
Appendix 3.1

Binomial Option
Valuation

The Basic Valuation Idea: Option Replication and Risk Neutrality

The basic idea enabling the pricing of options is that one can construct a
portfolio consisting of buying a particular number, N, of shares of the un-
derlying asset (e.g., common stock) and borrowing against them an ap-
propriate amount, $B, at the riskless rate, that would exactly replicate
the future returns of the option in any state of nature. Since the option
and this equivalent portfolio (effectively, an appropriately levered posi-
tion in the stock) would provide the same future returns, to avoid risk-
free arbitrage profit opportunities they must sell for the same current
value. Thus, we can value the option by determining the cost of con-
structing its equivalent replicating portfolio, that is, the cost of a syn-
thetic or homemade option equivalent.

Suppose that the price of the underlying stock (currently at V � $100)
will move over the next period either up to V� � 180 (i.e., with a multi-
plicative up parameter, u � 1.8) or down to V� � 60 (with a multiplica-
tive down parameter, d � 0.6), with probabilities q and (1 � q),
respectively, that is,

q V� � 180

V

100

1 � q V� � 60.

The value of the option over the period would then be contingent on
the price of the underlying stock. Assuming I � $80 (and r � 0.08),

C� � Max(V� � I, 0)
q � 100

C
1-q

C� � Max(V� � I, 0)

� 0
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where C� and C� are the values of the call option at the end of the period
if the stock moves up or down, respectively.

Suppose now we construct a portfolio as described above, consisting
of (a) buying N shares of the underlying stock at its current price, V, fi-
nanced in part by (b) borrowing an amount of $B at the riskless interest
rate (e.g, selling short Treasury bills), for a net out-of-pocket cost of NS
� B. That is,

Call option � Buy N Shares at V & Borrow $B at r (3.A.1)
or C � (NV � B).

After one period, we would need to repay the principal amount bor-
rowed at the beginning (B) with interest, or (1 � r)B for certain. The
value of this portfolio over the next period will thus be

q N V� � (1 � r)B

N V � B

1�q N V� � (1 � r)B

If the portfolio is to offer the same return in each state at the end of the
period as the option, then

N V� � (1 � r)B � C�

N V� � (1 � r)B � C�

Solving these two equations (conditions of equal payoff) for the two un-
knowns, N and B, gives

N � (C� � C�)�(V� � V�) (3.A.2)
� (100 � 0)�(180 � 60) � 0.83 shares;

B � (V� C� �V� C�)/[(V� � V�)(1 � r)] (3.A.3)

� (N V� � C�)�(1 � r)
� (0.83 � 60 � 0)�1.08 � $46.

The number of shares of the underlying asset that we need to buy to repli-
cate one option over the next period, N, is known as the option’s delta or
hedge ratio, and is simply obtained in the discrete case as the difference
(spread) of option prices divided by the spread of stock prices. That is, we
can replicate the return to the option by purchasing N (= 0.83) shares of
the underlying stock at the current price, V, and borrowing the amount
$B (= $46) at the riskless rate, r.

When substituted back into equation 3.A.1, C � NV � B, equations
3.A.2 and 3.A.3 finally result in
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C � [pC� � (1 � p)C �]�(1 � r) (3.A.4)
� [0.4 � 100 � 0.6 � 0]�1.08 � $37,

where

p � [(1 � r)V � V�]�(V� � V�) (3.A.5)
� [1.08 � 100 � 60]�(180 � 60) � 0.4

is a transformed or risk-neutral probability, that is, the probability that
would prevail in a risk-neutral world where investors are indifferent to risk.

Risk-Neutral Valuation
Intuitively, equation 3.A.1 can be rearranged into NV � C � B, that is,
creating a portfolio consisting of (a) buying N shares of the underlying
stock and (b) selling (writing) one call option would provide a certain
amount of (1 � r)B � $50 next period, regardless of whether the stock
moves up or down:

N V� � C � � (1 � r)B

q .83(180)�100 � 50

N V � C � B
.56(100)�37 � 46

1�q
N V� � C � � (1 � r)B
.83(60) � 0 � 50

Through the ability to construct such a riskless hedge, risk can effectively
be “squeezed out” of the problem, so that investors’ risk attitudes do not
matter. Therefore, we can equivalently — and more conveniently — obtain
the correct option value by pretending to be in a risk-neutral world where
risk is irrelevant. In such a world, all assets (including stocks, options,
etc.) would earn the risk-free return, and so expected cash flows
(weighted by the risk-neutral probabilities, p) could be appropriately dis-
counted at the risk-free rate.

Denoting by R� � u � 1 � V��V � 1 (� 0.80 or 80%) the return if the
stock moves up (+), and by R� � V��V � 1 (� �0.40 or �40%) the
down (�) return, the risk-neutral probability, p, can be alternatively ob-
tained from the condition that the expected return on the stock in a risk-
neutral world must equal the riskless rate, that is,

pR� � (1 � p)R� � r.

Solving for p yields

p � (r � R�)�(R� � R�)
� [0.08 � (�0.40)]�[0.80 � (�0.40)], or (3.A.5	)
� [(1 � r) � d]�(u � d) � (1.08 � 0.6)�(1.8 � 0.6)
� 0.4.
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Similarly, the expected return on the option must also equal the risk-free
rate in a risk-neutral world, that is,

[pC� � (1 � p)C�]/C � 1 � r,

resulting in above equation 3.A.4.
A number of points are worth reviewing about the above call option

valuation. It provides an exact formula for the value of the option in terms
of V, I, r, and the stock’s volatility (spread). With no dividends, C � V �
I, so an American call option should not be exercised early; when divi-
dends are introduced, early exercise may be justified, however. The moti-
vation for the pricing of the option rests with the absence of arbitrage
profit opportunities, a strong economic condition.

The actual probability of up and down movements, q, does not appear
in the valuation formula. Moreover, the value of the option does not de-
pend on investors’ attitudes toward risk or on the characteristics of other
assets — it is priced only relative to the underlying asset, V.

The value of the option can be equivalently obtained in a risk-neutral
world (since it is independent of risk preferences). Actually, p is the value
probability q would have in equilibrium if investors were risk neutral. As
the above valuation formula confirms, in such a risk-neutral world —
where all assets are expected to earn the riskless rate of return — the cur-
rent value of the option can be obtained from its expected future values
(using the risk-neutral probability, p), discounted at the risk-free interest
rate.

A put option can be valued similarly, except that we would need to sell
(instead of buy) shares of the underlying stock, and lend (instead of bor-
row) at the riskless interest rate (i.e., buy government bonds), that is,

Put option � Sell N shares at V & Lend $B at r.

The hedge ratio, or delta, for a put option is simply the delta of the cor-
responding call option minus 1, giving 0.83 � 1 � �0.17 in the above
example (with the minus sign indicating selling, rather than buying, 0.17
shares of the underlying stock). Applying equation 3.A.3 in the case of a
similar put option where P� � A � V� � 100 � 60 � 40, the amount to
lend is given by

B � (N V� � P�)/(1 � r)
� (�0.17 � 60 � 40)�1.08 � �$46.3. (3.A.6)

Thus, to replicate a put option, we need to sell 0.17 shares of stock at V
� $100 and lend (minus sign in B) $46.3 at the riskless rate (i.e., buy
Treasury bills with that face value). Thus, the current value of the put op-
tion should be

P � N V � B � (�0.17)(100) � (�46.3) � $29.6. (3.A.7)
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The General Multiplicative Binomial Approach

The general multiplicative binomial option pricing approach was popu-
larized by Cox, Ross, and Rubinstein (1979). It is based on the replica-
tion argument described above, except that the underlying stock price
follows a multiplicative binomial process over successive periods de-
scribed by

q uV

V

1�q dV,

where the stock price at the beginning of a given period, V, may increase
(by a multiplicative factor u) with probability q to uV or decrease with
complementary probability (1 � q) to dV at the end of the period. Thus
u and d represent the (continuously compounded or logarithmic) rate of
return if the stock moves up or down, respectively, with d � 1�u. (Since
riskless borrowing at the rate r is also available, to avoid riskless arbi-
trage profit opportunities, u � (1 � r) � d.)

In our earlier notation, V� � uV and V� � dV with d � 1�u, or
alternatively

u � V��V � 1 � R�, (3.A.8)

where R� is the up (�) return, and

d � V��V � 1 � R�, (3.A.8	)

where R� is the down (�) return.
Thus, expressions 3.A.2, 3.A.3, 3.A.4, and 3.A.5 would now become

N � [C� � C�]/[(u � d)V], (3.A.2	)
B � [dC� � uC�]�[(u � d)(1 � r)], (3.A.3	)
C � [pC� � (1 � p)C�]�(1 � r), (3.A.4	)

and

p � [(1 � r) � d]�(u � d) (3.A.5	)
� (1.08 � 0.6)�(1.8 � 0.6) � 0.4.

This valuation procedure can be easily extended to multiple periods. If
the time to expiration of the option, �, is subdivided into n equal subin-
tervals, each of length h � �/n, and the same valuation process is repeated
starting at the expiration date and working backward recursively, the
general binomial pricing formula for n periods would be obtained:



Corporate Real Options 161

.

The first part, {n!� j!(n � j)!} pj (1 � p)n�j, is the binomial distribution
formula giving the probability that the stock will take j upward jumps in
n steps, each with (risk-neutral) probability p. The last part, Max(ujdn�jV
� I, 0), gives the value of the call option with exercise cost I at expira-
tion conditional on the stock following jj ups each by u%, and n � j
downs each by d% within n periods. The summation of all the possible
(from j � 0 to n) option values at expiration, multiplied by the probabil-
ity that each will occur, gives the expected terminal option value, which
is then discounted at the riskless rate over the n periods.

If we let m be the minimum number of upward moves j over n periods
necessary for the call option to be exercised or finish in the money (i.e.,
umdn�mV � I, or by logarithmic transformation m is the smallest non-
negative integer greater than ln(I/Vdn)�ln(u�d)), and break up the result-
ing term into two parts, then the binomial option-pricing formula can be
more conveniently rewritten as

, (3.A.9)

where � is the complementary binomial distribution function (giving the
probability of at least m ups out of n steps):

,

and

p	 � [u�(1 � r)]p,

with p and m as defined above.
One may initially object to this discrete period-by-period binomial val-

uation approach, since in reality stock prices may take on more that just
two possible values at the end of a given period, while actual trading in
the market takes place almost continuously and not on a period-by-period
basis. However, the length of a “period” can be chosen to be arbitrarily
small by successive subdivisions.

As the length of a trading period, h, is allowed to become increasingly
smaller (approaching 0) for a given maturity, �, continuous trading is effec-
tively approximated. In the continuous-time limit, as the number of periods
n approaches infinity, the multiplicative binomial process approximates
the log-normal distribution or smooth diffusion Wiener process.

£ 3m; n, p 4 � a
n

j�m
 5n!> j!1n � j 2!6 pj 11 � p2n� j

C � V£ 3m; n, p¿ 4 � 5I> 11 � r2n6 £ 3m; n, p 4

C � a
n

j�0
  5n!> j!1n � j 2!6pj11 � p2n� jMax1ujdn� jV � I, 02 > 11 � r2n
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By choosing the parameters {u, d, and p} so that the mean and variance
of the continuously compounded rate of return of the discrete binomial
process are consistent in the limit with their continuous counterparts, the
stock price will become log-normally distributed and the (complemen-
tary) binomial distribution function, �[.], will converge to the (cumula-
tive) standard normal distribution function, N(.). Specifically, by setting

,

, (3.A.10)

p � 1⁄2 � 1⁄2(�/�) ,

where � � lnr � 1⁄2�2, � is the time to option expiration, n is the number
of subperiods, and h � ��n �dt is the subinterval or length of a small
trading period (typically expressed as a fraction of a year). Cox, Ross,
and Rubinstein (1979) show that as n → �, �[m; n, p	] → N(x), so that
the above binomial formula converges to the continuous-time Black-Sc-
holes formula:

, (3.A.11)

where � 1⁄2� .

For example, if � � 3 months � 0.25 years and n � 12 steps, a discrete
multiplicative binomial process with u � 1.1 and weekly intervals (h � ��n
� 0.02 years) would be consistent in the limit with a lognormal diffusion
process with annual standard deviation, 
� 0.66, or 66%.

� � ln1u2>2h � ln11.22>20.02

2�x � ln1V>I11 � r2��2>�2�

C � V N1x2 � I11 � r2�� N1x � �2�2

2h

d � 1>u
u � exp1�2h2


