst loss) over a target horizon within a given confidence interval,
Initially, we take the quantitative factors, the horizon and confidence level,
as given.

5.1.1 Steps in Constructing VAR

Assume, for instance, that we need to measure the VAR of a $100 mil-
lion equity portfolio over 10 days at the 99 percent confidence level. The
following steps are required to compute VAR:

® Mark-to-market of the current portfolio (e.g., $100 million).

® Measure the variability of the risk factors(s) (e.g., 15 percent
per annum).

® Set the time horizon, or the holding period (e.g., adjust to 10
business days).

® Set the confidence level (e.g., 99 percent, which yields a 2.33
factor assuming a normal distribution).

® Report the worst loss by processing all the preceding informa-
tion (e.g., a $7 million VAR).

These steps are illustrated in Figure 5-1. The precise detail of the com-
putation is described next.
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~ Steps INn constructing VAR.
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5.1.2 VAR for General Distributions

To compute the VAR of a portfolio, define W, as the initial investment
and R as its rate of return. The portfolio value at the end of the target
horizon is W = W, (1 + R). As before, the expected return and volatil-
ity of R are w and ¢. Define now the lowest portfolio value at the given
confidence level ¢ as W* = W, (1 + R*). The relative VAR is defined as
the dollar loss relative to the mean:

VAR(mean) = E(W) — W* = —W, (R* — W) 5.1)

Sometimes VAR is defined as the absolute VAR, that is, the dollar loss
relative to zero or without reference to the expected value:

VAR(zero) = Wy — W* = —WR* (5.2)

Inboth cases, finding VAR is equivalent to identifying the minimum value
W* or the cutoff return R*.

If the horizon is short, the mean return could be small, in which case
both methods will give similar results. Otherwise, relative VAR is con-
ceptually more appropriate because it views risk in terms of a deviation
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from the mean, or “budget,” on the target date, appropriately accounting :
for the time value of money. This approach is also more conservative jf -
the mean value is positive. Its only drawback is that the mean return jig |
sometimes difficult to estimate. '

In its most general form, VAR can be derived from the probability
distribution of the future portfolio value f{w). At a given confidence leve] -
¢, we wish to find the worst possible realization W* such that the proba-
bility of exceeding this value is ¢:

¢ = f; Aw) dw 53)

or such that the probability of a value lower than W*, p = P(w = W*)
is1 — ¢
W
1—c¢c= fw)ydw = P(w = W*)=p (5.4

In other words, the area from —eo to W* must sumtop = 1 — c, for in-
stance, 5 percent. The number W* is called the guantile of the distribu-
tion, which is the cutoff value with a fixed probability of being exceeded.
Note that we did not use the standard deviation to find the VAR. |

This specification is valid for any distribution, discrete or continu-
ous, fat- or thin-tailed. Figure 5-2, for instance, reports J.P. Morgan’s dis-
tribution of daily revenues in 1994.

To compute VAR, assume that daily revenues are identically and in-
dependently distributed. We can then derive the VAR at the 95 percent con-
fidence level from the 5 percent left-side “losing tail” from the histogram.

From this graph, the average revenue is about $5.1 million. There is
a total of 254 observations; therefore, we would like to find W* such that
the number of observations to its left is 254 X 5 percent = 12.7. We
have 11 observations to the left of —$10 million and 15 to the left of —$9
million. Interpolating, we find W* = —$9.6 million. The VAR of daily
revenues, measured relative to the mean, is VAR = E(W) — W* = §5.1
million — (—$9.6 million) = $14.7 million. If one wishes to measure -
VAR in terms of absolute dollar loss, VAR is then $9.6 million. "

5.1.3 VAR for Parametric Distributions

. The VAR computation can be simplified considerably if the distribution :'
can be assumed to belong to a parametric family, such as the normal dis-
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FIGURE 5-2

Distribution of daily revenues.
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tribution. When this is the case, the VAR figure can be derived directly
from the portfolio standard deviation using a multiplicative factor that de-
pends on the confidence level. This approach is sometimes called para-
metric because it involves estimation of parameters, such as the standard
deviation, instead of just reading the quantile off the empirical distribu-
tion.

This method is simple and convenient and, as we shall see later,
produces more accurate measures of VAR. The issue is whether the nor-
mal approximation is realistic. If not, another distribution may fit the data
better.

First, we need to translate the general distribution {w) into a stan-
dard normal distribution ®(€), where € has mean zero and standard devi-
ation of unity. We associate W* with the cutoff return R* such that W* =
Wo(l + R*). Generally, R* is negative and also can be written as —IR*|,
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Further, we can associate R* with a standard normal deviate a > () by

setting ‘

_ —IR* —
g

(5.5

It is equivalent to set

W —IR*| —a
1l —c= f fw)dw = J flirydr = J ®D(e) de (5.6)
Thus the problem of finding a VAR is equivalent to finding the deviate o
such that the area to the left of it is equal to 1 — ¢. This is made possi-
ble by turning to tables of the cumulative standard normal distribution
function, which is the area to the left of a standard normal variable with .
value equal to d:

d
N(d) = Lm D(e) de 5.7) .

This function also plays a key role in the Black-Scholes option pricing
model. Figure 5-3 graphs the cumulative density function N(d), which
increases monotonically from 0 (for d = —) to 1 (for d = +o0), going -
through 0.5 as d passes through 0. ,

To find the VAR of a standard normal variable, select the desired -
left-tai] confidence level on the vertical axis, say, S percent. This corre- |
sponds to a value of a = 1.65 below (). We then retrace our steps, back
from the o« we just found to the cutoff return R* and VAR. From Equation -
(5.5), the cutoff return is

R* = —ao + (5.8)

For more generality, assume now that the parameters p. and o are ex-
pressed on an annual basis. The time interval considered is 4¢, in years.
We can use the time aggregation results developed in the preceding chap-
ter, which assume uncorrelated returns.

Using Equation (5.1), we find the VAR below the mean as

VAR(mean) = ~Wo(R* — p) = WoaoV At 59

In other words, the VAR figure is simply a muitiple of the standard devi-
~ ation of the distribution times an adjustment factor that is directly related
to the confidence level and horizon. '
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~p]GURE 5-3
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When VAR is defined as an absolute dollar loss, we have
VAR(zero) = —WyR* = Wy(aoV AL — pAb) (5.10)

This method generalizes to other cumulative probability functions
(cdf) as well as the normal, as long as all the uncertainty is contained in
o. Other distributions will entail different values of a. The normal distri-
bution is just particularly easy to deal with because it adequately repre-
sents many empirical distributions. This is especially true for large, well-
diversified portfolios but certainly not for portfolios with heavy option
components and exposures to a small number of financial risks.

5.1.4 Comparison of Approaches

How well does this approximation work? For some distributions, the fit
can be quite good. Consider, for instance, the daily revenues in Figure
3-2. The standard deviation of the distribution is $9.2 million. According
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FIGURE 5—-4

Comparison of cumulative distributions.
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to Equation (5.9), the normal-distribution VAR is a X (oWj) = 1.65 X
$9.2 million = $15.2 million. Note that this number is very close to the
VAR obtained from the general distribution, which was $14.7 million.

Indeed, Figure 5-4 presents the cumulative distribution functions
(cdf) obtained from the histogram in Figure 5-2 and from its normal ap-
proximation. The actual cdf is obtained from summing, starting from the
left, all numbers of occurrences in Figure 5-2 and then scaling by the to-
tal number of observations. The normal cdf is the same as that in Figure
5-3, with the horizontal axis scaled back into dollar revenues using
Equation (5.8). The two lines are generally very close, suggesting that the
normal approximation provides a good fit to the actual data.

5.1.5 VAR as a Risk Measure

- VAR’s heritage can be traced to Markowitz’s (1952) seminal work on port-
folio choice. He noted that “you should be interested in risk as well as
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return” and advocated the use of the standard deviation as an intuitive
measure of dispersion.

- Much of Markowitz’s work was devoted to studying the tradeoff be-
tween expected return and risk in the mean-variance framework, which is
appropl'iate when eitht;r returns are normally distributed or investors have
quadratic utility functions. : :

Perhaps the first mention of confidence-based risk measures can be
traced to Roy (1952), who presented a “safety first” criterion for portfo-
lio selection. He advocated choosing portfolios that minimize the proba-
bility of a loss greater than a disaster level. Baumol (1963) also proposed
a risk measurement criterion based on a Jower confidence limit at some

probability level:
L=ac—pn (5.11)

which is an early description of Equation (5.10).

Other measures of risk have also been proposed, including semide-
viation, which counts only deviations below a target value, and lower par-
tial moments, which apply to a wider range of utility functions.

More recently, Artzner et al. (1999) list four desirable properties for
risk measures for capital adequacy purposes. A risk measure can be viewed
as a function of the distribution of portfolio value W, which is summa-
rized into a single number p(W):

® Monotonicity: It W, = W, p(W)) = p(W>), or if a portfolio
has systematically lower returns than another for all states of
the world, its risk must be greater.

® Translation invariance. p(W + k) = p(W) — k, or adding cash
k to a portfolio shouid reduce its risk by k.

B Homogeneity. p(bW) = bp(W), or increasing the size of a port-
folio by b should simply scale its risk by the same factor (this
rules out liquidity effects for large portfolios, however).

" Subadditivity. p(W, + W) = p(W;) + p(W>), or merging port-
folios cannot increase risk.

Artzner et al. (1999) show that the quantile-based VAR measure fails
o satisfy the last property. Indeed, one can come up with pathologic ex-
amples of short option positions that can create large losses with a low prob-
ability and hence have low VAR yet combine to create portfolios with larger
VAR. One can also show that the shortfall measure E(—XIX < —VAR),
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which is the expected loss conditional on exceeding VAR, satisfies thege -
desirable “coherence” properties.

When returns are normally distributed, however, the standard dev;.
ation-based VAR satisfies the last property, (W, + W,) = o(W;) +
o(W,). Indeed, as Markowitz had shown, the volatility of a portfolio is
less than the sum of volatilities.

Of course, the preceding discussion does not consider another es.
sential component for portfolio comparisons: expected returns. In prac-
tice, one obviously would want to balance increasing risk against ip.
creasing expected returns. The great benefit of VAR, however, is that it
brings attention and transparency to the measure of risk, a component of
the decision process that is not intuitive and as a result too often ignored,

5.2 CHOICE OF QUANTITATIVE FACTORS

We now turn to the choice of two guantitative factors: the length of the -
holding horizon and the confidence level. In general, VAR will increase
with either a longer horizon or a greater confidence level. Under certain
conditions, increasing one or the other factor produces equivalent VAR
numbers. This section provides guidance on the choice of ¢ and At, which
should depend on the use of the VAR number.

5.2.1 VAR as a Benchmark Measure

The first, most general use of VAR is simply to provide a companywide
yardstick to compare risks across different markets. In this situation, the
choice of the factors is arbitrary. Bankers Trust, for instance, has long
used a 99 percent VAR over an annual horizon to compare the risks of
various units. Assuming a normal distribution, we show later that it is easy
to convert disparate bank measures into a common number.

The focus here is on cross-sectional or time differences in VAR. For
instance, the institution wants to know if a trading unit has greater risk
than another. Or whether today’s VAR is in line with yesterday’s. If not, -
the institution should “drill down” into its risk reports and find whether
today’s higher VAR is due to increased volatility or larger bets. For this
purpose, the choice of the confidence level and horizon does not matter
~much as long as consistency is maintained.
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5.2.2 VAR as a Potential Loss Measure

Another application of VAR is to give a broad idea of the worst loss an
ipstitution can incur. If so, the horizon should be determined by the na-
wure of the portfolio.

A first interpretation is that the horizon is defined by the liguidation
period. Commercial banks currently report their trading VAR over a daily
horizon because of the liquidity and rapid turnover in their portfolios. In
contrast, investment portfolios such as pension funds generally invest in
less liquid assets and adjust their risk exposures only slowly, which is why
a 1-month horizon is generally chosen for investment purposes. Since the
holding period should correspond to the longest period needed for an or-
derly portfolio liquidation, the horizon should be related to the liquidity
of the securities, defined in terms of the length of time needed for nor-
mal transaction volumes. A related interpretation is that the horizon rep-
resents the time required 10 hedge the market risks.

An opposite view is that the horizon corresponds to the period over
which the portfolio remains relatively constant. Since VAR assumes that
the portfolio is frozen over the horizon, this measure gradually loses sig-
nificance as the horizon extends.

However, perhaps the main reason for banks to choose a daily VAR
is that this is consistent with their daily profit and loss (P&L) measures.
This allows an easy comparison between the daily VAR and the subse-
quent P&L. number.

For this application, the choice of the confidence level is relatively ar-
bitrary. Users should recognize that VAR does not describe the worst-ever
loss but is rather a probabilistic measure that should be exceeded with some
frequency. Higher confidence levels will generate higher VAR figures.

5.2.3 VAR as Equity Capital

On the other hand, the choice of the factors is crucial if the VAR number
is used directly to set a capital cushion for the institution. If so, a loss ex-
ceeding the VAR would wipe out the equity capital, leading to bankruptcy.

For this purpose, however, we must assume that the VAR measure
adequately captures all the risks facing an institution, which may be a
stretch. Thus the risk measure should encompass market risk, credit risk,
operational risk, and other risks.
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The choice of the confidence level should reflect the degree of rigk
aversion of the company and the cost of a loss exceeding VAR. Higher
risk aversion or greater cost implies that a greater amount of capital shou]q -
cover possible losses, thus leading to a higher confidence level.

At the same time, the choice of the horizon should correspond g
the time required for corrective action as losses start to develop. Corrective
action can take the form of reducing the risk profile of the institution o
raising new capital.

To illustrate, assume that the institution determines its risk profile
by targeting a particular credit rating. The expected default rate then can
be converted directly into a confidence level. Higher credit ratings shoulqd
lead to a higher VAR confidence level. Table 5-1, for instance, shows that
to maintain a Baa investment-grade credit rating, the institution shoyld
have a default probability of 0.17 percent over the next year. It therefore
should carry enough capital to cover its annual VAR at the 99.83 percent.
confidence level, or 100 — 0.17 percent.

Longer horizons, with a constant risk profile, inevitably lead to-
higher default frequencies. Institutions with an initial Baa credit rating
have a default frequency of 10.50 percent over the next 10 years. The
same credit rating can be achieved by extending the horizon or decreas-
ing the confidence level appropriately. These two factors are intimately
related.

TABLE 5—-1

Credit Rating and Default Rates

Default Frequency
Desired Rating 1 Year 10 Yeara
Aaa 0.02% 1.49%
Aa 0.05% 3.24%
A 0.09% 5.65%
Baa 0.17% 10.50%
Ba 0.77% 21.24%
B 2.32% 37.98%

Source: Adapted from Moody's default rates from 1920-1998.
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5.2.4 Criteria for Backtesting

The choice of the quantitative factors is also important for backtesting
considerations. Model backtesting involves systematic comparisons of
VAR with the subsequently realized P&L in an attempt to detect biases
in the reported VAR figures and is described in a later chapter. The goal
should be to set up the tests so as to maximize the likelihood of catching
biases in VAR forecasts.

Longer horizons reduce the number of independent observations and
thus the power of the tests. For instance, using a 2-week VAR horizon
means that we have only 26 independent observations per year. A 1-day
VAR horizon, in contrast, will have about 252 observations over the same
year. Hence a shorter horizon 1s preferable to increase the power of the
tests. This explains why the Basel Committee performs backtesting over
a 1-day horizon, even though the horizon is 10 business days for capital
adequacy purposes.

Likewise, the choice of the confidence level should be such that it
leads to powerful tests, Too high a confidence level reduces the expected
number of observations in the tail and thus the power of the tests. Take,
for instance, a 95 percent level, We know that, just by chance, we expect
a loss worse than the VAR figure in 1 day out of 20. If we had chosen a
99 percent confidence level, we would have to wait, on average, 100 days
to confirm that the model conforms to reality. Hence, for backtesting pur-
poses, the confidence level should not be set too high. In practice, a 95
percent level performs well for backtesting purposes.

5.2.5 Application: The Basel Parameters

One illustration of the use of VAR as equity capital is the internal mod-
els approach of the Basel Committee, which imposes a 99 percent confi-
dence level over a 10-business-day horizon. The resulting VAR is then
multiplied by a safety factor of 3 to provide the minimum capital re-
quirement for regulatory purposes.

Presumably, the Basel Committee chose a 10-day period because it
reflects the tradeoff between the costs of frequent monitoring and the ben-
efits of early detection of potential problems. Presumably also, the Basel
Committee chose a 99 percent confidence level that reflects the tradeoff
between the desire of regulators to ensure a safe and sound financial sys-
tem and the adverse effect of capital requirements on bank returns.
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Even so, a loss worse than the VAR estimate will occur about 1 per-
cent of the time, on average, or once every 4 years. It would be unthink.
able for regulators to allow major banks to fail so often. This explains the
multiplicative factor £ = 3, which should provide near absolute insurance
against bankruptcy. '

At this point, the choice of parameters for the capital charge should
appear quite arbitrary. There are many combinations of the confidence
level, the horizon, and the multiplicative factor that would yield the same
capital charge. The origin of the factor k also looks rather mysterious,

Presumably, the multiplicative factor also accounts for a host of ad-
ditional risks not modeled by the usual application of VAR that fall un-
der the category of model risk. For example, the bank may be understat-
ing its risk due to a short sample period, to unstable correlation, or simply
to the fact that it uses a normal approximation to a distribution that really
has more observations in the tail.

Stahl (1997) justifies the choice of k& based on Chebyshev’s in-
equality. For any random variable x with finite variance, the probability
of falling outside a specified interval is

Plx — 1> ro) = 17 (5.12)

assuming that we know the true standard deviation o. Suppose now that
the distribution is symmetrical. For values of x below the mean,

Pl(x — p) < —ro] =1 1/ (5.13)

We now set the right-hand side of this inequality to the desired level of
1 percent. This yields n(99%) = 7.071. The maximum VAR is therefore
VAR ,ax = 1(99%)0.

Say that the bank reports its 99 percent VAR using a normal distri-
bution. Using the quantile of the standard normal distribution, we have

VARy = a(99%)0 = 2.3260 - (5.14)
If the true distribution is misspecified, the correction factor is then

VAR, 23260

= 3.03 (5.15)

which happens to justify the correction factor applied by the Basel
Committee.
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5.2.6 Conversion of VAR Parameters

Using a parametric distribution such as the normal distribution is partic-
ularly convenient because it allows conversion to different confidence lev-
els (which define o). Conversion across horizons (expressed as o VAP is
also feasible if we assume a constant risk profile, that is, portfolio posi-
tions and volatilities. Formally, the portfolio returns need to be (1) inde-
pendently distributed, (2) normally distributed, and (3) with constant pa-
rameters.

As an example, we can convert the RiskMetrics risk measures into
the Basel Committee internal models measures. RiskMetrics provides a
95 percent confidence interval (1.65a¢) over 1 day. The Basel Committee
rules define a 99 percent confidence interval (2.330) over 10 days. The
adjustment takes the following form:

2.33
1.65

Therefore, the VAR under the Basel Committee rules is more than four
times the VAR from the RiskMetrics system.

More generally, Table 5-2 shows how the Basel Committee param-
eters translate into combinations of confidence levels and horizons, tak-
ing an annual volatility of 12 percent, which is typical of the DM/$

VARgc = VARgpm V10 = 4.45VARgy

TABLE S5~2

Equivalence Between Horizon and Confidence Level,
Normal Distribution, Annua! Risk = 12 Percent (Basel
Parameters: 99 Percent Confidence over 2 Weeks)

Confidence Number of Horizon Actual S.D. Cutoff Value
Level ¢ S0 « At oVAt acV AL

Baseline
99% —2.326 2 weeks 2.35 —-5.47
57 56% —0.456 1 year 12.00 —~5.47
81.89% -0.911 3 months 6.00 —5.47
86.78% —1.116 2 months 490 ~5.47
95% ~1.645 4 weeks 3.32 —-5.47
99%% —2.326 2 weeks 2.35 ~5.47
89.95% —3.290 1 week 1.66 ~5.47
99.99997% —7.153 1 day 0.76 —5.47

e
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exchange rate (now the euro/$ rate). These combinations are such thyt
they all produce the same value for ao’V/At. For instance, a 99 percent
confidence level over 2 weeks produces the same VAR as a 95 percent
confidence level over 4 weeks. Or conversion into a weekly horizon re.
quires a confidence level of 99.95 percent.

5.3 ASSESSING VAR PRECISION

This chapter has shown how to estimate essential parameters for the meas-
urement of VAR, means, standard deviations, and quantiles from actya]
data. These estimates, however, should not be taken for granted entirely,
They are affected by estimation erroy, which is the natural sampling vari-
ability due to limited sample size. Users should beware of the limited pre-
cision behind the reported VAR numbers.

5.3.1 The Problem of Measurement Errors

From the viewpoint of VAR users, it is important to assess the degree of
precision in the reported VAR. In a previous example, the daily VAR was
$15 million. The question is: How confident is management in this esti-
mate? Could we say, for example, that management is highly confident
in this figure or that it is 95 percent sure that the true estimate is in a $14
million to $16 million range? Or is it the case that the range is $5 mil-
lion to $25 million. The two confidence bands give quite a different pic-
ture of VAR. The first is very precise; the second is rather uninformative
(although it tells us that it is not in the hundreds of millions of dollars).
This is why it is useful to examine measurement errors in VAR figures.

Consider a situation where VAR is obtained from the historical sim-
ulation method, which uses a historical window of T days to measure risk.
The problem is that the reported VAR measure is only an estimate of the
true value and is affected by sampling variability. In other words, differ-
ent choices of the window 7 will lead to different VAR figures.

One possible interpretation of the estimates (the view of “frequen-
tist” statisticians) is that these estimates . and o are samples from an un-
derlying distribution with unknown parameters . and . With an infinite
number of observations T — o and a perfectly stable system, the esti-
mates should converge to the true values. In practice, sample sizes are
. limited, either because some series, like emerging markets, are relatively
recent or because structural changes make it meaningless to go back too
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far in time. Since some estimation error may remain, the natural disper-
sion of values can be measured by the sampling distribution for the pa-
rameters fL and o. We now turn to a description of the distribution of sta-
ristics on which VAR measures are based.

5.3.2 Estimation Errors in Means
and Variances

When the underlying distribution is normal, the exact distribution of the
sample mean and variance is known. The estimated mean wis distributed
normally around the true mean '

=~ N(p, o%/T) (5.16)

where T is the number of independent observations in the sample. Note
that the standard error in the estimated mean converges toward 0 at a rate
of oV 1/T as T increases.

As for the estimated variance o 2, the following ratio has a chi-square
distribution with (T — 1) degrees of freedom:

(T — 1) ¢°
0.2

=X T—1) (5.17)

In practice, if the sample size T is large enough (e.g., above 20), the chi-
square distribution converges rapidly to a normal distribution, which is
easier to handle:

A2 2 4 2
a= N| o7, 5.18
5 (a ot - 1) (5.18)
As for the sample standard deviation, its standard error in large sam-
ples is

A 1

se(0) = o T (5.19)
For instance, consider monthly returns on the DM/$ rate from 1973
to 1998. Sample parameters are .= —0.15 percent, & = 3.39 percent,
with T = 312 observations. The standard error of the estimate indicates
how confident we are about the sample value; the smaller the error, the
more confident we are. One standard error in [ is se(jL) = & VT =
3.39 V1/312 = 0.19 percent. Therefore, the point estimate of .= —0.15
percent is less than one standard error away from 0. Even with 26 years

of data, . is measured very imprecisely.



124 PART 2 Building Blockg

In contrast, one standard error for ¢ is se(¢) = aV12T = 3.39
V' 1/624 = (.14 percent. Since this number is much smaller than the es.
timate of 3.39 percent, we can conclude that the volatility is estimated
with much greater accuracy than the expected return—giving some cop-
fidence in the use of VAR systems,

As the sample size increases, so does the precision of the estimate,
To illustrate this point, Figure 5-5 depicts 95 percent confidence bands
around the estimate of volatility for various sample sizes, assuming a true
daily volatility of 1 percent.

With 5 trading days, the band is rather imprecise, with upper and
lower values set at [0.41%, 1.60%]. After 1 year, the band is [0.91%,
1.08%]. As the number of days increases, the confidence bands shrink to
the point where, after 10 years, the interval narrows to [0.97%, 1.03%].
Thus, as the observation interval lengthens, the estimate should become -
arbitrarily close to the true value.

FIGURE 5—-5

Confidence bands for sample volatility.

Daily volatility (%)
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Finally, o can be used to estimate any quantile (an example is shown
in Section 5.1.4). Since the normal distribution is fully characterized by
two parameters only, the standard deviation contains all the information
pecessary to build measures of dispersion. Any o-based quantile can be

derived as

Jy = QG (5.20)
At the 95 percent confidence level, for instance, we simply multiply the
estimated value of & by 1.65 to find the 5 percent left-tail quantile. Of
course, this method will be strictly valid if the underlying distribution is
closely approximated by the normal. When the distribution is suspected
to be strongly nonnormal, other methods, such as kernel estimation, also
provide estimates of the quantile based on the full distribution.’

5.3.3 Estimation Error in Sample Quantiles

For arbitrary distributions, the cth quantile can be determined empirically
from the historical distribution as g(c) (as shown in Section 5.1.2). There
is, as before, some sampling error associated with the statistic. Kendall
(1994) reports that the asymptotic standard error of g is

se(q) = /————“;1 ﬂ;),? (5.21)

where T is the sample size, and f(*) is the probability distribution func-
tion evaluated at the quantile g. The effect of estimation error is illustrated
in Figure 5-6, where the expected quantile and 95 percent confidence
bands are plotted for quantiles from the normal distribution.

For the normal distribution, the 5 percent left-tailed interval is cen-
tered at 1.65. With T = 100, the confidence band is [1.24, 2.04], which
is quite large. With 250 observations, which correspond to 1 year of trad-
ing days, the band is still [1.38, 1.91]. With T = 1250, or 5 years of data,
the interval shrinks to [1.52, 1.76].

These intervals widen substantially as one moves to more extreme
quantiles. The expected value of the 1 percent quantile is 2.33. With 1
year of data, the band is [1.85, 2.80]. The interval of uncertainty is about

I Kernel estimation smoothes the empirical distribution by a weighted sum of local distributions.
For a further description of kernel estimation methods, see Scott (1992). Butler and Schachter
(1998) apply this method to the estimation of VAR.
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FIGURE 56

Confidence bands for sample quantiles.
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twice that at the 5 percent interval. Thus sample quantiles are mcreasmgly ;
unreliable as one goes farther in the left tail.

As expected, there is more imprecision as one moves to lower left
tail probabilities because fewer observations are involved. This is why
VAR measures with very high confidence levels should be interpreted withs
extreme caution. 5

5.3.4 Comparison of Methods

So far we have developed two approaches for measuring a dlStIlbuthIl s
VAR: (1) by directly reading the quantile from the distribution q and
(2) by calculatmg the standard deviation and then scaling by the appro-:
priate factor oo, The issue is: Is any method superior to the other?
Intumvely, we may expect the a-based approach to be more preCISe
Indeed, ¢ uses information about the whole distribution (in terms of all

;hﬂ-h‘l-‘hﬂﬂ ek

bz ik
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_—E;onfidence Bands for VAR Estimates,
Norrmal Distribution, T = 250

e
VAR Confidence Level ¢
99% 95%
Exact quantile 2.33 1.65
Confidence band
Sample§ [1.85, 2.80] [1.38, 1.91]
o-Based, ad [2.24, 2.42] [1.50, 1.78]

squared deviations around the mean), whereas a quantile uses only the
ranking of observations and the two observations around the estimated
value. And in the case of the normal distribution, we know exactly how
to transform ¢ into an estimated quantile using o. For other distributions,
the value of o« may be different, but we should still expect a performance
improvement because the standard deviation uses all the sample infor-
mation.

Table 5-3 compares 95 percent confidence bands for the two meth-
ods.? The o-based method leads to substantial efficiency gains relative to
the sample quantile. For instance, at the 95 percent VAR confidence level,
the interval around 1.65 is [1.38, 1.91] for the sample quantile; this is re-
duced to [1.50, 1.78] for ag, which is much narrower than the previous
interval.

A number of important conclusions can be derived from these num-
bers. First, there is substantial estimation error in the estimated quantiles,
especially for high confidence levels, which are associated with rare events
and hence difficult to verify. Second, parametric methods provide a sub-
stantial increase in precision, since the sample standard deviation contains
far more information than sample quantiles.

Returning to the $15.2 million VAR figure at the beginning of this
chapter, we can now assess the precision of this number. Using the para-
metric approach based on a normal distribution, the standard error of this
number is se(g,) = a X se(¢) = 1.65 X $9.2 million 1/(V2X254) =
$0.67. Therefore, a two-standard-error confidence band around the VAR

-_—"~———-n——_
2. For extensions to other distributions such as the Student, see Jorion {1996).
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estimate is [$13.8 million, $16.6 million]. This narrow interval should pro.
vide reassurance that the VAR estimate is indeed meaningful.

5.4 CONCLUSIONS

In this chapter we have seen how to measure VAR using two alternative “.
methodologies. The general approach is based on the empirical distriby.
tion and its sample quantile. The parametric approach, in contrast, at.
tempts to fit a parametric distribution such as the normal to the data. VAR
is then measured directly from the standard deviation. Systems such g5 .
RiskMetrics are based on a parametric approach. :
The advantage of such methods is that they are much easier to uge
and create more precise estimates of VAR. The disadvantage is that they
may not approximate well the actual distribution of profits and losses,
Users who want to measure VAR from empirical quantiles, however,
should be aware of the effect of sampling variation or imprecision in their
VAR number. - |
This chapter also has discussed criteria for selection of the confi-
dence level and horizon. On the one hand, if VAR is used simply as a.
benchmark risk measure, the choice is arbitrary and only needs to be con-
sistent. On the other hand, if VAR is used to decide on the amount of eg- :
uity capital to hold, the choice is extremely tmportant and can be guided,
for instance, by default frequencies for the targeted credit rating. |



CHAPTER 7
Portfolio Risk:
Analytical Methods

Trust not all your goods to one ship.

Erasmus

The preceding chapters have focused on single financial instruments.
Absent any insight into the future, prudent investors should diversify
across sources of financial risks. This was the message of portfolio analy-
sis laid out by Harry Markowitz in 1952. Thus the concept of value at
risk (VAR), or portfolio risk, is not new. What is new is the systematic
application of VAR to many sources of financial risk, or portfolio risk.
VAR explicitly accounts for leverage and portfolio diversification and pro-
vides one summary measure of risk.

As will be seen in Chapter 9, there are many approaches to meas-
uring VAR. The shortest road assumes that asset payoffs are linear (or
delta) functions of normally distributed risk factors. Indeed, the delta-
normal method is a direct application of traditional portfolio analysis
based on variances and covariances, which is why it is sometimes called
the covariance matrix approach. This approach is analytical because VAR
is derived from closed-form solutions. The method gives users much con-
trol over the measurement of risk, including a simple decomposition of
the portfolio VAR.

This chapter shows how to measure and manage portfolio VAR.
Section 7.1 details the construction of VAR using information on posi-
tions and the covariance matrix of its constituent components.

The fact that portfolio risk is not cumulative provides great diversi-
fication benefits. To manage risk, however, we also need to understand
what will reduce it. Section 7.2 provides a detailed analysis of VAR tools

147
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position a, which is a vector of additional exposures to our risk faCtors,
measured in dollars. |

y Ideally, we should measure the portfolio VAR at the initial positioy
VAR, and then again at the new position VAR, .. The incrementai VAR
is then obtained, as described in Figure 7-2, as

Incremental VAR = VAR,,,, — VAR, (721

This “before and after” comparison is quite informative. If VAR is ge.
creased, the new trade is risk-reducing, or is a hedge; otherwise, the ney,
trade is risk-increasing. Note that @ may represent a change in 2 singje
component or a more complex trade with changes in multiple compg.
nents. Hence, in general, a represents a vector of new positions.

Iincremental VAR

The change in VAR due to a new position. It differs from the marginal VAR in that -
the amount added or subtracted can be large, in which case VAR changes in g
nonlinear fashion.

The main drawback of this approach is that it requires a full reval."
uation of the portfolioc VAR with the new trade. This can be quite time-

FIGURE 7-2

The impact of a proposed trade with full revaluation.

Portfolio with

Initial portfolio p additional trade a

Estimated
futL_Jre Portfolio p Portfclio p+a
covariance
matrix .
VAR(p) VAR(p+a)

Full i
ull incremental VAR
VAR(p+a)-VAR(p)
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consuming for large portfolios. Suppose, for instance, that an institution
pas 100,000 trades on its books and that it takes 10 minutes to do a VAR
calculation. The bapk has measured its VAR at some point during the day,
Then a client comes with a proposed trade. Evaluating the effect of thig
trade on the bank’s portfolio would again require 10 minutes using the
incremental VAR approach. Most likely, this will be too long to wait to
take action.

If we are willing to accept an approximation, however, we can take
a shortcut.' Expanding VAR, ; in series around the original point,

VAR, ., = VAR, + (AVAR) X a+ - -- (7.22)

where we ignored second-order terms if the deviations a are small. Hence
the incremental VAR can be reported as, approximately,

Incremental VAR = (AVAR)' X a (7.23)

This measure is much faster to implement because the AVAR vector is a
by-product of the initial VAR, computation. The new process is described
in Figure 7-3.

Here we are trading off faster computation time against accuracy.
How much of an improvement is this shortcut relative to the full incre-
mental VAR method? The shortcut will be especially useful for large port-
folios where a full revaluation requires a large number of computations.
Indeed, the number of operations increases with the square of the num-
ber of assets. In addition, the shortcut will prove to be a good approxi-
mation for large portfolios, where a proposed trade is likely to be small
relative to the outstanding portfolio. Thus the simplified VAR method al-
lows real-time trading limits.

The incremental VAR method applies to the general case where a
trade involves a set of new exposures on the risk factors. Consider instead
the particular case where a new trade involves a position in one risk fac-
tor only (or asset). The portfolio value changes from the old value of W
to the new value of Wy = W + a, where a is the amount invested in as-
set i. We can write the variance of the dollar returns on the new portfo-
lio as

oIW3 = o-ﬁW2 + 2aWo,;, + a’a? (7.24)

-ﬁ‘—I—.____
L. See also Garman (1996; 1997),
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FIGURE 7—3

The impact of a proposed trade with rmarginat VAR.

Portfolio with

Initial portfolio p additional trade a"z

Estimated

futgre Portfolio p Portfolio p+a
covariance

matrix

'] Y
VAR(p) AVAR
Incremental VAR
L ol
(AVAR)’ a

An interesting question for portfolio managers is to find the size of thc
new trade that leads to the lowest portfolio risk. Differentiating with re-
spect to a,

2 a2
N _ owe,, + 2a0? (7.25)
oa
which attains a zero value for
2 ,
a* = —WL = —Wp, % | (7.26)
o; gy :

This is the variance-minimizing position, also known as best hedge.

Best hedge

Additional amount to invest in an asset so as to minimize the risk of the total port-
folio.

Example (continued)

Going back to the previous two-currency example, we are now consider- |
ing increasing the CAD position by US$10,000.
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First, we use the marginal VAR method. We note that B can be ob-
sained from a previous intermediate step as

- cov(Rz,-,Re) _ |:$0'0050]/($0.1562) _ [0.205]

Ty $0.0144 0.590

The marginal VAR is now

AVAR = o SEaRD) g 65 [$0‘0050]/$0.156 = [0 Ta

o $0.0144

P

0.0528J

As we increase the first position by $10,000, the incremental VAR
1S
(AVAR)' X a = [0.0528 0.1521] [$10,ooo]

0
= 0.0528 X $10,000 + 0.1521 X 0 = $528

Next, we compare this to the incremental VAR obtained from a full
revaluation of the portfolio risk. We find

> _ 0.05> 0 $2.01
Gp+a - [$201 $1][ 0 0122][ $1 J

which gives VAR,., = $258,267. Relative to the initial VAR, =
$257,738, the exact increment is $529. Note how close the AVAR ap-
proximation of $528 comes to the true value. The linear approximation
is excellent because the change in the position is very small.

7.2.3 Component VAR

In order to manage risk, it would be extremely useful to have a risk de-
composition of the current portfolio. This is not straightforward because
the portfolio volatility is a highly nonlinear function of its components.
Taking all individual VARs, adding them up, and computing their per-
centage, for instance, is not useful because it completely ignores diversi-
fication effects. Instead, what we need is an additive decomposition of
VAR that recognizes the power of diversification.

This is why we turn to marginal VAR as a tool to help us measure
the contribution of each asset to the existing portfolio risk. Multiply the
marginal VAR by the current dollar position in asset, or risk factor, &

Component VAR = (AVAR;) X w; W = VARB, w; (7.27)
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Thus the component VAR indicates how the portfolio VAR would change :
approximately if the component was deleted from the portfolio. We shoyjq ! ‘
note, however, that the quality of this linear approximation improves whey, :
the VAR components are small. Hence this decomposition is more uSeful
with large portfolios, which tend to have many small positions. —;.

We now show that these component VARs precisely add up to the
total portfolio VAR. The sum is

N
CVAR; + CVAR, + - - - + CVARy = VAR (Z Wi ,-) = VAR (7.28) f
i=1 :

because the term between parentheses is simply the beta of the portfolig
with itself, which is unity.? :
Thus we established that these component VAR measures add up to .
the total VAR. We have an additive measure of portfolio risk that reflects .
correlations. Components with a negative sign act as a hedge against the :
remainder of the portfolio. In contrast, components with a positive sign-
increase the risk of the portfolio. :

Component VAR

A partition of the portfolio VAR that indicates how much the portfolio VAR would
change approximately if the given component was deleted.

The component VAR can be simplified further. Taking into account
the fact that B, is equal to the correlation p;, times o; divided by the port--
folio o, we can write

CVAR; = VARw;$; = (aoc,W)w;B; = (aow;W)p; = VARp; (7.29)

This conveniently transforms the individual VAR into its contribution to
the total portfolio simply by multiplying it by the correlation coefficient.
Finally, we can normalize by the total portfolio VAR and report

CVAR,
VAR

Percent contribution to VAR of component i = = w; (7.30)

VAR systems can provide a breakdown of the contribution to risk
using any desired criterion. For large portfolios, component VAR may be
shown by type of currency, by type of asset class, by geographic location,

2. This can be proved by expanding the portfolio variance into 07 = wcov(R1,R,) + wacov(RaRp)
+ - = wilBiol) + wa(Beop) + - - = ap(SF wiB) [thus the term between parentheses
must be equal to onel.
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or by business unit. Such detail is invaluable for “drill down” exercises,
which enable users to control their VAR.

example (continued)
Continuing with the previous two-currency example, we find the compo-
pent VAR for the portfolio using CVAR; = AVARx;,

CVAR1] _ [0.0528 X $2 million] _ [$105,630] ~ VAR X [41.0%]
[CVARz 0.1521 X $1 million $152,108 59.0%
we verify that these two components indeed sum to the total VAR of
$257,738. The largest component is due to the EUR, which has the high-
est volatility. Both numbers are positive, indicating that neither position
serves as a net hedge for the portfolio.

Next, we can compute the change in the VAR if the EUR position
is set to zero and compare with the preceding result. Since the portfolio
has only two assets, the new VAR without the EUR position is simply the
VAR of the CAD component, VAR; = $165,000. The incremental VAR
of the EUR postition is ($257,738 — $165,000) = $92,738. The compo-
nent VAR of $152,108 is higher, although of the same order of magni-
mude. The approximation is not as good as before because there are only
two assets in the portfolio, which individually account for a large pro-
portion of the total VAR. We would expect a better approximation as the
VAR components are small relative to the total VAR.

7.2.4 Summary

Figure 74 presents a graphic summary of our VAR tools for our two-
currency portfolio. The graph plots the portfolio VAR as a function of the
amount invested in this asset, the euro. At the current position of $1 mil-
lion, the portfolio VAR is $257,738.

The marginal VAR is the change in VAR due to an addition of $1
m EUR, or 0.1521; this represents the slope of the straight line that is tan-
gent to the VAR curve at the current value.

The incremental VAR is the change in VAR due to the deletion of
the euro position, which is $92,738 and is measured along the curve. This
i8 approximated by the component VAR, which is simply the marginal
VAR times the current position of $1 million, or $152,108. The latter is
measured along the straight line that is tangent to the VAR curve. The
graph illustrates that the component VAR is only an approximation to the
incremental VAR. These component VAR measures add up to the total
portfolio VAR, which gives a quick decomposition of the total risk.
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FIGURE 7—-4
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The graph also shows that the best hedge is a net zero position n
the euro. Indeed, the VAR function attains a minimum when the position
in the euro is zero.

The results are summarized in Table 7-1. This report gives not only
the portfolio VAR but also a wealth of information for risk managers. For
instance, the marginal VAR column can be used to determine how to re-
duce risk. Since the marginal VAR for the EUR is three times as large as
that for the CAD, cutting the position in the EUR will be much more ef-
fective than cutting the CAD position by the same amount.

7.3 EXAMPLES

This section provides a number of applications of VAR measures. The
first example illustrates a risk report for a global equity portfolio. The sec-
ond shows how VAR could have been used to dissect the Barings port-
folio.
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TABLE 7—1

ﬁ Decomposition for Sample Portfolio

/_—'—_-—
Current  Individual Marginal Component Percent
Position, VAR, VAR, VAR, Contribution,
X; or VAR, = A VAR,r = CVAR,' = CVAH]I
cUrrency w; W aoc,w,W VAR B,IW A VAR, VAR
CAD $2 million  $165,000 0.0528 $105,630 41.0%
EUR $1 milion  $198,000 0.1521 $152,108 59.0%
Total $3 million
Undiver- $363,000
sified
VAR
Diversified $257,738 100.0%
VAR

7.3.1 A Global Portfolio Equity Report

To further illustrate the use of our VAR tools, Table 7-2 displays a risk
management report for a global equity portfolio. Here, risk is measured
in relative terms, i.e., relative to the benchmark index. The current port-
folio has an annualized tracking error, which is also the standard devia-
tion of the difference o, of 1.82 percent per annum. This number can be
translated easily into a VAR number using VAR = ao,W. Hence we can
deal with VAR or more directly o,

Positions are reported as deviations in percent from the benchmark
in the second column. Since the weights of the index and of the current
portfolio must sum to one, the deviations must sum to zero.

The next columns report the individual risk, marginal risk, and the per-
centage contribution to total risk. Positions contributing to more than 5 per-
cent of the total are called Hot Spots.” The table shows that two countries,
Japan and Brazil, account for more than 50 percent of the risk. This is an
important but not intuitive result, since the positions in these markets, dis-
played in the first column, are not the largest. In fact, the United States and
United Kingdom, which have the largest deviations from the index, con-
tribute to only 20 percent of the risk. The contribution of Japan and Brazil
is high because of their high volatility and correlations with the portfolio.

3. Hot Spots is a trademark of Goldman Sachs.
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To control risk, we turn to the “Best Hedge” column. The table shows
that the 4.5 percent overweight position in Japan should be decreased to
jower risk. The optimal change is a decrease of 4.93 percent, after which
the new volatility will have decreased from the original value of 1.82 per-
cent to 1.48 percent. In contrast, the 4.0 percent overweight position in
Canada has little impact on the portfolio risk.

This type of report is invaluable to control risk. In the end, of course,
portfolio managers add value by judicious bets on markets, currencies, or
securities. Such VAR tools can be quite useful, however, because analysts
can now balance their return forecasts against risk explicitly.

7.3.2 Barings: An Example in Risks

Barings’ collapse provides an interesting application of the VAR method-
ology. Leeson was reported to be long about $7.7 billion worth of Japanese
stock index (Nikkei) futures and short $16 billion worth of Japanese
Government Bond (JGB) futures. Unfortunately, official reports to Barings
showed “pil” risk because the positions were fraudulent.

If a proper VAR system had been in place, the parent company could
have answered the following questions. What was Leeson’s actual VAR?
Which component contributed most to VAR? Were the positions hedging
each other or adding to the risk?

The top panel of Table 7-3 displays monthly volatility measures and
correlations for positions in the 10-year zero JGB and the Nikkel index.
The correlation between Japanese stocks and bonds is negative, indicat-
ing that increases in stock prices are associated with decreases in bond
prices or increases in interest rates. The next column displays positions
that are reported in millions of dollar equivalents.

To compute the VAR, we first construct the covariance matrix 3,
from the correlations. Next, we compute the vector 2.x, which is in the
first column of the bottom panel. For instance, the —2.82 entry is found
from oix; + @1, = 0.000139 X (—$16,000) + (— 0.000078) X $7700
= —2.82. The next column reports x{(2x); and x, (2x),, which sum to
the total portfolio variance of 256,193.8, for a portfolio volatility of

256,194 = $506 million. At the 95 percent confidence level, Barings’
VAR was $1.65 X $506, or $835 million.

This represents the worst monthly loss at the 95 percent confidence
level under normal market conditions. In fact, Leeson’s total loss was re-
ported at $1.3 billion, which is comparable with the VAR 'reported here.
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The difference is because the position was changed over the course of
the 2 months, there were other positions (such as short options), and also
bad luck. In particular, on Japuary 23, 1995, one week after the Kobe
earthquake, the Nikkei index lost 6.4 percent. Based on a monthly volatil-
ity of 5.83 percent, the daily VAR of Japanese stocks at the 95 percent
confidence level should be 2.5 percent. Therefore, this was a very un-
ysual move—even though we expect to exceed VAR in 5 percent of sit-
yations.

The marginal risk of each leg is also revealing. With a negative cor-
relation between bonds and stocks, a hedged position typically would be
long the two assets. Instead, Leeson was short the bond market, which
market observers were at a loss to explain. A trader said, “This does not
work as a hedge. It would have to be the other way round.” Thus Leeson
was increasing his risk from the two legs of the position.

This is formalized in the table, which displays the marginal VAR
computation. The B column is obtained by dividing each element of Zx
by x' 2., for instance, —2.82 by 256,194 to obtain —0.000011. Multiplying
by the VAR, we obtain the marginal change in VAR due to increasing the
bond position by $1 million, which is —$0.00920 million. Similarly, in-
creasing the stock position by $1 million increased the VAR by $0.08935.

Overall, the component VAR due to the total bond position is $147.15
million; that due to the stock position is $688.01 million. By construction,
these two numbers add up to the total VAR of $835.16 million. The percent
contributions are reported in the last column. This analysis reveals that most
of the loss was due to the Nikkei exposure and that the bond position, in-
stead of hedging, made things even worse.,

7.4 SIMPLIFYING THE COVARIANCE MATRIX
7.4.1 Why Simplifications?

So far we have shown that correlations are essential driving forces behind
portfolio risk. When the number of assets is large, however, the meas-
urement of the covariance matrix becomes increasingly difficult. With 10
assets, for instance, we need to estimate 10 X 11/2 = 55 different vari-
ance and covariance terms. With 100 assets, this number climbs to 5050.
The number of correlations increases geometrically with the number of

4. Financial Times (March 1, 1995).
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assets, For large portfolios, this causes real problems: (1) The p()rtfoho
VAR may not be positive, and (2) correlations may be estimated impye, :
cisely. This section examines the extent to which such problems can 4f.
fect VAR measures and proposes some solutions. j:

In practice, the industry has developed a number of approximations_;
to the covariance matrix. Securities are mapped routinely over general rigk:
factors. These mapping procedures replace the exposure profile of g ge.”
curity by that of appropriately chosen indices. The latter are called gey. :
eral market risks. In contrast, the remaining risks are called specific rigks

Mapping cuts down the computational requirements when there jg 5 -
large number of positions. In some situations, also, we may not have a'
complete history of securities data, in which case mapping provides a use-
ful replacement for the security.

7.4.2 Zero VAR Measures

The VAR measure derives from the portfolio variance, which is computed
as '

o, = w'Iw (7.31)

The question is, Is this product guaranteed to be always positive?

Unfortunately, not alwa\ys.5 For this to be the case, we need the ma-
trix 2, to be positive definite. This can be verified using the singular value
decomposition described in Appendix 7B.

A number of conditions must be satisfied for positive-definiteness:
The number of historical observations T must be greater than the number
of assets N, and the series cannot be linearly correlated. The first condi-
tion states that if a portfolio consists of 100 assets, there must be at least
100 historical observations to ensure that whatever portfolio is selected,
the portfolio variance will be positive. The second condition rules out sit-
uations where an asset is exactly equivalent to a linear combination of
other assets.

An example of a non-positive-definite matrix is obtained when two
assets ‘are identical (p = 1). In this situation, a portfolio consisting of $1
on the first asset and —$1 on the second will have exactly zero risk.

In practice, this problem is more likely to occur with a large num-
ber of assets that are highly correlated (such as zero-coupon bonds or cur-

5. Abstracting from the obvious case where all elements of w are zero,
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rencies fixed to each other). In addition, positions must have been matched
recisely with assets so as to yield zero risk. This is most likely to occur
if the weights have been optimized on the basis of the covariance matrix
itself. Such optimization is particularly dangerous because it can create
positiOHS that are very large yet apparently offset each other with little to-
tal Tisk.
If users notice that VAR measures appear abnormally low in rela-
tion to positions, they should check whether small changes in correlations
lead to large changes in their VARSs.

\/7.4.3 Diagonal Model

A related problem is that as the number of assets increases, it is more
likely that some correlations will be measured with error. Some models
can help simplifying this process by providing a simpler structure for the
covariance matrix. One such model is the diagonal model, originally pro-
posed by Sharpe in the context of stock portfolios.®

The assumption is that the common movement in all assets is due
to one common factor only, the market. Formally, the mode] is

Elegl =0  Elef]] =oZ; (1.32)

The return on asset { is driven by the market return R,, and an idio-
syncratic term €;, which is not correlated with the market or across assets.
As a result, the variance can be decomposed as

o7 = Bio’, + ol (7.33)

The covariance between two assets is

C;; = BiB;Urzn (7.34)
which is solely due to the common factor. The full matrix is
Bi G2, ... 0
S=1 B BMon + | ;
Bw 0 - Oen

6. Note that this model is sometimes referred to as the CAPM, which is not correct. The diagonal
model is simply a simplification of the covariance matrix and says nothing about expected
returns, whose description is the essence of the CAPM.
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Written in matrix notation, the covariance matrix is

3 = Bp'on, + D, (7.35)

Since the matrix D, is diagonal, the number of parameters is reduced fropy,
N X (N + 1)/2 to 2N + 1 (N for the betas, N in D, and one for o,,). Wity
100 assets, for instance, the number is reduced from 5050 to 201, a ¢op.-
siderable improvement.

Furthermore, the variance of large, well-diversified portfolios sim.
plifies even further, reflecting only exposure to the common factor. The
variance of the portfolio is

V(R,) = V(W'R) = wiw = (W’BB’W)G%1 + w'Dw (7.36)

The second term consists of E?Llw,-zai,-. But this term becomes very small
as the number of securities in the portfolio increases. For instance, if a]
the residual variances are identical and have equal weights, this second
term is [E?LI(I/N)Z]()%, which converges to O as N increases. Therefore,
the variance of the portfolio converges to

V(R,) — (W' BB W)Yoz = (B0’ (7.37)

which depends on one factor only. Thus, in large portfolios, specific risk
becomes unimportant for the purpose of measuring VAR.

As an example, consider three stocks, General Motors (GM), Ford,
and Hewlett-Packard (HWP). The top panel in Table 74 displays the full
covariance matrix for monthly data. This matrix can be simplified by es-
timating a regression of each stock on the U.S. stock market. These re-
gressions are displayed in the second panel of the table, which shows be-
tas of 0.806, 1.183, and 1.864, respectively. GM has the lowest beta; HWP
has the highest systematic risk. The market variance is W(R,,) = 11.90.
The bottom panel in the table reconstructs the covariance matrix using
the diagonal approximation. For instance, the variance for GM is taken
as BT X W(R,) + V(e;), which is 0.806> X 11.90 + 6444 = 7.73 +
64.44 = 72.17. The covariance between GM and Ford is BBz V(Rm):
which is 0.806 X 1.183 X 11.90 = 11.35.

The last three columns in the table report the correlations between
pairwise stocks. Actual correlations are all positive, as are those under the
diagonal model. Although the diagonal model matrix rdfembles the orig-
inal covariance matrix, the approximation is not perfect. For instance, the
actual correlation between GM and Ford is 0.636. Using the diagonal



CHAPTER 7 Portfolio Risk: Analytical Methods 171

TABLE 7—4

The Diagonal Model

—
Covariance ' Coarrelations
GM Ford HwWP GM Ford HWP
-
Fuil matrix
GM 72.17 1
Ford 4392  66.12 0.636 1
HWP 26.32 44 31 90.41 0.326 0.573 1
Regressian
B; 0.806  1.183 1.864
V(R) 7217 66.12  90.41
V(i) 64.44 49.46 48.10
B2V (Rm) 7.73 16.65 41.32
Diagonal model
GM 72.17 1
Ford 11.35 66.12 0.164 1
HWP 17.87 26.23 90.41 0.221 0.339 1

model, the correlation is driven by exposure to the market, and is 0.164,
which is lower than the true correlation. This is so because both stocks
have low betas, which is the only source of common variation. Whether
this model produces acceptable approximations depends on the purpose
at hand; we compute actual VAR numbers in Chapter 11. But there is no
question that the diagonal model provides a considerable simplification.

7.4.4 Factor Models

If a one-factor model is not sufficient, better precision can be obtained
with multiple factor models. Equation (7.32) can be generalized to K fac-
tors

Ri=a;+ Bay1 + -+ By + € (7.38)

where R,, . . ., Ry are the N asset returns and yy, . . ., yx are “factors” inde-
pendent of each other. In the previous three-stock example, the covariance
matrix model can be improved with a second factor, such as the transporta-
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tion industry, that would pick up the higher correlation between GM and
Ford. With muitiple factors, the covariance matrix acquires a richer Stl'llCture

3 = B)B10F + - - - + BxPxok + D. (7. 39)}?

The total number of parameters is (N X K + K + N), which may stil} be
considerably less than for the full model. With 100 assets and 5 factors, .
for instance, the number is reduced from 5050 to 605, which is not a mj. -
nor decrease, .

Factor models are also important because they can help us decide
on the number of VAR building blocks for each market. Consider, for ip-
stance, a government bond market that displays a continuum of maturj. :
ties ranging from 1 day to 30 years. The question is, How many VAR
building blocks do we need to represent this market adequately?

To illustrate, consider the U.S. Treasury bond market. Table 7-5 pre- '
sents monthly VARs for 11 zero-coupon bonds as well as correlations for
maturities going from 1 to 30 years. Under the RiskMetrics convention,
VAR corresponds to 1.65 standard deviations. With strictly parallel moves -
in the term structure, VAR should increase linearly with maturity. In fact, -
this is not the case, Longer maturities display slightly less VAR than un--
der a linear relationship. The 30-year zero, for instance, has a VAR of -
11.12 instead of the value of 14.09 extrapolated from the 1-year maturity
(0.470 X 30/1).

Particularly interesting are the very high correlations, confirming the
presence of one major factor behind bond returns. Correlations are high
for close maturities but tend to decrease with the spread between maturi-
ties. The lowest value, 0.644, is obtained between the 1- and 30-year ze-
roes. Could this pattern of correlation be simplified to just a few common
factors?

To answer this question, we can turn to the principal-components
method. Intuitively, principal componenis attempts to find a series of m-
dependent linear combinations of the original vanables that*iirowdes tflew
best explanatlon of dxagonal terms of the matrix. The methodology 1S sum-
marized in App\hdleB

Another statistical method is factor analysis. The latter uses
maximum-likelihdod fechnigues to estimate the factor loadings under the
restriction that the residual matrix is diagonal and assuming that returns
are normally distributed. Factor analysis differs from principal component
in that it focuses on the off-diagonal elements of the correlation matrix.
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Which method is best depends on the purpose at hand. Wilson (1994)
argues that principal components should be used for applications that rely
on accurate modeling of volatility, such as simple options. On the other
hand, applications for which correlations are critical, such as “diff” swaps.
would benefit from factor analysis.

Table 7-6 provides an answer. It shows the first three componepgg
for the correlation matrix of U.S. bond returns, based on principa]-
component analysis. The most striking feature of the table is that the firgt
factor provides an excellent fit to movements of the term structure, The
average explanatory power is very high, at 91.9 percent. Since it affects
all maturities about equally, this common factor can be defined a yielq
level variable. This explains why duration is a good measure of interest
rate risk.

The second factor explains an additional 6.0 percent in movements,
Since it has the highest explanatory power and highest loadings for short
and long maturities, it describes the slope of the term structure. Fipally,
the last factor is much less important. It seems to be most related to

TABLE 7-6

Principal Components of Correlation Matrix: U.S. Bonds

Percentage of
Variance Explained by

Total
Maturity Factor 1, Factor 2, Varlance
{year) Level Slope Factor 3 Explained

1 72.2 17.9 9.8 99.8

2 89.7 7.8 0.5 88.0

3 94.3 45 0.7 99.5

4 96.5 22 1.0 99.7

5 87.7 1.1 09 99.7

7 98.9 0.0 04 99.3

9 98.2 0.7 0.2 99.1

10 98.1 1.2 0.1 99.4

15 941 53 0.2 99.6

20 87.2 11.0 0.9 99.1

30 83.6 14.5 0.9 89.0

Average 919 6.0 14 993
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]-year rates, perhaps because of different characteristics of money mar-
ket instruments. Together, the three factors explain an impressive 99.3 per-
ont of all return variation.

This decomposition shows that the risk of a bond portfolio can be
usefully summarized by its exposure to two factors only. For instance, the
porthIiO can be structured so that the net exposure to the two factors is
very small. This will improve considerably on duration hedging yet require
no forecast of future twists in the yield curve. In other words, we need
only tWo primitive risk factors to represent movements in the yield curve.

cen

7.4.5 Comparison of Methods

The purpose of these various methods is to simplify the computation of
the portfolio risk. With hundreds of securities in the portfolio, it may not
be feasible to consider each one as an individual risk factor. The question
is whether these shortcuts materially affect the VAR measure.

To illustrate, Table 7-7 presents VAR calculations for three portfo-
lios.” The first is a diversified portfolio with $1 million equally invested
in 10 stocks. The second consists of a $1 million portfolio with 10 stocks
all in the same industry, high-technology. The third expands on the di-
versified portfolio but is market-neutral, with long positions in the first 5
stocks and short the others. VAR is measured with a 1-month horizon at
the 95 percent level of confidence using historical data from 1990 to 1999.

To summarize, five methods are examined:

® [ndex mapping replaces each stock by a like position in the
index m:

VAR, = aWo,,
® Beta mapping also considers the pet beta of the portfolio:
VAR, = aW(B,0,,)
® Diagonal model considers both the beta and specific risk:

VAR; = aW V(B,0,,)" + w'Dw

. The diversified portfolio consists of positions in Ford, Hewlett-Packard, General Electric, Procter
& Gambie, AT&T. Boeing, General Motots, Disney, Microsoft, and American Express. These
are spread among 6 of the 10 industrial sectors in the market. The long-short portfolio is long
the first five and short the others. The market index is taken as the S&P 500. This example
is simifar to that of Beder et al. (1998).
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TABLE 7-7

Compariscon of VAR Methods
Portfolio '
Diversified Hi-Tech Long-Short
Position $1,000,000 $1,000,000 $0
VAR
index mapping $63,634 $63,634 %0
Beta mapping $70,086 $84,008 $298
industry mapping $69,504 $90,374 $7,388
Diagonal model $81,238 $105,283 $41,081
Individuat mapping $78,994 $118,955 $32,598

® [ndustry mapping replaces each stock by a like position in an
industry index I ‘

VAR, = aW Vwmw,

B /ndividual mapping uses the full covariance matrix of individual
stocks:

VARS =aW'V W’EW

This method provides an exact VAR measure over this sample pe-
riod.

More complex models are certainly possible. For instance, one could
model a marketwide effect, then industry effects, and finally assume that
remaining terms are uncorrelated.

The table shows that the quality of the approximation depends on
the structure of the portfolio. For the first portfolio, all measures are in a
similar range, $60,000-$80,000. The diagonal model provides the best
approximation, followed by the beta and industry mapping models.

The second portfolio is concentrated in one industry and, as a re-
sult, has higher VAR. The index mapping model now sertously underes-
timates the true risk of the portfolio. In addition, the beta and industry
mapping models also fall short. The diagonal model gets close to the true
value, as before.

Finally, the third portfolio shows the dangers of simple mapping
methods. The index mapping model, given a zero net investment, predicts
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gero Tisk. With beta mapping, the risk measure, driven by the net beta, is
close to Zero, which is highly misleading. The best approximation is again
rovided by the diagonal model, which considers specific risks.
Otherwise, a shortcut 1s sometimes used for portfolios with long and
short positions. This consists of grouping the long and short positions sep-
arately and computing their VAR using beta mapping. Define these as
vAR; and VAR;. The portfolio VAR is computed as

VAR = | VAR, — VARs | + k X min(VAR,, VARy)  (7.40)

where k is an “offsetting factor”” When & = 0, for instance, there is full
offset between the two, which gives VAR = VAR — VAR = $298. When
[ = 2, there is no offset at all between specific risks, which gives a very
conservative measure, VAR = VAR; + VAR = $70,086. We have par-
tial offset with £ = 1, which gives VAR = max(VAR,,VARy), or here,
VAR = VAR, = $335,192, which is not far from the actual value. This ad
hoc method is sometimes useful to deal with hedge portfolios.

75 CONCLUSIONS

Much of portfolio analysis is based on the fact that fixed portfolios of
normally distributed variables are themselves normal. This leads to an an-
alytical approach based on the covariance matrix that is particularly con-
venient for VAR calculations.

Indeed, closed-form solutions allow us to compute the marginal ef-
fect of changing a position and to decompose the current risk into addi-
tive components. Armed with these tools, users can better understand and
manage their risks.

The disadvantage of these methods is that the covanance matrix
quickly increases with the number of securities. This can cause compu-
tational problems. As a result, it has become common to model securities
risk by “mapping” them over a smaller set of general risk factors.

Mapping, however, forfeits resolution. In most cases, the lack of de-
tail is harmless. We have seen, for example, that for long portfolios, sim-
ple mapping methods generally produce acceptable results. Serious short-
comings arise, however, when the portfolio is hedged or uses long and
short positions. In such a case, there is a potential for the manipulation
of VAR, since simple methods are clearly unable to measure risk
Properly. This is an example of “gaming the VAR system,” which is
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discussed in a later chapter. In summary, the application of these tech
niques should be adapted carefully to the portfolio at hand. :

APPENDIX Z7A: MATRIX
MULTIPLICATION

This appendix reviews the algebra for matrix multiplication. Supm
have two matrices A and B that we wish to multiply to obtain the pey
matrix C. Their dimensions are (n X m) for A, or n rows and m columps,
and (m X p) for B.

Note that for the matrix multiplication, the number of columns of 4
(m) must exactly match the number of rows for B. The dimensions of thé—'
resulting matrix C will be (n X p). Also note that the order of the mulg.
plication matters. The multiplication of B times A is not conformable un-_
less n also happens to be equal to p. |

The matrix A can be written in terms of its components a;;, where
the first index i denotes the row and the second j denotes the column;

apy adio “ o0 Qim
A —
anl anz -t anm

For simplicity, consider now the case where the matrices are of di-
mension (2 X 3) and (3 X 2).

A = apy dyz 413
| d21 d2z Q23
bii b
B = |6y b
_b31 b3,
c c
C =A_B = 11 12
Coar (o2

To multiply the matrix A by B, we compute each element by taking each
row of A and multiplying by the desired column of B. For instance, ele-
ment ¢; would be obtained by multiplying each element of the ith row of
A individually by each element of the jth column of B and summing ovel
~ all of these.
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For instance, ¢y is obtained by taking

byy
ci1 = lan aw as] | by | = anbyy + aeba + asbs;
b3y

This gives
_ ay1byy + abay + asbsy  agbia + apba; + apsbs;
ay1bat + aoabay + ansbsy  azibay + azeban + arsbay

APPENDIX 7B (ADVANCED):
PRINCIPAL-COMPONENT ANALYSIS

Consider a set of N variables R, .. ., Ry with covariance matrix 3,. These
could be bond returns or changes in bond yields, for instance. We wish
to simplify, or reduce the dimensions of 3, without too much loss of con-
tent, by approximating it by another matrix 3*. Qur goal is to provide a
good approximation of the variance of a portfolio z = w'R using
V*(z) = w'2*w. The process consists of replacing the original variables
R by another set y suitably selected.
The first principal component is the linear combination

y1=BuRi + -+ BwiRy = BiR (7.41)

such that its variance 1S maximized, subject to a normalization constraint
on the norm of the factor exposure vector B1B8; = 1. A constrained opti-
mization of this variance, 6%(y;) = BB, shows that the vector §; must
satisfy 2By = A\;B;. Here, o?(y;) = A is the largest eigenvalue of the
matrix 5, and B, its associated eigenvecior.

The second principal component is the one that has greatest vari-
ance subject to the same normalization constraint 8,3, = 1 and to the
fact that is must be orthogonal to the first B5B; = 0. And so on for all
the others.

This process basically replaces the original set of R variables by an-
other set of y orthogonal factors that has the same dimension but where the
variables are sorted in order of decreasing importance. This leads to the
singular value decomposition, which decomposes the original matrix as

N .. 0B

S =PDP =[By...8x1 : 5 : (7.42)
0 o )\N BN
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where P 1s an orthogonal matrix, i.e., such that its inverse is also its trapg 3
pose, PP’ = I (or P~! = P') and D a diagonal matrix composed of thee
\;’s. The next step would be to give an economic interpretation tq the
principal components by examining patterns in the eigenvectors.
The definition of P implies that we can write the transformation Con.w
veniently as y = P'R. Alternatively, if we are given the set of y, we Can§
recover R as R = Py. In other words,

R =Bay1 + -+ Bawyw (743}

To each y; is associated a value for its variance A; that is sorted m""
order of decreasing importance. These eigenvalues are quite usefu] be~
cause they can tell us whether the original matrix 3, truly has N d1men.,
sions. For instance, if all the eigenvalues have the same size, then all trans~
formed variables are equally important. In most situations, however, somg
eigenvalues will be very small, which means that the true d1mensmnahty
(or rank) is less than N. .

In other cases, some values will be zero or even negative, which in’
dicates that the matrix is not properly defined. The problern is that fot
some portfolios, the resulting VAR could be negative!®

If so, we can decide to keep only the first X components, beyond
which their variances A; can be viewed as too small and unimportant. Thus
we replace the previous exact relationship by an approximation:

Ri=PBay1 + -+ + Bixyx (7.44)
Based on this, we approximate the matrix by
NooL.. 0T Ba
*=[B1...Bxl| : S
0 ... Ax]] Bk

= BiBIN; + - - - + BxBkhg (745)

which is very close to Equation (7.39) except for the residual terms on
the diagonal. Note that this matrix 3* is surely not invertible, since it has
only rank of K by construction yet has dimension of N.

The benefit of this approach is that we can now simulate movements
in the original variables by simulating movements with a much smallel
set of variables y’s called principal components (PCs).

8. It is possible to transform the matrix in a systematic fashion so that it avoids being non-positive
definite. For a review of methods, see Rebonato and Jickel (2000).
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M

Given a portfolio z = w'R, the portfolio can be mapped into its ex-
ares on the principal components:

p_OS
Z.—-—..ZW,'RizWI(BUYI o By o waBa o Bade)
:(WIBII +o0 WNBN])yl + - T (WlBlK + -+ WNBNK)yK

:81y1+"'+8K)’K

Fach term between parentheses represents the weighted exposure to each
rincipal component. For instance, 8; = w'B; would be the portfolio ex-
posure t0 the first PC. In the stock market, this would be the portfolio to-
al systematic risk. This decomposition is useful for performance attribu-
tion because it breaks down the portfolio return into the exposure and

return on each PC.
In addition, we can compute the variance of the portfolio directly

from Equation (7.45):

oXz) = w2Fw = wBIBiwh + - - - + w'BxBrwhk
= WBNM T - -+ (W
= dfo%(y;) + * + - + 350 (yx) (7.46)

which is remarkably simple. The variance of the portfolio z is given by
sum of the squared exposures d times the variance of each PC.

Instead of having to deal with all the variances and covariances of
R, we simply use K independent terms. For instance, as in the example
of a bond market, we can replace a covariance matrix of dimension 11
times 11 with 66 terms by 3 terms in all.



CHAPTER 9

VAR Methods

In practice, this works, but how about in theory?

Attributed to a French mathematician

Value at risk (VAR) has become an essential component in the toolkit
 of risk managers because it provides a quantitative measure of downside
risk. In practice, the objective should be to provide a reasonably accurate
estimate of risk at a reasonable cost. This involves choosing among the
various industry standards a method that 1s most appropriate for the port-
folio at hand. To help with this selection, this chapter presents and criti-
cally evaluates various approaches to VAR.

Approaches to VAR basically can be classified into two groups. The
first group uses local valuation. Local-valuation methods measure risk by
valuing the portfolio once, at the imitial position, and using local deriva-
tives to infer possible movements.}The delta-normal method luses linear,
or delta, derivatives and assumes normal distributions. Because the delta-
normal approach is easy to implement, a variant, called the “Greeks,” is
sometimes used. This method consists of analytical approximations to
first- and second-order derivatives and is most appropriate for portfolios
with limited sources of risk. The second group uses full valuation. Full-
valuation methods measure risk by fully repricing the portfolio over a
range of scenarios. The pros and cons of local versus full valuation are
discussed in Section 9.1. Initially, we consider a simple portfolio that is
driven by one risk factor only.

This chapter then turns to VAR methods for large portfolios. The
best example of local valuation is the delta-normal method, which is
explained in Section 9.2. Full valuation is implemented in the historical

205
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simulation method and the Monte Carlo simulation method, which a3
discussed in Sections 9.3 and 9.4.

This classification reflects a fundamental tradeoff between speeq 4 '
accuracy. Speed is important for large portfolios exposed to many _‘
factors, which involve a large number of correlations. These are handl"‘
most easily in the delta-normal approach. Accuracy may be more anor._
tant, however, when the portfolio has substantial nonlinear components 4

An in-depth analysis of the delta-normal and simulation VAR meth3
ods is presented in following chapters, as well as a related method, Stressr
testing. Section 9.5 presents some empirical comparisons. Finally, Sectign
9.6 summarizes the pros and cons of each method. 1

9.1 LOCAL VERSUS FULL VALUATION
9.1.1 Delta-Normal Valuation

Local-valuation methods usually rely on the normality assumption for thed
driving risk factors. This assumption is particularly convenient because off}
the invariance property of normal variables: Portfolios of normal variableg?
are themselves normally distributed.

We initially focus on delta valuation, which considers only the ﬁm
derivatives. To illustrate the approaches, take an instrument whose valui
depends on a single underlying risk factor §. The first step consists ofg
valuing the portfolio at the initial point 1

Vo = V(So) | (9.1)'.;35

along with analytical or numerical derivatives. Define A as the first par-:
tial derivative, or the portfolio sensitivity to changes in prices, evaluated;
at the current position V,,. This would be called modified duration for a
fixed-income portfolio or delta for a derivative. For instance, with an at-:
the-money call, A = 0.5, and a long position in one option is simply re--
placed by a 50 percent position in one unit of underlying asset. The port-!
folio A simply can be computed as the sum of individual deltas. '
The potential loss in value dV is then computed as

dv = % 0dS = Ag X dS 9.2)

which involves the potential change in prices dS. Because this is a linear
relationship, the worst loss for V is attained for an extreme value of §.
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If the distribution is normal, the portfolio VAR can be derived from
" e prodUC‘ of the exposure and the VAR of the underlying variable:

" yhere o is the standard normal deviate corresponding to the specified con-
fidence level, .8, 1.645 for a 95 percent confidence level. Here, we take
(dS/S) as the standard deviation of rates of changes in the price. The as-
sumption is that rates of changes are normally distributed.

Because VAR is obtained as a closed-form solution, this method is
called analytical. Note that VAR was measured by computing the portfo-
Jio value only once, at the current position Vi,

For a fixed-income portfolio, the risk factor is the yield y, and the
price-yield relationship is

dV = —~D*V dy 9.4)
where D* is the modified duration. In this case, the portfolio VAR is
VAR = (D*V) X (a0) (9.5)

where o(dy) is now the volatility of changes in the level of yield. The as-
sumption is that changes in yields are normally distributed, although this
is ultimately an empirical issue.

This method 1s illustrated in Figure 9-1, where the profit payoff is
a linear function of the underlying spot price and is displayed at the up-
per left side; the price itself is normally distributed, as shown in the right
panel. As a result, the profit itself is normally distributed, as shown at the
bottom of the figure. The VAR for the profit can be found from the ex-
posure and the VAR for the underlying price. There is a one-to-one map-
ping between the two VAR measures.

How good is this approximation? It depends on the “optionality’” of
the portfolio as well as the horizon. Consider, for instance, a simple case
of a long position in a call option. In this case, we can easily describe the
distribution of option values. This is so because there is a one-to-one re-
lationship between V and S. In other words, given the pricing function,
any value for S can be translated into a value for V, and vice versa.

This is illustrated in Figure 9-2, which shows how the distribution
of the spot price is translated into a distribution for the option value (in
the left panel). Note that the option distribution has a long right tail, due
to the upside potential, whereas the downside is limited to the option pre-
mium. This shift is due to the nonlinear payoff on the option.
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FIGURE 9-1

Distribution with linear exposures.
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Here, the cth quantile for V is simply the function evaluated at the
cth quantile of S. For the long-call option, the worst loss for V- at a given '
confidence level will be achieved at $* = §; — aaS,, and '

VAR = V(Sp) — V(S — aoSp) (9.6)

The nonlinearity effect is not obvious, though. It also depends on
the maturity of the option and on the range of spot prices over the hori-
zon. The option illustrated here is a call option with 3 months to expira-
tion. To obtain a visible shift in the shape of the option distribution, the
volatility was set at 20 percent per annum and the VAR horizon at 2
months, which is rather long.

The figure also shows thinner distributions that correspond to a VAR
horizon of 2 weeks. Here, the option distribution is indistinguishable from
the normal. In other words, the mere presence of options does not neces-
sarily invalidate the delta-normal approach. The quality of the approxi-
mation depends on the extent of nonlinearities, which is a function of the
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FIGURE 9-2
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type of options, of their maturities, as well as of the volatility of risk fac-
tors and VAR horizon. The shorter the VAR horizon, the better is the delta-
normal approximation.

9.1.2 Full Valuation

In some situations, the delta-normal approach is totally inadequate. This
is the case, for instance, when the worst loss may not be obtained for ex-
treme realizations of the underlying spot rate. Also, options that are near
expration and at-the-money have unstable deltas, which translate into
asymmetrical payoff distributions. -

An example of this problem is that of a long straddle, which in-
volves the purchase of a call and a put. The worst payoff, which is the
sura of the premiums, will be realized if the spot rate does not move at
all. In general, it is not sufficient to evaluate the portfolio at the two ex-
remes. All intermediate values must be checked.



210 PART 3 Value-at-Risk Systens

The full-valuation approach considers the portfolio value for a Wlde
range of price levels:

4V = V(S;) — V(So) )

The new values §; can be generated by simulation methods. The Momé
Carlo simulation approach relies on prespecified distributions. For jp_
stance, the realizations can be drawn from a normal distribution, :

dsiS = N(0, o%) (9.8)’1:____

Alternatively, the historical simulation approach simply samples from re-
cent historical data.

For each of these draws, the portfolio is priced on the target date ys.!
ing a full-valuation method. This method is potentially the most accurateé
because it accounts for nonlinearities, income payments, and even tmxe-?
decay effects that are usually ignored in the delta-normal approach. VAR
is then calculated from the percentiles of the full distribution of payoffs..
Computationally, this approach is quite demanding because it requu-es,
marking-to-market the whole portfolio over a large number of reahzatlons%;
of underlying random variables.

To illustrate the result of nonlinear exposures, Figure 9-3 dlsplaysé
the payoff function for a short straddle that is highly nonlinear. The re-:
sulting distribution is severely skewed to the left. Further, there is no di-
rect way to relate the VAR of the portfolio to that of the underlying asset.,

The problem is that these simulation methods require substantial
computing time when applied to large portfolios. As a result, methods
have been developed to speed up the computations.

One example is the grid Monte Carlo approach, which starts by an
exact valuation of the portfolio over a limited number of grid points." For
each simulation, the portfolio value is then approximated using a linear
interpolation from the exact values at the adjoining grid points. This ap-
proach is especially efficient if exact valuation of the instrument 1s com-
plex. Take, for instance, a portfolio with one risk factor for which we re-
quire 1000 values V(S;). With the grid Monte Carlo method, 10 full
valuations at the grid points may be sufficient. In contrast, the full Monte
Carlo method would require 1000 full valuations.

1. Picoult (1997) describes this method in more detail.
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Distribution with nonlinear exposures.

payoff Frequency

Spot price Spot price

Frequency

9.1.3 Delta-Gamma Approximations
(the “Greeks”)

It may be possible to extend the analytical tractability of the delta-normal
method with higher-order terms. We can improve the quality of the lin-
ear approximation by adding terms in the Taylor expansion of the valua-
tion function:
2
=22 g5+ L0V 4o 4 IV iy oy ...
as 2 945, ot

=AdS+-;—I‘dS2+®dz+--- (9.9)

where I is now the second derivative of the portfolio value, and @ is the
time drift, which is deterministic.
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For a fixed-income portfolio, the price-yield relationship is noyw
1 |
= —(D*V)dy + ~ (CV) ay> + - -+ (9_10):%

where the second-order coefficient C is called convexity and is akin tg [‘
Figure 9—4 describes the approximation for a simple position, a long?
position in a European call option. It shows that the linear mode] is Vah(t
only for small movements around the initial value. For larger movemems :
the delta-gamma approximation creates a better fit.
We use the Taylor expansion to compute VAR for the long-call Op-
tion in Equation (9.6), which yields

VAR = V(SO) - V(SO - C\!O'SQ)
= V(So) ~ [V(So) + A(—aoS) + 12I(—aoSy’] (9.11)
= | A | (@eS) — 1/2F(aoSy
This formula is actually valid for long and short positions in calls

and puts. If I is positive, which corresponds to a net long position in op-
tions, the second term will decrease the linear VAR. Indeed, Figure 9~4

FIGURE 9—4

Delta-gamma approximation for a long call
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shows that the downside risk for the option is less than that given by the
delta approximation. If I' is negative, which corresponds to a net short
position in options, VAR is increased.

This transformation does not apply, unfortunately, to more complex
fanctions V(S), so we have to go back to the Taylor expansion {Equation
99} 2The question now is how to deal with the random variables d$

das”.
nd The simplest method is called the delta-gamma-delta method. Taking
the variance of both sides of the quadratic approximation [Equation (9.9)],

we obtain
GA(dV) = A%*(dS) + (112I'Ya*(dS?) + 2(A1/21) cov(dS, dS®) (9.12)
If the variable d§ is normally distributed, all its odd moments are zero,

and the last term in the equation vanishes. Under the same assumption,
one can show that V(dS?) = 2V(dS)>, and the variance simplifies to

o (dV) = A%c*(dS) + 12[Tc(dS)? (9.13)

~ Assume now that the variables dS and dS? are jointly normally distrib-
uted. Then dV is normally distributed, with VAR given by

VAR = a V(ASo) + 1725267 9.14)

This is, of course, only an approximation. Even if dS was normal, its
square dS” could not possibly also be normally distributed. Rather, it is a
chi-squared variable.

A further improvement can be obtained by accounting for the skew-
ness coefficient &, as defined in Chapter 4.7 The corrected VAR, using the
so-called Cornish-Fisher expansion, is then obtained by replacing o in
Equation (9.14) by

o =a — %o®— 1E (9.15)

There is no correction under a normal distribution, for which skewness is
zero. When there is negative skewness (i.e., a long left tail), VAR is in-
creased.

The second method is the delta-gamma—-Monte Carlo method, which
Creates random simulations of the risk factors S and then uses the Taylor

2. Skewness can be computed as £ = [E(dV?) — 3E(dV)E(dV) + 2E(dV)’)a’(dV) using the third
moment of dV, which is E(dV?) = (9/2)ATS *o* + (15/8)I°S o°.
3. See also Zangari (1996).
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approximation to create simulated movements in the option value, Ty:g
method is also known as a partial-simulation approach. Note that thjg 1‘3
still a local-valuation method because the portfolio is fully valued a¢ .
initial point V, only. The VAR can then be found from the empirica] dls.:
tribution of the portfolio value. ;

In theory, the delta-gamma method could be generalized to many;
sources of risk. In a multivariate framework, the Taylor expansion is %

dV(S) = A'dS + 1/2(dSyT(dS) + - - - o 16;

where 4§ is now a vector of N changes in market prices, A is a vector Qfe
N deltas, and I' is an N by N symmetrical matrix of gammas with fCSpect
to the various risk factors. While the diagonal components are conven.
tional gamma measures, the off-diagonal terms are cross-gammas, or
I'i; = 8°V/IdS; aS;. For instance, the delta of options also depends on the
1mp11ed volatlhty, which creates a cross-effect. :

Unfortunately, the delta-gamma method is not practical with many
sources of risk because the amount of data required increases geometri.,
cally. For instance, with N = 100, we need 100 estimates of A, 5050 es-
timates for the covariance matrix 2, and an additional 5050 for the ma-
trix T, which includes second derivatives of each position with respect to
each source of risk. In practice, only the diagonal components are con-
sidered. Even so, a full Monte Carlo method provides a more direct route
to VAR measurement for large portfolios.

9.1.4 Comparison of Methods

To summarize, Table 9-1 classifies the various VAR methods. Overall;
each of these methods is best adapted to a different environment:

w For large portfolios where optionality is not a dominant factor,
the delta-normal method provides a fast and efficient method
for measuring VAR. ‘

w For portfolios exposed to a few sources of risk and with sub-
stantial option components, the “Greeks” method provides in-
creased precision at a low computational cost.

m For portfolios with substantial option components (such as
mortgages) or longer horizons, a full-valuation method may be
required.

It should be noted that the linear/nonlinear dichotomy also has in
plications for the choice of the VAR horizon. With linear models, as W
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TABLE 9=1

Comparison of VAR Methods

o
Valuation Method
Risk Factor
pistribution Local Valuation Full Valuation
I
Analytical Delta-normal Not used
Delta-gamma-deita
Simulated Delta-gamma-MC Monte Carlo (MC)
Grid MC
Histarical
—

have seen in Chapter 4, daily VAR can be adjusted easily to other peri-
ods by simple scaling by a square root of time factor. This adjustment as-
sumes that the position s constant and that daily returns are independent
and identically distributed. '

This time adjustment, however, is not valid for options positions.
Since options can be replicated by dynamically changing positions in the
underlying assets, the risk of options positions can be dramatically dif-
ferent from the scaled measure of daily risk. Therefore, adjustments of
daily volatility to longer horizons using the square root of time factor are
valid only when positions are constant and when optionality in the port-
folio is negligible. For portfolios with substantial options components, the
full-valuation method must be implemented over the desired horizon in-
stead of scaling a daily VAR measure.

9.1.5 An Example: Leeson’s Straddle

The Barings’ story provides a good illustration of these various methods.
In addition to the long futures positions described in Chapter 7, Leeson
also sold options, about 35,000 calls and puts each on Nikkei futures. This
position is known as a short straddle and is about delta-neutral because
the positive delta from the call is offset by a negative delta from the put,
assuming most of the options were at-the-money.

Leeson did not deal in small amounts. With a multiplier of 500 yen
for the options contract and a 100-yen/$ exchange rate, the dollar expo-
sure of the call options to the Nikkei was delta times $0.175 million.
Initially, the market value of the position was zero. The position was
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FIGURE 9-5

Leeson's straddle.
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designed to turn in a profit if the Nikkei remained stable. Unfortunately,
it also had an unlimited potential for large losses. /

Figure 9-5 displays the payoffs from the straddle, using a Black-
Scholes model with a 20 percent annual volatility. We assume that the op-:
tions have a matunity of 3 months. At the current index value of 19,000,
the delta VAR for this position is close to zero. Of course, reporting a
zero delta-normal VAR is highly misleading. Any move up or down has
the potential to create a large loss. A drop in the index to 17,000, for in-
stance, would lead to an immediate loss of about $150 million. The grapht:
also shows that the delta-gamma approximation provides increased accu-
racy. How do we compute the potential loss over a horizon of, say, |
month?

The risks involved are described in Figure 9—6, which plots the fre-
quency distribution of payoffs on the straddle using a full Monte Carlo
simulation with 10,000 replications. This distribution is obtained from a
revaluation of the portfolio after a month over a range of values for the
Nikkei. Each replication uses full valuation with a remaining maturity of
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"E;'s—tribution of 1-month payoff for straddie.

Frequency

-300 -200 -100 0
Payoff ($ millions)

2 months (the 3-month original maturity minus the 1-month VAR hori-
zon). The distribution looks highly skewed to the left. Its mean is —$1
million, and the 95th percentile is —$139 million. Hence the 1-month 95
percent VAR 1s $138 million.

How does the “Greeks’ method fare for this portfolio? First, let us
examine the delta-gamma-delta approximation. The total gamma of the
position is the exposure times the sum of gamma for a call and put, or
$0.175 million X 0.000422 = $0.0000739 million. Over a 1-month hori-
zon, the standard deviation of the Nikkei is oS = 19,000 X 20
percent/\/ﬁ = 1089. Ignoring the time drift, the VAR is, from Equation
(9.13),

VAR = o [{I(@$)?)® = 1.65 [1($0.0000739 million X 1089%)2
= 1.65 X $62 million = $102 million

This is substantially better than the delta-normal VAR of zero, which could
have fooled us into believing the position was riskless,

Using the Cornish-Fisher expansion and a skewness coefficient of
~2.83, we obtain a correction factor of &’ = 1.65 — 1 (1.65% — 1)(—2.83)
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= 2.45. The refined VAR measure is then 2.45 X $62 million = $15““
million, much closer to the true value of $138 million. f;{

Finally, we can turn to the delta-gamma-Monte Carlo aPPTOach;
which consists of using the simulations of S but valuing the portfolig o3
the target date using only the partial derivatives. This yields a VAR e
$128 million, not too far from the true value. This variety of methoded
shows that the straddle had substantial downside risk. 4

And indeed the options position contributed to Barings® fal]. Asz
January 1995 began, the historical volatility on the Japanese market wqq!
very low, around 10 percent. At the time, the Nikkei was hovering aroupg:s
19,000. The options position would have been profitable if the market had'fﬁ
been stable. Unfortunately, this was not so. The Kobe earthquake StI‘]lck“ﬁ
Japan on January 17 and led to a drop in the Nikkei to 18,000, shown j ms
Figure 9-7. To make things worse, options became more expensive as<
market volatility increased. Both the long futures and the straddle posl-
tions lost money. As losses ballooned, Leeson increased his exposure 1n
a desperate attempt to recoup the losses, but to no avail. On February 27
the Nikkei dropped further to 17,000. Unable to meet the mounting mar-
gin calls, Barings went bust.

FIGURE 9-7

The Nikkei's fall.
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' 9.2 DELTA-NORMAL METHOD
9.2.1 Implementation

Jf the portfolio consisted of only securities with jointly normal distribu-

fjons, the measurement of VAR would be relatively simple. The portfolio

return is
N
Rpiv1 = Z Wi R i1 (9.17)
i=1

where the weights w;, are indexed by time to recognize the dynamic na-
qure of trading portfolios.

Since the portfolio return is a linear combination of normal vari-
ables, it is also normally distributed. Using matrix notations, the portfo-

lio variance is given by
O (Rp 1) = W2 Wy (9.18)

- where 2,4 is the forecast of the covariance matrix over the VAR hori-

zon.
The problem is that VAR must be measured for large and complex

portfolios that evolve over time. The delta-normal method, which is
explained in much greater detail in a subsequent chapter, simplifies the

process by

m Specifying a list of risk factors
® Mapping the linear exposure of all instruments in the portfolio
onto these risk factors

B Aggregating these exposures across instruments
® Estimating the covariance matrix of the risk factors
® Computing the total portfolio risk

This mapping produces a set of exposures x;, aggregated across all
instruments for each risk factor and measured in dollars. The portfolio
VAR is then

VAR = aVx3,, 1x, (9.19)

Within this class of models, two methods can be used to measure
the variance-covariance matrix . It can be solely based on historical data
using, for example, a model that allows for time variation in risk.
Alternatively, it can include implied risk measures from options. Or it can



220 PART 3 Value-at-Risk Systeny. |
it

FIGURE 9-8
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use a combination of both. As we saw in the preceding chapter, options-
implied measures of risk are superior to historical data but are not avail- -
able for every asset, let alone for pairs of assets. Figure 9-8 details the -
steps involved 1n this approach.

9.2.2 Advantages

The delta-normal method is particularly easy to implement because it in-
volves a simple matrix multiplication. It is also computationally fast, even
with a very large number of assets, becavse it replaces each position by
its linear exposure.

As a parametric approach, VAR is easily amenable to analysis, since
measures of marginal and incremental risk are a by-product of the VAR
computation.

9.2.3 Problems

The delta-normal method can be subject to a number of criticisms. A first
problem is the existence of fat tails in the distribution of returns on most
financial assets. These fat tails are particularly worrisome precisely be-
cause VAR attempts to capture the behavior of the portfolio return in the
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left tail. In this situation, a model based on a normal distribution would
ynderestimate the proportion of outliers and hence the true value at risk.
AS discussed in Chapter 8, some of these fat tails can be explained in
rerms of time variation in risk. However, even after adjustment, there are
still too many observations in the tails. A simple ad hoc adjustment con-
sists of increasing the parameter o to compensate, as is explained in
Chapte[' 5.

Another problem is that the method inadequately measures the risk
of nonlinear instruments, such as options or mortgages. Under the delta-
normal method, options positions are represented by their “deltas” rela-
iive to the underlying asset. As we have seen in the preceding section,
asymmetries in the distribution of options are not captured by the delta-
normal VAR.

Lest we lead you into thinking that this method is inferior, we will
now show that alternative methods are no panacea because they involve
a quantum leap in difficulty. The delta-normal method is computationally
easy to implement. It only requires the market values and exposures of
current positions, combined with risk data. Also, in many situations, the
delta-normal method provides adequate measurement of market risks.

9.3 HISTORICAL SIMULATION METHOD
9.3.1 Implementation

The historical simulation method provides a straightforward implementa-
tion of full valuation (Figure 9-9). It consists of going back in time, such
as over the last 250 days, and applying current weights to a time-series
of historical asset returns:

N
Rox=> wiRyp k=1,...,¢ (9.20)
i=1
Note that the weights w, are kept at their current values. This return does
not represent an actual portfolio but rather reconstructs the history of a
hypothetical portfolio using the current position. The approach is some-
times called bootstrapping because it involves using the actual distribu-
tion of recent historical data (without replacement).

More generally, full valuation requires a set of complete prices, such
as yield curves, instead of just retums. Hypothetical future prices for
Scenario k are obtained from applying historical changes in prices to the
Current level of prices:

Sie=S8o0+AS;, i=1..,N (9.21)
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FIGURE 9-9

Historical simulation method.
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A new portfolio value V,,, is then computed from the full set of hypo--

thetical prices, perhaps incorporating nonlinear relationships V; = V(§;,)."

Note that to capture vega risk, due to changing volatilities, the set of prices*

can incorporate implied volatility measures. This creates the hypothetical -

return corresponding to simulation k:

R = i Vo
Vo

VAR is then obtained from the entire distribution of hypothetical returns,
where each historical scenario is assigned the same weight of (1/1).

As always, the choice of the sample period reflects a tradeoff be-
tween using longer and shorter sample sizes. Longer intervals increase
the accuracy of estimates but could use irrelevant data, thereby missing
important changes in the underlying process.

(9.22)

9.3.2 Advantages

This method is relatively simple to implement if historical data have been
collected in-house for daily marking-to-market. The same data can then
be stored for later reuse in estimating VAR.
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Historical simulation also short-circuits the need to estimate a co-
yariance matrix. This simplifies the computations in cases of portfolios
with a large number of assets and short sample periods. All that is needed
js the time series of the aggregate portfolio return.

The method also deals directly with the choice of horizon for meas-
wing VAR. Returns are simply measured over intervals that correspond
to the length of the horizon. For instance, to obtain a monthly VAR, the
gser would reconstruct historical monthly portfolio returns over, say, the
Jast 5 years.

By relying on actual prices, the method allows nonlinearities and
gonnormal distributions. Full valuation is obtained in the simplest fash-
jon: from historical data. The method captures gamma, vega risk, and cor-
relations. It does not rely on specific assumptions about valuation mod-
els or the underlying stochastic structure of the market.

Perhaps most important, it can account for fat tails and, because it
does not rely on valuation models, is not prone to model risk. The method
is robust and intuitive and, as such, is perhaps the most widely used method
to compute VAR.

9.3.3 Problems

On the other hand, the historical simulation method has a number of draw-
backs. First, it assumes that we do have a sufficient history of price
changes. To obtain 1000 independent simulations of a 1-day move, we re-
quire 4 years of continuous data. Some assets may have short histories,
or there may not be a record of an asset’s history. )

Only one sample path is used. The assumption is that the past rep-
resents the immediate future fairly. If the window omits important events,
the tails will not be well represented. Vice versa, the sample may contain
events that will not reappear in the future.

And as we have demonstrated in Chapter 8, risk contains significant
and predictable time variation. The simple historical simulation method
presented here will miss situations with temporarily elevated volatility.*
Worse, historical simulation will be very slow to incorporate structural
breaks, which are handled more easily with an analytical methods such
as RiskMetrics.

4. A simple method to allow time variation in risk proceeds as follows: First, fit a time-series modet
to the conditional volatility and construct historical scaled residuals. Second, perform a his-
torical simulation on these residuals, Third, apply the most recent volatility forecast to the
scaled portfolio volatility. For applications, see Hull and White (1998).
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This approach is also subject to the same criticisms as the movmg*
window estimation of variances. The method puts the same weight op all
observations in the window, including old data points. The measure
risk can change significantly after an old observation is dropped from the_
window.’ '
Likewise, the sampling variation of the historical simulation VAR:
will be much greater than for an analytical method. As is pointed out iu'%
Chapter 5, VAR is only a statistical estimate and may be subject to muc:
estimation error if the sample size is too short. For instance, a 99 percey
daily VAR estimated over a window of 100 days produces only one ob..
servation in the tail, which necessarily leads to an imprecise VAR mej..
sure. Thus very long sample paths are required to obtain meaningful quap.
tiles. The dilemma is that this may involve observations that are net.
relevant. \.f

A final drawback is that the method quickly becomes cumbersome
for large portfolios with complicated structures. In practice, users adopt’
simplifications such as grouping interest rate payoffs into bands, which-
considerably increases the speed of computation. Regulators also have
adopted such a “bucketing” approach. But if too many simplifications are.
carried out, such as replacing assets by their delta equivalents, the bene--
fits of full valuation can be lost. "

9.4 MONTE CARLO SIMULATION METHOD
9.4.1 Implementation

Monte Carlo (MC) simulations cover a wide range of possible values in.
financial variables and fully account for correlations. MC simulation is
developed in more detail in a later chapter. In brief, the method proceeds
in two steps. First, the risk manager specifies a stochastic process for fi-
nancial variables as well as process parameters; parameters such as risk
and correlations can be derived from historical or options data. Second,
fictitious price paths are simulated for all variables of interest. At each
horizon considered, the portfolio is marked-to-market using full valuation.
as in the historical simulation method, V; = WV(S,). Each of these
“pseudo” realizations is then used to compile a distribution of returns,

5. To alleviate this problem, Boudoukh et al. (1998) propose a scheme whereby each observation
Ry is assigned a weight w, that declines as it ages. The distribution is then obtained from rank-
ing the R, and cumulating the associated weights to find the selected confidence level.
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FIGURE 9-10
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from which a VAR figure can be measured. The method is summarized
in Figure 9-10.

The Monte Carlo method is thus similar to the historical simulation
method, except that the hypothetical changes in prices AS; for asset i in
Equation (9.20) are created by random draws from a prespecified sto-
chastic process instead of sampled from historical data.

9.4.2 Advantages

Monte Carlo analysis is by far the most powerful method to compute VAR.
It can account for a wide range of exposures and risks, including nonlin-
ear price risk, volatility risk, and even model risk. It is flexible enough
to incorporate time variation in volatility, fat fails, and extreme scenarios.
Simulations generate the entire pdf, not just one quantile, and can be used
to examine, for instance, the expected loss beyond a particular VAR.
MC simulation also can incorporate the passage of time, which will
Create structural changes in the portfolio. This includes the time decay of
options; the daily settlement of fixed, floating, or contractually specified
cash flows; or the effect of prespecified trading or hedging strategies.
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These effects are especially important as the time horizon lengthens, which
is the case for the measurement of credit risk. ’

9.4.3 Problems

The biggest drawback of this method is its computational time. It 10gy°
sample paths are generated with a portfolio of 1000 assets, the total nyp,.
ber of valuations amounts to 1 million. In addition, if the valuation of 35.
sets on the target date involves itself a simulation, the method requires g
“simulation within a simulation.” This quickly becomes too onerous tq
implement on a frequent basis.

This method is the most expensive to implement in terms of systems’
infrastructure and intellectual development. The MC simulation method-
is relatively onerous to develop from scratch, despite rapidly falling prices
for hardware. Perhaps, then, it should be purchased from outside vendors,
On the other hand, when the institution already has in place a system to-
model complex structures using simulations, implementing MC simula-
tion is less costly because the required expertise is in place. Also, these
are situations where proper risk management of complex positions is ab-
solutely necessary.

Another potential weakness of the method is model risk. MC relies.
on specific stochastic processes for the underlying risk factors as well as:
pricing models for securities such as options or mortgages. Therefore, it
is subject to the risk that the models are wrong. To check if the results
are robust to changes in the model, simulation results should be comple-
mented by some sensitivity analysis.

Finally, VAR estimates from MC simulation are subject to sampling
variation, which is due to the limited number of replications. Consider,
for instance, a case where the risk factors are jointly normal and all pay-
offs linear. The delta-normal method will then provide the correct meas-
ure of VAR, in one easy step. MC simulations based on the same covari-
ance matrix will give only an approximation, albeit increasingly good as
the number of replications increases.

Overall, this method is probably the most comprehensive approach
to measuring market risk if modeling is done correctly. To some extent,
the method can even handle credit risks. This is why a full chapter is de-
~voted to the implementation of Monte Carlo simulation methods.
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o.5 EMPIRICAL COMPARISONS

It 18 instructive to compare the VAR numbers obtained from the three
methods discussed. Hendricks (1996), for instance, calculated 1-day VARs
for randomly selected foreign currency portfolios using a delta-normal
method based on fixed windows of equal weights and exponential weights
as well as a historical simulation method.

Table 9-2 summarizes the results, which are compared in terms of
percentage of outcomes falling within the VAR forecast. The middle col-
umn shows that all methods give a coverage that is very close to the ideal
qumber, which 1s the 95 percent confidence level. At the 99 percent con-
fidence level, however, the delta-normal methods seem to underestimate
VAR slightly, since their coverage falls short of the ideal 99 percent.

Hendricks also reports that the delta-normal VAR measures should
be increased by about 9 to 15 percent to achieve correct coverage. In
other words, the fat tails in the data could be modeled by choosing a

TABLE 9-2

Empirical Comparison of VAR Methods:
Fraction of Outcomes Covered

Method 95% VAR 99% VAR
Delta-normal
Equal weights over
50 days 95.1% 98.4%
250 days 95.3% 98.4%
1250 days 95.4% 98.5%
Delta-normai
Exponential weights:
A= 0.94 94.7% 98.2%
A\ =0.97 95.0% 98.4%
A =099 95.4% 98.5%
Historical simuiation
Equal weights over
125 days 94.4% 98.3%
250 days 94.9% 98.8%
1250 days 95.1% 99.0%
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distribution with a greater a parameter. A Student ¢ distribution with foy,
to six degrees of freedom, for example, would be appropriate.

As important, when the VAR number is exceeded, the tail event g
on average, 30 to 40 percent greater than the risk measure. In some in:
stances, it is several times greater. As Hendricks states, “This makeg ;¢
clear that VAR measures—even at the 99th percentile—do not bound pos.
sible losses.”

This empirical analysis, however, examined positions with lineg,
risk profiles. The delta-normal methods could prove less accurate wity
options positions, although it should be much faster. Pritsker (1997) ex.
amines the tradeoff between speed and accuracy for a portfolio of optiong,

Table 9--3 reports the accuracy of various methods, measured as the
mean absolute percentage error in VAR, as well as their computationa]
times. The table shows that the delta method, as expected, has the high-
est average absolute error, at 5.34 percent of the true VAR. It is also by
far the fastest method, with an execution time of (.08 seconds. At the
other end, the most accurate method is the full Monte Carlo, which comes-
arbitrarily close to the true VAR, but with an average run time of 66 sec-
onds. In between, the delta-gamma-delta, delta-gamma—Monte Carlo, and
grid Monte Carlo methods offer a tradeoff between accuracy and speed.

An Interesting but still unresolved issue is, How would these ap-
proximations work in the context of large, diversified bank portfolios?
There is very little evidence on this point. The industry initially seemed
to prefer the analytical covariance approach due to its simplicity. With
the rapidly decreasing cost of computing power, however, there is now

TABLE 9-3

Accuracy and Speed of VAR Methods:
89 Percent VAR for Option Portfolios

Accuracy: Speed:
Mean Absolute Computation

Error in VAR Time,

Method (%) s
Delta 5.34 0.08
Delta-gamma-delta 472 1.17
Delta-gamma-MC 3.08 3.88
. Grid Monte Carlo 3.07 32.19
Full Monto Carlo 0 66.27
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o marked trend toward the generalized use of historical simulation
methods.

9.6 SUMMARY

We can distinguish a number of different methods to measure VAR. At
the most fundamental level, they separate into local (or analytical) valu-
ation and full valuation. This separation reflects a tradeoff between speed
of computation and accuracy of valuation.

Delta models can use parameters based on historicai data, such as
those implemented by RiskMetrics, or on implied data, where volatilities
are derived from options. Both methods generate a covariance matrix, to
which the “delta’ or linear positions are applied to find the portfolio VAR.
Among full-valuation models, the historical simulation method is the eas-
iest to implement. It simply relies on historical data for securities valua-
tion and applies the most current weight to historical prices. Finally, the
most complete model, but also the most difficult to implement, is the
Monte Carlo simulation approach, which imposes a particular stochastic
process on the financial variables of interest, from which various sample
paths are simulated. Full valuation for each sample path generates a dis-
tribution of portfolio values.

Table 94 describes the pros and cons of each method. The choice
of the method largely depends on the composition of the portfolio. For
portfolios with no options (nor embedded options) and whose distribu-
tions are close to the normal pdf, the delta-normal method may well be
the best choice. VAR will be relatively easy to compute, fast, and accu-
rate. In addition, it is not too prone to model risk (due to faulty assump-
tions or computations). The resulting VAR is easy to explain to manage-
ment and to the public. Because the method is analytical, it allows easy
analysis of the VAR results using marginal and component VAR meas-
ures. For portfolios with options positions, however, the method may not
be appropriate. Instead, users should turn to a full-valuation method.

The second method, historical simulation, is also relatively easy to
implement and uses actual, full valuation of all securities. However, its
typical implementation does not account for time variation in risk, and
the method relies on a narrow window only.

In theory, the Monte Carlo approach can alleviate all these techni-
cal difficulties. It can incorporate nonlinear positions, nonnormal distri-
butions, implied parameters, and even user-defined scenarios. The price
10 pay for this flexibility, however, is heavy. Computer and data require-
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TABLE 9—-4

Comparison of Approaches to VAR
—
Historical Monto Carlo
Features Delta-Normal Simulation Simulation

Positions

Valuation Linear Fuil Fult
Distribution

Shape Normal Actual General

Time-varying Yes Possible Yes

Implied data Possible No Possible

Extreme events Low probability In recent data Possible

Use correlations Yes Yes Yes

VAR precision Excelient Poor with Good with

short window many iterations

Implementation

Ease of computation  Yes intermediate No

Accuracy Depends on Yes Yes

portfolio

Communicability Easy Easy Difficult

VAR analysis Easy, analytical  More difficult More difficult

Maijor pitfalls Nonlinearities, Time-variation in Model risk

fat tails risk, unusual
evernts

ments are a quantum step above the other two approaches, model risk
looms large, and value at risk loses its intuitive appeal. As the price of
computing power continues to fall, however, this method is bound to take
on increasing importance.

In practice, all these methods are used. A recent survey by Britain’s
Financial Services Authority has revealed that 42 percent of banks use the
covariance matrix approach, 31 percent use historical simulation, and 237'
percent use the Monte Carlo approach. The delta-normal method, which
is the easiest to implement, appears to be the most widespread.

All these methods present some advantages. They are also related.
Monte Carlo analysis of linear positions with normal returns, for instance,
should yield the same result as the delta-normal method. Perhaps the best
lesson from this chapter is to check VAR measures with different method-
ologies and then to analyze the sources of differences.



